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We derive a set of simplified equations that can be used for numerical studies of reduced
magnetohydrodynamic turbulence within a small patch of the radially expanding solar
wind. We allow the box to be either stationary in the Sun’s frame or to be moving at an
arbitrary velocity along the background magnetic-field lines, which we take to be approx-
imately radial. We focus in particular on the case in which the box moves at the same
speed as outward-propagating Alfvén waves. To aid in the design and optimization of
future numerical simulations, we express the equations in terms of scalar potentials and
Clebsch coordinates. The equations we derive will be particularly useful for conducting
high-resolution numerical simulations of reflection-driven magnetohydrodynamic turbu-
lence in the solar wind, and may also be useful for studying turbulence within other
astrophysical outflows.

Key words: space plasma physics, plasma waves, plasma simulation

1. Introduction

Alfvénic turbulence consists of non-compressive fluctuations in the velocity v and
magnetic field B that have comparable energy densities and is believed to play a key
role in generating the solar wind. The Sun launches Alfvén waves that travel out-
ward and undergo partial reflection due to the radial variation in the Alfvén speed
vA. The reflected waves then interact nonlinearly with the waves still traveling out-
ward, causing fluctuation energy to cascade from large scales to small scales, where
the fluctuations dissipate, heating and accelerating the plasma. Understanding the
details of solar-wind turbulence has several important implications. First, it helps us
predict how much mass the Sun loses through the solar wind and the speed at which
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this wind travels. The location where this turbulence heats the plasma is critical: heat-
ing inside the sonic critical point increases the mass loss rate, while heating farther
away increases the wind’s final speed (Leer & Holzer 1980). Therefore, to deter-
mine the speed and mass flux of the solar wind, we need to understand how quickly
this turbulence dissipates. Additionally, the inertial-range power spectrum of the tur-
bulence, which determines the strength and anisotropy of small-scale fluctuations,
is important to understand. These fluctuations are crucial because they control the
amount of heating through mechanisms like stochastic heating and cyclotron heating
(see, e.g. Chandran et al. 2010; Squire et al. 2022). Finally, the degree of anisotropy
in these fluctuations directly affects the efficiency of different dissipation mecha-
nisms, which can control, for instance, the relative heating rate of different species
(Johnston et al. 2024).

One of the most effective tools we have to study this turbulence is direct numer-
ical simulations. A widely used approach involves flux-tube simulations, where we
model a narrow magnetic flux tube centered on a radial magnetic-field line and
track the turbulence as it evolves along the tube (Dmitruk & Matthaeus 2003;
van Ballegooijen et al. 2011; Perez & Chandran 2013; van Ballegooijen &
Asgari-Targhi 2016, 2017; Chandran & Perez 2019). This method has shown great
promise and has been extensively employed, but it presents a significant chal-
lenge: resolving the radial direction requires a vast number of grid points, leading
to extremely high computational demands. A potential remedy is the so-called
‘expanding-box model’. The model simplifies the problem by focusing on a small,
expanding parcel of plasma as it moves away from the Sun (Grappin et al. 1993;
Dong et al. 2014; Tenerani & Velli 2017; Montagud-Camps et al. 2018; Shi et al.
2020; Squire et al. 2020; Johnston et al. 2022; Grappin et al. 2022; Meyrand et al.
2025). The approach reduces computational demands while still capturing many
essential characteristics of the turbulence. By concentrating on this localized region,
the expanding-box model allows one to track how turbulence evolves as the plasma
journeys through space, without resolving the full extent of the flux tube.

In this paper, we advance the expanding-box model by developing a generalized
version tailored for reduced magnetohydrodynamics (RMHD). This new formula-
tion allows the simulation box to either remain stationary in the Sun’s frame or
move at any speed in the radial direction. Additionally, we have reformulated the
equations using scalar potentials and Clebsch coordinates. This approach not only
facilitates working with the flux-tube geometry but also enhances our understanding
of the system while preserving the leading-order dynamics of the turbulent cascade.
We believe that two types of simulations will be particularly valuable. First, the wave-
frame box simulation, which follows the outward-propagating waves (z+) that carry
most of the energy, generalizes the standard expanding-box model to sub-Alfvénic
regions close to the Sun and provides a complementary perspective on the develop-
ment of turbulence. Second, the Eulerian box simulation at a fixed location in space
will allow us to explore how turbulence evolves in a steady environment (Siggia &
Patterson 1978; Passot et al. 2022).

The paper is structured as follows. In § 2, we present the mathematical foundation
of our generalized expanding-box model. Section 3 details the scalar formulations
of this model. Section 4 explores the linear dynamics, highlighting the significant
effects of reflections compared with homogeneous RMHD. Finally, § 5 addresses
the implications of our findings for understanding solar-wind turbulence and outlines
potential directions for future research.
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2. Governing equations

In the solar wind, the energetically dominant fluctuations are elongated along the
magnetic field, to a degree that increases towards smaller scales (Horbury et al.
2008; Sahraoui et al. 2010; Chen et al. 2012). In the inertial range, in which the
fluctuating magnetic field δB is small compared with the root-mean-square magnetic-
field strength Brms, such anisotropic fluctuations are described by a version of
RMHD (Kadomtsev & Pogutse 1974; Strauss 1976; Schekochihin et al. 2009)
that is modified to account for the outflow and inhomogeneity of the solar wind
(e.g. Heinemann & Olbert 1980; Verdini & Velli 2007; Chandran & Hollweg 2009;
van Ballegooijen et al. 2011; Perez & Chandran 2013; van Ballegooijen & Asgari-
Targhi 2016). We refer to this set of equations as inhomogeneous RMHD, or
IRMHD. In this section, we review the derivation of the IRMHD equations for
solar-wind outflow within a narrow magnetic flux tube.

2.1. Narrow-flux-tube approximation
To properly describe an expanding plasma, we first need to design a magnetic flux

tube. We assume it to be aligned along a radial magnetic-field line. Using spherical
coordinates (r, θ, ϕ) where r is the radial distance, θ is the polar angle and ϕ is the
azimuthal angle, we take θ = 0 to coincide with the magnetic-field line upon which
the flux tube centers and define

B̄0 ≡ B0(r, θ = 0). (2.1)

We assume the background magnetic field B0 is independent of ϕ and has no ϕ
component

B0ϕ = ∂B0r

∂ϕ
= ∂B0θ

∂ϕ
= 0, (2.2)

and we require that B0 is smooth around θ = 0 (i.e. ∇2B0 remains finite), which
implies that

∂B0r

∂θ

∣∣∣∣
θ=0

= 0, and B0θ

∣∣∣
θ=0

= 0. (2.3)

This results in B0r = B̄0(r) + O(θ )2. Given (2.2), the condition ∇ · B = 0 can be
written as

1

r2

∂

∂r

(
r2Br

)
+ 1

r sin θ

∂

∂θ
(Bθ sin θ) = 0. (2.4)

For a narrow flux tube, θ � 1, and the polar component of the magnetic field can
be expanded as

B0θ =
∞∑

n=1

cnθ
n, (2.5)

where cn are coefficients we need to determine, and the sum starts at n = 1 to satisfy
(2.3). Upon substituting (2.5) into (2.4), we obtain

2c1

r
+ 3c2θ

r
= − 1

r2

∂

∂r

(
r2B̄0

)
+ O(θ )2. (2.6)
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From this, we find that

c1 = − 1

r2

∂

∂r

(
r2B̄0

)
, and c2 = 0, (2.7)

indicating that the polar component of the magnetic field satisfies

B0θ = − θ

2r
d
dr

(
r2B̄0

)
+ O(θ )3. (2.8)

To summarize, we assume a background magnetic field B0 = B̄0(r)êr + B0θ êθ , with
B0θ given by (2.8). This represents the narrow-flux-tube approximation, which has
been extensively used to study waves and instabilities in flux tubes (see, e.g. Defouw
1976; Roberts & Webb 1978; Spruit 1981; van Ballegooijen et al. 2011). Following
the work of Perez & Chandran (2013), we also assume that the flux tube has a
non-constant square cross-section and use Cartesian coordinates x and y, which are
perpendicular to the central field line, such that

√
x2 + y2 � r. This allows us to

focus on the vicinity of the central field line. Finally, we neglect the Parker spiral
effect, focusing our study on the inner heliosphere.

2.2. Inhomogeneous reduced magnetohydrodynamics
Our starting point is the ideal compressible magnetohydrodynamic equations

∂ρ

∂t
= −∇ · (ρu) , (2.9a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ptot + B · ∇B
4π

, (2.9b)

∂B
∂t

= ∇ × (u × B) , (2.9c)

where ρ is the mass density, u is the velocity, B is the magnetic field and
ptot = P + B2/8π is the the sum of the thermal and magnetic pressures, respectively.
We set

u(r, t) = U(r)b̂0 + δu(r, t), (2.10a)

B(r, t) = B0(r)b̂0 + δB(r, t), (2.10b)

ρ(r, t) = ρ0(r), (2.10c)
where the background flow velocity U is aligned with the background magnetic field
B0 along the direction b̂0 ≡ B0/ |B0|, and we have neglected density fluctuations.
Since we are interested in the Alfvén-wave dynamics, we assume transverse and
non-compressive fluctuations, i.e.

δu · B0 = δB · B0 = 0, (2.11a)

∇ · δu = ∇ · δB = 0, (2.11b)
and we take ρ, U and B0 to be steady-state solutions of (2.9a) through (2.9c). The
Alfvén velocity and Elsasser (1950) variables are respectively given by

vA(r) = B0(r)√
4πρ(r)

and z±(r, t) = δu(r, t) ∓ δb(r, t), (2.12)
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where δb(r, t) ≡ δB(r, t)/
√

4πρ(r). We take B0 to be directed away from the Sun, so
that z+ (z−) corresponds to outward-propagating (inward-propagating) fluctuations.
Given these assumptions, the fluctuations are well described by the equations of
IRMHD (Velli et al. 1989; Zhou & Matthaeus 1989; Cranmer & van Ballegooijen
2005; Verdini & Velli 2007; Perez & Chandran 2013)

∂z±

∂t
+ (U ± vA)

(
b̂0 · ∇z±)+ (U ∓ vA)

(
z±

4Hρ

− z∓

2HA

)
= −z∓ · ∇z± − ∇p�,

(2.13)

where p� = ptot/ρ and the −∇p� term on the right-hand side of (2.13) enforces
∇ · z± = 0. The parameters Hρ(r), and HA(r), are, respectively, the scale heights of
the background mass density and the Alfvén speed. We also define the scale height
of the background magnetic field HB(r), giving

1

HB
≡ − b̂0 · ∇B0

B0
> 0,

1

Hρ

≡ − b̂0 · ∇ρ

ρ
> 0,

1

HA
≡ b̂0 · ∇vA

vA
= 1

2Hρ

− 1

HB
.

(2.14)

Equation (2.13) is nicely expressed in terms of the wave-action variables intro-
duced by Heinemann & Olbert (1980)

f ±(r, t) ≡ 1 ± η1/2

η1/4
z±, where η(r) ≡ ρ(r)

ρA
, (2.15)

where ρA is the density at the Alfvén surface, which is defined as the surface
on which U = vA.

1
Upon substituting (2.14) and (2.15) into (2.13), we find that

(Heinemann & Olbert 1980; Chandran & Hollweg 2009; Chandran & Perez 2019)

∂f ±

∂t
+ (U ± vA)

(
b̂0 · ∇f ± − f ∓

2HA

)
= −z∓ · ∇f ± − 1 ± η1/2

η1/4
∇p�. (2.16)

Thanks to the conservation of magnetic flux and mass, ρU/B0 = constant, and
η =M−2

A , where MA ≡ U/vA is the Alfvénic Mach number. In the WKB (Wentzel—
Kramers—Brillouin) limit, and in the absence of nonlinear interactions between
counter-propagating waves, the average of

(
f +)2 over a wave period is indepen-

dent of r (Heinemann & Olbert 1980), and hence, because of (2.15), the average of(
z+)2 over a wave period peaks at the Alfvén critical point, where MA = 1.

2.3. Clebsch coordinates
To facilitate the design of future numerical simulations, we introduce Clebsch

(1871) coordinates x̃ and ỹ that are constant along the background magnetic-field
lines. In particular, we define

(x̃, ỹ, z̃) = (αx, αy, z), (2.17)

1The Alfvén surface is an idealization of what is really happening, and that there is more of a fuzzy transition
region than a smooth and clean transition between sub- and super-Alfvénic solar wind (Chhiber et al. 2022).
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Sun
êr

ê z̃

ê x̃êỹ

(a)

(b)

(c)

U f r = 0

(d)
(e)

U f r 0

FIGURE 1. (a) A cartoon of a magnetic flux tube expanding from the Sun. The dark arrows
represent magnetic-field lines, and the blue arrow shows the central field line of the flux tube. (b)
A model of a narrow magnetic flux tube. (c) The same narrow magnetic flux tube after applying
Clebsch coordinates. (d) Cartoon of the Eulerian box simulation: the box remains fixed while
the plasma flows through it. (e) Cartoon of the moving box simulation: the box moves along
with the plasma at a specified velocity, expanding with the field lines.

where α2 ≡ B̄0/Bref, and Bref is a value of reference. The function α(r) is the factor
by which the separation between two field lines increases between radius rref and
some larger radius r. These coordinates satisfy the relation

B0

Bref
= ∇x̃ × ∇ỹ + O(θ2), (2.18)

from which it follows that B0 · ∇x̃ = B0 · ∇ỹ = 0. In the (x̃, ỹ, z̃) coordinate system,
(2.13) and (2.16) transform into

∂z±

∂t
+ (U ± vA)

∂z±

∂ z̃
+ (U ∓ vA)

(
z±

4Hρ

− z∓

2HA

)
= −α

(
z∓ · ∇̃z± + ∇̃⊥p�

)
,

(2.19)

and

∂f ±

∂t
+ (U ± vA)

(
∂f ±

∂ z̃
− f ∓

2HA

)
= −α

(
z∓ · ∇̃f ± + 1 ± η1/2

η1/4
∇̃⊥p�

)
, (2.20)

respectively, where ∇̃ is the gradient operator in the (x̃, ỹ, z̃) coordinate system. In
this coordinate system, the background magnetic-field lines are parallel to each other,
as illustrated in figure 1. The parameter α represents the separation distance between
two field lines and adjusts the strength of the nonlinearities in the system. For the
sake of readability, we will henceforth employ the Clebsch coordinates exclusively,
and omit the tilde notation.

2.4. Transformation to a frame moving radially away from the Sun
In this section, we consider a reference frame that moves away from the Sun along

the background magnetic-field lines at some arbitrary velocity Ufr(z). The position
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z(t) of a point that starts at z0 at time t0 and moves outward along B0 at speed Ufr(z)
satisfies the equation

∂

∂t
z(t | z0, t0) = Ufr [z (t | z0, t0)] . (2.21)

In simpler words, this mapping relates the time elapsed since the initial moment
t0 to the distance (z − z0) traveled by the frame. With the aid of (2.21), we can
transform (2.20) from the (x, y, z) coordinate system to the (x, y, z0) coordinate
system, obtaining

∂f ±

∂t
+ (U − Ufr ± vA)

Ufr,0

Ufr

∂f ±

∂z0
− U ± vA

2HA
f ∓ = −α

(
z∓ · ∇f ± + 1 ± η1/2

η1/4
∇p�

)
,

(2.22)

where Ufr is shorthand for Ufr(z(z0, t)) and Ufr,0 = Ufr(z0) The interested reader can
find the details of the transformation calculations in Appendix A.

Equation (2.22) has two main differences compared with (2.16). First, there is a
correction to the advection term: U∂z → (U − Ufr)∂z. This is intuitive because for a
fixed observer (Ufr = 0), we recover the usual advection term seen in the Eulerian
frame. As the frame speed Ufr gets closer to the plasma rest frame, the advection
term decreases. Second, we must account for the changes in the z-derivative due to
the motion of the frame. In general, as Ufr depends on z, the coordinate system will
be stretched or compressed. This deformation is captured by the transformation rule
∂/∂z → (Ufr,0/Ufr)∂/∂z0.

Equation (2.22) represents the first main result of this paper. The main advantage
of this formulation is its flexibility in choosing the appropriate frame of reference.
For instance, in the plasma rest frame and the super-Alfvénic limit (Ufr = Ufr,0 =
U 
 constant and vA � U), we recover the system studied by Grappin et al. (1993)
and Meyrand et al. (2025). To revert to the Eulerian frame, we simply set the frame
velocity to zero (Ufr = Ufr,0 = 0).

However, not all frames are equally relevant. While flux-tube simulations offer the
most detailed insights into wave behavior, they are computationally expensive, and
simplified models can be more efficient. Then, to understand how waves launched
by the Sun evolve and to match the steady-state solution that arises in a full flux-tube
simulation, it is natural to adopt the z+ frame, in which Ufr = U + vA, and to allow
the z+ fluctuations to decay in this frame without forcing z+. The resulting mean
square value of z+ in the box, 〈z+

box(t)2〉, can be used to estimate the average mean-
square value of z+ in the solar wind, 〈z+

sw(r)2〉, by setting 〈z+
sw(r)2〉 = 〈z+

box(t(r))2〉,
where t(r) is the time at which the moving box is at heliocentric distance r.

We note that, in a given simulation, if the box moves more slowly than U +
vA, it will take longer to reach a given heliospheric distance, leading to excessive
wave cascading and energy dissipation compared with that which could occur in the
flux tube. To correct this, energy would have to be injected into the box. On the
other hand, if the frame moves faster than U + vA, energy dissipation needs to be
artificially increased. In the special case of a fixed Eulerian frame, the system must
be forced so that z+

rms fluctuates about a steady mean, as it does at fixed r in the
solar wind.

The Eulerian frame should provide a powerful method for investigating local tur-
bulent processes, allowing us to focus on the system after it has reached a steady
state. In this regime, time evolution becomes irrelevant, and computational resources
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can be allocated to enhancing resolution and extending the inertial range without the
burden of tracking the dynamics of different spatial locations as required in moving
box simulations. It is likely important in such simulations to choose the radial extent
of the box to be longer than the distance that z− fluctuations can propagate during
their cascade time scales to prevent the same z− and z+ fluctuations from interacting
mutliple times. This approach should also enable the system to reach a steady state
after just a few eddy turnover times, maximizing computational efficiency.

3. Scalar formulation

When solving the IRMHD equations on a computer, one can reduce the amount
of computer time required by first rewriting the equations in terms of scalar
potentials. To this end, we define the Elsasser potentials ζ± via the equation

z±(x, t) = êz × ∇ζ±(x, t)
α

. (3.1)

Equation (3.1) implies that the velocity and magnetic-field fluctuations can be
expressed as

δu(x, t) = êz × ∇�(x, t)
α

, and δb(x, t) = êz × ∇
(x, t)
α

, (3.2)

where � and 
 are two stream functions that are determined up through an arbi-
trary additive constant and that satisfy the equation ζ± = (� ∓ 
). Similarly, we
introduce the wave-action potentials ζ±

f , which satisfy the equation

f ±(x, t) = êz × ∇ζ±
f (x, t), with ζ±

f ≡ 1 ± η1/2

η1/4
ζ±. (3.3)

Finally, we define the field-aligned Elsasser and wave-action vorticities, �± and �±
f ,

via the equations

�±(x, t) = êz · (∇ × z±)= ∇2⊥ζ±, (3.4a)

�±
f (x, t) = êz · (∇ × f ±)= ∇2⊥ζ±

f , (3.4b)

where ∇2⊥ ≡ ∂xx + ∂yy. Throughout this paper, we henceforth assume ∇⊥ 
 ∂z 

H−1

i , with i = {A, B, ρ}. Given the previous assumptions, taking the curl of (2.22),
and keeping only the terms of the lowest order, we obtain the second main result of
this paper[

∂

∂t
+ (U − Ufr ± vA)

Ufr,0

Ufr

∂

∂z0

]
�±

f − U ± vA

2HA
�∓

f = {
∂jζ

±
f , ∂jζ

∓}+ {
�±

f , ζ∓} ,

(3.5)

where we have employed the Einstein summation convention with the index
j = {x, y}, and where the Poisson bracket {f , g} ≡ êz · (∇f × ∇g) for arbitrary
functions f and g. (3.5) can be divided in three parts:

(i) The squared brackets on the left-hand side correspond to a linear advection of
wave-action vorticities �±

f at speed (U − Ufr ± vA) Ufr,0/Ufr.
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(ii) The last term on the left-hand side describes non-WKB reflections, which act
as a source for inward-propagating waves that are correlated to the original
wave. This correlation leads to the phenomenon often referred to as anomalous
coherence (see, e.g. Velli et al. 1989; Verdini et al. 2009; Perez & Chandran
2013; Chandran & Perez 2019). This term also disrupts the conservation of
energy and cross helicity for the turbulent fluctuations. However, these conser-
vation laws are restored when the energy and cross helicity of the background
are included (Chandran et al. 2015).

(iii) The nonlinear terms capture two key effects. First (by order of appearance),
the vortex stretching effect, arising from interactions between opposite popu-
lations, influences the growth or decay of vorticities (Zhdankin et al. 2016).
As highlighted by Schekochihin (2022), the nonlinear term forces �+

f and �−
f

equally but in opposite directions at every point in space and time, resulting in
a negative correlation between the two vorticities. This interaction systemati-
cally promotes current sheets over shear layers. Second, nonlinear advection
describes how each vorticity is transported by the field of the other.

We note that (3.5) becomes problematic near the Alfvén critical point rA, where
�−

f and ζ−
f vanish, and where the value of ζ− in the equation for ∂�+

f /∂t would
need to be computed by dividing ζ−

f by 1 − η1/2, which also vanishes at r = rA. To
avoid the need to evaluate ζ−

f /(1 − η1/2) in moving-box simulations that transit past
r = rA, one could replace the equation for ∂�−

f /∂t by an equivalent equation for

∂�−/∂t.
2

4. Linear system

In this subsection, we consider a rectangular box at some initial position in the
Sun’s frame. We take the radial extent �r of the box to be much smaller than
the distance over which the equilibrium properties change appreciably. Anticipating
future numerical simulations, we make the approximation that the fluctuations in
the box satisfy triply periodic boundary conditions. We further take HA to be a
non-zero constant, but we treat vA and U as uniform within the box. Although a
spatially uniform vA is inconsistent with a non-zero HA, the variations in vA that
we are neglecting are ∼ �r/HA � 1, and, we conjecture, unimportant—similarly to
Boussinesq’s approximation. In the general case, simple linear sinusoidal solutions
to (3.5) cannot be obtained because U(z(t)), and vA(z(t)) depends on time in a non-
trivial way.

3
We therefore choose to focus this section on the Eulerian frame, in

which the box remains at a fixed position in the Sun’s frame. We now consider a
small perturbation of the wave-action potentials ζ±

f = ζ±
f0 ei(k·x−ωt). Upon substituting

this perturbation into (3.5), we obtain the matrix equation

2The equivalent equation for the Elsasser vorticity of the ‘−’ wave is expressed as[
∂t + (U − Ufr − vA)

Ufr,0
Ufr

∂z0

]
�− + (U + vA)

(
�−
4Hρ

− �+
2HA

)
= {

∂jζ
−, ∂jζ

+}+ {
�+, ζ−} .

3However, when all variables depend similarly on z(t), a change of variables can remove the time dependence,
allowing for a linear analysis. This applies to the super-Alfvénic solar wind, where vA � U ∼ constant and vA scales
as 1/t (Meyrand et al. 2025).
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i
(
ω′ − ωA

)
(U + vA)(2HA)−1

(U − vA)(2HA)−1 i
(
ω′ + ωA

)
) (

ζ+
f0

ζ−
f0

)
= 0, (4.1)

with ω′ ≡ ω − kzU , and ωA ≡ kzvA. This linear set of equations supports waves
forward- and backward-propagating modes of frequency

ω′±(kz) = ±vA

√
k2

z + 1 −M2
A

4H2
A

. (4.2)

This equation generalizes the Alfvén-wave dispersion relation to allow for finite
Alfvén-speed scale heights, which makes the waves dispersive. For non-zero values
of k‖, the second term under the square-root sign in (4.2) is a small correction to
the first term as �r � HA. However, when k‖ = 0, that second term is the only term
that survives, leading to purely growing or damped solutions when MA > 1, and to
low-frequency oscillatory solutions when MA < 1.

We note that the eigenfunctions that diagonalize the linear system are

�±
k = ∓U − vA

2HA
ξ+
k + i

(
ω′+ ∓ ωA

)
ξ−
k . (4.3)

Unlike RMHD, in which the eigenmodes are ζ±
k , here, �±

k combine both ξ+
k and

ξ−
k . This distinction introduces an important new feature: the governing equations

for the eigenfunctions �±
k inherently describe nonlinear interactions between both

co-propagating and counter-propagating waves.

5. Discussion and conclusion

In this paper, we have developed a family of local approximations to the nonlin-
ear equations derived by Heinemann & Olbert (1980), including a box that moves
radially outward at an arbitrary velocity. The use of Clebsch coordinates ensures
independence from radial magnetic-field line spreading and greatly simplifies the
system’s geometry, allowing us to derive (3.5), which is a relevant extension for both
sub- and super-Alfvénic plasmas, regardless of whether the turbulence is balanced or
imbalanced, and whether the medium is homogeneous or not.

There are several numerical approaches to solving (3.5), each with its advantages
and limitations. Flux-tube simulations, for example, are the most comprehensive as
they cover the full relevant range in r, making them ideal for capturing the full
complexity of the turbulence (see e.g. Perez & Chandran 2013; van Ballegooijen &
Asgari-Targhi 2016, 2017; Chandran & Perez 2019). However, they are incredibly
expensive computationally. This is because they require an extremely large number
of radial grid points, and also because Alfvén waves must travel from the Sun out
to the Alfvén critical point and back a few times before the turbulence settles down
into a statistical steady state (Perez & Chandran 2013). The Eulerian box, a small
stationary box in the expanding solar wind, will allow a wide inertial range and
is particularly useful for studying local turbulence dynamics and phenomena like
cascade rates and anomalous coherence. The trade-off, however, is that it requires
forcing to sustain the root mean square value of z+, denoted z+

rms, at a chosen level,
and z+

rms and the parallel box length must be large enough that z− fluctuations to a
good approximation cascade and dissipate before crossing the box to avoid spuri-
ous interactions with their parent outward-propagating waves. Additionally, it lacks
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radial tracking, so while one can get insight into inertial-range dynamics, it misses
out on how the turbulence evolves with heliospheric distance and thus cannot pre-
dict coronal/solar-wind heating rates. Finally, the moving box method generalizes the
well-known expanding-box model to a non-constant solar wind’s speed, and strikes
a balance between these two approaches. This approach corresponds to the acceler-
ating expanding-box model derived by Tenerani & Velli (2017) in the specific limit
of incompressible and strongly anisotropic fluctuations. However, our model intro-
duces a key advantage: it offers the flexibility to select a reference frame that is best
suited to the problem at hand. In contrast, the accelerating expanding-box model is
inherently tied to the plasma bulk flow, which becomes less useful in the sub-Alfvénic
wind, as discussed in § 2.4. Like the Eulerian box, the moving box method gives a
large inertial range and can explore anomalous coherence, but it also captures the
decay of turbulence as it propagates away from the Sun, in a way that is independent
of the forcing mechanism—if the z+ frame is used. One of its main strengths is the
ability to track turbulence radially as the simulation progresses. However, it comes
with the drawback of limited statistics at any given radius, since the box moves
along with the plasma flow. Each method offers its own unique insights, but the
choice ultimately depends on the specific aspect of turbulence one is trying to study.

Finally, our focus has been on Alfvén waves. To extend this work we could cover
the Alfvénic cascade down to electron scales, deriving an extension of finite Larmor
radius MHD (Schekochihin et al. 2019; Meyrand et al. 2021) to finite scale heights.
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Appendix A. Moving frame transformation
To understand the transformation to a frame moving at speed Ufr(z), we introduce

new time and radial variables t′ and z0, with t′ = t. The coordinates x and y remain
unchanged and, unlike the time variable, are not coupled to the transformation, so
we ignore them here for brevity. We start by defining the radial position z of a point
initially located at position z0 at time t′0 as a function of t′, written as z

(
t′ | z0, t′0

)
,

assuming the point moves outward at speed Ufr(z). The evolution of z over time is
given by

∂

∂t′
z
(
t′ | z0, t′0

)= Ufr
[
z
(
t′ | z0, t′0

)]
. (A.1)
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This equation can be integrated to yield

z
(
t′ | z0, t′0

)− z0 =
∫ t′

0
Ufr

[
z
(
t1 | z0, t′0

)]
dt1. (A.2)

Likewise, if the initial position of the point at time t′0 is z0 + �, where � is some
small radial displacement, then the point’s position at time t′ satisfies the equation

z
(
t′ | z0 + �, t′0

)− z0 − � =
∫ t′

0
Ufr

[
z
(
t1 | z0 + �, t′0

)]
dt1. (A.3)

We define δt such that z
(
t′0 + δt | z0, t′0

)= z0 + �. That is, δt is the amount of time
required for a point starting at z0 to reach position z0 + �. It then follows that

z
(
t′ + δt | z0, t′0

)= z
(
t′ + δt | z0 + �, t′0 + δt

)= z
(
t′ | z0 + �, t′0

)
. (A.4)

The first equality in (A.4) results from the fact that the point that starts at (z0, t′0)
moves through space–time coordinates (z0 + �, t′0 + δt) on its way to final posi-
tion z

(
t′ + δt | z0, t′0

)
. The second equality in (A.4) follows from the fact that Ufr(z)

depends on z but not t′. When δt and � are infinitesimal

δt = �

Ufr(z0)
. (A.5)

Using (A.4) to rewrite the right-hand side of (A.3) and then subtracting (A.2) from
(A.3), we obtain

z(t′ | z0 + �, t′0) − z(t′ | z0, t′0) − � =
∫ t′+δt

t′
Ufr

[
z
(
t1 | z0, t′0

)]
dt1

−
∫ δt

0
Ufr

[
z
(
t1 | z0, t′0

)]
dt1. (A.6)

Noting that the final terms on the left- and right-hand sides of (A.6) cancel and
dividing (A.6) by �, we arrive at

z(t′ | z0 + �, t′0) − z(t′ | z0, t′0)

�
= δt

�
Ufr

[
z
(
t′ | z0, t′0

)]
. (A.7)

Finally, upon taking the limit � → 0, we find that

∂z
∂z0

∣∣∣∣
t′

= Ufr(z)

Ufr(z0)
= Ufr

Ufr,0
. (A.8)

Equation (A.8) describes how the coordinate system is stretched or compressed by
the radial variations in Ufr(z). The Jacobian matrix associated with this change of
variables is

J ≡ ∂ (z, t)
∂ (z0, t′)

=
⎛
⎝ ∂z

∂z0

∣∣∣
t′

∂z
∂t′
∣∣
z0

∂t
∂z0

∣∣∣
t′

∂t
∂t′
∣∣
z0

⎞
⎠=

( Ufr
Ufr,0

Ufr

0 1

)
. (A.9)
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It follows from the chain rule that the Jacobian matrix of the inverse transformation
is the inverse of the matrix in (A.9). Hence,

J−1 = ∂
(
z0, t′

)
∂ (z, t)

=
⎛
⎝ ∂z0

∂z

∣∣∣
t

∂z0
∂t

∣∣∣
z

∂t′
∂z

∣∣∣
t

∂t′
∂t

∣∣∣
z

⎞
⎠=

(Ufr,0
Ufr

−Ufr
0 1

)
, (A.10)

where the final equality follows from taking the inverse of the 2 × 2 matrix on the
right-hand side of (A.9). Equation (A.10) provides the partial derivatives that we
will need in order to transform (2.20) to the (z0, t′) coordinate system. In particular,
(A.10) and the chain rule enable us to write

∂f ±

∂t
= ∂f ±

∂t′

∣∣∣∣
z0

− Ufr,0
∂f ±

∂z0
, (A.11a)

∂f ±

∂z
= ∂t′

∂z

∣∣∣∣
t

∂f ±

∂t′

∣∣∣∣
z0

+ ∂z0

∂z

∣∣∣∣
t

∂f ±

∂z0

∣∣∣∣
t′

= Ufr,0

Ufr

∂f ±

∂z0
. (A.11b)

Upon substituting these expressions into (2.20) and omitting the prime symbol on t′
to make the notation more compact, we obtain (2.22).
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