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REAL CANONICAL CYCLE AND ASYMPTOTICS OF
OSCILLATING INTEGRALS

DANIEL BARLET

Abstract. Let Xz C RY a real analytic set such that its complexification
Xc¢ C CV is normal with an isolated singularity at 0. Let fg : Xg — R a real
analytic function such that its complexification fr : X¢ — C has an isolated
singularity at 0 in X¢. Assuming an orientation given on Xg, to a connected
component A of Xj we associate a compact cycle I'(A) in the Milnor fiber
of fc which determines completely the poles of the meromorphic extension
of [ ) O or equivalently the asymptotics when 7 — oo of the oscillating
integrals fA e'™f0. A topological construction of I'(A) is given. This completes
the results of [BM] paragraph 6.

§0. Introduction

Let X¢ be a normal complex space of dimension n + 1 (n > 1) having
an isolated singularity at 0, and let f : X¢ — C be an holomorphic function
on X¢ with an isolated singularity at 0. We shall assume that (Xc, f) is
the complexification of a real analytic function (Xg, fr) on a real analytic
space Xg. In such a situation, we shall consider A4, non zero, in H(Xp, C).
Assuming that an orientation is given on the smooth real manifolds Xg,
we have defined in [BM] a compactly supported cohomology class v(A) €
H}(F,C); associated to A, where F' denotes the complex Milnor’s fiber
of f on Xc and HJ'(F,C); the spectral part for the eigenvalue 1 of the
monodromy acting on H}'(F,C). The definition is the following:

For any e € H"(F,C); represented by semi-meromorphic forms on Xc,
with poles along f = 0, wy,...,wg, so satisfying the conditions

(A) 1) dwj = % AN wj—1 Vi € [1,k], wo =0
2) [wk/p] =ec Hn(F,(C)l
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we have

I(e,v(A)) = (2im)~" Res()\ = 0,/Af>‘pw/\ %)

Here I : H}(F,C) x H"(F,C) — C denotes the hermitian Poincaré duality
defined by I(a,b) = W JpaAband pis in CX(Xg) with p = 1 near 0.
We use here the notation im [ A fA% A O for the R*-Mellin transform of the
function defined on R* by ¢(s) = [ f(syna 1 where [ is a semi-meromorphic

n-form on Xg with compact support™®) and poles in {fg = 0}.

Recall that the R*-Mellin transform of ¢ is given (see [B99]) by defini-
tion by

+oo ) +o0
itMe(X) == / 2 Lo(z) de — e”)‘/ e Lp(—2) dx.
0 0

The purpose of this article is to give a topological construction of a compact
n-cycle whose class in H?(F,C); is 7(A). This complete the results of
the paragraph 6 in [BM]. In fact it appears from our proof and [BM]
results that the class of our cycle I'(A) in H(F,C) controls completely the
poles of [, 70 for the given A. So the same holds for the asymptotics
when 7 — 4oo of the oscillating integrals [ A e where O denotes a
C*°-compactly supported (n + 1)-form on Xg.

So to prove existence of a pole in our context it is enough (but also
necessary) to prove that the class of I'(A) in H,(F,C) ~ H(F,C) is not
zero. This gives some new light on Jeddi’s proof of Palamodov’s conjecture
(see [J]).

This article was written during a stay in Nagoya graduate School of
Mathematics and I want to thank this Institute for its very nice hospitality.

8§1. Some more notations

We continue with the hypothesis and notations introduced in para-
graph 0 (still assuming that an orientation is given on Xg).

We shall fix a Milnor representative of f, denoted by f : X¢ — Ds by
choosing a real embedding Xg < RY (so X¢ — CV and X¢c NRY = Xg)
and choosing 0 < e < 1 and 0 < § < ¢ such that X¢ := B(0,¢) N f~Y(Ds);
we fix a base point so € Ds N R™ and define the Milnor fiber of f to be
f(s0) = F.

) Remark that f-proper support is enough to define the polar parts of IA fAd—Jf AO.
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Recall now that, given A in H%(Xg — {fg = 0}, C) (we shall use here
the obvious restriction map from H°(X%,C) to H(Xg — fg'(0),C)), we
have defined in [BM] the closed n cycles 6(A)* := AN fz ' (so), oriented as
the boundary of the (oriented) open set A™ N{fr < so} and §(A)” := AN
fz '(—s0) oriented as the boundary of the open set A~ N{—so < fr}, where
A= A"+ A” is the decomposition of the sum A = " aqAq according to
the sign of fr on each connected component A, of Xr — fi 1(0).

Now, using a C* trivialization of Milnor’s fibration along the half-circle
{s50€, 6 € [-,0]} we define M'/25(A)~ as the closed oriented n-cycle in
F obtained from 6(A)~ by direct image along the projection on F given by
this trivialisation.

Then we set 6(A) := §(A)t —MY25(A)~ and denote by [§(A)] the classe
defined by 0(A) in H™"(F,C). To be precise, the class [0(A)] is defined via
the hermitian duality I by the formula

I([a],6(4)) == L / a
(2im)™ J§(A)
where a is a compactly supported closed C* n-form on F' defining the class
[a] in H}(F,C).
§2. Construction of I'(A) in H,(F,C) ~ H*(F,C)
We fix ¢/ < &” < e with e — ¢/ < ¢ and define

X = B0.2)n /' (Dy)
X' := B(0,¢") n f~1(Dy)
X" := B(0,e")n f~1(Ds)
and then 0A := AN JX" for our given non zero A in H"(X},C). The

orientation of this compact n-cycle in Xy is given as the boundary of the
open set AN X”. As a compact n-chain A has three pieces:

A= (3(AH)NX YU (AT NX)UA

where the two “vertical” pieces 6(A)* N X" are obtained by cutting ¢ (A)*
by B(0,e"”), and where the compact n-chain A lies in X — X' is fibered by f
over [—sp, o] as a family of compact (n—1)-cycles which gives an homology
in X — X between 6(A)~ NB(0,e”) and §(A)* NIB(0,e").

The proof of our theorem will follow precisely a move from this compact
n-cycle A to a compact n-cycle I'(A) contained in F'. To move JA to I'(A4),
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first fix a C'*° trivialisation of Milnor’s fibration over the punctured half disc
D, —{0} ={s € C/Ims <0, |s| < so, s # 0} which induces the previously
fixed trivialisation on the half-circle {sge??, # € [—m,0]} used to define
M'/25(A)~. We shall also fix a C* trivialisation of f|X — X N B(0,¢') —
Ds which corresponds to a commutative diagram

X -XnNB(0,e) —— Ds x F'

)

Ds Dy

where F' := FN (X — XN B(0,£)), also compatible with the previous
trivialisation.

First we begin by moving A to A using the above trivialisation (recall
that A C X — X N B(0,¢’)) without moving its boundary part, so that we

get
S, [e] So
A t
AW o \Oa_t, >
Then we move the compact n-cycle 049 = 04 — A + Ay C

f _I(E;O — {0}) using the above trivialisation of f over this set, so that
the vertical part 6(4)~ N X will follow the half-circle {soe®, 6 € [—m,0]},
the vertical part §(A)* N X" will be fixed, and the Ag part moves, using
the trivialisation of f on X — X N B(0,¢’) from the path 7 to the constant
path 77 equal to {so} as follows

yli{SO}
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Let us call (A¢)yepo,1) this deformation. We shall denote by (0Ay)ic(o,1]
the family of compact n-cycles in f~1(D,, — {0}) defined for ¢ € [0,1] by

(0A) = =8(A), iy + (AT + Ay

where §(A)* is §(4)F N X" and where N(A);Jew is obtained by following

the compact 6(A)~ in the above trivialisation along the half-circle.
So we define now the compact oriented n-cycle

I'(A) :=(0A); C F.
By definition we have
T(A) = 6(A)t — MY25(A)" + Ay

where A is a compact n-chain in F’ so that oI'(A4) = 0.
Remark that this already shows that we have

can[[(A)] = [§(A)] in H"(F,C)

because our initial chain A was the boundary in X — X N B(0,¢’) of the
closed (n + 1)-chain

(A—ANB(0,&") N f(Dy,)

(and Ay similarily).

As we know that 8(3(14)*) and 8(5~(A)*) are homologuous in X —
X N B(0,¢’) as (n — 1)-compact cycles, for any choice of a compact n-chain
Ay in F' such that 6(A)t — MY25(A)~ + A, is a compact n-cycle in F
(M 1/2 preserves the homology between boundaries), we obtain a compact
n-cycle in F' whose image by

can: H,(F,C) ~ H(F,C) — H"(F,C)

is the class [0(A)]. But the choice of Ag is defined up to a compact n-cycle
of F'. As H,(F") ~ H,(0F) ~ H" 1(0F) is exactly the kernel of can (via
the exact sequence 0 — Kercan ~ H" '(9F) — HM(F) =% H"(F)) to
make this construction is just to lift [6(A)] to H?(A), and this is possible
by [BM].

What we have done in the construction of I'(A) is to make a precise
choice of Ay C F’ by using the component A again.

The following theorem shows that our choice is the good one.
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THEOREM. The cycle T'(A) constructed above satifies the following

property:
For any e € H"(F,C); we have

I(e.FT) = (2im) " Res(A =0, [ Punn )

where wy, ..., wy are semi-meromorphic n-forms representing e (i.e. satis-
fying the condition (A) of paragraph 0).

Moreover we have can([I'(4)]) = [0(A)] so, using [BM], we deduce that
[['(A)] satisfies also:
For any e € H"(F,C); represented by wy, ..., wg

h(e, can(T(A),)) = (2im)" Py ()\ ~0, / wak%>
A
where Py(A = 0, F()\)) is the coefficient of 1/A? of the Laurent expansion
of the meromorphic function f at 0, and where
h:H"(F,C); x H"(F,C); — C

is the canonical hermitian form defined in [BM] in our context.
For any e € H"(F,C) —2ixr, 0 < r < 1, represented by wy, ..., w ") we

have I( — o N . %
e, I'( ))_(Qm)nReS()\_ r,/Af wg A f>'

As an easy consequence we obtain the following corollary, which com-
pletes results of [BM] paragraph 6.

COROLLARY.
1) we have [I'(A)]1 = v(A)
2) [, f20 has no poles iff [['(A)] =0 in H,(F,C).

Proof of the theorem. In order to follow easily the moving cycle (0A),
and integral on it, it is convenient to introduce a d-closed n-form W associ-

ated to e € H"(F,C);. Let us fix the logarithm function on Ds — DsNiR™
such that the argument is in |—37/2, 7/2[. Now define

k-1 ,
Wom S (-1, )
=0 I

() in this case we have replaced (A) of paragraph 0 by dw; = rd—f ANw; + d—f ANw;—1
Vj € [1,k] (wo =0) and [wi/rF] =€
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on the open set f~1(Ds — Ds NiRT) of X, where w1, ...,w; are semi-
meromorphic n-forms on X satisfying (A) of paragraph 0.
Then we have dW = 0 and also

j=0

; (Log s
(W F] :Z g o)’ ——Ck—j
k—1
where e;_; := [wj|F] for j € [0,k — 1] in H"(F,C). So e = e.
So we have
L _
/ W= (—1)i (Lo sl Ogs(’) O8I0 (i)™ I (ex_j, T(A)).
dA)0 F(A iz 0

Now we have to go from (0A)g to 0A.
We define [, , W as follows:

W= Pf()\—o,/aAf’\W).

And we shall precise later on why [, W = f(aA)O W. But thanks to
Stokes formula (for Re A > 0) and analytic continuation we get

d
W:Res()\zo,/ f’\—f/\W>.
A anx’" f

So, modulo our Lemma 2 which will allow us to replace the integration on
ANX" by a smooth cut off function p € C(XRr), p =1 near X", without
changing the polar parts, we obtain, by the definition of v(A) € H(F,C);
recalled in paragraph 0

, k-1 ;
e (CERT)ED WIS (PMN )}

Now we can conclude easily because we already know from [BM] that
can[y(A)] = can[['(4)];. So for ey,...,ex—1 which are in Imcan (be-
cause Im(T — 1) C Imcan) we know that I(e,_j,7(A)) = I(ek_j,m)
for j € [1,k — 1]. So we conclude that

I(ex,7(A)) = I(ex, T(4))
and we obtain [y(A)] = [['(4)]1 in H,(F,C);.
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To pass from A to Ag we first remark that now we are considering
a compact n-chain (with fixed boundary) in X — X N B(0,¢’) where no
singularity occurs for Xg or fr. So locally we can assume that A = R*+!
and f = xg is the first coordinnate. Now let us define a push down of W
on C: via our fixed C* trivialisation of X — X N B(0,&’) — Dy we can
consider A near fg'(0) as a family (¢)te[—n,y of compact (n — 1)-cycles in
F’ which are smooth. Let us then consider the submanifold V defined near
0o as the union of all (¢t + i7, &;) for 7 € [—¢,&] and t near 0. So, in fact,
we just translate A near 0 along the imaginary axis in our trivialisation
compatible with f.

Now V is a piece of smooth (n+ 1)-submanifold containing A and with
a proper smooth fibration f|v : V — C near 0 in C.

Define a := (f|V).«(W|V). Then « is a semi-meromorphic n-form near
0 in C which is d-closed because W is semi-meromorphic and d-closed. Now
the following lemma with allow us to pass from [, , W to f( a4y, W

LEMMA 1. Let n > 0 and denote by o a d-closed semi-meromorphic

1-form (with pole at s = 0) in a neighbourhood of D(0,n) in C.
Then we have

pi([' i) - [Moiw) = [

where iy : [0,n] — D(0,n) and i— : [-n,0] — D(0,n) are the obvious
inclusion and where j is given by j : [—m,0] — D(0,7n), j(8) = ne®.

Proof. After reduction to the case o = ds/s" this is an elementary
exercice. [

To finish the proof of our theorem, it is enough to prove our second
lemma:

LEMMA 2. Let p € C°(Xgr) with p =1 near X" and let w be a semi-
meromorphic n-form on X — X N B(0,¢’) with poles in f = 0.
Then for any k € N the meromorphic function

d
A — P (Log 1oL A w
(X-X")nA f

has no pole.
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Proof. Of course we have here our previous choice of logarithm. Our
assertion is local on (X —Y”)ﬂSupp p SO we can assume again that A = R?+1
and that fr = x¢ is the first coordinnate.

Far from {fgr = 0} there is nothing to prove (and this is the case along
the vertical boundary parts of X" for instance, where fr = +sq).

Far from 0B(0,¢’) (i.e. far from A) we are reduced to the case of

+oo . d
A— o
6 [ Loga) (o)
0 zo
. +oo . . d
- e”)‘/ (—1)72* 7 (Log xo — iﬂ)ka(—xo)ﬂ
0 2y
where o € CZ°(R) is obtained by integrating first in x1,..., 2, (xaj comes

from the poles of the semi-meromorphic form pw).

Near 0B(0,e"”) we are reduced to the same situation but o € C°(R) is
now obtained by integration of w along 1 > 0, xo, ..., z, where we assume
the coordinnates chosen in such a way that X" is locally defined by z1 < 0.

To treat (x), use a Taylor expansion of o at zg = 0 to reduce to the
case of

n ) ) n ) )
(%) / 2277 (Log a:)kd—x — eI / (=122 I (Log x — zw)kd—x
0 z 0 z

which is given, thanks to Cauchy’s theorem, by the integral over the half
circle {z =ne?, 6 € [-7,0]}

/ I (Log )" d
z

But this is clearly an entire function of \. 0
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