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Abstract. In this paper we construct smooth irreducible space curves C' which link geometrically by
surfaces of minimal degree containing C' to curves I" of generic embedding dimension three. This
produces interesting behavior with respect to both C' and I'. The curves T" link to smooth connected
curves by surfaces of low degree but cannot link to smooth connected curves by surfaces of high
degree. The curves C' give counterexamples to a conjecture of Martin-Deschamps and Perrin.

M athematics Subject Classifications (1991): 14H50, 14M06.
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1. Introduction

In their paper on smoothing curves and linkage, Martin-Deschamps and Perrin
propose the following ([8], Conjecture 2.4):

CONJECTURE 1.1. Let C' be a smooth connected curve in P2, F a surface of
minimal degree containing C, G' a surface of minimal degree containing C' and
whichisnot amultiple of F'. Thenthe curveT linkedto C by F NG issuperficial.

A curveissaid to be superficial if it has generic embedding dimension < 2. Inthis
short note we construct counterexamples to this conjecture by producing smooth
connected curves C' which link via surfaces of minimal degree to a multiplicity
structure I" on a smooth curve which has generic embedding dimension three.

Most of the examples produced here (see Corollary 2.3) have the property that
the complete intersection F N G of minimal degree containing C' is unique. In
Proposition 3.2 thisis not the case, but the general minimal degree compl ete inter-
section containing C' doeslink C' to a superficial curve. Thisleaves the following
question unanswered: if C' is a smooth connected curve which lies on a moving
family of least degree complete intersections, then must C' link to a superficial
curve viathe general such complete intersection?

Throughout this paper we work with projective schemes over an algebraically
closed field £ of arbitrary characteristic. All curves will be assumed to be locally
Cohen-Macaulay. In Section 2, the main linking theorem is presented, along with
the calculation of invariants of the associated curves. Section 3 is devoted to
examples produced by the method of Section 2. Special attention is given to the
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smallest example, which is given by arational quintic curve not lying on aquadric
surface.

2. Alinking theorem

THEOREM 2.1. Let Y c P® beasmooth curve, d > 1 aninteger and Y (%) be the
subscheme defined by Zy-?. Let n be an integer such that Zy-() (n) is generated by
global sections. If s,t > n, then for a general pair of surfaces S, T of degrees s, ¢
containing Y () we have

SNT=TUC,

whereY () ¢ T, Supp(T") = Y, C isa smooth irreducible curve, and C' meets T’
properly. In other words, S N 7" geometrically links a smooth irreducible curve C
to a multiplicity structureon Y which contains Y (%),

Proof. Let W = Y@ and consider the blow-up B° 5 P3 at W. Since Ty —
T¢, the blow-up at W isisomorphic to the blow-up at Y ([5], Il, Exercise 7.11(a)),
and it's not hard to see that Fy = dFEy via this isomorphism, where Ey, By
denote the respective exceptional divisors (In fact, raising alocal equation of Ey
to the dth power gives alocal equation for Eyy). SinceY c P2 isasmooth curve,
I~33 is a smooth irreducible threefold and E'y is aruled surface over Y. We have a
diagram

~3
Ey C Ew CP

1 1 b
Y cw cP?

Following the proof of [12], Proposition 4.1, we see that the invertible sheaf
Ip,, ®7*(O(s)) isvery ampleon P° and givesaclosedimmersion o, : B° < PI,,
where I, = H°(Zw (s)). For f € Iy, let H; denote the associated hyperplane
in PI, and Z(f) denote the surface in P® with equation £. In this case we have
that o 1(H;) and 7=1(Z(f)) are equal away from the exceptional divisor Eyy .
Similarly we have a closed immersion o, : P° < PI, such that o} (O(1)) =
Ip,, @7 (O(t)). For g € I,, wehavethat o; 1 (H,) = 7~ 1(Z(g)) away from Eyy.

Applying the standard Bertini theorem to the closed immersion o, we can find
f € I, such that o7 1(H,) is a smooth surface S in P* and oY (Hy) N Ey is
a smooth connected curve D containing no fibre m,,. Now consider the general
hyperplane section of ;. Let

W = {(H,,y) € (PL,)* x Y :length(D No; Y(H,) Nm,) > 2}.

W isaclosed subschemeof (PI;)* x Y, and composition with the second projection
gives a dominant morphism W % Y (the fibres over Y are nonempty because
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d > 1). Noting that (H,,y) € W if and only if H, contains a secant line to
D N, we see that each fibre g=(y) C (PI;)* is of codimension > 2, because
D N my has at most finitely many secant linesin PI;. It follows that the image of
W in (PI,)* is of codimension > 1. In particular, if g € I is sufficiently general,
then o, 1(Hg) N S is asmooth connected curve C' which meets the fibres of = in

schemes of length at most 1. In this case the composite map &' © P° — PP is
a closed immersion (it is projective and has fibres of finite length < 1). Letting

C = 7(C) denote the image curve, we seethat Z(f) N Z(g) consists of C' and a
curveI" containing W and supportedon Y.

The theorem above gives smooth connected curves which geometrically link to
curves I' of generic embedding dimension three. On P3, the curvesT and C' are

produced somewhat indirectly. Fortunately the construction of C' on f’S is fairly
straightforward, so we can compute the invariants of these curves. This is the
content of the following proposition.

PROPOSITION 2.2. Let Y, C, T beasin Theorem 2.1, and assume further that Y
is connected. Then the degrees and genera of C and I" are as follows.

degC = st — d’°degY
2genusC — 2 =
st(s +t —4) —2d*(2d — 1)
—[(3d? — d)(s + t) — 84°%degY + 2d?(2d — 1)genusY’
degl = d?degY
genusl = genusC + [2d?degY — st] (55t — 2)

Proof. Let  denotethe hyperplane class 1 (7 Ops(1)) inthe Chow ring A(P°)
and let y denote the class of the exceptional divisor Ey . Wefirst computethetriple
intersection numbers for these classes. The intersection 42 = 1 can be computed
on P by [2], Example 8.3.9. h2y = 0 because ageneral line does not meet Y. For
y2h and y3, we compute the intersection numbers yh and 32 on the ruled surface
Ey.

By [5], Theorem 8.2.4, the exceptiona divisor Ey- isisomorphic to Py (A7),
where N' = NYPa. If j: By — p’ is the natural inclusion and ¢ represents
the relative Op(1) from the Proj construction of Py (NVY), then j*(y) = —¢
under this correspondence. By [2], Example 8.3.4, we have that A(Py (NV)) =
A(Y)[E]/ (&% + c1(N)E + c2(N)) as graded rings. Since ca(N) = 0, the identifi-
cation of graded pieces of degree two gives

A2(Py(NY)) = (¢PicY @ €22) /(€2 + ca(N)9).
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In other words, A%(Py (NV)) = ¢PicY where €2 = —£c1(N). Thus yh = —¢h
correspondsto —A in PicY’, which hasdegree —degY whiley? = £2 = —¢1(N)¢
correspondsto —c; (N) in PicY, which has degree —degy N. On Ey, it follows
that we have the intersection numbers yh = —degY and y? = —degy V.

From the previous paragraph, we find the triple intersection numbers y2h =
—degY and y° = degy NV. We can use the standard exact sequences (see[5], I,
Theorems 8.13 and 8.17)

0= Ny = Qmly > wy =0
0— Quly = Oy(=1)* = Oy =0

to show that 3y = —4degY — 2genusY + 2.

To compute the invariants of C' and T', recall that C' was constructed as the
isomorphicimageof C' C P° under r, where ' isrepresented by (sh—dy).(th—dy)
in A(P°) (C wastheintersection of two surfacesrepresented by sh—dyand th—dy).
The degree of C' is given by the intersection number (sh — dy).(th — dy).h. The
canonical sheaf on P is given by —4h + y ([5], 11, Example 8.5b). Applying [5],
I1, Proposition 8.20, we find that the canonical sheaf w is given by restriction of

the class sh — dy + th — dy — 4h + y to C. In particular, we have
2genusC — 2 = (sh — dy).(th — dy).((s + t — 4)h — (2d — 1)y).

Substituting the intersection numbers of the previous paragraph givestheinvariants
for C. Theinvariantsfor I are computed from those of C' using the linkage between
them ([6], Remark 4.7.1).

COROLLARY 2.3. Let Y c P2 be a smooth connected curve, d > 1 an integer,
and assume that Z, ) (n) is generated by global sections. If max{n, d’degY’} <
s < t, then the general surfaces S, T' of degrees s, t containing Y (@) link a smooth
connected curve C' to a multiplicity structure I" on Y and S N T is the unique
complete intersection of least degree which contains C'.

Proof. Theorem2.1givesthelinkageI" ~ C viathecompleteintersection SNT'.
By Proposition 2.2, we have that degl’ = d?degY. Sinced > 1, I" has generic
embedding dimension three, and hence is not planar. It now follows from a result
of Martin-Deschamps and Perrin ([9], Corollary 2.4) that e(T") < d?>degY — 4,
where e(I") denotes the exceptionality of I". Now consider the exact sequence

0—>ISQT—>Ic—>wF(4—S—t)—>O.

The inequality s > d?degY shows that 20(wr(4 — s)) = 0. Hence twisting the
seguence above by ¢ and taking global sections shows that the total ideals of C
and S N'T agree up to degree ¢, hence S N T is the unique least degree complete
intersection which contains C'.
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Remark 2.4. The curves C' produced by Corollary 2.3 give counterexamples
to Conjecture 1.1. The curves I' are interesting in their own right: they link to
smooth connected curves by surfaces of low degree, but cannot link to smooth

curves by surfaces of high degree. This is because the singular locus of |53(F) is
two dimensional (see[11], Proposition 4.1.7), hencethe general intersection of two

. . . ~3
surfaces from very ample linear systemsisasingular curvein P,

3. Examples

To obtain counterexamples to Conjecture 1.1, we can apply Corollary 2.3 with
Y c P®any curve d > 1, and s and ¢ sufficiently large. In this section, we
discuss the simplest application, when Y ¢ P? is a straight lineand 1 < d? <
s < t. In this way we obtain smooth connected curves C' which are contained in
a unigue complete intersection X = S N T of surfaces of degrees s and ¢. The
completeintersection X links C to acurveT” whichissupported onY and contains
Y (@), and hence cannot be superficial . The counterexample of smallest degree (see
Proposition 3.2 below) can be found in any smooth rational quintic curve which
does not lie on aquadric surface.

EXAMPLE 3.1. If we apply Corollary 2.3withY ¢ PP aline, d =2,s =t = 5,
we obtain acompleteintersection of quinticswhich links asmooth connected curve
C of degree 21 and genus 46 to a multiplicity four structureI" on Y of arithmetic
genus —5. Thisisthe smallest degree application of Corollary 2.3. The conclusion
of the corollary holds if wetakeY C P2 alined =2ands = t = 4 as well.
In this case we get a smooth connected curve C' of degree 12 and genus 13 which
links to amultiplicity four structureI" on Y of arithemetic genus —3.

The last example above is till not the counterexample of smallest degree.
It is easily checked that smooth connected curves of degree < 4 cannot give
counterexamplesto the conjecture. Indeed, the minimal degree surfaces containing
these curves are either planes or integral quadric surfaces. for each such surface,
the singular locus is at most zero dimensional, so that any curve lying on these
surfacesis superficial. Thus the following proposition gives the counterexampl e of
least degree.

PROPOSITION 3.2. Let C C P® be a smooth connected rational quintic curve
which does not lie on a quadric surface. Then C' has a unique 4-secant line Y and

(@) C islinked by a complete intersection X of cubic surfaces to a multiplicity
4-structure T on'Y which contains Y (. In particular, T" is not superficial.

(b) If X" # X is another complete intersection of cubic surfaces containing C,
then X’ links C' to a curve I which is superificial.
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Proof. Let C be a smooth connected rational quintic curve which does not lie
on a quadric surface. That C' has a unique 4-secant line is a result of Migliore
([10], Theorem 5.2). We reprove this here in order to set notation needed later. To
construct the 4-secant line Y, we first note that h%(Z¢ (1)) = h?(Z¢ (1)) = O for
0 <1 < 2andthat h'(Z¢) = 0,hY(Zc(1) = 2,hY(Zc(2)) = 1. Theideal sheaf
Tc is 4-regular by ([3], Theorem 1.1), s0 h*(Z¢(n)) = Oforn > 3andi > O.
Since h'(Z¢(n)) = Ofor n < 0, the Rao module of C hastype (2, 1).

Let R = k[Xo, X1, X>, X3] denote the homogeneous coordinate ring of P3. Up
to choice of homogeneous coordinates, the Rao module M- = HX(Z¢) is iso-
morphic to k?(—1) & k(—2) (aBuchsbaum module), R/(Xo, X1, X2, X3)(—1) &
k(—1), or (R/(Xo, X1, X2, X2X3,X2)(2))*. Using the algorithm of Martin-
Deschampsand Perrin ([ 7], IV Section 6), wefind that the minimal curvesfor these
modules have respective degrees 20, 9 and 5, hence M¢ = (R/(Xo, X1, X2, X>
X3,X2)(2))* and C is minimal in its even linkage class. The linear annihilators
Xo, X1 of M give the equations of the line Y. If we restrict C first to the plane
H = Z(Xo) andthenwerestrict Z = C N H tothelineY = HN Z(X;), wefind
that h*(Zcny,y (2)) = 1. It follows that the ideal sheaf Zony,y onY is Oy (—4)
and henceY isa4-secantlinefor C. If L isany other line, restricting C to aplane
H which contains L but does not contain Y gives HX(Zcru, 1 (2)) = 0, hence L
cannot be a 4-secant line.

Applying Theorem 2.1 to Y withd = 2 and s = ¢t = 3, we find that a general
pair S, T of cubic surfaces containing Y2 give a complete intersection S N T
which links a4-structure T" on Y to a smooth connected curve D. Proposition 2.2
showsthat D isarational quintic curve and that p,(T') = —1. SinceY® c T, the
first Cohen-Macaulay filtrant of T is Y (? and we have an exact sequence

0—TIr —>Iy(z) — L — 0,

where £ is aline bundle on Y (see [1]). The arithmetic genus of Y@ is 0, so
the sequence shows that £ = Oy. Since H}(Z,-») = 0, H}(Zr) is aquotient of
HO(Oy). The linkage between T and D shows that h1(Z1-(2)) = h'(Zp) = 0,
hence the Rao module of " can be obtained by truncating H%(0y ) in degree 2. We
concludethat H1(Zr) = R/(Xo, X1, X3, X2X3, X3) = M*(2) and hence D and
C' have the same cohomology and isomorphic Rao modules M.

For D constructed as above, D U Y2 linksto Y by the complete intersection
S NT. The standard exact sequence

0—Zsnr — IDUY(Z) — wY(—Z) —0
shows that h%(Zpy»(3)) = 2, so that S N T is the only complete intersec-
tion of cubic surfaces which contains D and Y. It follows that the family of

rational quintic curves D produced in this way is parametrized by an open subset
U C Grass;(H°(Zy (3))), the Grassmann variety of 2 dimensional subspaces. In
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particular, there is an injective morphism U % H, pr, where H., y is the Hilbert
scheme of curves with the same cohomology and Rao module as D (y = vp).
Since HO(Z, » (3)) is a vector space of dimension 10, the associated Grassmann
variety has dimension 16 and so does U. On the other hand, the Hilbert scheme
H, yr aso hasdimension 16: applying [7], IX, Corollary 3.9 with

=0 =-() <4 5% -2 5%) 257 + ('5°)

we compute that 6, = 20,¢,,, = —3 and hys = 1. Thus the image of 1) contains
a dense open set. The set of al curves D such that H%(Zp(3)) contains a 2-
dimensional subspace V' C H%(Z,»(3)) isaclosed subset of H., ;. Since H, s
is irreducible, we conclude that this closed set (which contains the image of 1,
hence an open set) isall of H, y.

Now we prove the proposition. Since C' € H,, i, the last part of the preceding
paragraph shows C' is contained in a complete intersection X of cubic surfaces
which contains Y (2). In particular, the linked curve T contains Y (2. Further, since
C UT isalocal complete intersection and Y@ is not, I' must contain at least a
4-structure on Y, and hence must be a 4-structure on Y for degree reasons. This
proves part (a).

Now suppose that X’ # X is another complete intersection of cubic surfaces
which contains C and links C toI’. Since Y isa4-secantlineto C, Y ¢ X' and
hence Y C I". On the other hand, Y@ ¢ X’ (aboveit was shown that C UY (®
is contained in a unique complete intersection X = S N T of cubic surfaces), so
Y@ ¢ I'. Thisimpliesthat the component of I supportedon Y is superficial (see
[1]). Let V' be the union of the components of I'" which are not supported on Y.
The degree of V' isat most three, so the only way that V' could fail to be superficial
isif Visatripleline L@, Inthiscase V isnot alocal completeintersection, hence
neither is C U I, acontradiction. It followsthat I' is superficial, proving part (b).

Remark 3.3. Applying theorem 2.1 with Y P a straight line, d = 2 and
3 < s < t, weobtain amultiplicity four structure I" on the line Y which contains
Y @ and satisfiesp, (I') = 5— s —t. In particular, we obtain onefor each arithmetic
genus < —1. On the other hand, any locally Cohen—Macaulay multiplicity four
structure I" on Y as above gives an exact sequence (see [1])

O—ZIr — Iy(z) — Oy(a) — 0.

SinceZ, (» isgenerated in degree 2, it followsthat > —2 and hencep, (I') < —1.
It follows that any multiplicity four structure T" which contains Y (@ deformsflatly
to I'” which links to a smooth connected curve.

Remark 3.4. All the smooth connected curves C' produced in this paper havethe
property that there isa unique completeintersection S N7 which linksit to acurve
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which is not superficial. It would be interesting to know if there exist any such
C which are contained in a moving family of complete intersections (of minimal
degree) which link C to curves which are not superficial.
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