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Abstract

Let G be an exponential Lie group. We study primitive ideals (i.e. kernels of irreducible *-representa-
tions of L!(G)), with bounded approximate units (b.a.u.). We prove a result relating the existence of
b.a.u. in certain primitive ideals with the geometry of the corresponding Kirillov orbits. This yields for
a solvable group of class 2, a characterization of the primitive ideals with b.a.u.

1980 Mathematics subject classification (Amer. Math. Soc.): 43 A 20, 22 E 30.
Introduction

A Banach algebra B has bounded approximate units if there is a bounded net
{u,}ac4 in B such that lim, ,jju,x — x|| = lim, o 4||xu, — x|| = 0 for every
x € B. Given a locally compact group G, one problem of interest in harmonic
analysis is to describe the closed ideals in L'(G) which possess bounded ap-
proximate units. For abelian G these are exactly the kernels of closed sets in the
coset ring R(G), where G is the dual group of G. This is a result of Liu, van
Rooij, Wang [10] and Reiter [16]. In this paper we are concerned with primitive
ideals with bounded approximate units in group algebras of exponential Lie
groups (an ideal in LY(G) for a locally compact group G is called primitive if it is
the kernel of a topologically irreducible *-representation of L'(G) in a Hilbert
space). For such groups G there is a parametrization of G (the set of equivalence
classes of irreducible unitary representations of G) by the orbits of the coadjoint
representation Ad* of G in the dual @* of the Lie algebra & (Kirillov [9], Bernat
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[2]). It was shown in [1, 2.3, Theorem] that L!-kernels of closed Ad*(G)-invariant
sets in the coset ring R(®*) have bounded approximate units.

This paper is organized as follows. Section 1 contains some notations and
definitions. In Section 2 we study, for later use, some properties of the orbits
under the coadjoint representation of an exponential Lie group. In Section 3 we
prove our main result. Let = be an irreducible unitary representation of an
exponential Lie group G and let £ be the corresponding Ad*(G)-orbit. Suppose
that # satisfies the following condition: ()7 is quasi-equivalent to the induced
representation ind(N, G, x) for some normal subgroup N of G and some char-
acter x of N. Then we show that the primitive ideal L'-kerm has bounded
approximate units if and only if @ is affine linear. Moreover, condition (x) is
discussed: if, for example, G is solvable of class 2, then the above result yields a
complete description of the primitive ideals in L'(G) which have bounded
approximate units.

1. Preliminaries

1.1. A normed algebra A has bounded approximate units, abbreviated b.a.u., if
there is a constant C such that for every x € 4 and ¢ > 0, there is an element
u € A with ||u|| < C, [jux — x|| < € and {|xu — x|| < e. This is equivalent to the
existence of a bounded net {u_} in A such that ||u,x — x|| = 0 and ||xu, — x||
— 0 for every x € 4 [6, 9.3].

Let G be a locally compact group and N a closed normal subgroup of G. Let x
be a unitary representation of N and = a unitary representation of G. For x € G
denote by x* the unitary representation of N defined by x*(n) = x(x'nx).
Denote by ind( N, G, x) the unitary representation of G induced by x.

Every unitary representation of a locally compact group can be integrated to a
*-representation of the corresponding L'-algebra. We always denote this repre-
sentation by the same symbol. The following result is proved in [1, 1.3, Corollary
2]. Assume that L'-kerm = L'-kerind(N, G, x). Then L'-kerw has b.a.u. if and
only if N . L"-kerx* has b.a.u.

1.2. The coset ring of an abelian group X, denoted by R(X), is the smallest
Boolean algebra of subsets of X containing the cosets of all subgroups of X. Let
G be a locally compact abelian group. We recall that a closed ideal in L'(G) has
b.a.u. if and only if it is the kernel of a closed set in the coset ring R(G) of the
dual group G of G [10, Theorem 8; 16, Section 17, Theorem 12]. A description of
the closed sets of R(G) is given in [17, Theorem 1.7).
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1.3. Let G be a connected, simply connected solvable Lie group with Lie
algebra @&, let ®* be the dual space of @&, and let Ad* be the coadjoint
representation of G in &*. Then G is called exponential if the exponential map
exp: & — G is surjective (this is the case if, for example, G is nilpotent). The
irreducible unitary representations of an exponential Lie group G (or, equiva-
lently, the irreducible *-representations of L'(G)) are, by the Kirillov theory, in a
one-to-one correspondence with the orbits of Ad*[2}.

2. Coset ring, Kirillov orbits and quasiequivalence

We prove here some results which may be of independent interest and which
will be needed in the next section.

2.1. The orbits of the coadjoint representation of an exponential Lie group exp
@& are connected embedded submanifolds of &* [3, Chapter I, Théoréme 3.8).
We shall need the following simple lemma.

LEMMA. Let § be a connected embedded submanifold of R" such that the closure
Q of Q belongs to the coset ring R(R"™). Then & is affine linear.

PRrOOF. By [17, Theorem 1.7] & has the form
N G
2- 0 [x\U w)
j=1 i=1

where the K/ are (possibly void) closed cosets in R" such that for each
j=1,...,N, K/ is open in Kj, i=1,...,n(j). Now it follows from the
well-known structure of the closed subgroups of R” that £ can be written in the
form
Q= U A;,
iel

where [ is at most countable, every 4, is an affiue subspace of R", 4, U, ., 4;
for every i € I, and any union of the 4, is closed. Thus (4,\U, ., 4;,) N Q is
open in § and nonvoid for every i € I. This shows that

(*) dim 4; = dimQ

for every i€ 1. Now let i, j€ I and i #j (that is 4, # 4;). We claim that
A,NA4,N0N0 =0 If wed,NA4;NQ, then the tangent space T, () to £ at w
contains A, and A, since € is open in £ (& is locally compact). Thus, by (*),
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A, = A; = T, (), and we get a contradiction. Therefore
Q= U (2n 4,),
iel
where (R N A)N(RNA)=@ fori+j,and 8N A, =C8N(4\U;,,;4)is
open in £ and nonvoid for every i € I. As @ is connected it follows that [
consists of one point, i.c. that & is affine linear.

2.2. The notion of an exponential Lie algebra can be generalized as follows. Let
G = exp @ be an exponential Lie group and p a continuous representation of G
on a finite-dimensional real vectorspace V. If the weights of p on V are of the
form A(1 + ia), where « is a real number and A is a real linear form on &, then
V is said to be an exponential G-module. The structure of the orbits of such
representations is described in [15, Proposition 5]. Using this result we can prove
the following lemma (which is more precise than Lemma 2.1 in case { is an orbit
in an exponential G-module).

LEMMA. Let G = exp & be an exponential group and Van. exponential G-module.
Let Q be an orbit of G in V and suppose that the closure @ of § is affine linear.
Then Q is closed.

PROOF. Denote by p the representation of G on V, take f € @ and consider the
map 7 G - &, x - p(x)f. For X€ @ put X -f=dr(e)X =
dr/dt(exptX)|,_,, where d7(e) is the differential of = at the group unit e of G.
Then for the tangent space T,(2) of @ at f we have T,(Q)=/f+ @ - f. By
hypothesis @ is affine linear, and by [15, 4, Corollary 1] © is open in . Thus

Q=7}(Q)=f+@-f.

This implies that & - f is G-invariant. Hence @ - f is @&-invariant, ie. it is
invariant under the action 8 X V - V, (X, h) —» dp/dt(exptX)h|,_, of & on
V.Nowlet V=V,2 ¥V, 2 --- 2V, = {0} be a Jordan-Holder sequence of the
&-module V, with & - f = V; for some i € {0,...,m}. Denote by «; the projec-
tion V- V/V and by &, theset (X € @|X-f€ V;} (j=01,...,m). Then
B=6,26,2 --- 2@, =@(f), where &(f) is the Lie algebra of the
stabilizer of f in G. Let 1 € j; <j, < --+ <j; < m be the indices for which
®, # @, ,. Observethat j, > i,since @ - f= V.

Now by [15, Proposition 5] one can choose a basis {v;} (respectively { v/, v/'})
of V,_,/V, foreach j=1,...,mif dimV,_,/V; = 1 (respectively if diimV,_,/V,
= 2), and a basis { X, } (respectively { X;, X/"}) of &, _,/@, for each k =
L,...,d if dim®, _,/@; =1 (respectively if dim®; _,/@ = 2) with the fol-
lowing properties. (Write 7}, = £, € R if dim ®, _,/&, =1, write T, = (#;, #}
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if dim @, _,/@, =2, let g,(T,) = p(exp1,X,) or g(T,) =
p(expt; Xyexpty X)), let g(T) = g|(T}) - - - g,(T;), and let v}’ = 0 if dimV,_,/V,
=1). The map T = (T},...,T,;) = g(T)f = L7_(P{(T)v; + P/(T)v}) is a dif-
feomorphism between R’ and @ (/ = dim ), where for P/(T) and P/(T) the
following holds.
() P/(T) and P/(T) depend only on Tj,. .., T}, where k = sup{s| j; <j};
(i) if T, = 1., then

a,(1+ia )t _ 1

(+) B(T)+iPy(T)=* e T + G (T, Ty

a,(1+iay)
if T, = (t;, t), then
(#+)  P(T)+ P/(T)=(t; +it))eToTid) + G(Ty,..., T, _4);
where {a,,a,} are real numbers, L, and G, are functions of T},...,T,_; and

i = Y-1. Now let k be the smallest index such that P/(T) + iP/(T) has the form
(*) with a, # 0. Fix T° = (T,...,T?) € R' and take v € V such that

Ji—1
mo= Y |P/(T°)v + P/(T°)v/ + Re

Pt a,(1+ia,)

0
e LT 4 Gk(TO)]vj’.k

+Im

s Lk(TO)+ G TO ”
a,(1+ iak)e ACIEAL

As j, > i, we see that mv = 7, and hence v € @ = f+ V,. Let {T"}, . be a
sequence of points in R’ such that g(T")f converges to v. Hence lim, 7, g(T")f
= mv. For each s = 1,...,k — 1 we have P/(T) + iP/(T') has either the form
(»)with a, = 0, ie.

(***) PJ:(T) + in:'(T) = t:el"(T1 """ T-1) 4 Gs(Tl’ ey Ts—l)’

or it has the form (x#). Thus we get (by an easy induction) that lim, T,” = T.° for
eachs=1,...,k— 1. As

: ’ n cpr ny — -2 L (TP,..., D 0 0
lim P (T") + ipj{(T") = ey e + G (T, T),

it now follows that

lim ea(+iok — _1
which is impossible. This implies that there is no & such that P,(T') + iP/(T) has
the form (*) with a, # 0. Thus each P/(T) + iP//(T') has the form (*x) or the
form (*#++), and this implies that if {g(T")f}, is a convergent sequence, then
{T"} is bounded. Passing to a subsequence, we can assume that {T"}, is
convergent. Thus we see that Q is closed, and the proof is finished.
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REMARK. The above lemma cannot be generalized to coadjoint orbits of
nonexponential Lie groups. This is shown by the following example.

Let @ = @,, (in the notation of [3]) be the Lie algebra with basis X, ..., X,
and nontrivial Lie products [ X,, X,] = X;, [ X}, X,] = X,, [X;, X3] = -X, and
[X,, X,] = X,. As i = -1 is an eigenvalue of ad X,, we see that @ is nonex-
ponential. Let { X}*,..., X;*} be the dual basis in &*. Then & = &*\ (R X* +
R X*) is an orbit under the coadjoint representation of exp ®.

2.3. Let G be a connected, simply connected exponential Lie group, let & be
its Lie algebra and ®* the dual of ®. Let n be an ideal of & and N = expn the
corresponding normal subgroup of G. Denote by G (resp. N) the set of all
unitary irreducible representations of G (respectively N) and by © the Kirillov
map @* — G (respectively ©,: n* - N).Let 7€ G, x € N and f € &* with
©,(f|n) = x, and denote by @ the coadjoint orbit corresponding to 7. Now
using Lemma 2.2 and {8, Proposition 2], we give a necessary and sufficient
condition for # to be quasiequivalent to the induced representation p =
ind(N, G, x).

LEMMA. 7 is quasiequivalent to p = ind(N, G, x) (abbreviated = = p) if and only
if the affine subspace f + n' is contained in Q.

PROOF. Let p be a probability measure on &* which is equivalent to the
Lebesgue measure of f + nt and let » be the image of p under the (continuous)
map 0. It is shown in [8, Proposition 2] that p is quasiequivalent to the direct
integral

f: gdv(£).

Now, by a general fact (cf. [4, 8.44.]), # = p if and only if the corresponding
central decomposition measures are equivalent, i.e. if and only if » and the Dirac
measure §, at {7} are equivalent. Thus = = p if and only if u(f + n*\Q) = 0.
Assuming that 7 = p, we see that (f+n*)NQ is dense in f+ n*. Now
consider n* as an exponential G-module (the action of G on n* is the natural one:
x = Ad*(x)|n*, x € G). Let g€ (f+n*)N Q and let K be the stabilizer of
g|m, that is K = {x € G|Ad*(x)g|n = g|n}. K is connected by [3, Chapter I,
Théoréme 3.3]. Moreover, it is easily seen that

Ad*(K)g=(f+nt)NnQ.

Thus we see that the orbit of g in the exponential K-module @* is dense in its
linear hull f + n!. Now Lemma 2.2 applies and yields (f + n*) N2 = f + n*,
i.e.,, f+ n' is contained in £.
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If, conversely, f + n* C Q then obviously » is equivalent to 8_, and 7 = p.

COROLLARY. Let G, N, &, n, 7, x, & and f be as above. Then = is
quasiequivalent to ind(N, G, x) ifandonly if f € @ and @ + nt = Q.

REMARK. If G is nilpotent, then 7 is quasiequivalent to p if and only if # is
weakly equivalent to p, since nilpotent Lie groups are liminal [4, 13.11.12].

3. Primitive ideals with bounded approximate units

Let G be an exponential Lie group and let 7 € G. Suppose that = satisfies the

following condition:

7 = ind(N, G, x) for a connected normal subgroup N of G
(*)

and a character x of N.
Then, using [1, 1.3, Theorem] and the result of Section 2, we give in 3.1 a
necessary and sufficient condition for L!-ker# to have b.a.u. The condition (*)
will be discussed in 3.2.

3.1. THEOREM. Let G be a connected, simply connected exponential Lie group
with Lie algebra ®. Let w € G and suppose that = satisfies the condition (). Let €
be the coadjoint orbit corresponding to w. Then L'-ker 7 has b.a.u. if and only if Q
is affine linear.

PROOF. Let n be the subalgebra of & corresponding to N and let f € &* be
such that ©,(f|n) = x. Let p: @* — n* be the projection & — h|n. We have
(Corollary 2.3): f€ Q and Q@ = p~!( p(Q)). Denote by J the ideal N _ ; L'-ker x*
of LY(N), where x* is defined by x*(n) = x(x 'nx), n € N. Assume that
L'-ker 7 has b.a.u. Then, by [1, 1.3, Corollary 2], J has also b.a.u. Thus 7(J) has
b.a.u, where T: L(N) > LY(N/N’) is the canonical projection and N’ the
closure of the commutator subgroup of N. Hence A(T(J)) belongs to the coset
ring R((n/[m, n))*) of (n/[m n]}*, by the abelian result [16]. Clearly,
Oy (p(Ad*(x)f)) = x™ for every x € G, that is h(J) = p(2). Thus p(Q)
R(n*), and therefore & = p~!(p(2)) € R(®*). Now from Lemma 2.1 and
Lemma 2.2 we get that Q is affine linear. This completes the proof of one part of
the theorem. The converse is contained in [1, Theorem, page 396].

3.2. Let G be a connected, simply connected exponential Lie group with Lie
algebra ®. Let 7 € G, and let © be the corresponding Ad*(G)-orbit. One can
associate to £ an ideal of @ in the following way, cf. [12]: Let F = {A € B*|Q
+ tA = Q for each r € R}, and put m(2) = F*. Then m(Q) is an ideal of &
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and contains &(f) = { X € @|(f, [ X, @]) = 0} for each f € Q [12, Theorem 1].
Using the results in 2.3, we can easily prove the following lemma (which is a
generalization of [14, Remark 2.2]).

LEMMA. m(Q) is the smallest ideal n of & such that = = ind(expn, G, x) for
some X € (expn) .

PROOF. If n is such that # = ind(expn, G, x) for some x € (exp n)", then by
Corollary 2.3 @ + nt = Q, and hence m(Q) € n. If f € Q, then by Lemma 2.3,
= ind(exp m(Q)a G’ X) for X= @expm(ﬂ)(flm(g))'

COROLLARY. 7 satisfies the condition (*) if and only if m(R) is subordinate to
some f € Q (that is (f, [(m(2), m(Q)]) = 0).

PROOF. Supose # = ind(N, G, x) for a connected normal subgroup N of G and
a character x of N. Then, by Lemma 2.3, x = 0,(f) for some f € Q. It is clear
that the Lie algebra n of N is subordinate to f. By the above lemma m({) C n,
and m(f) is thus subordinate to f. The converse is also clear from the above.

REMARKS. (i) The ideal of & generated by ®&(f) (for f € Q) is, in general,
strictly contained in m(£2): let & be the “ax + b”-Lie algebra(® = R X; + R X,
[X;, X,] = X,). The orbit of X;* is @ = R X* + R* X, where { X*, X;*} is the
dual basis of &*. Thus m(2) = R X,, but &(f) = {0}. (ii) Let &* = N2_, D,
where D§ is defined by D = @, and D& = [®, D§™'), k > 1. Take f € © and
let n be the ideal of & generated by &(f) and . Then m({2) C n (see {7,
Proposition 1.1] where this result is proved for arbitrary Lie groups).

ExAMPLES. (i) Let @ be an exponential Lie algebra which is solvable of class 2
(i.e. [®, @] is abelian). Then

(**) m(Q) is subordinate to each f € Q for every coadjoint orbit  in &*.

Indeed, in this case [n,n] C [@>, ()] + [G(f), B]. Theorem 3.1 yields in this
case a characterization of the primitive ideals in L!(exp &) which have b.a.u.

(ii) Let G be the group of all upper triangular n X n real matrices with one’s on
the diagonal. Then for each orbit £ in general position (in the sense of [13, II,
Chapter I, Section 6]) m() is subordinate to every f € Q (this follows from [9,
Section 9.1]). (iii) Let & be an exponential Lie algebra of dimension at most 4
(see the classification in [3, Chapter VIII, 1.1]), and let & # & ,4(0). It can be
verified that the above property (+#) holds. The Lie algebra & ,4(0) with basis
{ X}, X,, X5, X} is defined by the nontrivial commutators [X,, X;]= X,
(X, X,]= -X,, [ X, X,] = X,. If {X;*, X7, X, X}} is the dual basis in &*,
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then the orbit of X} is Q@ = {TL!_a,X*|a, = -a,a,, a, =1} and m(Q) =
®,4(0). Thus, for the representation 7 of G = exp & ,4(0) corresponding to £,
there is no normal subgroup N, N # G, such that # = ind(N, G, 7| N). (iv) The
condition (**) has been investigated in [14] (the notation there is s(2) = 1) for
nilpotent Lie algebras of low dimension, and the following has been established:
there are exactly 18 algebras among the nilpotent Lie algebras of dimension at
most 7 for which the condition (*#) is not satisfied, and they all are of dimension
greater than 5 [14, Theorem 7, Proposition 5.7). 3.3. We conclude with some
remarks.

REMARK 1. Let G be a connected nilpotent Lie group and let = € G. If
L'-kerw contains (bounded or unbounded) approximate units, then {7} is a
spectral set in G. This follows from [11, Theorem 7): it is proved there that
L'-ker7/j(m) is a nilpotent algebra, j(7) being the smallest ideal in LY(G) with
hull {«}.

REMARK 2. Theorem 1.3 in {1] can be used to characterize all closed two-sided
ideals with b.a.u. in L'-algebras of low dimensional nilpotent Lie groups. We
mention without proof the following result. Let G be a connected, simply
connected nilpotent Lie group with dimG < 5 and G # I's, (in the notation of
[5]) and let & be the corresponding Lie algebra. A closed two-sided ideal in
L'(G) has b.a.u. if and only if it is the kernel of a closed Ad*(G)-invariant set in
the coset ring R(®*).
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