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SUBSPACES OF REARRANGEMENT-INVARIANT SPACES

FRANCISCO L. HERNANDEZ AND NIGEL J. KALTON

ABSTRACT. We prove a number of results concerning the embedding of a Banach
lattice X into an r.i. space Y. For example we show that if Y is an r. 1. space on [0, 00)
which is p-convex for some p > 2 and has nontrivial concavity then any Banach lattice
X which is r-convex for some » > 2 and embeds into Y must embed as a sublattice.
Similar conclusions can be drawn under a variety of hypotheses on Y; if X is an r.i.
space on [0, 1] one can replace the hypotheses of r-convexity forsome r > 2by X # Lj.

We also show that if Y is an order-continuous Banach lattice which contains no com-
plemented sublattice lattice-isomorphic to £,, X is an order-continuous Banach lattice
so that £, is not complementably lattice finitely representable in X and X is isomorphic
to a complemented subspace of Y then X is isomorphic to a complemented sublattice of
Y for some integer N.

1. Introduction. The study of the Banach space geometry of general rearrange-
ment-invariant Banach function spaces may be considered to originate with the work of
Bretagnolle and Dacunha-Castelle on subspaces of Orlicz function spaces [3]. A very
important development in the theory was the publication of a systematic study of r.1i.
spaces by Johnson, Maurey, Schechtman and Tzafriri in 1979 [21]. The appearance of
this memoir revolutionized the subject. Since then, a number of authors have considered
problems of classifying subspaces of certain special r. i. spaces; see [5], [6], [7], [8], [9],
[13], [14], [17], [19], [201], [39], [40] for a variety of different results of this type.

In general, most of the literature relates to the problem of embedding a Banach lattice
X (either atomic or nonatomic) with additional symmetry conditions into an r. i. space Y,
and the techniques used rely heavily on symmetrization. In [27], however, the second au-
thor considered the general problem of determining conditions when an order-continuous
Banach lattice X could be complementably embedded in an order-continuous Banach
lattice Y, minimizing the use of symmetry. The aim was to show that under certain hy-
potheses on X and Y one could deduce that X (or perhaps only a non-trivial band in X)
would be lattice-isomorphic to a complemented sublattice of Y. A number of such re-
sults were obtained (we refer for details to [27]); of course, the additional assumption
that either X or Y is r. i. could still be used to obtain stronger results of this nature. In the
final section of this paper (Section 8, which can be read independently of the remainder)
we obtain a significant improvement of one of the results of [27] by showing that if X, ¥
are order-continuous separable Banach lattices, such that Y contains no complemented
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sublattice which is lattice-isomorphic to £, and ¢; is not complementably lattice finitely
representable in X, and if X is isomorphic to a complemented subspace of Y then X is
lattice-isomorphic to a complemented sublattice of YV for some N. Of course if Y is r. i.
then X must be a complemented sublattice of Y itself.

The main body of the paper (Sections 3—7) is concerned with similar problems but
without assumptions of complementation. We consideranr. i. space Y on [0, 0o) (or [0, 1],
but there our results are not quite so strong) and consider a generally nonatomic Banach
lattice X which is isomorphic to a subspace of ¥; we would like to show, under appropriate
hypotheses that X is lattice-isomorphic to a sublattice of Y. Of course, there is no hope
of such a result in general; the spaces L,[0, 1] for 1 < p < 2 have a very rich subspace
structure (cf. [39], [40]); in particular L, embeds into L, if p < r < 2. However, there are
some suggestive results in the literature which tend to indicate the possibility of strong
conclusions if Y is “on the other side of 2.”

We first observe that Johnson, Maurey, Schechtman and Tzafriri [21] Theorem 1.8,
showed that if X is a Banach lattice which embeds into L,[0, 1] where p > 2 and X is -
convex for some » > 2 (or, equivalently £; is not lattice finitely representable in X) then
X is lattice-isomorphic to L,(u) for some measure £, and so is lattice-isomorphic to a
sublattice of L,. Note that this result requires no symmetry conditions on X. For the case
when Xis anr. i. space on [0, 1] there are some other positive results. In [21] Theorem 7.7
shows that if Y = Lg[0, 00) is a p-convex Orlicz space, with nontrivial concavity, where
p > 2 and if X is an r. 1. space on [0, 1] which embeds into ¥, with X # L,[0, 1], then X
must be lattice-isomorphic to a sublattice of Y. Later Carothers [S] proved the same result
for the Lorentz spaces L, ; where 2 < g < p. These spaces are also strictly 2-convex (i.e.
r-convex for some r > 2). However in [6], Carothers extended his work to the Lorentz
spaces L, ; where 1 < g <2 < p. These spaces are not even 2-convex.

Our main results include all these previous theorems. In Theorem 7.2, we show that if
Y is a strictly 2-convexr. i. space on [0, 0o) with nontrivial concavity and X is a strictly 2-
convex Banach lattice then if X embeds into Y, then X is lattice-isomorphic to a sublattice
of Y. The assumption of strict 2-convexity on Y can be relaxed for a special class of . 1.
spaces which we term of Orlicz-Lorentz type (this class includes all reflexive Orlicz and
Lorentz spaces); if Y is of Orlicz-Lorentz type we need only assume that Y is 2-convex
or that its lower Boyd index py > 2. In the case when Y is an r.i. space on [0, 1] our
results are not quite as good; for example if Y is strictly 2-convex and has nontrivial
concavity and X is strictly 2-convex we deduce only that some nontrivial band in X is
lattice-isomorphic to a sublattice of Y. In the case when X is an r.1. space on [0, 1] we
give (Corollary 7.4) a very general result which includes the above mentioned results of
[5], [6] and [21] for Orlicz and Lorentz spaces. Precisely, suppose Y is an r.i. space on
[0, 1] or [0, 00) with nontrivial concavity and suppose that either Y is strictly 2-convex
or Y is of Orlicz-Lorentz type with py > 2; suppose X is an r.1. space on [0, 1] which
embeds into Y. Then either X = L,[0, 1] or X is lattice-isomorphic to a sublattice of Y
(so that X = Y/[0, 1], for some /' € Y).

We also give a result on embedding L,[0, 1] where p > 2 into a p-concave r. i. space
Y. We show in Theorem 7.7 that this implies that either the Haar basis of L, is lattice

https://doi.org/10.4153/CJM-1996-041-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-041-4

796 F. L. HERNANDEZ AND N. J. KALTON

finitely representable in Y or Y[0, 1] = L,[0, 1]. The former alternative is impossible if
Y is of Orlicz-Lorentz type or is strictly 2-convex.

Let us now briefly discuss the method of proof of these results. For reasons discussed
below, we consider quasi-Banach lattices and develop a theory of cone-embeddings. If X
and Y are quasi-Banach lattices, a cone-embedding L: X — Y is a positive linear operator
such that for some § > 0, ||Lx||y > é||x||x for every x > 0. We consider cone-embeddings
in Sections 4 and 5. The aim is to produce conditions on X and Y so that one can pass
from the existence of a cone-embedding to the existence of a lattice-embedding. Crucial
use is made of the theory of random measure representations of positive operators. A
typical result is that if X is strictly 1-convex and if Y is an r.i. space on [0, 00) which is
an interpolation space between L; and L, then if X cone-embeds into Y it also lattice-
embeds. The assumption on Y is satisfied if Y is a Banach r.1i. space, by the Calderdn-
Mityagin theorem, but also holds for certain non-Banach examples, where the lower
Boyd index py > 1.

The next step carried out in Section 6 is to consider the case when X is a Banach
lattice which embeds into an r.i. space Y. The aim here is to put hypotheses on X and
Y so that one can induce a cone-embedding L: X, — Y;/, where X, 5,Y,, are the
2-concavifications of X and Y (these spaces may not be locally convex). This can be
done if one puts a somewhat technical hypothesis on X and Y (Theorem 6.7). To put this
hypothesis in perspective, let us note that if X is an r.i. space on [0, 1] and one aimed
simply to guarantee that L # 0 it would suffice to assume that the Haar basis of X was not
equivalent to a disjoint sequence in Y. This is a typical hypothesis in [21] (Theorems 5.1
and 6.1) where the aim is only to draw the weaker conclusion that X[0, 1] C Y]0, 1]. In
fact some (and perhaps all) of these results can be recovered from our method. However,
to obtain X as a sublattice we need L to be a cone-embedding. Fortunately our stronger
technical condition is satisfied when Y is strictly 2-convex or of Orlicz-Lorentz type.

Finally one can put these steps together and obtain, under the right hypotheses, that if
X embeds into Y then X /, lattice-embeds into Y, /, and so X lattice-embeds into Y.

This research was carried out during a visit of the first author to the University of
Missouri in October 1993 and a visit of the second author to the Complutense University
in Madrid in June 1994.

2. Definitions and notation. We first recall that a (quasi-)Banach lattice X is said
to be order-continuous if and only if every order-bounded increasing sequence is norm
convergent (see [34] p. 7). A quasi-Banach lattice which does not contain a copy of ¢y is
automatically order-continuous but the converse is false. An atom in a Banach lattice is
a positive element a so that 0 < x < g implies that x = aa for some 0 < a < 1. A Ba-
nach lattice is nonatomic if it contains no atoms. The reader is referred to Lindenstrauss-
Tzafriri [34] or Meyer-Nieberg [36] as a general reference for Banach lattices.

We will in general use the same notation as in [27]. Let Q be a Polish space (i.e. a
separable complete metric space) and let u be a o-finite Borel measure on Q. We refer
to the pair (€2, 1) as a Polish measure space; if p is a probability measure then we say
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(Q, 1) is a Polish probability space. If E is a Borel set then xg denotes its indicator
function. We denote by Lo(x) the space of all Borel measurable functions on O, where
we identify functions differing only on a set of measure zero; the natural topology of Lo
is convergence in measure on sets of finite measure. If 0 < p < 1, an admissible p-norm
is then a lower-semi-continuous map f — ||f|| from Lo(x) to [0, 0o] such that:

@) ||af]l = || |If]| whenever @ € R, f € L.

®) |If +gllP < [I71I” +igll?, for f,g € Lo.

©) 7l < llgll, whenever |f] < |g| a.e. (almost everywhere).

(d) |If]l < oo for a dense set of f € Lo,

©) |Ifll =0ifand only if f = O a.e.

If p = 1, we call || || an admissible norm; an admissible quasinorm is an admissible
p-norm for some 0 < p < 1.

A quasi-Kdthe function space on (€2, 12) is defined to be a dense order-ideal X in Lo(u)
with an associated admissible quasinorm || || x such that if Xpnax = {f : ||f]|x < oo} then
either:

(1) X = Xpnax (X is maximal) or:

(2) Xis the closure of the simple functions in Xp.x (X is minimal).

If || ||x is @ norm then X is called a Kéthe function space. Notice that according to our
description we consider || || x to be well-defined on Lo. Any order-continuous Kéothe func-
tion space is minimal. Also any Kothe function space which does not contain a copy of
¢o is both maximal and minimal.

Given any Kéthe function space X and 0 < p < oo we define X, to be the quasi-
Kothe space of all f such that |f]P € X with the associated admissible quasinorm ||f]|x, =

|| [flpll;{/p. It is readily verified that || ||x, is an admissible p-norm when 0 < p < 1 and
an admissible norm when p > 1. We will primarily use the case p = 1/2 in this paper.
We will also use the subscript + to denote the positive cone in a variety of situations, e.g.
Xe={f:feXf>0}.

If X is an order-continuous Kothe function space then X* can be identified with the
Kothe function space of all f such that:

I/

| = sup f fgldp < oo.
lglhe<t

X* is always maximal.

If i is a probability measure then we say following [21], that a Kothe function space
Xis good if Loy, C X C Ly and further for f € Lo, ||f]i < |Ifllx < 2||fl|oo- It is
well-known that any separable order-continuous Banach lattice can be represented as
(i.e. is isometrically lattice-isomorphic to) a good Kdthe function space on some Polish
probability space (Q, 1) (see [21] and [34]).

In the case when X is nonatomic we canrequire that Q = [0, 1] and 4 = )\ is Lebesgue
measure. Alternatively we can take Q = A = {—1,+1}N to be the Cantor group and take
1 to be normalized Haar measure on A which we again denote by A. We will use this
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second representation freely and now take the opportunity to introduce some notation
from [27].

Thus for ¢, = =+1, we denote by A(ey, . .., €) the clopen subset of A of all ())2,
such thatd; = ¢; for 1 <j < n. For each n let 4, denote the collection of A(ey, . . ., ).
Let CS, denote the linear span of {xg : E € 4,}. We also define the Haar functions
hE = XA, tnit1) — XA(erronem—1) TOTE = A€y, ..., €n).

A Kothe function space (or, more generally a quasi-Ko6the function space) X is said to
be p-convex (where 0 < p < 00) if there is a constant C such that for any f;,....f, € X

we have y
|3 0) "], = <3 ) ™

X is said to have an upper p-estimate if for some C and any disjoint f},...,f, € X,
n n 1/p
[SoA], < ()
i=1 X i=1
X is said to be g-concave (0 < g < 00) if for some ¢ > 0 and any fi, .. .,f, € X we have

n q 1/q n q 1/q
(2 17) e > (3 )
i= i=
X is said to have a lower g-estimate if for some ¢ > 0 and any disjoint f1, ..., f, € X,

";ﬁ”)‘, > c(,z: “ﬁ”:{,)l/q

Notice that a quasi-K6the function space which satisfies a lower g-estimate is automati-
cally both maximal and minimal since it cannot contain a copy of ¢o. A Kéthe function
space must, of course, be 1-convex. A quasi-Kothe function space must satisfy an upper
p-estimate for some p > 0 but need not be p-convex for any p > 0; however, if X satis-
fies a lower g-estimate for some g < oo then it is p-convex for some p > 0. This result
is proved in [24] (Theorems 4.1 and 2.2) and a simpler proof is presented in [30] Theo-
rem 3.2. A quasi-Kothe function space which is s-convex for some s > 0 and satisfies
an upper r-estimate is p-convex for every 0 < p < r (see [24]).

A (quasi-)Banach lattice X is p-convex, satisfies an upper p-estimate, is g-concave
or satisfies a lower g-estimate according as any concrete representation of X as a Kothe
function space has the same property. We shall say that X is strictly p-convex if it is
r-convex for some r > p and strictly g-concave if it is s-concave for some s < g.

A Banach space X is said to be of (Rademacher) type p (1 < p < 2) if there is a
constant C so that for any xj,...,x, € X,

n n l/p
Ave 1|3 eixi| < €(3 )
i=1 i=1

and X is of cotype ¢ (2 < g < 00) if for some ¢ > 0 and any x,...,x, € X we have

l/q
~eox] = o3 ) .

AVCe,_in
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We recall that a (quasi-)Banach lattice has nontrivial cotype (i.e. has cotype ¢ < oo for
some q) if and only if it has nontrivial concavity (i.e. is g-concave for some g < 00). If
X is a Banach lattice which has nontrivial concavity then there is a constant C = C(X)
so that for any x,...,x, € X we have

(e[ Samf) " <[ (£ ) Eanl)”

E (AVCC =1
In fact we will need the same conclusion for quasi-Banach lattices; as far as we know
this has never been explicitly stated although it is probably well-known. We therefore
state it formally as a proposition.

1/2l

I < C(Aveqdl
X

PROPOSITION 2.1.  Let X be a quasi-Banach lattice with nontrivial concavity (equiv-
alently nontrivial cotype). Then thereis a constant C = C(X) so that for any x, ..., x, €

X we have
1 n 2\1/2 n 1/2 n 2\1/2
(e <(gt) =l nf) "
C(Aveck_il gkak" ) < I(kg:l |xk| ) = C(AVCE,‘__:H ,; €Ex Xk )

PROOF. We have that X is g-concave for some ¢ < 0o. As remarked above it is
also p-convex for some p > 0. It is now easy to adapt the standard argument based on
Khintchine’s inequality as in [34] Theorem 1.d.6, p. 49. =

REMARK. In fact we will only apply this proposition in situations when the p-
convexity of X for some p > 0 is automatic (i.e. X is the concavification of some Kothe
function space).

Let us now turn to rearrangement-invariant spaces (cf. [21], [34]). For any f €
Lo(Q, 1) we define its decreasing rearrangement f* € Lo [O, u(Q)) by f*(f) = inf{x :
w(|f] > x) < t}. Now let X be a quasi-Kéthe function space on either [0, 00) or [0, 1]
with Lebesgue measure. We say that X is a quasi-Banach rearrangement-invariant (r.1.)
space if ||f]|x = ||f*||x for all f € Lo, and if || x[o,1)||x = 1. We use the term . i. space for
a Banachr. i. space. If X is a quasi-Banachr. i. space on [0, co) (respectively, [0, 1]) and
(Q, ) is a Polish measure space (respectively, with () < 1,) then we define X(Q, )
to be the set of /' € Lo(u) such that f* € X with ||f]|x = ||/*||x. For example, it will be
of some advantage to consider X(A, A) in place of X[0, 1]. Let us remark that if X is a
quasi-Banach r.i. space on [0, 1] then it is always possible to write X = Y0, 1] where
Y is some quasi-Banachr. i. space on [0, 00). We will only be interested in separable (or
order-continuous) r. i. spaces, which are necessarily minimal.

On any quasi-Banachr. i. space X on [0, 00) (resp. [0, 1]) we define the dilation oper-
ators Dy for 0 < s < 0o by

Df()) =f(t/s)

for all ¢ (resp. whenever 0 < ¢ < min(1,s) and D¢f(#) = 0 otherwise). The Boyd indices
px and gy are defined by
. logs
= lim ——2o
PA= S log I
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. logs
gx = lim ———.
s—0 log || Ds|

In general 0 < py < gx < oo; if X is a Banachr. 1. space (i.e. is 1-convex) then 1 < py.
If X is an order-continuous Banach r. 1. space, then X has an unconditional basis if and
only if 1 < py < gx < 00; in this case the Haar basis of X is an unconditional basis (see
[34] p. 157-161).

Recall that if f € Lo(Q2, ) then /**(¢) = } [5/*(s)ds, for t > 0. We say that a quasi-
Banach r.1. space X on [0, 1] or [0, 00) has property (d) if there exists C so that if f € X
and g € L satisfy g** < f** then g € X with ||g||x < C||f]|x- It is well-known that every
Banach r. 1. space satisfies property (d) (cf- [34] p. 125) with C = 1. However there are
non-locally convex examples; any quasi-Banachr. i. space X with py > 1 satisfies prop-
erty (d) (see [26]). A quasi-Banach r. . space with property (d) is an interpolation space
for the pair (L}, L); this is a mild generalization of the classical Calderon-Mityagin
theorem ([4], [35]) which follows from considerations of the K-functional (see, for ex-
ample Bennett-Sharpley [2], Chapters 3 and 5; this treats only the normed case, but the
modifications are trivial).

We also recall a definition from [29]. If X is an r. 1. space on [0, 00) (resp. [0, 1]) we
define Ex to be the closed subspace of X spanned by the functions e, = x[pn omy for
n € Z(resp.n € Z_ = {n: n <0}). If X is separable then (e,) forms an unconditional
basis for Ex and Ex can be regarded as a sequence space modelled onJ = Z or Z_.
We shall say that X is of Orlicz-Lorentz type if Ey is naturally isomorphic to a modular
sequence space, i.e. there exist Orlicz functions (F,),cy so that Ex = £(z,)(J) (see [33]
pp. 168ff). This is a convenient definition to specify a class of spaces X which includes
the standard Orlicz spaces and Lorentz spaces, and a variety of “mixed” spaces.

To illustrate these ideas consider the following method of defining an r.1. space on
[0,00). Let Y be a K6the function space on [0, 00) with the property that the dilation
operators D,: Y — Y are all bounded. Then we can define py, gy as in the rearrangement-
invariant case. Assume that 1 < py < gy < co. Now let ¥ be the space defined by f € ¥
ifand only if /* € Y and define ||f||; = ||f*||y. The inequality (f + g)* < 2D,f* +2D,g*
shows that || ||; is a quasinorm and that 7 is an order-ideal. In fact, we also have:

PROPOSITION 2.2.  There exists a constant C so that if f € L then

Wl < |1 @en], < €l

PROOF (DUE TO S. MONTGOMERY-SMITH). Clearly f* < ¥,z f**(2")e,. However
2" < 52, 274 (2"7F). Hence Taez f**(2"en < ¥2°2,27¥ Dy f*. But now since
pr > 1 it follows that 33°, 27¥|| Dy ||y < 00 and the result follows. .

The proof above only uses the hypothesis that py > 1, and not that gy < 0o. Propo-
sition 2.2 shows that ¥ is a Banach r. i. space by providing an equivalent norm. It is now
immediate that py < p;. We next show that £ coincides with Ey. This implies that if
Y is an Orlicz-Musielak space or generalized Orlicz space (c¢f. [37]) then the associated

https://doi.org/10.4153/CJM-1996-041-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-041-4

SUBSPACES OF REARRANGEMENT-INVARIANT SPACES 801

r.i. space ¥ is of Orlicz-Lorentz type as defined above. In particular, if we take Y to be
a weighted L,-space (with, of course the conditions 1 < py < gy < 0o) we obtain the
usual Lorentz spaces as examples of spaces of Orlicz-Lorentz type.

PROPOSITION 2.3.  We have E; = Ey (and the norms are equivalent).

PROOF. In fact suppose f = Y ,cz anen, Where a, > 0 is finitely nonzero. Let g =
3% o Da-nf. The assumption gy < oo and the fact that g; < gy is sufficient to establish
that ||g]|y < C||f]|y and ||g]| < C||f||y for a suitable constant C. Note that ||g||y = ||g]|y
since g is decreasing. The result follows immediately. .

3. Remarks on sublattices. In this section, we collect together some elementary
remarks on the structure of sublattices of r. i. spaces.

LEMMA 3.1. Suppose X is a quasi-Kéthe function space on (€, i) and that Y is a
quasi-Banach1.1. space on [0, 00). Suppose I = [0, 1] or [0, 00) and that U: X — Y(I) is
a lattice homomorphism. Then there is a lattice homomorphism V: X — Y| (Q x [0, oo))
so that for any x € X and a > 0 we have

S > 20) < (4 x NVl > @) < M(U| > @),

and such that V can be represented as Vx(w,t) = a(w, t)x(w) where a is a nonnegative
Borel function on Q x [0, 00) of the form

a(w,f) = 3 2mEey(r)
kezZ
with m:Z X Q — Z U —oo is a Borel map with k — m(k,w) decreasing for each w.
Furthermore if I = [0, 1] then a is supported on a set of measure one in the product
space.

PROOF. It will suffice to consider the case when X contains L,. We suppose the
existence of a lattice embedding Ux = bx o o where b is a nonnegative Borel function
and 0:1 — Q is a Borel map. First pick &' with 15 < b’ < b so that b’ = ¥,cz2"x,
where E, are disjoint Borel sets. Let U'x = b'x o 0.

Now for each n define the measure v4(B) = A(Ui>n Ex N o~ 'B). Since U'xq € Y
it is clear that each v, is a finite measure. Furthermore, if uB = 0 then Uxp = 0 a.e.
and hence v,(B) = 0. Hence we can find nonnegative Borel functions w, on Q so that
vn(B) = [z wndu, and we may suppose that w,(w) is decreasing for each fixed w. Notice
that fo w,dp = v,(Q) < A(J), so thatif I = [0, 1] then Jow,du <1 forall n,

For any fixed n € Z, we define 4, = {(w,f) : t < wy(w)} and let ' =
Snez 2"(X4, — Xdp)- Define V':X — ¥(Q x (0,00)) by Vx(w, ) = d'(w, )x(f). Fi-
nally define a a Borel function on Q x (0, 00) by setting a(w, {) = 2™ if a'(w, 2F*1) = 2™
where 28 <t < 2%V and k,m € Z. We set a(w,?) = 0 if a'(w,2%*!) = 0. Notice that
(r x MN{a >0} <(ux A{d >0} <1ifI=1[0,1]. Define Vx(w, ) = a(w, )x(?).
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Now suppose x > 0,x € X. Then 0 < Vx < V'x. Furthermore for fixed w,
Mt Vix(w, ) > a} <20 {t: Vx(w, 1) > a}

so that :
(wx N)Fx > a)_z 5(“ x N(V'x > a).

Now again for fixed a, let F, = {2"x < a < 2"*1x}. We note that

uxNVx>a) = Z/I;’,w,,du

neZ

= E Vn(Fn)

neZ
= = MU ENG,'F)
neZ k>n
=AUx > a).
Hence i
E)\(U'x >a) < (u X A\)(Vx > a) < AMUx > a).

Since %Ux < U'x < Usx the result follows. n
We next state the immediate conclusion for lattice embeddings.

PROPOSITION 3.2. Let X be a quasi-Kothe function space on (€, ). Suppose Y
is a quasi-Banach r.i. space on [0,00), and suppose that X is lattice-isomorphic to
a sublattice of Y(I), where I = [0,1] or [0,00). Then there is a lattice embedding
V: X — Y (Q x [0, oo)) of the form Vx(w,t) = a(w,t)x(w) where a is a nonnegative
Borel function on Q X [0, 00) of the form:

a(w,) = 3, 2"*e(r)
keZ
where m:Z x Q — Z U {—o0} is a Borel map such that k — m(k, w) is decreasing for
each w. Furthermore if I = [0, 1] then a is supported on a set of finite measure.

If Yis anr.i. space on /=[0, 1] or [0,00) and /' € Y, \ {0} then we define Y; to be the
r.i.space on/ definedby y € Yyifand only ify®f € Y(I x I) where y ®f{s, ) = y(s)f(?).
The norm on Yy is given by [|y||y, = ||y ® f]|v. Notice that since / dominates a function
of the form axg where o > 0 and A(E) > O there exists a constant C depending on f so
that ||ylly < Cllylly,

PROPOSITION 3.3. Suppose Y is an order-continuous quasi-Banach r.1. space on
[0, 00) and that X is an order-continuous quasi-Banachr. i. spaceon [0,1]. Let U: X — Y
be a lattice homomorphism and let Uxo,1} = f # 0. Then:

(1) There exists C so that if x € X then ||x||y, < Cljx]|x.

(2) If Uis a lattice embedding then X = Y;[0, 1].

REMARK. If U is a lattice embedding of X into Y[0, 1] then the above proposition
gives X = Y/[0, 1] where f € Y10, 1].
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PROOF. We use Lemma 3.1 to construct the lattice homomorphism V:X —
Y ([O, 1] x [0, oo)). Notice that if g € Y0, 00) has the same distribution as Vx[gij then
Y/[0, 1] = Y,[0, 1] with equivalent norms.

Let u be any nonnegative simple function on [0, 1] of the form u = 37, ;x5 where
{B1,...,Bn} is a Borel partition of [0, 1]. For any N let

an(s;, =Y, Y 2"ker)
[k <N |m(k,s)| <N
and let by = a — ay. We can partition g = gy + hy where gy has the same distribution
as ay and hy has the same distribution as by.

Now ay = Zjy<n Ljjen 2'x 4, (s)ex(t) where (4y)i, are Borel subsets of [0, 1]. We
can therefore use Liapunoff’s theorem to find Borel sets B}, . . ., B, so that \(B}) = A\(B))
for all j and )\(ij NAy) = ABj)MAw) whenever 1 <j <nand —N < k,I < N. Let
u' =37 ax B Then ay(s, H)u'(f) has the same distribution as u ® gy. Hence

lu®gnlly < [[lly < [lu® gnlly + llulloll X101 ® Anly.

For case (1) we let N — oo and deduce that ||u||y, < ||U]| ||u]|x.
For case (2) we observe that, since Y is order-continuous,

lim {|x(0,1) ® hn||y = 0.
N—oo

Since ¥ is an embedding there exists ¢ > 0 so that we have a lower-estimate || V2/||y >
cllullx- Hence ||ulx < c™|jully,.

If X lattice embeds into Y0, 1] then a has support of measure at most one and hence
so has f so that we can assume that f € Y]0, 1]. n

COROLLARY 3.4. Suppose Y is an order-continuous quasi-Banach 1.1. space on
[0, 00) and that X is an order-continuous quasi-Banachrt.i. spaceon [0,1]. Let U: X — Y
be a lattice homomorphism. If U # 0 then there is a constant C so that ||x||y < Cl|x||x

forx € X[0,1].
PROOF. This follows from (1) of the preceding proposition combined with the re-
marks before it. [

REMARK. This corollary is well-known (see Abramovich [1] and remarks in the
introduction to [27]).

For our final result of this section, we will need the following factorization theorem,
which is essentially due to Krivine [31] ([34], Theorem 1.d.11 and Corollary 1.d.12,
pp. 57-59); we will, however, prove the form of the theorem required here.

PROPOSITION 3.5. Suppose 0 < p < 00. Suppose Y is an p-concave quasi-Kothe
Junction space on (Q, 1) and suppose that either (a) P: L,(A,\) — Y is a lattice homo-
morphism or (b) p > 1 and P: L,(A, \) — Y is a positive operator. Then there is a Borel
Sfunction w € Lo(u) with w > 0 a.e. so that

WAy < Wl
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for f € Lo(u) and
w@Nll, < 1P,

Jor f € Ly(A).

PROOF. We can suppose P # 0. We require the following property of P which is
valid in cases (a) or (b): if fi,...,fn > 0in L, then P((ZL.]}")I/P) > (XL (PhY) /P
(see [34] p. 55). Let u be any strictly positive function in Y. Now consider the subsets
Eand F of Lo, definedby E = {f : f > 0,|juf'/?||y > ||P||}and F = {f : 30 < x €
Ly, llsll, < 1,1 < (PP},

It is clear that E is convex. We argue that co F' does not meet E. Indeed suppose
fi,e-sfn € Fand cy,...,c, > 0 with Zj'.;,cj = 1. Suppose ’f; < (Px;’ where x; > 0
and ||xjl|, < 1. Then w’(T)_, ¢ifp) < i, ¢i(Px;P < (Pyy wherey = (T cjxf)'/”
so that ||y||, < 1 (see [34] Proposition 1.d.9). Since F includes the negative cone it has
non-empty interior. Now, by the Hahn-Banach theorem, there exists ® € L} so that
O(f —g) > 0iff € Eand g € F. Clearly ® > 0, and ®(f) > 0if f > O and f # 0,
hence since P is not zero we have infocg ®(g) > 0. By normalizing we can suppose
infgeg @(g) = 1. Let us write ®(f) = [fpdu + Do(f) where ¢ € L(u), and Dy is sin-
gular with respect to . If f € E we may find 0 < f, T f a.e. so that O(f,)) T [fddu.
However by order continuity f, € E for large enough n and so [f¢du > 1 for f € E.

Now it is clear that if y € Y, with ||y|ly = 1. Then for ¢ > 0 we have that
(1P| +ePyu € E andso [yu~'¢!/7]|, > ||P|~". Thus if y € ¥ then lylly < [pwi],
where w = ||P||¢!/Pu~! If f € Ly(A, \) with ||f]|, = 1 then (P([f|))pu"’ € Fand so

[Py surdu <1,
so that ||wP(|f])||, < ||P|| which implies the theorem. .

THEOREM 3.6. Suppose 0 < p < oo and Y is a p-concave quasi-Banach r.1. space
on [0, 1] or [0, 00). Suppose L, is lattice-isomorphic to a sublattice of Y. Then Y[0, 1] =
L,[0,1].

PROOF. It suffices to consider the case when Y = Y[0, 00). By Proposition 3.3 there
exists f € Y so that Y[0,1] = L,[0, 1]. Thus there is a lattice embedding V:L, —
Y([O, 1] x [0, oo)) of the form x — x ® f. We assume ||x||, < ||x ® flly < Cllx|,-
Applying Proposition 3.5, there is a nonnegative weight function w on [0, 1] X [0, 00) so
that [[y]ly < [ywll, fory € Yand |lx[|, < [lx @/1ly < [Iwx ®Nlp < Clix|l, for x € L.

Now let v(¢) = ( f& w(s, 1) ds)'/P 1t follows from a symmetrization argument that if
y € Y then

Wi < (f [ verbesop asar)”,

and that

/Om FUPvQay dt < C.
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Let u be the increasing rearrangement of v so that u(f) = inf)g)=, sup,c; v(s). Then
if as usual y* is the decreasing rearrangement of |y|, the first equation yields that if y €
Y0, 00) then

vlly < ( /Om V(@Y uty dt)l/p-

In particular for 0 < s < 1,

s <DL < [ 1/ syuy i
This in turn implies that
[0 “ P u(stp de > 1.

Now [§° f*(¢Pu(ty dt < CP. Letting s — 0 we obtain from the Dominated Convergence
Theorem that lim, o u(f) = ¢ > 0 and [§° f(#)’ dt < CPc7P.
Pick 0 < 7 < 00 so that ||f*Xr,00)|ly < 1/2. It follows from p-concavity that

D xroolly < 5772

On the other hand ||[Dy*|ly = I|x0s ® flly > s'/P. Hence || Ds(f*xpo)lly > s'/7/2.
From this and p-concavity we also obtain easily that

1 psr 1/p 1
(S—T/O f(t/s)pdl) Ixsmlly = ES'/”-

Hence ||xo4lly > c1#'/P when 0 < ¢ < 1 for a suitable constant c;. This in turn implies,
by p-concavity, that if y € Y70, 1] then ||y||y > c1||y||, and this is enough to show that
Y10, 1] = L,[0,1]. .

4. Cone-embeddings. Let X and Y be quasi-Banach lattices. We will say that a
positive operator L: X — Y is a cone-embedding if L satisfies a lower bound for positive
elements, i.e. there exists § > 0 so that ||Lx||y > &]|x]||x for x > 0. We will say that L is a
strong cone-embedding if it additionally satisfies the condition that for some C > 0 and
every xi,...,xX, > 0 we have || max;<x<, X|lx < C|| max,<x<, Lx||y. This is trivially
equivalent to requiring the same inequality for xy, ..., x, mutually disjoint.

Our first results demonstrate conditions under which every cone-embedding is a
strong cone-embedding.

LEMMA 4.1. Suppose s,6 > 0, and 1 < p,q < o0. Then there is a constant C =
C(s,p,q,0) so that if X is a p-convex Kéthe function space, Y is an s-convex, q-concave
quasi-Kothe function space (where each constant of convexity and concavity is one) and
if L:X — Y is a cone-embedding satisfying §||x||x < ||Lx||y < ||x||xfor x > O then if
X1,-..,Xp > 0 are disjoint,

I < .
35|, <l max Lyl
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PROOF. We pick m = m(p,6) so that 27(1-1/P)§ > 2,
First notice that if xi, . .., x, are disjoint,

(Avee,,_il )9 H(l + f,])vxp) — om(-1/p) z"::xj'
j=

j=li=1

Thus by p-convexity

n
2m(l—1/P)|’Z x,” < (Avef,,:;u
j=1 "X

S fiavaw])”

li=1i=1

Now it follows that

) 1/p

) 1/p

(Jf;, lejlz)l/zlly)’

n
2m(l—l/P)”Exj"X < 5—1 (Aveqj=i1
j=1

i=1i=1

56—1 Z (AVCGU_:H
I1C[m]

56-‘( 3
=1

where C; = C(q, s), using Theorem 1.d.6 of [34].
Reorganizing we have, since 2"(~!/P§ — 1 > 1, and ||L|| < 1,

j=1iel

i Y+C1(2"‘

], <l (Gesr) 1,

< qzmll};ujl; | max L]}/

1<5<n

and this in turn implies, since Y is s-convex for some s > 0,
§ 2m 2
[5o%], < Gi2mel max L. .
=1 ~IX 1<<n

Let us give a simple application.

THEOREM 4.2. Suppose Y is an r-convex Banach lattice where r > 2 which is g-
concave for some q¢ < 00. Suppose that X is a p-convex Banach lattice, where p > 2,
which is isomorphic to a subspace of Y. Then X is r-convex.

REMARKS. This result is well-known for 1 < » < 2 (¢f. [34], p. 51). The hypoth-
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esis on X is equivalent to the statement that £3 is not lattice finitely representable in X
(note that X must be of type 2, and apply Lemma 2.4 of [21]). In [21] there are two
results closely related to Theorem 4.2. Theorem 2.3 of [21] is the analogous result for
upper r-estimates in place of r-convexity, while Theorem 2.6 (or Proposition 2.¢.10 of
[34]) implies the above theorem for the special case when X is anr. 1. space on [0, 1]. In
this latter case one can replace the hypothesis that X is strictly 2-convex by the weaker
hypothesis that X # L,[0, 1].

PROOF. It suffices to consider the case when the r-convexity, g-concavity constants
of Y are both one and the p-convexity constant of X is one. We may also suppose that X
and Y are K6the function spaces. We will suppose that there is a bounded linear operator
S: X — Y with §||x||x < [|Sx||¥ < ||x||x. It will also suffice to prove the result when X
is finite-dimensional, i.e. Q = {1,2,...,n} and thus has a 1-unconditional basis (ex)}_,
consisting of atoms, provided we establish a uniform bound on the r-convexity constant
M (X) in terms of (p, q,7,0).

To this end we defineamap L: X, /, — ¥/, by Ley = |Sex|?. It follows from Krivine’s
theorem ([34] Theorem 1.£4 p. 93) thatif x = ¥}, xex > 0 then

i, = | etsal) ],

<k|(See) T,

< Kglixllx, -
Also since Y is g-concave, there exists Cy = Cy(g) so that
ILxlly, , > Gy (Aveek=:t1 “g:l exéy/ 256/:"},)2
> Cy %6 Ixllx, .-

Now by Lemma 4.1 applied to K;2L, using the fact that X, /2 is p/2-convex and Y, 218
r/2-convex and g/2-concave we obtain the existence of C; = Cy(p,q,r,6) so that for
x =30 e =0,

“x”Xl/Z < Cl” 1121?%(" £kLek”Y|/2
which in turn implies that if x € X, withx = ¥ {e,

Ixllx < G max [l |Sex| I,
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where C3 = C. Now suppose xi, . ..,x, € X withx; = ¥7_, €xex. Then

1)1, = s (S s,

1<k<n

<G (i}mjlﬁj_kl |Sex|” ) ”

k=1j=1

n

e (zm:(kz |€jk|r|Sek|’))l/’ Y

J=1 k=1

)l/r
N
1)

Schz(én(Z |l exl ) “r)l/r
<Ko (j; i)

<a(Zl(Slerisar)”

1" Me=1

n

< oS3 enise)”

This completes the proof. n
We now give a second criterion for a cone-embedding to be a strong cone-embedding.

LEMMA 4.3. Suppose 0 < q,s < 00 and that X is an s-convex quasi-Banach r.1.
space on [0, 1] or [0, 00) with px > 1. Suppose Y is an s-convex q-concave quasi-Kothe
Junction space and L: X — Y is a cone-embedding. Then there is a constant C so that if
X1,...,%n > 0 are disjoint,

[5:4], =l s

PROOF. We suppose that ||L|| < 1 and that§ > 0 is such that if x > 0 then §|jx||x <
IILx|ly < ||x|lx- We may also suppose that for some p > 1 and some constant C we have
IDillx < Cot'/P fort > 1.

We select first an integer m so that 2m¢—D > 2P*1CH§—P. Let 6 = 27,

Now suppose xi,...,x, > 0are given; it will suffice to consider the case when each x;
is a countably simple function (i.e. takes only a countable set of values) and || X7, x;||x =
1. Suppose N is an integer with N > 4(2"n). Then for each 1 < i < n we can write
x; = T, x; as a disjoint sum where x; = Dj /X

Let €% = *£1 be a choice of signs for 1 <i<n,1<j<Nandl <k < mand
denote by € the array (e;;). We define

n

N m
ue) =22 [1Q1 + ey,
j=

i=1j=1k=1
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Let £(¢) be the number of j such that €3 = 1 for 1 < k < m. As functions on the
natural finite probability space of all choices of signs e, the functions &; for 1 < i < n
are independent and identically distributed with binomial distributions corresponding to
a sample size N and probability for an individual trial of 6. They each have mean o = N9
and variance N§(1 — ) < a. Notice that by choice of N we have o > 4n.

We thus have

n
Ave, max |§; — af? <3 Ave, ¢ — af? < ne.
1<i<n i=1

Let {(€) = minj <;<p &i(€). Then
Ave, o — (f < na
and so

1
Ave. (> a — (noz)l/2 > Ea.

We next turn to estimating Ave ||u(e)||%. In fact we have that for each e,

éxihx < 27Dy jeule)|x-
Thus we have an estimate that

1 < CoON'PG&)™ P (@)l
Reorganizing and averaging gives

Ave, ||u(e)|} > C;P07PN~" Ave. ¢ > %Cg”()l_".
The original choice of m now gives the estimate
Ave, ||u(e)|ly > 2P677

which implies 1
(AveenL(u(e)) ||’;) "o

We now proceed as in Lemma 4.1, expanding out and concluding that for some con-
stant C; depending only on Y,

1/p n N n N 1/2
(Avelefw@)l) ™ <], +2ei| ()
i=1j=1 Y i=1j=1 Y
Since || Ti; T, Lxg|ly < 1 we can conclude that
n N 1/2
(i), z e
i=1j=1 Y
Again this implies that
[l max Lxifly > || max Lxy{ly > 7?07,
1<i<n ij

The result now follows. m
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PROPOSITION 4.4. Let X be an order-continuous Kothe function space on (A, ),
which contains Lo, Let Y be a quasi-Kothe function space on (Q, ) which is s-convex
for some s > 0 and q-concave for some q < 00. Suppose L: X — Y is a strong cone-
embedding. Then, for n > 1, there exist Borel maps a,: Q — [0,00) and 0,: Q2 — A s0
thata; > ay > -+ > 0 and op(w) # o4(w) if m # n, and for some C > 0 we have for
anyx € Xwithx > 0,

o
> apx ooy,
n=1

C'llxllx < || maxapx o ouly < , < Clixlx.

PROOF. We use the random measure representation of positive operators (see [25],
[41], [42]). There exists a Borel map w — v, from Q to M (A), endowed with the weak*
topology, so that for any x € X we have

Lx(w) = / x()dv, p—ae.

Further we can write

o0
Vo =3 an(W)s,wy Vv, p—ae
n=1

where a,: QQ — [0, 00) and 0,,: 2 — A are Borel maps satisfying the assumptions above,
and v/, is a continuous measure.

Since L is a strong cone-embedding there exists a constant C so that ||L|| < C and
whenever x1, . .., x, are disjoint and positive in X then

n
| < Al y.
“j}::;x/“/\, < ]ngaS’;ij”Y
Now suppose x > 0. Then for each m,
< C|| max L .
el < Cll max Locxa)lly

For the definition of A4, see Section 2. Now maxg¢ g, L(xX£) is monotone decreasing to
max, a,x o g, so that, by the order-continuity of Y,

o
> anxoo,
n=1

CHlxllx < || max anx o oyly < , < liLxlly < Cllx|x. .

REMARK. Of course there is no special significance in modelling X on (A, A) here;
we clearly have the same result for any Polish measure space (K, ). Note also that in the
above argument the pointwise maximum max, a,x o o, exists p-a.e. for x € X.

PROPOSITION 4.5.  Suppose Y is an order-continuous quasi-Banach r.1. space on
[0, 00) with property (d). Suppose that either X is an order-continuous atomic quasi-
Banach lattice or that X is an order-continuous quasi-Kothe function space on (A, \) and
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that L: X — Y is a strong cone-embedding. Then X is lattice-isomorphic to a sublattice
of Y.

REMARK. We recall that Y has property (d) if there is a constant C so that, given
S €Yandg € Ly with g** < f* theng € Y and ||g||y < C||f]|y.

PROOF. Let C be a constant greater than the property (d) constant of Y and the
constant in the definition of the strong cone-embedding. Let us prove this first for the
case when X is atomic. Then we regard X as a sequence space (a quasi-Kdthe space
modelled on N). Let (e,),en be the basis vectors and let u, = Le,. We define a map
V: X — LO(N x [0, oo)) by Ve, = v, where v,(k, ) = 0 if k # n and v,(n, ) = u,(?). If
ay,...,a, > 0 then it is easy to see that

n *% n *:
(Z akvk) < (Z akuk)
k=1 k=1

and so by property (d) we have that ¥ is bounded and || V|| < C||L||. However since L is
a strong cone-embedding

£

n n
<¢ <y
| e, <l s vy < R an],

so that V is an isomorphism onto its range.
The nonatomic case is similar. We can suppose that X is a quasi-K6the function space
on (A, \) containing L, and that L is of the form

o0
Lx= Y amxoo,

n=1

where for some constant C; we have

[e ]
C'lxlly < lmaxaxooully < |3 awxoom| < Cillellx:
n n=1
Define V: X — Lo(N x [0,00)) by the formula Vx(n,1) = an(t)x(0n(r)). Then if x > 0

we have (Vx)** < (Lx)** so that V' is bounded, while
Cr'lixllx < [l max apx o oally < [|Pxly,

so that V is also an isomorphism. n

PROPOSITION 4.6.  Suppose Y is an order-continuous quasi-Banach 1.1. space on
[0, 1] with property (d). Suppose for some p > 1, Y\, has property (d). Suppose X is
an order-continuous quasi-Kéthe function space on [0, 1), and that L: X — Y is a strong
cone-embedding. Then there is a Borel subset E of [0, 1] with A\(E) > 0 so that X(E) is
lattice-isomorphic to a sublattice of Y.

PROOF. We again may suppose that X is a quasi-Kéthe function space containing
Lo. Note first that we must have ¥, C L; and hence Y C L,. We may extend Y to
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be a quasi-Banach r.i. space on [0, 00) in several different ways. Precisely we define
W to be the space of f € Lo[0,00) so that f*x01) € Y and f € L;[0,00) with the
associated quasi-norm |[f||w = max(||f*xo,;3l¥, |lf]|1). We define Z to be the space of
S € Lo[0,00) so that f*xj01] € Y and f € L,[0,00) with the associated quasi-norm
Ifllz = max(||f*xo,11l|v, |Ifllp)- Then both W and Z have property (d). Note that both
W10, 1] and Z[0, 1] coincide with Y and hence L may be regarded as mapping into either
W or Z. Note also that W C Z with continuous inclusion.

Appealing to the preceding Proposition, we can find a lattice embedding U: X —
W10,00) in such a way that for some constant C we have C!||x||x < ||Ux||z and
|Ux|lw < Cl|x||x forx > 0.

It now follows by Lemma 3.1 and Proposition 3.2 that we can find a a nonnegative
Borel function a on [0, 1] X [0, 00) with a(t, s)) decreasing in s for each fixed # so that the
map Vx(t,s) = a(t,s)x(f) defines a lattice embedding of X into Z; ([0, 1] x [0, oo)) and
such that for some C; we have Cy!||x||x < ||Vx||z and || Vx||w < Ci||x||x for x > 0.

Notice in particular that
1
4
/(; [0 a(t,s) dsdt < oo

for r = 1 and r = p. We therefore can find constants 0 < ¢ < M < oo so that there is
a Borel subset E of [0, 1] of positive measure such that if # € E then [§° a(t,s)dt < M
and [§°a(t,syP > . If t € E then a(t,s) < Ms~! and so we also have I a(t,sPds <
M"s(])_‘p .

Recall that Y}, has property (d) and therefore Z, /, also has property (d) and is an
interpolation space between L; and L, with some constant 77 > 1. Pick # > 1 so that
cu'~!/P > 4yM. We then modify ¥ to form Vo: X — Z by setting Vox = Vxxexo.. We
will show that ¥, is a lattice embedding of X(E) into Z([0, 1] x [0, 00)).

Let P be the positive operator defined on L, ([0, 1] x [0, oo)) and Loo([O, 11 x [0, oo))
by

1
Pe(t,s) = (= [ gt,v)dv)at, sP xe@xtuon(s).
It is easy to calculate that || Pg||cc < MPuP||g||co. Similarly ||Pgl|; < MPu'~?. 1t follows

that ||P||z,, < MPu' PP
It follows that if ' € Z then

I(Par) "1, < w170 < Wz

Suppose in particular x € X(F) and x > 0. Let f = Vx. Then

1 /
PUPG) =50 [ a7, av) " att, e 0xguo ).
However fort € E

/oua(t,v)”dv > —Mu'? > %c" > (c/2y.
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Hence i
1V — Vox||z < 2vMur "¢ || W]z < 517z

It follows that ¥, maps X(¥) isomorphically into Z([0, 1] x [0,«]) which is lattice iso-
morphic to Y. ]

COROLLARY 4.7.  Suppose Y is an order-continuous quasi-Banach 1.i. space on
[0, 1] with property (d). Suppose for some p > 1, Y\, has property (d). Suppose X is
an order-continuous quasi-Banach t.1. space on [0, 1), and that L: X — Y is a strong
cone-embedding. Then there exists f € Y. \ {0} such that X = Y;.

PROOF. This follows from Proposition 3.3. [

5. Cone-embeddings of . i. spaces.

PROPOSITION 5.1.  Suppose 0 < s < q < 0o and that X is an s-convex, q-concave
quasi-Kothe function space on (Q, p). Suppose m > q is a natural number. Then there is
a constant C = C(X) so that if xy,...,x, € Xy and by,...,b, > 0 then

ié briyxi m) '

1/.2
<C maX((Avewen" [l max broil™)'/™, . (Z b;)

i=

(Ave,renn

;x”)

PROOF. This is a somewhat disguised form of the so-called Classification Formula
(Theorem 2.1 of [21] or Theorem 2.e.5 of [34]). It can be derived from this formula;
we indicate the direct proof. We assume that X has g-concavity constant one. Then
Z = L,(I1,: X) has m-concavity constant one where IT, is given its natural probabil-
ity measure. Now there is a constant Cy depending only on m so that if fi, ..., f, € Z

(B o2 GO EN)

|A|=m “ied

Hence for C; = C\(s,m)

|31, < € maxisil. el

where §; = (21A|=m(ni€Aﬁ)) 1/m and S, = (max f)/™(Sf)'~1/™ Now as Z is s-convex
we can estimate:

1511 < maxﬁ”)l/rn(nz ﬁn)l—l/m
< ;L‘“ max f;|| + (1 _ %)“Zﬁ“

It then follows that
[524] < maxulsil, | max£.
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Now let f; = b;€; where &;(m) = x.). Then if n > 2m, we use m-concavity:

( > Hbixn(i))l/m“m)l/m

|d|=m i€A

IS = (Ave,,

< “(Avew > Hbix'rr(i))l/ m”

|4]=mi€4

< (2" (50)
<2($n)l5e]

The proposition now follows easily. u

n
> x|
i=1

PROPOSITION 5.2.  Let X, Y be order-continuous quasi-Banach . 1. spaces on [0, 1].
Suppose that py > 1, Y is g-concave for some q < oo and that there is a cone-embedding
L:X — Y. Then either X = L,[0, 1] or X is lattice-isomorphic to a sublattice of Y and so
X = Yy for somef € Y.

PROOF. For ease of notation we regard X as modelled on (A, ).

Let us first note that the proof is trivial if we assume py > 1. Indeed in this case L is
a strong cone-embedding (Lemma 4.3) and Y, /, has property (d) as longas 1 <r <py.
So Corollary 4.7 applies. We therefore need only to prove that if X # L, then py > 1.

Assume then X # L;. Note first that Y C L, if 1 <r < py.

We can assume that, for some § > 0 and every x € X, §||x|[x < ||Lx|ly < ||x||x for
x > 0. Let us consider the random measure representation of L i.e.

Lx(s) = / xdy,

where s — i is a weak*-Borel map from [0, 1] to M (A). We can as usual write
o0
Hs = Z an(s)‘so,,(s) +v;
n=1

where a,: [0, 1] — [0, 00) and 0,,: [0, 1] — A are Borel maps and 0,,(s) # o,(s) if m # n,
and v, is for each s nonatomic.

Since Y has nontrivial concavity there is a constant C and an integer m so that if
Viye-sVn € Yo and by,..., b, >0,

(Avewel'[,, 12:31 briyyi “ Y) o

1/ \ n
< sy lmyL/m Z . l l .
< Comax{ (Avesen, | max broni)'/" - (-00) [
Let us introduce the functional on X defined by

I'(x) = sup{|| max a,u o o,y : u* = x*}.
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Consider a nonnegative simple function x € CS,,(A). For each n > ny we can write
x = Ygea, §exk- For each permutation 7 of A, letxr = Ype g, §xgyXe- Letye = Lxe €
Y.

We also define for each n, and each s € [0, 1] 7,(s) to be the least integer T so that
(a,-(s)):=1 belong to distinct members of 4,. Note that lim,,_,, 7,(s) = oo for all s.

Note that

max s) < max aqpxp ooyt ||x ( a(s) + max v, ),
max {rVe(s) < Max agxr o o llxll 00 k; s) + max v(E)

so that
I Irzré% EnewElly ST E) +1allx] 0o

where lim,,_,, 7, = 0. Now appealing to (*) gives that

8llxllx < Comax(T ), x| Lxally) + Coallxlloo

which gives us

() 8llxllx < Comax(T(x), [|xll1[ILxally)-

First suppose a; vanishes a.e. so that I'(x) = 0 for all x > 0. Then

lIxllx < Cob™" ILxall¥llxIly

forallx € X'sothat L, C X. Since X # L; we must have that X* = {0} and Theorem 4.4
of [25] shows that L must vanish (we remark that in the preparatory Lemma 4.3 of [25]
the hypothesis X* = {0} has been omitted in the statement). This is impossible so we
must have that a; > 0 on a set of positive measure. Hence if we set Sx = a;x oo then S
is a nontrivial lattice homomorphism of X into Y and Corollary 3.3 will yield that X C Y.
Hence X C L, where | <r < py.

We next show that in fact ||x|| x < C,['(x). If not, there is a sequence x, with ||x,||x = 1,
xn > 0 and I'(x,) — 0. But, if this happens we must have x, — 0 in measure and
||xx||» bounded. Hence lim, .o ||xx]|1 = 0 and (*x) yields that lim, ., ||x,||x = 0. This
contradiction establishes the claim.

Fix any simple f € X[0, 1] with ||f]|x = 1. Then there exists 0 < x € X(A) with
x* = f* so that

I max ax o oallx > C7.

Letx = Z}i, §jxn, where Hy, ..., Hy are disjoint Borel sets. For each s let k(s) be the
first index such that ak(s)x(ok(s)) = MaX)<n<oo a,,(s)x(o',,(s)). Then let b'(s) = a)(s)
and p(s) = oy)(s). The operator V: X — Y given by Vz = b’z o p is then a lattice
homomorphism form X into ¥ with ||V]| < 1. Forn € Z let F, = (b')~'(2",2""'] and
let b = T,z 2"XF, so that b’ < b < &'. For each n the measures B — A(p™'BN F,)
are absolutely continuous. Then for any N, we can use Liapunoff’s theorem to find sets
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H? C H;with \(HY) = o' \(H)) for 1 <j < Mand Mp™'HYNF,) = a ' Mp™ ' HiNF,)
for [n| < N. Let Gy = U<y Fn- Then

1 1 _
2 51Dy a9l 2 5 1Dl o Pl

(2 ech)

Letting N — oo we have
Vxlly < 2/|Dall ¥l Do-1x]x-

Hence
Ifllx < 2Ci[|DelI¥|IDZ fx-

As this inequality holds for all simple f > 0 we obtain
1Dallx < 2C1||Dally

for a > 1sothatpy > py > 1. As observed in the introductory remarks, this is sufficient
to prove the theorem. u

The following proposition is trivially false in the case when p = 1 since the map
x— ( ] x(s) dS)X[o,l] is a cone embedding of L, [0, 1] into L,[0, 1] whenp < 1.

PROPOSITION 5.3.  Suppose 1 < p < oo. Suppose Y is a p-concave quasi-Banach
r.i. space on [0, 1] or [0, 00) and that there is a cone-embedding of L,(A, \) into Y. Then
Y70, 1] = L,[0, 1].

PROOF. We assume that Y is s-normed. Let (€2, 1) represent either [0, 1] or [0, 00)
with associated Lebesgue measure. We apply Lemma 4.1 and Proposition 4.4. There
exists a constant C and Borel maps a,: Q — [0, 00) and g,,: @ — Aso that 0,,(w) # on(w)
if m # nand so that for0 <x € L,,

il < |l maxap o oylly <

[e¢]
S axooas| < Clx|p.
n=1 Y
Let Lx = Y anx o 0,; then L: L, — Y is a positive operator. We can also apply Propo-
sition 3.5: there is a weight function w > 0 on Q so that ||y||y < ||wy||, fory € ¥ and
W@, < Cllxl, forx € L.

At this point we define measures v, on A by v,(B) = [,-15 wPah du. It is easy to see
that each v, is a finite Borel measure absolutely continuous with respect to \. Hence we
can find derivatives v, = dv, /d\. Now if 0 < x € L,(A) then

/;zuféaﬁ(xoan)pduzflsxp<§vn)d)\

and so it follows that
o0
S <&
n=1
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almost everywhere. By an application of Egoroff’s theorem we can find a Borel set E C A
of positive measure and N so that

[ee]
> () <@V0)F
n=N+1
fort € E.
Now, observe that if 0 < x € L,(E) then

| max a,x oo,y < “w(
n>N+1

5 o 1]

n=N+1

<(le( £, o)

— 21/SC” ”1’

Hence
I max, awc o onlly > (1l — 5 lell) " 2 szl

This implies that L, is isomorphic to a sublattice of YV and hence to a sublattice of Y.
Finally we can apply Theorem 3.6 to deduce that Y10, 1] = L,[0, 1]. »

6. The main construction.

LEMMA 6.1. Let X be a g-concave Kothe function space on some Polish measure
space (Q, 1), where g < 00. Then there is a constant C depending only on X so that if
Siseesfn €X, and h = (T, f2)'/?, then for any M > 1 we have:

(Avec—s1 llgexa |1)'/ < CM~||A|
whereg. = Y, ef; and He = {|g| < M 'h}U{|ge| > Mh}.
PROOF. Note first that
Ave =+ Ilg€X(|g,|§M"h)"q < M| |A||7.
On the other hand, if Cy is the g-concavity constant of X,
(Ave,=1 ||g6X(|g(|2Mh)”q)l/q < CE‘“‘#”

where

9= ([ yoaine Z J(s)lqde)

We can estimate (assuming A(s) > 0)

06 < Mho) [[S o) de < CIuohoy
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where C) is a constant determined by the constant in Khintchine’s inequality for 2q.
Combining we have

(Ave —11 |geX (g a4 < Co'CiM |||

The result now follows. n

We now introduce some notation. If [a, b] is a closed interval with 1 < a we write
I'(a, b) for the collection of measurable functions f on [0, co) which satisfy that almost
everywhere, either f(s) = O ora < |f(s)] < borb~! <|f(s)| <a~'.Let[an,b,]2,bea
sequence of intervals with ag = 1. If (1,)32 is a sequence with 0 < 7, < 1 then [a,, b,]
is (nn)-separated if b, < n,a,+ for all n.

LEMMA 6.2. Let X be an r.1. space on [0, 00). Suppose 0 < 6 < 1, and that c > 0
is such that 2’0 < §. Suppose (n,)2, is any sequence satisfying >-n, < o and that
[an, bu132, are (na)-separated then for any fy, . .., fny € X such that

() 6 <Ifl <1for0<j <N

(2) f; € '(a;, b))
we have that (ﬁ)}io is 2-equivalent to a disjointly supported sequence (gj)j’io with gj €
['(a;, b)) for 0 <j < N.

PROOF. Let Ex = {s : |[fi(s)] = maxogi<n [i)], [i()] > |fi(s)] if j < k}. Let
& = fixk,- Then (with appropriate modifications if £ = 0 or k = N)

Ifi — &ll < Z Whaxqm<ignll + Z Whxqr<ignll
J<k >k
<Y ac bl + X baa
J<k j>k
k=1 j=1
<SS IIm+> 10
k=i jSki=k
[e¢]
< e + ) [TA +12)
i=1
< € (Mk—1 + M) < 40k + Mi—1).

Hence ||gl| > & — 80 > 4. We also have T ||fi — gi|| < 80 < £. Since (gy) is a disjoint
sequence it follows from standard perturbation theory that (f;) is 2-equivalent to (g;). m

LEMMA 6.3. Let X be an r.i. space on [0,00) or [0,1]. Suppose 0 < § < % and
[@n, bn 122 are (2~9)6)-separated. Then for any positive disjoint fy.fi,. .. ,fx € X such
that§ < |\|fil| < 1andf; € T'(a;, b;) for 0 <j < N we have that (ﬁ)j’io is 6-equivalent to
a disjointly supported sequence in Ey.

PROOF. We suppose at first that X is an r.i. space on [0,00). For0 < j < N we
choose m; € Z so that

6 )
7p, < X021l < ZWE
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Similarly we choose n; € Z for 1 < j < N so that

aib a;b
7 < o2l < 2%'

Itisclearthatmy <my_; <--- <mp<n; <--- < ny.
Letu; = Ma; <f; < b)andv; = Ab;' <f; <a;"). Thenif 1 <j <N,

”X[o,z’"f+u,-]|| < lxgo.2myll + IIxroull
—(+3) 1 —1
<2 b6 +a;
< 2(11-_1
<2709,
< IIxo2m1ll
so that 2™ +u; < 2"-!. Similarly, if 1 <j <N -1,

”X[o,z"jwj]” <270"g;5 + b; < 2b;

so that
”X[o,z"f+v,-]” < 2_(’+5)5aj+1 < “X[o,z"fﬂ]”
and 2% +v; < 2%, Finally

1
IX0270+ustvolll < 2738bg " +bo < 2By < Eéal.

Hence 2™ + yy + vy < 2™,

It now follows that we can rearrange fj, . . . , fy in the following manner. We can sup-
pose that f; is supported and decreasing on [2™,2™). Let fy = fox 27,17 and fg' = fo —f3-
Forl <j <N, we letj] = fiX(@<f<b) andj;.W = f,x(,bfngﬁSalfl). We can then suppose
that for | <j <N, f; is supported and decreasing on [2",2™-') and " is supported and
decreasing on [2%,2%+*') where we adopt the convention npy+; = 00.

Now if ey = Xt e let

-1
x= 3 /" e
k=my

and 1
n—

X = Y @ e
k=0

andfor1 <j <N, let

Mj_l—l

x_;: Z ﬁ(2k+1)ek

k=mj

and
njﬂ —1

=3 f'@ e

k=n;
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We setx; = x; +x for0 <j <N.

Then 0 < x; < f; for 0 <j < N. However if D,g(f) = g(¢/2) we have f; < szj +z;
where z; = bjen, + a; 'e, for 1 < j < Nandzy < boem,. Thus |z]lx < 270*2)5 for
0 <j < N.Henceif ag,...,ay >0,

N N N
HZ ajﬁu < 2> e + 327050
li=0 li=o

Jj=0

N o
<205 ajxy| + Emaxlaj|

N 1
<2y e + 5|2 ]

=0 2=

so that (}})]N:o is 4-equivalent to a disjoint sequence in E. This completes the proof when
X is modelled on [0, 00).

For the case X = X[0, 1], we may regard X as being defined on [0, c0) and proceed
as before, but with each f; having support of measure at most one. In this case, we have
xq = 0 while for 1 <j < N, we have xj’.' < fj” < aj"l < 2796. Hence if oy > 0 for
0<j<N,

N
o] <2 omoto = &S]

: 1,1 2
Hence since 5 + 55 < 3,

5ol <2 sl 3l

I35l

and (f;)Y., is 6-equivalent to (x)¥., which is a sequence in Exo,1}. n

We now consider a situation which will remain fixed for Lemmas 6.4—6.6. We suppose
now that X is a good Kothe function space on (A, A) which is g-concave with constant
one where ¢ < oo. We further suppose that Y is an r.i. space on [0, 00) which is also
g-concave with constant one. We will assume that X is isomorphic to a subspace of Y.
Let us therefore suppose that 7: X — Y is a bounded linear operator satisfying é||x||x <
| Tx||y < ||x||x where § > 0.

For convenience we recall the notation introduced in Section 2. For ¢, = =+1, we
denoteby A(ey, . . ., €4) the clopen subset of A of all (d)2, suchthatd; = ¢; forl <j<n.
For each n let /’4,, denote the collection of A(ey,.. ., e,,) Let G, be the algebra generated
by the atoms 4,. We let CS, denote the linear span of {xg : E € 4,}. We also define
the Haar functions hg = Xa(e,,...e, 1) — XA(er,...en—1) 0T E = A(e, . .., €4). Let CS be the
union of the spaces CS,.

We define Q,: CS,, — Lo[0, 00) to be the linear map such that Q,(xz) = |Thg|* where
Ec A,

< 2"2 ox;
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LEMMA6.4. Ifx € CS, then ||(Q:x®)'/?||y < K¢ ||x||x, where K is the Grothendieck
constant.

PROOF. Ifx = Ypc g, arxe then, by Krivine’s theorem [31],

(eabmat) ], <k (Srat) ] -l

For any measurable function f € Lo[0,00) and a > 1 we define 7of = fX 41 <|f<q)-
We then define for x € CS;,

() = supliminf | ((@n () ).

LEMMA 6.5. There exists a constant C = C(X, Y) so that if n > 0 and b > 1, then
whenever x > 0, x € CS, with ¥(x) < 0 then there exists a clopen set D independent of
G, such that X\(D) = 1, max(|xxp||x, ||x — xxpllx) < 3/4)"/4||x||x and

I7e(Tx — 2x03)) | < Cn.

PROOF. Letn = W(x). We first pick w € Lo(A)+ so that [|x||x = |lxw~!||; and
l€llx < [|€w™]| for all £ € X. We write x = Tge g, XEXE
Suppose m > n. For a choice of signs e = 1 we write

Xe = Z ag Z ephp.

FeAm
BeR ik

We also lety, = Tx. € Y.
Let x. + = max(x, 0) and x. - = max(—x,, 0). We first estimate

1 -
el < 5 [R5 e+ erhr)d.
FeA,

This gives
1 —
Ieeally = 51§ <| X er [ Ietrwohra|
FeA,

Switching signs we get a similar estimate for ||x. ||} and hence

1 ~ n1/2
Ave, .y max((lxe; |4 xe - [|9) < EIIXHS'#( > ([ lwar) )
FeAa,

by Khintchine’s inequality.
The second term here can be estimated by

max ([ ltewean) g
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It follows that for large enough m we have

5
AVec—x1 max(||xe[[%, e[ < Zllxll%-

For such m we have
Pe{max(lv 4 e 99 < SIel7) > .
6
We will now choose m subject to this restriction and such that

ll7a(Qm®)' 2|y <

where a = b||x||x/n. Let G = {a~' < (Qnx?)'/? < a}. Then since Y has cotype g, for a
suitable constant Cy = Cp(Y),

q\1/ 2 2\'/2
(AVeqmst Iyexal$V? < Collxa( T 3 laslIThel?) v
£A, i
= Collx6(@nx)' Il
< Con.

On the other hand, if H is the complement of G and B. = {b~' < |y| < b} then
B.NH C {ly| < nllxllz"(@mx)' 2} U{lye| > lIx||lxn~"(Qmx?)'/2}. It thus follows from
Lemmas 6.1 and 6.4 that

(Ave 11 [ImyexalD'/® < Conlixllx 1(Qmx®) 2 1ly < KGCin.

Hence
(AVe—v1 ||y |7 < Con

where C; depends only on X, Y.

Finally it follows there must exist a choice of e so that max(||xe+[|7, [|x,-||9) < 3||x[|%
and ||7py¢ ||y < 6C,n. We conclude by writing 3~ ephr = 2xp — xa and then D satisfies
our hypotheses. [

LEMMA 6.6. Suppose inf{¥(x) : ||x]lx = 1,x € CS:} = 0. Then there is a
nonatomic Banach lattice Z which is lattice-finitely representable in X so that Z has
an unconditional basis which is lattice-finitely representable in Ey.

PROOF. Suppose N is a natural number. Let ¥ = (3)!/9. Let C be the constant deter-
mined in the previous lemma. We will select > 0 so that

(1 ye Q=76 )
n<mm(2’7 0, 1022 i(C+1) )

We pick x € CS; so that ||x||x = 1 and ¥(x) < 7. Suppose x € CS,. We construct
by induction a sequence of clopen sets (Fy)2-, !, sequences (ax, bi)2-5", and functions
yi € Yfor0 < k < 2N _ 1 so that:
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(1) ap = 1 andFl =A.

(2) Each F} is independent of (,.

(3) Fi = Fo UFyu and M(F) = MFoe1) = $AMF)) for 1 <k <2V — 1.

(4) For1 < k <2¥—1wehave (1 -M)|lxxrllx < [exe e exeu, lx < Yibexelx-

(5) ar <b (1 <k<2M' _Dand by < (1 —)W82~® gy, for 1| <k <2V 3,

(6) If by = x and then & = x(2xF, — Xr,) for 1 <k <2V — 1 then ||Th; — || <
(C+ 1.

(7) yx € T(ax, by)-

We start the induction as stated with ay = 1, F} = A, hy = x. We then select by large
enough so that || Tho — 74, Tho||y < n and set yo = 73, Tho.

Now suppose 1 < k < 2V — 1 and that (4))\Z), (b)), ()/=g and (F;)*7" have
been determined. We first pick a; so that b;_; < (1 — 7)¥62~**9g; so that (5) holds.
Now ¥(xxr,) < ¥(x) < 1. Hence we are able to apply Lemma 6.5 to find a clopen set D
independent of the algebra generated by the sets G, and {F\, ..., Fy_, } so that \(D) = 1,

max(||xx r,rollx IXxF\pllX) < Yllxxrllx, and

e (TOxE, = 26x7,00)) |, < Cn

where C is the constant of the previous lemma.

We now let Fy;, = FyN\D and Fyy = F \ D. Conditions (2) and (3) are immediately
satisfied. Condition (4) follows from the triangle law. If we define A, by (6) we have
llra, Th|ly < Cn. Therefore we can pick by > a; so large that if G is the set where
b;l < |Thk| < a,:' ora, < |Thk| <b thenlIThk—ngthy < (C+D)n. Letyy = x¢Th.
Then (6) and (7) follow.

This completes the inductive construction. We now observe that for every 2V < k <
2M1 — 1 we have (1 — Y)Y < |lxxr ]l < 7YV. In particular ||i]|x > (1 — Y)Y for 0 <
k <2V — 1. Thus || Th||y < (1 —7)Yé. By choice of 7 this implies that (1 — )V <
Ivlly < 1. Now we can appeal to Lemma 6.3 to deduce that (y;)?-5" is 12-equivalent to
a disjoint sequence in Ey. In particular it is 12-unconditional. Since || Th; — yi || |[v]] ! <
2(C+ (1 —7)™M67! we have

2N
kz N Thi — il Iyl ~F < 2% €+ (A =) M6 Ty < 1072,
=0

Hence (Th)2-," is 24-equivalent to a disjoint sequence in Ey and hence (f)2 5" is
246~ -equivalent to a disjoint sequence in Ey.

We can define a linear map Ly: CSy — X by Ly(XAe,,..ex)) = XXF, Where k = 2V +
3 %1(1 — )2V Then we can induce a lattice norm on CSy by |[fllv = ||Lxf]|x- Let
U be a non-principal ultrafilter on N. We define for f € CS,

112 = tim

Then || ||z is a lattice norm on CS with the property that if E € Ay then (1 — 7)Y <
|lxkllz < Y. Thus the completion Z of this space is a nonatomic Banach lattice which
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is finitely representable in X. Also the Haar system is clearly an unconditional basis of Z
which is 256! -lattice finitely representable in Ey. n

Before proving the next theorem, which is the main result of the section, we make
some definitions. Let us denote by [0, co] the one-point compactification of [0, 00). Sup-
pose (Qn, 1n)52, is a sequence of Polish spaces with associated o-finite measures and let
Jn: Q, — [0, 00] be Borel functions such that for each a > 0 we have p,(f, > a) < oo.
We will say that (f;,, 11,)32., convergesto (fo, f40) in law if and only if for every continuous
function ¢: [0, 00] — R so that ¢ vanishes on a neighborhood of 0 we have

Jim [ ¢ofdun= [, ¢ofoduo.
If f, converges to f; in law then it is not difficult to see that

po(fo > a) < liminf p,(f, > a) < limsup p,(fn > a) < po(fo > a).
n—o0 n—oo

Hence we can deduce that f; — f; a.e. on [0, 00) and for any r.i. space Y this implies
that [[/o]| vy < liminfoo |Ifall v, -

THEOREM 6.7.  Suppose Y is an t.1. space on [0, 1] or [0, 00) with nontrivial con-
cavity. Suppose X is a good Kéthe function space on (A, \) which is isomorphic to a
subspace of Y. Then either:

(1) Thereis a nonatomic Banach lattice Z which is lattice-finitely representable in X
and such that Z has an unconditional basis, which is lattice finitely representable in Ey,
or:

(2) Thereis a cone-embedding of X, j, into Yy ;.

PROOF. Let ( be the (countable) algebra of clopen subsets of A. We define a compact
space Q = [0, 00]€. We denote the co-ordinate maps on Q by £z for E € C.

Let us suppose first that Y = Y[0, 0o); we will describe the minor modifications for the
case [0, 1] afterwards. We suppose that Y is g-concave with constant one where g < 00.
Suppose p > 2q is fixed. Let T: X — Y be a linear map satisfying for some 6 > 0,
8lxllx < |Tx|ly < ||x||x for x € X, and define Q,: CS,, — Lo[0, 00) as above.

We make first the observation that, as Y is g-concave, we have an estimate ||xo,4[|y >
11/ for t > 1 and hence if y € ¥ then y*(£)7 < ¢~!||y||% for £ > 1. It follows thatify € ¥
then

Jy i, P2y de < 1 I [ e dr < 1+ Gollf

for a suitable constant Cy = Cy(q, p).

Let us define k,:[0,00) — Q by £g ok, = Qu(xe) IfE € G,and Eg ok, = 0
otherwise. Let w be the weight function on Q defined by w = min(1, £}). We will define
a Borel measure v, on Q by

va(B) = [, min(1,0u(xaY) dA.
Let us first note that

va(@) = [min(1,(Qnxa¥)dX < 1+ CokE/?
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so that the sequence of Borel measures (v,) is bounded in M (Q). It follows that (v,)
has a weak*-limit point v. Let us define u, = w~!v, and 4 = w™!v; these measures are
o-finite.

Note first that if U is an open subset of Q then v(U) < limsupv,(U). We use this
first to argue that {5 < 0o, u-a.e. for every E € C.Infactifa > O thenin E € (,, we
have v,(£g > @) < A(Qnlxe) > a) and by Lemma 6.4, a'/2 min(l, A @n(xe) > a)) <
Ka||xk||x- Hence lim, o v(£g > a) = 0 and so p(§g = 00) = 0.

Next we argue that if E,F € ( are disjoint then £pr = &g + &F a.e. for p. In
fact, if ¢ > 0, let U be the set of w € Q such that {g(w), {F(w), Epur(w) < 0o and
|€e(w) + Ep(w) — Epur(w)| > €. Thenif E, F € (,, we have v,(U) = 0. Hence v(U) = 0
and p(U) = 0. Thus &g + & = €pur a.e. It follows that we can define a linear map
So: CS — Lo(p) by So(x£) = &k

Now supposef € CS;. Letf = Zszl ogxg, Where Ey, ..., Ey are clopensets in A, and
o >0forl <k <N.Letg =L, o, sothatg = Sof a.e. for p. Let M = ¥F_, oy.
Then f < Mx, and g < ME,, a.e. for .

For any a > 0, let ¢, be a continuous function on [0, co] such that p,(f) = 0 if
0 <t <1/(2Ma) and @,(r) = 1ift > 1/(Ma). Then let g, = (pa © £4) min(a, g). Then
Tag < 8a X 8, p-ae.

For fixed a > 0, g, is continuous on Q. Furthermore for each n, u,(g, > 0) <
pa€a > Ma)™") < MQn(xa) > (Ma)™!) is uniformly bounded. If v, converges
weak* to v then for any continuous function ¢ on [0, co] which vanishes in a neighbor-
hood of the origin, we have

. _ -1
1 e = ot
= lim [ (4 © € max(1,£,7) min(g, a) v,
= [ (pa 0 E)max(1,€,;7) min(g, @) dv

=L&W~

Thus (g,, i1s, ) converges in law to (g,, 11). Since Y is order-continuous, g, is bounded and
the measures of the supports are uniformly bounded, this implies that

. 1/2 1/2
Jim llga 1) = llgs"llveo-
—00

IfE,,...,Ex € C, then we have g > g, > 7,g a.e. for p,. It follows that we have

Iagllviun < lgallviwn < llgllvun-
Note however that (g, u1,) coincides in law with (Q,f, A) for if B is a Borel subset of

(0,00) then po(g'B) = fy15w™' dvy = Mk, 'g"'B) = A((Q)'B).
Hence we obtain the estimate

lim liminf ||7.(0:N"|ly < llg"/?|lye < limsup [|(QN)'/?|ly.
a—o0 n—oo n—oo
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We conclude that /' € CS: we have W(f'/2?* < ||Soflly, .0 < Kgllflx, ,- Thus So
extends to a bounded positive operator S: X; ;, — Y, . If alternative (1) of the theorem
is false then, by Lemma 6.6, S has a lower estimate and it is clear that S is a cone-
embedding, as required.

In the case when Y = Y[0, 1] we can regard Y as being embedded in a space modelled
on [0, 00) and need only observe that in the above proof, the measures y, and p have
total mass at most one. n

THEOREM 6.8.  Suppose Y is an r.1. space on [0, 1] or [0, 00) with nontrivial con-
cavity, which is either strictly 2-convex or of Orlicz-Lorentz type. Suppose X is a good
Kothe function space on (A, \) which is isomorphic to a subspace of Y. Then there is a
cone-embedding of X, ;, into Y ;.

PROOF. It is enough to show that the existence of Z in Theorem 6.7 leads to a con-
tradiction. Suppose first that Y is strictly 2-convex; then Ey is also strictly 2-convex. This
implies that the unconditional basis of Z is strictly 2-convex, and hence Z can contain no
copy of £,; however Z must have nontrivial cotype and this contradicts Lemma 2.4 of
[11].

If Y is of Orlicz-Lorentz type then Ey is lattice-isomorphic to a modular sequence
space which has nontrivial cotype. Now the unconditional basis of Z is lattice finitely
representable in Ey. This implies that Z also is isomorphic to a modular sequence space,
also with nontrivial cotype. This can be established directly without difficulty, but is
also a special case of more general results on ultraproducts of Orlicz spaces and Orlicz-
Musielak spaces, for which we refer to [12], [18] and [43]. This now contradicts Theo-
rem 4.3 and Corollary 4.4 in [28] (which in turn extends an earlier result of Lindenstrauss
and Tzafriri [32]). n

7. The main results. Before proving our main results for embeddings of nonatomic
Banach lattices into r. i. spaces, we first give an illustrative theorem for atomic Banach
lattices. Compare this result with those of Johnson and Schechtman [22] and Carothers
and Dilworth [8].

THEOREM 7.1.  Suppose Y is an1.1. space on [0, 00) with nontrivial cotype, and sup-
pose that either (a) Y is 2-convex or (b) py > 2. Suppose (uy) is a strictly 2-convex
unconditional basic sequence in Y. Then (u,) is equivalent to a disjoint sequence. Equiv-
alently, if X is a strictly 2-convex atomic Banach lattice which is isomorphic to a subspace
of Y then X is lattice-isomorphic to a sublattice of Y.

REMARK. We do not know if this theorem holds when Y is anr.i. space on [0, 1]. m

PROOF. Let us suppose that X is an atomic Banach lattice represented as a function
space of N with canonical basis vectors e, and that S: X — Y is an embedding with Se, =
un. Then by Theorem 1.d.6 of [34] we can define a cone-embedding L: X; ;, — Y,/ by
Le, = |un|*. The result is now obtained by putting together the facts previously estab-
lished on cone-embeddings. Since X , is strictly 1-convex L is a strong cone-embedding,
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by Lemma 4.1; then since Y /, has property (d) under either conditions (a) or (b), Propo-

sition 4.5 shows that X/, is lattice-isomorphic to a sublattice of Y, /,. But this implies

the result. ]
We now prove the nonatomic version of the above theorem.

THEOREM 7.2.  Suppose Y be an 1.1. space on [0, 00) with nontrivial concavity and
either
(a) Y is strictly 2-convex, or
(b) Y is 2-convex and of Orlicz-Lorentz type, or
(¢) py > 2 and Y is of Orlicz-Lorentz type. Suppose X be a strictly 2-convex non-
atomic Banach lattice. If X is isomorphic to a subspace of Y, then X is isomorphic
to a sublattice of Y.

PROOF. We can of course assume that X is a good Kothe function space on (A, A).
We first apply Theorem 6.8 to deduce the existence of a cone-embedding of X) /, into
Y} j,- Now the proof proceeds as in Theorem 7.1. .

REMARKS. Let us first note that if Y is 2-convex then X must also be 2-convex at
least; the hypothesis that X is strictly 2-convex is then equivalent to the hypothesis that £,
is not lattice finitely representable in X (cf. [21] Lemma 2.4). This result was previously
known in the special case Y = L,[0, 0o0) [21], Theorem 1.8 (the atomic case is proved in
[16].)

We now turn to the case when Y is an r. i. space on [0, 1]; here our result is not quite
as strong (exactly as in the atomic case: see discussion after Theorem 7.1).

THEOREM 7.3. Let Y be ant.1i. space on [0, 1] with nontrivial concavity and suppose
either (a) Y is strictly 2-convex or (b) py > 2 and Y is of Orlicz-Lorentz type. Suppose X
is a nonatomic strictly 2-convex Banach lattice which is isomorphic to a subspace of Y.
Then X contains a nontrivial band Xy which is lattice-isomorphic to a sublattice of Y.

PROOF. We will consider X as a good Kéthe function space on [0, 1]. Then there
is, by Theorem 6.8, a cone-embedding L: X,/ — Y;/,. Furthermore X; /, is s-convex
for some s > 1 and there exists in either case r > 2 so that ¥,/ has property (d).
Proposition 4.6 then implies that for some Borel set E with A(E) > 0 the band X; /;(E)
is lattice-isomorphic to a sublattice of ¥} /. The result then follows. n

We now turn our attention to the case when X is known to be anr.i. space.

COROLLARY 7.4. Let Y be an r.i. space on 1 = [0, 1] or [0, 00) with nontrivial
concavity. Suppose either

(a) Y is strictly 2-convex or

(b) Y is of Orlicz-Lorentz type and py > 2.
Suppose X is an t.1i. space on I = [0, 1], with X # L,[0, 1. Assume that X is isomorphic
to a subspace of Y. Then X is isomorphic to a sublattice of Y and there exists f € Y so
that X = Y0, 1].

https://doi.org/10.4153/CJM-1996-041-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-041-4

828 F. L. HERNANDEZ AND N. J. KALTON

PrROOF. Consider first case (a). By Proposition 2.e.10 of [28] or Section 2 of [21]
either X = L, or X is strictly 2-convex. The result then follows by the preceding Theo-
rems 7.2 and 7.3.

Case (b) is slightly different. In this case Theorem 6.8 implies that there is a cone-
embedding of X, , into Y, /,. By Proposition 5.2, either X, ), = L; (i.e. X = Ly) or X; ),
is isomorphic to a sublattice of Y /, and the result follows. n

REMARKS. Some special cases of Corollary 7.4 are known. In [21] Theorem 7.7 the
corollary is proved when Y is a strictly 2-convex Orlicz function space. Later, Carothers
[5] and [6] proves the same theorem for Lorentz spaces L,, where p > max(g, 2).
Carothers considers first the strictly 2-convex case (2 < ¢ < p) and later modifies the
proof to the case 1 < ¢ < 2 < p. Note that in these cases and in more general Lorentz
spaces considered by Carothers one has the additional information that every /[0, 1] co-
incides with Y70, 1]. This is equivalent to an inequality of the form ||f®g||y < K||f]|vllglly
for f, g € Y[0, 1]. This additional information is actually used in the proof.

For reference let us state one additional case which follows from Theorem 7.2 and
Proposition 3.3.

COROLLARY 7.5. Let Y be an 1.1. space on [0, 00) with nontrivial concavity which
is 2-convex and of Orlicz-Lorentz type. Let X be a strictly 2-convex r.1. space on [0, 1]
which is isomorphic to a subspace of Y. Then there exists f € Y so that X = Y;[0, 1].

Let us note the following special case.

COROLLARY 7.6. Suppose2 < p < oo and Y is a p-convex 1.1. space on [0, 1]
or [0, 00) with nontrivial concavity. Suppose L, is isomorphic to a subspace of Y. Then

Y10, 1] = L,[0, 1].

PROOF. It follows from Corollary 7.3 that L,[0, 1] = Y[0, 1] C ¥[0,1]but Y0, 1] C
L,[0, 1] since Y is p-convex. (]

REMARKS. The condition that Y is p-convex cannot be relaxed here (cf. [19]). We
remark that analogues of Corollary 7.6 for 1 < p < 2 have been proved in several places
in the literature. In the case p = 1, then L; embeds into a separable r.i. space Y[0, 1]
if and only if ¥[0, 1] = L,[0, 1]. This is proved under the additional hypothesis that Y
has nontrivial cotype in [21] (¢f- [34] Corollary 2.e.4); it is proved under the hypothesis
that Y does not contain cg in [23]. The result with no additional hypothesis follows from
Theorem 10.7 and Theorem 7.3 of [27]. For the case 1 < p < 2 a similar result holds
when Y is separable and p-convex provided one eliminates the possibility that Y contains
a disjoint sequence equivalent to the Haar basis of L,[0, 1] (see Theorems 7.3 and 10.7
of [27].)

In our final result we consider the case when instead Y is p-concave for some p > 2
and L, embeds into X.
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THEOREM 7.7. Suppose2 < p < oo and that Y is a p-concaver. i. space on [0, 1] or
[0, 00). Suppose that L, is isomorphic to a subspace of Y. Then, either:

(a) The Haar basis of L, is lattice finitely-representable in Ey or

(b) 10,11 = L,[0,1]
In particular, if'Y is strictly 2-convex or of Orlicz-Lorentz type, then Y[0,1] = L,[0, 1].

PROOF. We will apply Theorem 6.7. First suppose that Z is a nonatomic Banach lat-
tice which is lattice finitely representable in L,, which has an unconditional basis lattice
finitely representable in Ey. Then of course Z = L,. It follows from the reproducibil-
ity of the Haar basis (Theorem 2.c.8 of [34]) that the Haar basis is also lattice finitely
representable in Ey, contrary to hypothesis.

We conclude that L, /, can be cone-embedded into Y; ;. Now the result follows im-
mediately from Proposition 5.3. =

REMARKS. Here, the condition that Y is p-concave cannot be relaxed ([19]). We give
a simple application. Suppose 1 <r <2 <pand Y = (L, + L,)[0, 00). It follows from
the above theorem that L, is not isomorphic to a subspace of ¥ which answers a question
raised in [17].

8. Complemented subspaces of r.i. spaces. The following result is quickly de-
duced from the methods of [27].

THEOREM 8.1.  Let Y be a separable order-continuous Banach lattice, which con-
tains no complemented sublattice isomorphic to {,. Suppose X is a Banach lattice which
is isomorphic to a complemented subspace of Y. Then either:

(a) Thereis a constant C so that, for every n, {3 is C-lattice-isomorphic to a comple-
mented sublattice of X, or:

(b) There exists N so that X is lattice isomorphic to a complemented sublattice of
W=Y® @Y.

PROOF. We will prove under the assumption that X is nonatomic. (An exposition of
the atomic case, which is proved by the same techniques, will be given in [10].) In this
case we may suppose that both X and Y are good Kéothe function spaces on (A, A) and
that X has the “strong density property.” By combining Theorems 6.1 and 6.3 of [27] it is
possible to find a sequence of Borel maps 0,: A — A and three sequences (a’), (a%), (%)
of nonnegative Borel functions on A so that a2 (s)? < a2(s)ak(s) and if:

Pf:éaﬁfoon

of = iaanOJn

Rf =3 % oo,
n=1

for f € (Lo)+ then we have for a suitable constant C, that ||Pf]|; < Cillfl1, [|Qf]ly,, <
Cillfllx, > and [|Rf]ly: < Ci |[f||x7/2 Note here that Q need only map into Yy, 1/, and

Y
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not necessarily into Y, ;. Now by Theorem 6.4 of [27] it can be seen that if the first
alternative fails then there is a constant ¢ > 0 so that

/supaﬁfoa,, ar > cffd,\

for f > 0. We now use an argument due to Dor [15]. Consider the map T:L; — L;(co)
defined by Tf(s) = (af(s)f(cr,,(s)). Then ||7|| < C; and ||Zf]| > c||f]|- Note that since co
has separable dual, L;(co)* can be identified with L,(£;). By the Hahn Banach theorem
there exist ¢, € Lo so that IZ;";I |#a] I Cic ! and

"z::l/qS,,aPnfoa,,d)\ =/fdA

forf € Li()\).
Now for each n define E, = {s : ¢n(s) > (2C;)"'}. Then for f > 0,

00
2
n=1

1
énaifoon < 3 [dX.

A\E,

Hence

g_éna‘:foa,,d)\zia—/fd)\.

Notice that Y2, xg, < 2C; £, |¢s| < 2C3c! almost everywhere. Let N be the
least integer greater than 2C%c~!. Consider the operators P/, ' and R’ defined by

o0
Pf=73% anE,fo On
n=1
of=3 aZxzf o o
n=1
Rf =3 ayxe,f 0 on.
n=1
Then these operators can each be rewritten in the form,
N
Pf=> bifom,
n=1
N
of= 2 bgf O Tp
n=1
N
Rf=Y bﬁfo -
n=1

for suitable nonnegative Borel functions b7, 52, bR, for 1 < n < N, which also satisfy

ns

(bL)?* < b9bR a.e., and for suitable Borel maps m,: A — A.
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Now define U: X — YV

max?

VX — ('), by
Ufs,m) = (899))f (mals)
Vfis.m) = (B5) " F(mals)-

It is easy to see that U is bounded for

N 1/2
(E bg(fow,,)z) / IIY
ol [/
<llorIy/>
<Gl

. <
max U7,y <

Similarly V is bounded.
The proof is completed by Proposition 2.3 of [27], for if F is a Borel subset of A then

N 1/23 R N\1/2 ul P
> [ 90 ar > 2 [ b
n=1"% n=1v%

- /A P'xp(s)dA

Cc
> — .
> 56 ME) -

This theorem has immediate consequences if Y is an r. i. space.

THEOREM 8.2. Let Y be a separabler.i. space on [0, 1] or [0, 00), which contains no
complemented sublattice isomorphic to {,. Suppose X is a strictly 2-convex or strictly
2-concave Banach lattice which is isomorphic to a complemented subspace of Y. Then
X is lattice-isomorphic to a complemented sublattice of Y.

We remark that Theorem 8.2 is closely related to Theorem 8.1 of [27], and could be
used to simplify some of the arguments in the proof of that theorem somewhat.
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