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Abstract

New existence conditions, under which an index at infinity can be calculated, are given for bifurcations
at infinity of asymptotically linear equations in spaces of vector-valued functions. The case where
a bounded nonlinearity has discontinuous principal homogeneous part is considered. The results are
applied to 2 -periodic problems for two—dimensional systems of ordinary differential equations and to a
vector two-point boundary value problem.

1991 Mathematics subject classification (Amer. Math. Soc.): 47TH11, 47TH30.

1. Introduction

The word bifurcation is very widely used in modern scientific language [10]. Es-
sentially, it is concerned with the qualitative changes in the dynamical behavior of a
system that may occur when parameters of the system are subjected to small changes.
In a narrower sense, in mathematical bifurcation theory a particular parameter value
in an equation with parameters is called a bifurcation point if new solutions arise or
current solutions cease to exist, or both, for nearby parameter values. Over the past
decade problems of bifurcation at infinity, that is, where arbitrarily large solutions
arise at certain parameter values, have attracted considerable attention, for example
[3,4,5,9, 11, 12, 13]. This has been motivated, on the one hand, by a large number of
applications and, on the other hand, by the need for a new mathematical perspective.
The obvious idea of inverting a state variable and reducing the problem to a standard
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one of bifurcation at zero is not particular productive here because the associated
superposition operators that are usually present cease to be superposition operators
under inversion. Moreover, there is usually no convenient analytical way of repres-
enting solutions with very large norm. Consequently topological methods similar to
the principle of changing index are especially important here. Such methods are the
main topic of this paper.

Consider the equation B(x, A) = 0 in a Banach space E for some operator B(x, A)
which depends on a parameter A € A = [a, b).

DEFINITION 1. A parameter value Aq is called a bifurcation point at infinity or,
equivalently, an asymptotic bifurcation point if for every ¢ > 0 there exists a A, €
(Ao — &, Ag + &) [ A such that the equation B(x, A.) = 0 has at least one solution x,
satisfying ||x,|| > &'

The notion of an asymptotic bifurcation point was introduced in the early 1950s
by Mark Krasnosel’skii, who initiated their study by topological methods with the
so-called principle of changing index [8, 1]. This principle is applicable for equations
B(x,A) = 0 of the type x = T(x, A) where the operator T (x, A) is completely
continuous (that is, compact and continuous) in the both of its variables. An operator
®x = x — Tx is called a vector field and is said to be completely continuous when
the operator T is completely continuous.

DEFINITION 2. Let a completely continuous vector field ®x be defined and non-
degenerate for ([x|| > ro. Then the rotation (see [8]) of this field on the boundary of
every ball B(r,0) = {x € E; ||x| < r}is defined and has a common value for all
r > ry which is called the index at infinity of the field ®x and is denoted by ind,, ®.

If the value of the index at infinity of a field ®,x = x — T'(x, A) is not defined for
some parameter value A = Ay, then this value A, is an asymptotic bifurcation point of
the equation x — T'(x, X)) = 0.

PROPOSITION 1 (Principle of changing index [8]).  Consider an equation x =
T(x, \) in the Banach space E where the operator T (x, L) is completely continu-
ous in both variables x € E and A € [a, b). Suppose that the indices at infinity of the
field ®,x = x — T'(x, L) are defined for two different parameter values ), and X\, and

satisfy
) indy ®,, # ind,, P;,.

Then there exists at least one asymptotic bifurcation point for the equationx = T (x, A)
in the interval (A, A;].
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This statement and its various reformulations are called the principle of changing
index. The reformulations are mainly related to the problem of how to find two such
values of the parameter with different indices. The following variation is the most
widely used.

Let the index at infinity of the field &, be defined for every A from some neighbor-
hood of A,. Suppose that this index is constant for . < A, with value ind,, ®;,_¢ and
that it is also constant for A > Ay with value indy @, 0.

PROPOSITION 2 ([8]). Suppose that at least two numbers of the three numbers
ind, ®,,, inde ®;,—0, indy ®;,40

are defined and different. Then A is an asymptotic bifurcation point for the equation
x = T(x, ).

If the index ind, ®,, is defined and differs from zero, then multiplicity results
are valid for parameter values close to 1 under assumptions of Proposition 2. For
example, if ind, @5, = 1 and indy, ®,,.0 = —1, then, generally speaking, for
parameter values A > Aq close to A, the equation x = T (x, A) has three solutions: one
with index 1 which is bounded for all A € [hq, Ay + €], and two branches of solutions
with index —1 which tend to infinity as A — Aqg.

The typical situation in applications is where nothing is known about the index
ind,, ®,,, but the other two numbers, ind,, ®,,_¢ and ind,, D,, 10, are known and are
different.

Most theorems on asymptotic bifurcation points concern asymptotically linear
equations, which will be defined in the next section. In this case, if some value of the
parameter is an asymptotic bifurcation point, then the kernel of the principal at infinity
linear part x — A, x of the field x — T (x, A) is non-trivial. If the parameter is included
in the principal linear part as a multiplier, thatis A,x = A Ax, then any eigenvalue u of
the linear operator A of odd multiplicity (for example, a simple eigenvalue) generates
an asymptotic bifurcation point A = p~'.

This paper is organized as follows. In the next section we define an asymptotically
linear vector field and state a theorem on the calculation of the index for a non-
degenerate asymptotically linear completely continuous vector field. Asymptotically
homogeneous nonlinearities are introduced in Section 3 and a theorem on the calcula-
tion of the index at infinity is stated for vector fields in abstract Banach spaces with a
degenerate linear part and a continuous non-degenerate asymptotically homogeneous
nonlinearity. Section 4 contains a new theorem on the asymptotic homogeneity of
superposition operators, which is proved in Section 5. The corresponding theorem on
the index calculation for fields in spaces of vector-valued functions which have de-
generate linear part and a discontinuous non-degenerate asymptotically homogeneous
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nonlinearity is presented in Section 6. Such types of nonlinearities appear naturally
in applications, examples of which are considered in Sections 7 and 8, while some
concluding remarks are given in Section 9.

2. Index at infinity of non-degenerate asymptotically linear vector fields

A vector field ®(x) is called linear if it can be represented as &x = x — Ax,
where A is a linear operator. A linear vector field is always zero at x = 0 and except
this singular point a linear vector field either has no other singular points at all (if 1
does not belong to the spectrum of the operator A) or it degenerates on a non-trivial
subspace (if 1 belongs to the spectrum of A).

If 1 is a regular value for a completely continuous linear operator A, then 0 is an
isolated (in fact, the unique) singular point of the vector field ®x = x — Ax and its
index coincides with the index of the vector field ®x at infinity. The rotation of this
vector field on the boundary of a given domain & is either equal to zero if 0 ¢ Z or
coincides with the index of zero if 0 € 2.

PROPOSITION 3. Let 88 denote the sum of multiplicities of all real eigenvalues of A
which are greater than 1. Then

2) ind,, ® = (—1)~%.
For a proof of this assertion see, for instance, [8].

DEFINITION 3. An operator T and vector field ®x = x — Tx are called asymp-
totically linear if T admits the representation Tx = Ax + Fx where A is a linear
operator and F is an operator which satisfies lim;, - || Fx||/|Ix|] = 0. The operator
A is called the asymptotic derivative of the asymptotically linear operator T, or the
derivative of T at infinity, while the linear vector field x — Ax is called the main linear
part of the vector field x — Tx. The main linear part is said to be non-degenerate if 1
does not belong to the spectrum of the operator A, otherwise degenerate.

Asymptotic derivatives of completely continuous operators are always completely
continuous [8].

The following theorem of Leray and Schauder follows from theorems on calculating
of rotation of a vector field in terms of its main part.

PROPOSITION 4 ([8, 1]). Let a vector field ®x = x — Tx be asymptotically linear
with the non-degenerate main linear part x — Ax. Then the index of the vector field
® at infinity is defined and is given by ind,, ® = (—1)?, where B denotes the sum of
multiplicities of real eigenvalues of A which are greater than 1.
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The main part of the present paper is devoted to the calculation of the index at
infinity of asymptotically linear vector fields with a degenerate main linear part. In
the pioneering papers [9, 11], conditions of the form

lim f(o)=f", lim f(x) = f~

allow the index at infinity to be calculated for Hammerstein type vector fields &x =
x — A(x + f(x)) with bounded scalar nonlinearities f(x) : £ — R'. An extensive
literature is devoted to investigations of concrete boundary value problems with such
nonlinearities; see [2] and references therein.

A generalization of such results to vector-valued functions have been carried out in
[3] to provide results on the calculation of the index at infinity of vector fields with a
degenerate main linear part and with a non-degenerate next order term. They depend
heavily on the continuity of the next order (after linear) non-degenerate term of the
vector field.

3. Asymptotically homogeneous vector fields

The results of this section on vector fields in Banach spaces were announced in {4]
and proved in [5]. They will be extended in subsequent sections of this paper.

DEFINITION 4. A nonlinear operator Q in the Banach space FE is said to be homo-
geneous of degree 0, or just homogeneous, if

Q(x) = Q(Ax), VoA>0, xekE.

Any constant vector field is homogeneous by definition and linear combinations of
homogeneous vector fields are also homogeneous. Only functions of the form

q, x <0,
3) q(x) = 14°, x=0,
qt, x>0,

are homogeneous for a one-dimensional space E. In general, a homogeneous nonlin-
earity is determined by its values on the unit sphere and at the coordinate origin.

If A is a linear operator and Q is a homogeneous operator, then the operator Q A is
homogeneous. In fact, F Q is homogeneous for an arbitrary operator F.

In spaces of, for instance, scalar-valued functions defined on a given set Q2 C R”™,
a superposition operator x(t) — ¢q(f, x(#)) is homogeneous if it is generated by a
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homogeneous function g (¢, x) which admits a representation (3) at each ¢, that is with

q (1), x <0,
“) q(t. x) = {4°0), x =0,
qt (@), x> 0.

In spaces of vector functions 2 — R” examples of homogeneous nonlinearities can
be given by the superposition operators x(t) — f (¢, x(z)) generated by functions
f(t,x) = C(t)x/|x| where C(t) is a n x n matrix and | - | is a given norm in R",
Functions f(t, x) of the form f (¢, signxy, ..., signx,) also generate homogeneous
superposition operators.

If a homogeneous operator is not constant, then it must be discontinuous at zero.
Such operators can also have other discontinuity points. A natural example of a
discontinuous homogeneous operator on the plane R? is given by the superposition
operator (x,, x;) — (signx,,0) which is discontinuous not only at zero, but also
everywhere on the straight line x; = 0.

The superposition operator Qx(t) = q(t, x(t)) generated by the function (4) is also
discontinuous in function spaces. If, for instance, ¢(¢, x) = g(x) and ¢~ # g™, then
the discontinuity points of Q are dense in the L” spaces. The totality of such points
is also dense in the space C outside of the sets of strictly positive or strictly negative
functions. Nevertheless, this operator has a sufficient quantity of continuity points for
it to still be useful in many applications. Criteria for the continuity of a superposition
operator with discontinuous characteristics at a given point in spaces of integrable
functions can be found in [7].

In the spaces L*™ or C the operator Q can be discontinuous even at ‘very nice’
functions x¢(t) which are equal to zero only at a single point. For instance, the
operator x(t) — signx(¢) for t € [0, 1] is discontinuous at the function x*(z) =
t — 1/2 as an operator from C to L* . Fortunately, superposition operators Q
are often combined with linear integral operators A which possess some substantial
improvability properties. The operator x(¢) +> sign x(¢) is continuous at the function
x*(t) as an operator from the space L™ to the space L? provided that the function x(t)
vanishes only at the set of zero Lebesgue measure, while a linear operator A is often
continuous as an operator acting from the space L? back to the space L™. As a result
the operator A Q is continuous in L™ at all points xo = x,(¢) satisfying the condition

mes {t € Q: x4(¢t) =0} =0.

Let E; be afinite dimensional subspace of a Banach space E and P, a fixed projector
on this subspace, so P, E = E, and P} = P,.

DEFINITION 5 ([4]). An operator F is said to be asymptotically homogeneous in the
space E (with respect to the subspace E; and the projector P,) if it can be represented
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as the sum F = Q + B where the operator Q is homogeneous and the operator B
satisfies the following ‘vanishing at infinity’ condition:

) lim sup IP,B(Re, + k)| =0

R—=>+00, cE| . |le|=1. heE. |hf<c
for each ¢ > 0.

The main example of an asymptotically homogeneous operator in a function space
is given by the superposition operator f(t, x) = q(z, x) + ¥ (¢, x), where the function
q(t, x) is homogeneous and ¥ (¢, x) satisfies the condition
(6) lim sup |¢ (¢, x)| =0.

[x|=0 (e
If g is continuous on the unit sphere S, then the equality

lim sup 1% (Rey + h)ll =0,
R>400 ¢\, (le|lI=1. heE. lhll 1 <c
which is stronger than (5), can often be established for such operators. The cor-
responding operator is then asymptotically homogeneous with respect to an arbitrary
projector on a subspace E, of L'. On the other hand, if f(z, x) satisfies a Caratheodory
condition (that is, is continuous in x and measurable in ¢) and ¢ (¢, x) is discontinuous
in x at some points of S, then (6) is never valid.

Let us return now to the calculation of the index of a completely continuous
asymptotically linear vector field ®x = x — Ax — Fx with a degenerate linear part
x — Ax. Let E, = Ker(/ — A) and suppose that 1 € o(A) has no generalized
eigenvector. That is, E, = {e(t) : Ae = e}. Then there exists a projection
P, : E — E; which commutes with A. For example, an explicit construction is given
for such a projector in Section 6 for the case E = L°.

THEOREM 1 ([5]). Let the operator F = Q + B be asymptotically homogeneous,
where Q is homogeneous and B satisfies condition (5) with a finite dimensional
subspace E, and projector P, defined by the linear operator A. Suppose that the
finite dimensional vector field P, Qe on the sphere U = {e¢ € E|, |e| = 1} is non-
degenerate, that is PyQe # 0 for all e € U, and that the operator P,Q : E — E, is
continuous at each point of U. Then the index ind., ® is defined and given by

ind, ® = (—=1)’y(P,Q,U),

where y (P, Q, U) denotes the rotation of the vector field P, Q on the sphere U in the
Jinite dimensional subspace E,.

In applications the subspace E, is often one or two dimensional, so the rotation
y (P, @, U) can be calculated explicitly.
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4. Asymptotic homogeneity of superposition operators in spaces of vector
functions

Let 2 be a closed bounded domain in a finite dimensional space such as [0, 1] in R’
or a square or a circle in R*>. We will consider operators, vector fields and equations
in spaces E of functions x(#) : 2 — R". Denote by (-, -) the scalar product in the
space R” and by | - | the corresponding norm.

Consider an arbitrary finite dimensional subspace E, C E of vector-valued func-

tions which are continuous on 2. Denote U = {e(¢) : e(t) € Ei, [le]| = 1} and
suppose that each non-zero function e(¢) € E| satisfies (see [2] and the references
therein)

) mes{t € 2: e(r) =0} =0.

Let us fix a closed set A C S on the unit sphere § = {x € R" : |x| = 1} C R™.
Generally, in applications, this set is ‘small’, often having codimension 2. Denote
by p(u, A) the distance between a point u in the sphere and the set A and for each
function e(z) € E, write

X((S,A,e)=mes{te§2: p(l—j%,A) 53}~

The main assumptions in the theorem formulated below on asymptotic homogeneity
of the superposition operator x(¢) — f (¢, x(t)) are the following: there exist a set A
such that

(1) The limit

®) Jim £ Ry = q(t,w)

exists for each u € S\ A. The limit in (8) is supposed to be uniform in ¢ € §2 and
in u belonging to any given closed subset of S which is disjoint with A, and the limit
function g (¢, u) satisfies a Caratheodory condition for u ¢ A.

(2) The equality

9 x0,A,e)=0.

holds for each function e(¢) € E|.
Assumption 1 can be reformulated as follows:
(1*) The equality

(10) lim sup | f(@t, Ru) —q,u)] =0

R—>+00 1€Q, ueh,
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holds for each A, C S such that A, [ A = .
Equality (7) together with the main assumption guarantees that the operator

g @t x(®)/Ix®]), x(t) #0,

11 =
() 0x(1) {0, 00

is continuous as an operator in L' (and in other L? spaces for p < 00) at every point of
U (see [7]). The compactness of U guarantees the uniform continuity of this operator
onU.

Let us suppose also that the functions f(¢,x) and g(¢,u) are both uniformly
bounded.

THEOREM 2. The operator x(t) — f(t, x(t)) is asymptotically homogeneous in
the space E = L? = L*(2, R") under the assumptions listed above.

This theorem was proved in [3] with other terminology for the case A = #. The
closure G of the totality of discontinuity points of the function ¢ (¢, u) can be taken as
the set A. Theorem 2 can be generalized to the case when the set G varies with . Note
also that all that is said in this section is interesting only for vector-valued functions,
since for scalar functions the sphere S consists only of two points and the question
of the continuity of the corresponding functions does not appear, that is, g (¢, u) is
automatically continuous at both points of the sphere in one—dimensional space.

An example where condition (9) does not hold will be given in Section 9. Note
also that with the use of Theorem 2 the solvability results in [12] can be generalized.

5. Proof of Theorem 2

We first prove a lemma.

LEMMA 1. Let
(12) X8, A, ENE sup x5, A, e).
e(tyelU
Then
(13) lim x (3, A, Ey) = 0.

PROOF. Suppose the contrary. Then there exists a number ¢ > 0 and a sequence
of functions e, () € U satisfying the inequalities x (1/n, A, e¢,) > &, or, what is the

same,
L (F 1
mes{teQ: p(e() ,A)S—}>e.
len ()] n
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Since E, is finite dimensional, and hence all the norms in E, are equivalent, we
can suppose without loss of generality that the sequence e, () converges uniformly
to a function ¢*(+) € U. The continuity of measure, condition (7) and the finite
dimensionality of the subspace E, together imply that

(14) lim sup mes{t € Q2 : |e(r)| <8} =0.

8=0,(n)ev

Therefore

N ™

e, (1) 1 .

(15) mesyt€R: p| ——,A) < —, le.(t)], le" ()] > o ¢ >
le. ()] n

for all sufficiently large n and some fixed §;. However, inequality (15) contradicts (9)

with e = ¢* because

ert)  elt)

8, = -
le*()]  len()

len ()], 1€* (1)1 80

tends to zero as n — oc and

le (1)’
e (1)

1 1
Smes{teQ: p(le*(t)l’A> 5;+8,,} =X(;+6,,,A,e*) — 0.

This proves the lemma.

mes {t €EQ:p ( e () A) < rll le. ()], le*(2)] > 80}

Let us now complete the proof of Theorem 2. To this end we will prove the equality

e(t)
f(t, Re+h)—q (t, IE(t)l)

(16) lim sup

R=+0 ey, |, <c

- Rl
Lr

for p € [1, 0o), which is stronger than (5) with E = L?. This equality for p > 1
follows from the same equality for p = 1 by virtue of the uniform boundedness of the
functions f (¢, x) and g (¢, u).

To estimate the value of
t
f(t.Re(t) +h(®)) — g (t e—()—)‘ dt

= ,
: o]

we choose an arbitrary € > 0 and will show that J < ¢ holds for all sufficiently large
R. By the Chebyshev inequality,

mes {r € Q: |h()| > p} < |kl /0
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and by the boundedness of the functions f (¢, x) and g (¢, x) the inequality
e(t) £
/(:: |A(2)] >} |e(t)| 5

is valid for some sufficiently large ¢ and all R. By (14) and the boundedness of the
functions f (¢, x) and g(¢, x), the analogous inequality
t
f(t. Re(t) + h(t)) — q (r ﬁ)' dt < g

/u:;e(mga) le(t)]

is also valid for sufficiently small é for all R. Let us surround the set A on the sphere
S with a sufficiently small neighbourhood N = {u : p(u, A) < n}. By Lemma 1
the point e(t)/|e(t)| belongs to this neighbourhood N for ¢ from a set G (e, n) which
has arbitrarily small measure uniformly with respect to all e(r) € U. Let us fix now a

neighbourhood N satisfying the inequality
e(t) £
f@, Re(t) +h(t)) — g (t, —)’dt < -.
/(;(e.n) |e(t)| 5

In what follows the values u, § and the set G = G(e, n) are supposed to be fixed.
Denote

QL (e h@)] < p, le@®)] > 8, t & Gle,n)).

The inequality J < ¢ for large R will be true if we can show that
Re(t) + h(t t
Jl:/ q(t, e(r) + ())_q(t’ e())‘dt
o |Re(r) + h(1)] le(r)]

5 :/ ,M)\d,
o [Re() + h(D)]

satisfy the estimates J,, J, < ¢/5 for all sufficiently large R. For this, note that for
large R and for r € 2* the value of
e(t) Re(t) + h(t)
le()|  [Re(t) + h(1)l
can be made arbitrarily small uniformly with respect to e, # and ¢. Therefore we can
suppose without loss of generality that the both of

e(t) Re(t) + h(z)

and —————

le()] |Re(t) + h(1)]

are uniformly separated from the set A for all sufficiently large R fort € Q*. Hence J,

tends to zero as R — oo by the assumption (8) and the fact that |Re(¢) + h(t)| — oo
uniformly, while J; tends to zero by the uniform continuity of superposition operator

(11).

and

f(t, Re(t) +h(t)) — g (t
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6. An index theorem

In this section we will again use the space L> = L?*(2, R") of square-integrable
functions x(¢) : & — R” with the usual norm || - ||,> generated by the scalar product
in (-, -y in R", that is,

” * ”LZ = (" ')5 (x’ )’) = f(x(t)v )’(t)> dt'
Q

Let A : L? — L? be a completely continuous linear operator and suppose that
f,x): Q@ x R" = R”is a bounded function satisfying a Caratheodory condition.
Consider in L? the completely continuous vector field

(17) Ox =x — Ax + f(t, %)),

which is asymptotically linear with asymptotic derivative I — A. If 1 & ¢ (A), where
o (A) is the spectrum of the operator A, then ind,, ® = (—1)?, where 8 is the sum of
multiplicities of all real eigenvalues of the operator A greater than 1.

On the other hand, if 1 € o(A) then the asymptotic derivative I — A is degenerate
and some properties of the nonlinearity f (¢, x) must be used to compute the index.
Let £, = Ker(/ — A) and suppose that E, = {e(t) : Ae = e} holds (this means
that the eigenvalue 1 of A does not have a generalized eigenvector). Denote by P,
a projector onto E; which commutes with A, which can be constructed as follows.
Letey, ..., e,, where m = dim E, be a basis of E, and let g, ..., g, be a basis in
E} = Ker(I — A*) C L? which satisfy

/(ei(t), gi(1))dt =4,
Q

where §;; is the Kronecker symbol. The projector P can then be defined as
Pix() =) el / (8:(1), x()) 1.
i=1 Q

THEOREM 3. Suppose that the bounded nonlinearity f(t,x) satisfies the con-
ditions of Theorem 2 for some set A and function q(t,u) and that vector field
We = Pig (t,e(t)/e(t)]) is non-degenerate on U. Then

ind,, ® = (=1)Py (¥, U).

Theorem 3 follows immediately from Theorems | and 2. Analogues of Theorems
2 and 3 can be formulated for the space L” with p # 2 and used to study nonlinear
degenerate elliptic PDE.
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7. Example 1

Consider the 2-dimensional system

X, = X, + arctan + bi(z, M),
a8 { | 2 (x1) + bi(t, A)

Xy = —x; + arctan(x,) + by (¢, 1),
which can be rewritten vectorially as
x = Ax+f(x) + b(z, V)

with

0 1 X arctan(xl) bl (t, )\.)
A j— s = y f = R t , )\. =5 )
(—1 0) X (xz) ®) (arctan(xz) Al VI
. where the functions b, (¢, A) are 2 -periodic in ¢ and continuous in both variables.
We are interested in the existence of 2 -periodic solutions of this system and its
asymptotic bifurcation points. The difficulty here is that the linear part X' — AX is

degenerate for the 2m-periodic problem, specifically the equation X' = Ax has a
two—dimensional subspace E, of 2m-periodic solutions with an orthonormed basis

e (t) = {sint, cost}, e (t) = {cost, —sint}.

1 1
W 2r 21

Consider the function

2n
/ (by(t, X)) +iby (¢, A))e " dt| — 8
0

p) =
where | - | is the complex modulus.

THEOREM 4. If ¢(X) < O then, for this value of A, system (18) has at least one
2w -periodic solution.

THEOREM 5. Let ¢(Ao) = 0 and let the function ¢()) take values of both signs in
any neighbourhood of the point Ag. Then A is an asymptotic bifurcation point for
system (18).

Let L? be the space of the vector functions x(¢) : [0, 2n] — R? with the usual
scalar product denoted as (-, -) and consider the operator y = Ax which puts into
correspondence to any x € L? the 2 -periodic solution y(¢) of the linear differential
equation y) — Ay + y = x. In other words, the operator A is the inverse operator for
differential operator y +> y’ — Ay + y with 2 -periodic boundary conditions. This

https://doi.org/10.1017/51446788700000689 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700000689

276 P. Diamond, P. E. Kloeden, A. M. Krasnosel’skii and A.V. Pokrovskii [14]

operator A exists since the spectrum of the differential operator is separated from
zero, while 1 belongs to the spectrum o (A). Let the subspace E, corresponds to
the eigenvalue 1. The operator A is completely continuous in the space L2 and the
operator equation

x = A+ f(x) + b(t, 1))

is equivalent in a natural sense to 2xr -periodic problem for system (18).
Consider in L? the completely continuous vector field

O, x=x—- A+ f(x) + bz, 1)).

We want to show that the index at infinity of this vector field is defined if p(A) # 0
and that ind, ®; = (—=1)~ if ¢(A) < 0 with ind,, ®, = 0 if p(A) > 0 (Here - is an
integer power, the precise value of which is not important just now). This will prove
both Theorems 4 and 5.

To calculate the index for the cases considered we use Theorem 2. Put q(z, x, A) =
(sign x,, signx;)T + b(¢, 1) and let A consists of 4 points u; = 0, u; = 1 and
u, = +1, u, = 0. All of the conditions of Theorem 2 are fulfilled, so to calculate
ind,, ®; itis necessary only to calculate the rotation y (1) of the field P;q(z, x, A)on U.
The operator P, has the form P;x = (e, X)e;(¢)+ (e, x)e, (7). Let us parameterize the
circle U € Ey as U = {ey (1) = cos yre, (1) + sin ye;(¢), ¥ € [0, 2]} and calculate
v, (ey) = Piq(t, ey (t), A). After rather simple, but cumbersome, computations we
obtain

8
W, (ey) = \/—2‘—;3‘1/([) + Pib(t, 1),

so W, is a one-to-one mapping of the circle U into the circle U, of radius 8/+/27
which is centered at the point Pb(z, 1). If ¢(1) < 0, then the origin is surrounded by
U, and ind, @, = (—1)~, while if (1) > O then the origin is not surrounded by U,
hence ind, ®, = 0.

For more details on the computation of the rotation of planar vector fields see [6].

8. Example 2

We now consider the two—point boundary value problem

x; — 4x) + 5x, = arctan(x; + 2x;) + b (1, 1),
(19) x; — 2x; + 3x, = arctan(2x; — x,) + by (¢, ),
x1(0) = x2(0) = x;(w) = x2() = 0,
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or equivalently
x" = Ax +f(x) + b(z, 1), x(0) =x(r) =0.
Here
_ 4 -5 _ X1 _ arctan(x1 + ZXZ)
A= (2 —3) ’ X= (xz) ’ f) = (arctan(2x1 - xz))
and the function

(b2, 0)
b(t,A) = (bz(t, x))

is continuous in both variables.

THEOREM 6. Suppose that the function

(20) oA = —4

/ b1(t, X)) 4+ by(t, L)) sint dt
0

is strictly negative for some A. Then system (19) has at least one solution for this A.

THEOREM 7. Suppose that the function (20) is equal to zero for some i and that
this function takes values of both signs in any neighborhood of Ay. Then Ay is an
asymptotic bifurcation point for system (19).

The differential operator x” — Ax has a non-trivial one-dimensional kernel

E, = {ce(t), @ € R'}, e(t) = % (i) sinz,

Let A = (x” — Ax + x)~! with boundary conditions x(0) = x(r) = 0. Then the
system (5) is equivalent to the operator equation x = A(x + f(x) + b(z, 1)). Consider
the vector field ®,x = x — A(x + f(x) + b(z, A)) where

sign(x; + 2x,)
sign(2x; — x)

q(t,x,A) = ( ) +b(t, A)

and define A = S\ (S, U S;) where
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2 2
2 2
S = es, ler£ + Xer£ <&
X2 2 2

for some sufficiently small positive . After some easy computations we have

and

Pix = (e, x)e, W, (Xe) = qu(t, +e, \) = sie,

1 b4
e in ¢(sign(3 sint ign(sint) + b, (t, A) + by(t, 1)) dt
s ﬁ,/o sin #(sign(3 sin#) + sign(sin) + b (¢, 1) + by(t, 1))

+

= %/O- sint(2+ b, (1, &) + by(t, 1)) dt

= % (foﬂ sint (b (1, A) + by(t, 1)) dt +4)

and

s = % (/” sin ¢ (bl(t,k) +b2(t,A)) dt —4).
0

Hence s? -s* > Oandind, ®, = 0if (1) > 0,and s} -s* < Oandind, P, = (—1)~
if (1) < 0. This proves both of the theorems of this section.
Note that Theorem 2 is inapplicable for the problem

x| — 4x) + 5x; = arctan(x, + 2x3) + by (¢, 1),
x; — 2x; + 3x; = arctan(x; — x) + by (¢, A),
x1(0) = x2(0) = x, () = x2(m) =0,

because ¢(z, X, A) contains the term sign(x; — x,) which is not continuous at the point

e(t).
9. Concluding remarks

(1) In the proofs of Theorems 4 — 7 we did not calculate the exponent in the
formula ind,, ®; = (—1) for ¢(A) < 0. This exponent depends on the spectrum
o (A) and can be easily calculated if required.

(2) Theorems 4 — 7 can be rewritten without any changes for nonlinearities
f(x) + 0(1, x, A) with an arbitrary Caratheodory function 6(z, x, A) satisfying

lim sup |6(r,x,1)] =0.

Xj—=00 te0 reA
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(3) The function b(z, 1) need be only integrable in ¢, not continuous, but continu-
ity in A is essential.

(4) We used the function g (¢, x) defined on 2 x S, but we could have supposed
it defined on 2 x R" by ¢(¢,x) = q (¢, x/|x|) if x # 0 with g(¢, x) = 0 if x = 0.

(5) The closure of the set of discontinuity points for the function g(z, #) can
naturally be chosen as the set A, but the situation can arise where the essential part
of the sphere S is not covered by the points u = e(¢)/|e(t)| fore € E; and ¢t € Q
for one-dimensional sets §2 and E; (of course n > 2 here), in which case the set of
points u is a one-dimensional submanifold of the sphere S which is a manifold of the
dimension n — 1 > 1. Then there is no need to assume that condition (8) holds ‘almost
everywhere’ on the sphere S; it suffices to assume that it holds in a neighbourhood of
the corresponding one-dimensional submanifold.
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