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Abstract
Dale Peterson has discovered a surprising result that the quantum cohomology ring of the flag variety GL𝑛 (C)/𝐵
is isomorphic to the coordinate ring of the intersection of the Peterson variety Pet𝑛 and the opposite Schubert cell
associated with the identity element Ω◦

𝑒 in GL𝑛 (C)/𝐵. This is an unpublished result, so papers of Kostant and
Rietsch are referred for this result. An explicit presentation of the quantum cohomology ring of GL𝑛 (C)/𝐵 is given
by Ciocan–Fontanine and Givental–Kim. In this paper, we introduce further quantizations of their presentation so
that they reflect the coordinate rings of the intersections of regular nilpotent Hessenberg varieties Hess(𝑁, ℎ) and
Ω◦
𝑒 in GL𝑛 (C)/𝐵. In other words, we generalize the Peterson’s statement to regular nilpotent Hessenberg varieties

via the presentation given by Ciocan–Fontanine and Givental–Kim. As an application of our theorem, we show
that the singular locus of the intersection of some regular nilpotent Hessenberg variety Hess(𝑁, ℎ𝑚) and Ω◦

𝑒 is
the intersection of certain Schubert variety and Ω◦

𝑒, where ℎ𝑚 = (𝑚, 𝑛, . . . , 𝑛) for 1 < 𝑚 < 𝑛. We also see that
Hess(𝑁, ℎ2) ∩Ω◦

𝑒 is related with the cyclic quotient singularity.
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2 T. Horiguchi and T. Shirato

1. Introduction

Hessenberg varieties are subvarieties of the full flag variety introduced by De Mari and Shayman
and studied by De Mari, Procesi and Shayman [11, 12]. These varieties lie in a fruitful intersection
of algebraic combinatorics and representation theory, such as hyperplane arrangements ([4, 14, 34]),
Stanley’s chromatic symmetric functions ([9, 23, 27, 33]), Postnikov’s mixed Eulerian numbers ([8, 24,
30]) and toric orbifolds associated with partitioned weight polytopes ([7, 25]) in a recent development. In
this paper, we generalize a result discovered by Dale Peterson to regular nilpotent Hessenberg varieties
in type A via the explicit presentation of the quantum cohomology ring of flag varieties given by
Ciocan–Fontanine and Givental–Kim.

Let n be a positive integer. The (full) flag variety 𝐹𝑙 (C𝑛) is the collection of nested sequences of
linear subspaces 𝑉• � (𝑉1 ⊂ 𝑉2 ⊂ · · · ⊂ 𝑉𝑛 = C𝑛) in C𝑛, where each 𝑉𝑖 denotes an i-dimensional
subspace of C𝑛. Let N be the regular nilpotent matrix in Jordan canonical form, that is, the nilpotent
matrix in Jordan form with exactly one Jordan block. The Peterson variety Pet𝑛 is defined to be the
subvariety of the flag variety 𝐹𝑙 (C𝑛) as follows:

Pet𝑛 � {𝑉• ∈ 𝐹𝑙 (C𝑛) | 𝑁𝑉𝑖 ⊂ 𝑉𝑖+1 for all 𝑖 = 1, 2, . . . , 𝑛 − 1}.

Dale Peterson has discovered a surprising connection between a geometry of the Peterson variety Pet𝑛
and the quantum cohomology1 of the flag variety 𝐹𝑙 (C𝑛), as explained below. Let 𝐵− be the set of
lower triangular matrices in the general linear group GL𝑛 (C). Let Ω◦

𝑒 be the opposite Schubert cell
associated with the identity element e, which is the 𝐵−-orbit of the standard flag 𝐹• = (𝐹𝑖)𝑖 , where
𝐹𝑖 = spanC{𝑒1, . . . , 𝑒𝑖} and 𝑒1, . . . , 𝑒𝑛 are the standard basis ofC𝑛. Note thatΩ◦

𝑒 is the open chart around
the standard flag 𝐹• = (𝐹𝑖)𝑖 in 𝐹𝑙 (C𝑛). Due to Peterson’s statements in [31], the coordinate ring of the
intersection C[Pet𝑛 ∩Ω◦

𝑒] is isomorphic to the quantum cohomology of the flag variety 𝑄𝐻∗(𝐹𝑙 (C𝑛))
as C-algebras:

C[Pet𝑛 ∩Ω◦
𝑒] � 𝑄𝐻∗(𝐹𝑙 (C𝑛)).

This incredible result discovered by Peterson is unpublished, so we also refer the reader to [29, 32] for
the result above. As C-vector spaces, the quantum cohomology 𝑄𝐻∗(𝐹𝑙 (C𝑛)) is C1[𝑞1, . . . , 𝑞𝑛−1] ⊗C
𝐻∗(𝐹𝑙 (C𝑛)) where we call 𝑞1, . . . , 𝑞𝑛−1 quantum parameters. The product structure on 𝑄𝐻∗(𝐹𝑙 (C𝑛))
is a certain deformation by quantum parameters of the ordinary cup product on 𝐻∗(𝐹𝑙 (C𝑛)). More
explicitly, Ciocan–Fontanine and Givental–Kim gave in [16, 22] an efficient presentation of the quantum
cohomology ring 𝑄𝐻∗(𝐹𝑙 (C𝑛)) in terms of generators and relations as follows. Let 𝑀̌𝑛 be the following
matrix

𝑀̌𝑛 �

����������

𝑥1 𝑞1 0 · · · 0

−1 𝑥2 𝑞2
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 𝑥𝑛−1 𝑞𝑛−1

0 · · · 0 −1 𝑥𝑛

����������
. (1.1)

The quantized elementary symmetric polynomial 𝐸̌ (𝑛)
𝑖 (1 ≤ 𝑖 ≤ 𝑛) in the polynomial ring

C[𝑥1, . . . , 𝑥𝑛, 𝑞1, . . . , 𝑞𝑛−1] is defined by the coefficient of 𝜆𝑛−𝑖 for the characteristic polynomial of
𝑀̌𝑛 multiplied by (−1)𝑖 , that is,

det(𝜆𝐼𝑛 − 𝑀̌𝑛) = 𝜆𝑛 − 𝐸̌ (𝑛)
1 𝜆𝑛−1 + 𝐸̌ (𝑛)

2 𝜆𝑛−2 + · · · + (−1)𝑛𝐸̌ (𝑛)
𝑛 .

1We work with quantum (and ordinary) cohomology with coefficients in C throughout this paper.
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Note that by setting 𝑞𝑠 = 0 for all 1 ≤ 𝑠 ≤ 𝑛 − 1 we have that 𝐸̌ (𝑛)
𝑖 is the i-th elementary symmetric

polynomial in the variables 𝑥1, . . . , 𝑥𝑛. Then it is known from [16, 22] that there is an isomorphism of
C-algebras

𝑄𝐻∗(𝐹𝑙 (C𝑛)) � C[𝑥1, . . . , 𝑥𝑛, 𝑞1, . . . , 𝑞𝑛−1]/(𝐸̌
(𝑛)
1 , . . . , 𝐸̌ (𝑛)

𝑛 ).

Combining Peterson’s statement and the presentation above, we obtain the isomorphism

C[Pet𝑛 ∩Ω◦
𝑒] � C[𝑥1, . . . , 𝑥𝑛, 𝑞1, . . . , 𝑞𝑛−1]/(𝐸̌

(𝑛)
1 , . . . , 𝐸̌ (𝑛)

𝑛 ) (1.2)

as C-algebras. In this paper, we generalize this isomorphism to regular nilpotent Hessenberg varieties
by further quantizing the right-hand side above.

Consider a nondecreasing function ℎ : [𝑛] → [𝑛] such that ℎ( 𝑗) ≥ 𝑗 for all 𝑗 = 1, . . . , 𝑛 where
[𝑛] � {1, 2, . . . , 𝑛}, which is called a Hessenberg function. We frequently write a Hessenberg function
h as ℎ = (ℎ(1), ℎ(2), . . . , ℎ(𝑛)). The regular nilpotent Hessenberg variety Hess(𝑁, ℎ) associated with
a Hessenberg function h is defined as

Hess(𝑁, ℎ) � {𝑉• ∈ 𝐹𝑙 (C𝑛) | 𝑁𝑉𝑖 ⊂ 𝑉ℎ (𝑖) for all 𝑖 = 1, 2, . . . , 𝑛}.

This object is a generalization of the Peterson variety Pet𝑛 since Hess(𝑁, ℎ) is equal to Pet𝑛 whenever
ℎ = (2, 3, 4, . . . , 𝑛, 𝑛). We also note that if ℎ = (𝑛, 𝑛, . . . , 𝑛), then Hess(𝑁, ℎ) = 𝐹𝑙 (C𝑛) by definition.
Recall that the flag variety 𝐹𝑙 (C𝑛) can be identified with GL𝑛 (C)/𝐵 where B is the set of upper triangular
matrices in GL𝑛 (C) so that the first j column vectors of a matrix 𝑔 ∈ GL𝑛 (C) generate the j-th vector
space 𝑉 𝑗 for 𝑗 ∈ [𝑛]. Under the identification 𝐹𝑙 (C𝑛) � GL𝑛 (C)/𝐵, one can write

Hess(𝑁, ℎ) = {𝑔𝐵 ∈ GL𝑛 (C)/𝐵 | 𝑔−1𝑁𝑔 ∈ 𝐻 (ℎ)},

where 𝐻 (ℎ) is the set of matrices (𝑎𝑖 𝑗 )𝑖, 𝑗∈[𝑛] such that 𝑎𝑖 𝑗 = 0 if 𝑖 > ℎ( 𝑗). (Note that a matrix
(𝑎𝑖 𝑗 )𝑖, 𝑗∈[𝑛] in 𝐻 (ℎ) is not necessarily invertible.) Since Ω◦

𝑒 is an affine open set in 𝐹𝑙 (C𝑛) which is
naturally identified with the set of lower triangular unipotent matrices, the intersection Hess(𝑁, ℎ) ∩Ω◦

𝑒

is described as

Hess(𝑁, ℎ) ∩Ω◦
𝑒 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝑔 =

��������

1
𝑥21 1
𝑥31 𝑥32 1
...

...
. . .

. . .

𝑥𝑛1 𝑥𝑛2 · · · 𝑥𝑛 𝑛−1 1

��������

�����������
(𝑔−1𝑁𝑔)𝑖 𝑗 = 0 for all

𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (1.3)

Motivated by this, we set

Z (𝑁, ℎ)𝑒 � SpecC[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/
(
(𝑔−1𝑁𝑔)𝑖 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛

)
.

We remark that this scheme can be regarded as a zero scheme of some section of certain vector bundle
over GL𝑛 (C)/𝐵, which is introduced in [1]. See Section 3 for the details.

We now generalize the matrix 𝑀̌𝑛 in equation (1.1) to the following matrix

𝑀𝑛 �

���������

𝑥1 𝑞12 𝑞13 · · · 𝑞1𝑛
−1 𝑥2 𝑞23 · · · 𝑞2𝑛

0
. . .

. . .
. . .

...
...

. . . −1 𝑥𝑛−1 𝑞𝑛−1 𝑛
0 · · · 0 −1 𝑥𝑛

���������
. (1.4)

https://doi.org/10.1017/fms.2024.142 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.142


4 T. Horiguchi and T. Shirato

Then we define the 𝑞𝑟𝑠-quantized elementary symmetric polynomial 𝐸 (𝑛)
𝑖 (1 ≤ 𝑖 ≤ 𝑛) in the polynomial

ring C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛] by the coefficient of 𝜆𝑛−𝑖 for the characteristic polynomial of
𝑀𝑛 multiplied by (−1)𝑖 , namely

det(𝜆𝐼𝑛 − 𝑀𝑛) = 𝜆𝑛 − 𝐸 (𝑛)
1 𝜆𝑛−1 + 𝐸 (𝑛)

2 𝜆𝑛−2 + · · · + (−1)𝑛𝐸 (𝑛)
𝑛 .

Note that by setting 𝑞𝑟𝑠 = 0 for 𝑠 − 𝑟 > 1 and 𝑞𝑠 𝑠+1 = 𝑞𝑠 , our polynomial 𝐸 (𝑛)
𝑖 is the (classical)

quantized elementary symmetric polynomial 𝐸̌ (𝑛)
𝑖 in C[𝑥1, . . . , 𝑥𝑛, 𝑞1, . . . , 𝑞𝑛−1]. For a Hessenberg

function ℎ : [𝑛] → [𝑛], we define ℎ𝐸 (𝑛)
𝑖 as the polynomial 𝐸 (𝑛)

𝑖 by setting 𝑞𝑟𝑠 = 0 for all 2 ≤ 𝑠 ≤ 𝑛
and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠):

ℎ𝐸 (𝑛)
𝑖 � 𝐸 (𝑛)

𝑖 |𝑞𝑟𝑠=0 (2≤𝑠≤𝑛 and 1≤𝑟 ≤𝑛−ℎ (𝑛+1−𝑠)) .

We will pictorially explain which variables 𝑞𝑟𝑠 are set to 0 in the definition of ℎ𝐸 (𝑛)
𝑖 in Example 4.11

and surrounding discussion. The main theorem of this paper is as follows:

Theorem 1.1. Let ℎ : [𝑛] → [𝑛] be a Hessenberg function. Then there is an isomorphism ofC-algebras

Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 ) �
C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]

(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 )
, (1.5)

where Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 ) is the set of global sections.

Note that we explicitly construct the isomorphism above. See Theorem 4.13 and Proposition 7.3 for
the correspondence. In particular, we see that our quantum parameters 𝑞𝑟𝑠’s correspond to polynomials
which define regular nilpotent Hessenberg varieties (up to signs). See Corollary 7.4.

As is well known, the cohomology ring 𝐻∗(𝐹𝑙 (C𝑛)) is isomorphic to the quotient of the polynomial
ring C[𝑥1, . . . , 𝑥𝑛] by the ideal generated by elementary symmetric polynomials, so the following is a
consequence of Theorem 1.1.

Corollary 1.2. There is an isomorphism of C-algebras

Γ(Z (𝑁, 𝑖𝑑)𝑒,OZ (𝑁 ,𝑖𝑑)𝑒 ) � 𝐻∗(𝐹𝑙 (C𝑛)).

We say that a Hessenberg function ℎ : [𝑛] → [𝑛] is indecomposable if it satisfies ℎ( 𝑗) > 𝑗 for all
𝑗 ∈ [𝑛 − 1]. It is known from [1, Proposition 3.6] that if h is indecomposable, then the affine scheme
Z (𝑁, ℎ)𝑒 is reduced. Therefore, we can conclude the following result from Theorem 1.1.

Corollary 1.3. If ℎ : [𝑛] → [𝑛] is an indecomposable Hessenberg function, then there is an isomor-
phism of C-algebras

C[Hess(𝑁, ℎ) ∩Ω◦
𝑒] �

C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]

(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 )
,

where C[Hess(𝑁, ℎ) ∩Ω◦
𝑒] is the coordinate ring of the open set Hess(𝑁, ℎ) ∩Ω◦

𝑒 in Hess(𝑁, ℎ).

The isomorphism in Corollary 1.3 is a natural generalization of equation (1.2) since the Hessenberg
function ℎ = (2, 3, 4, . . . , 𝑛, 𝑛) which defines the Peterson variety Pet𝑛 is indecomposable. In particular,
our proof gives an elementary proof for Peterson’s statement via the presentation for the quantum
cohomology 𝑄𝐻∗(𝐹𝑙 (C𝑛)) given by [16, 22].

We next apply Corollary 1.3 to the study of the singular locus of the open set Hess(𝑁, ℎ) ∩ Ω◦
𝑒

in Hess(𝑁, ℎ) for some Hessenberg functions h. There are partial results for studying singularities of
Hessenberg varieties in [3, 15, 26]. Indeed, an explicit presentation of the singular locus for the Peteson
variety Pet𝑛 is given by [26]. The singular locus for nilpotent Hessenberg varieties of codimension
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one in the flag variety 𝐹𝑙 (C𝑛) is explicitly described in [15]. Also, a recent paper [3] combinatorially
determines which permutation flags in arbitrary regular nilpotent Hessenberg variety Hess(𝑁, ℎ) are
singular points. We focus on the following Hessenberg function

ℎ𝑚 = (𝑚, 𝑛, . . . , 𝑛) for 2 ≤ 𝑚 ≤ 𝑛 − 1. (1.6)

We derive an explicit presentation of the singular locus of Hess(𝑁, ℎ𝑚) from Corollary 1.3. For this
purpose, we first study the singular locus of Hess(𝑁, ℎ2). More precisely, we show that the singularity
of Hess(𝑁, ℎ2) ∩Ω◦

𝑒 is related with a cyclic quotient singularity. We briefly explain the cyclic quotient
singularity. Let ℭ𝑛 be the cyclic group of order n generated by 𝜁 , where 𝜁 is a primitive n-th root of
unity. Define the action of ℭ𝑛 on C2 by 𝜁 · (𝑥, 𝑦) = (𝜁𝑥, 𝜁−1𝑦) for 𝜁 ∈ ℭ𝑛 and (𝑥, 𝑦) ∈ C2. Then, the
quotient space C2/ℭ𝑛 is called the cyclic quotient singularity or the type 𝐴𝑛−1-singularity.

Theorem 1.4. There is an isomorphism

Hess(𝑁, ℎ2) ∩Ω◦
𝑒 � C

2/ℭ𝑛 × C
1
2 (𝑛−1) (𝑛−2)−1,

where ℎ2 = (2, 𝑛, . . . , 𝑛).

Recall that Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒 is given in equation (1.3). As a corollary of Theorem 1.4, one can give

the singular locus of Hess(𝑁, ℎ2) ∩ Ω◦
𝑒 as the solution set of the equations 𝑥𝑖1 = 0 for 2 ≤ 𝑖 ≤ 𝑛 and

𝑥𝑛2 = 0. Combining this description and Corollary 1.3, we can explicitly describe the singular locus of
Hess(𝑁, ℎ𝑚) ∩Ω◦

𝑒 as follows.

Theorem 1.5. Let ℎ𝑚 be the Hessenberg function defined in equation (1.6) for 2 ≤ 𝑚 ≤ 𝑛 − 1. Then,
the singular locus of Hess(𝑁, ℎ𝑚) ∩Ω◦

𝑒 is described as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝑔 =

��������

1
𝑥21 1
𝑥31 𝑥32 1
...

...
. . .

. . .

𝑥𝑛1 𝑥𝑛2 · · · 𝑥𝑛 𝑛−1 1

��������

�����������
𝑥𝑖1 = 0 for all 2 ≤ 𝑖 ≤ 𝑛

and 𝑥𝑛 𝑗 = 0 for all 2 ≤ 𝑗 ≤ 𝑚

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

The explicit presentation in Theorem 1.5 is certain Schubert variety in the open set Ω◦
𝑒, as explained

below. Let 𝔖𝑛 be the permutation group on [𝑛]. For 𝑤 ∈ 𝔖𝑛, the Schubert variety 𝑋𝑤 is defined by

𝑋𝑤 = {𝑉• ∈ 𝐹𝑙 (C𝑛) | dim(𝑉𝑝 ∩ 𝐹𝑞) ≥ |{𝑖 ∈ [𝑝] | 𝑤(𝑖) ≤ 𝑞}| for all 𝑝, 𝑞 ∈ [𝑛]},

where 𝐹• = (𝐹𝑖)𝑖 is the standard flag, that is, 𝐹𝑖 = spanC{𝑒1, . . . , 𝑒𝑖} and 𝑒1, . . . , 𝑒𝑛 are the standard
basis of C𝑛. For 2 ≤ 𝑚 ≤ 𝑛 − 1, we define the permutation 𝑤𝑚 ∈ 𝔖𝑛 by

𝑤𝑚 � 1 𝑛 − 1 𝑛 − 2 · · · 𝑛 − 𝑚 + 1 𝑛 𝑛 − 𝑚 𝑛 − 𝑚 − 1 · · · 2

in one-line notation. (See also equation (10.6).) Then one can see that

𝑋𝑤𝑚 = {𝑉• ∈ 𝐹𝑙 (C𝑛) | 𝑉1 = 𝐹1 and 𝑉𝑚 ⊂ 𝐹𝑛−1},

so we obtain the following result from Theorem 1.5.

Corollary 1.6. Let 2 ≤ 𝑚 ≤ 𝑛 − 1. Then, the singular locus of Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒 is equal to

Sing(Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒) = 𝑋𝑤𝑚 ∩Ω◦

𝑒 .

The paper is organized as follows. After reviewing the definition of Hessenberg varieties and their
defining equations in Section 2, we focus on regular nilpotent Hessenberg varieties in Section 3. Then we
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state the main theorem (Theorem 4.13) in Section 4. In Section 5, we show that the homomorphism (1.5)
is well defined and surjective. In order to prove that it is in fact an isomorphism, we use the commutative
algebra’s tool of Hilbert series and regular sequences. More specifically, we define certain degrees for
the variables {𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛} appeared in equation (1.3) and {𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛}
introduced in equation (1.4) so that the two sides of equation (1.5) are graded C-algebras in Section 6.
We give a proof of our main theorem in Section 7. Next, turning our attention to the singular locus
of Hess(𝑁, ℎ𝑚) ∩ Ω◦

𝑒, where ℎ𝑚 is defined in equation (1.6), we give an explicit formula for partial
derivatives 𝜕

𝜕𝑥𝑠
ℎ𝐸 (𝑛)

𝑖 and 𝜕
𝜕𝑞𝑟𝑠

ℎ𝐸 (𝑛)
𝑖 in Section 8. Then we relate the singularity of Hess(𝑁, ℎ2) ∩ Ω◦

𝑒

to the cyclic quotient singularity (Theorem 9.7) in Section 9. One can see that this fact yields an explicit
description for the singular locus of Hess(𝑁, ℎ2) ∩Ω◦

𝑒 (Corollary 9.9). In Section 10, we generalize this
result to the singular locus of Hess(𝑁, ℎ𝑚)∩Ω◦

𝑒 (Theorem 10.1) by using our main theorem together with
the computations for partial derivatives 𝜕

𝜕𝑥𝑠
ℎ𝐸 (𝑛)

𝑖 and 𝜕
𝜕𝑞𝑟𝑠

ℎ𝐸 (𝑛)
𝑖 . We also see that the singular locus

of Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒 is equal to the intersection of the Schubert variety 𝑋𝑤𝑚 and Ω◦

𝑒 (Corollary 10.2).

2. Hessenberg varieties

In this section, we recall the definitions of Hessenberg varieties in type 𝐴𝑛−1 and their defining equations.
We use the notation [𝑛] � {1, 2, . . . , 𝑛} throughout this paper.

Let n be a positive integer. A Hessenberg function is a function ℎ : [𝑛] → [𝑛] satisfying the following
two conditions

1. ℎ(1) ≤ ℎ(2) ≤ · · · ≤ ℎ(𝑛);
2. ℎ( 𝑗) ≥ 𝑗 for all 𝑗 ∈ [𝑛].

Note that ℎ(𝑛) = 𝑛 by definition. We frequently denote a Hessenberg function by listing its values in
sequence, namely ℎ = (ℎ(1), ℎ(2), . . . , ℎ(𝑛)). It is useful to see a Hessenberg function h pictorially by
drawing a configuration of boxes on a square grid of size 𝑛 × 𝑛 whose shaded boxes consist of boxes in
the i-th row and the j-th column such that 𝑖 ≤ ℎ( 𝑗) for 𝑖, 𝑗 ∈ [𝑛].

Example 2.1. Let 𝑛 = 5. Then, ℎ = (3, 3, 4, 5, 5) is a Hessenberg function and the configuration of the
shaded boxes is shown in Figure 1.

Let 𝔤𝔩𝑛 (C) be the set of 𝑛 × 𝑛 matrices. For a Hessenberg function h, we define

𝐻 (ℎ) � {(𝑎𝑖 𝑗 )𝑖, 𝑗∈[𝑛] ∈ 𝔤𝔩𝑛 (C) | 𝑎𝑖 𝑗 = 0 if 𝑖 > ℎ( 𝑗)}, (2.1)

which is called the Hessenberg space associated to h.
The (full) flag variety 𝐹𝑙 (C𝑛) is the set of nested complex linear subspaces of C𝑛:

𝐹𝑙 (C𝑛) � {𝑉• � (𝑉1 ⊂ 𝑉2 ⊂ · · · ⊂ 𝑉𝑛 = C𝑛) | dimC𝑉𝑖 = 𝑖 for all 𝑖 ∈ [𝑛]}.

Let B be the set of upper triangular matrices in the general linear group GL𝑛 (C). As is well known, the
flag variety 𝐹𝑙 (C𝑛) can be identified with GL𝑛 (C)/𝐵. Indeed, each flag𝑉• ∈ 𝐹𝑙 (C𝑛) is determined by a
matrix g whose first j column vectors generate the j-th vector space 𝑉 𝑗 for 𝑗 ∈ [𝑛]. The correspondence

Figure 1. The configuration corresponding to ℎ = (3, 3, 4, 5, 5)
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𝑔𝐵 ↦→ 𝑉• above gives the identification 𝐹𝑙 (C𝑛) � GL𝑛 (C)/𝐵. For a linear operator 𝐴 : C𝑛 → C𝑛 and
a Hessenberg function ℎ : [𝑛] → [𝑛], the Hessenberg variety Hess(𝐴, ℎ) is defined to be the following
subvariety of the flag variety 𝐹𝑙 (C𝑛):

Hess(𝐴, ℎ) � {𝑉• ∈ 𝐹𝑙 (C𝑛) | 𝐴𝑉𝑖 ⊂ 𝑉ℎ (𝑖) for all 𝑖 ∈ [𝑛]}. (2.2)

Hessenberg varieties are introduced in [11, 12]. Note that if ℎ = (𝑛, 𝑛, . . . , 𝑛), then Hess(𝐴, ℎ) = 𝐹𝑙 (C𝑛).
By identifying 𝐹𝑙 (C𝑛) with GL𝑛 (C)/𝐵, we can write the definition above as

Hess(𝐴, ℎ) = {𝑔𝐵 ∈ GL𝑛 (C)/𝐵 | 𝑔−1𝐴𝑔 ∈ 𝐻 (ℎ)}, (2.3)

where 𝐻 (ℎ) is the Hessenberg space defined in equation (2.1).

Definition 2.2. Let 𝐴 ∈ 𝔤𝔩𝑛 (C) and 𝑖, 𝑗 ∈ [𝑛]. We define a polynomial 𝐹𝐴
𝑖, 𝑗 on GL𝑛 (C) by

𝐹𝐴
𝑖, 𝑗 (𝑔) � det(𝑣1 . . . 𝑣𝑖−1 𝐴𝑣 𝑗 𝑣𝑖+1 . . . 𝑣𝑛),

where 𝑔 = (𝑣1 . . . 𝑣𝑛) ∈ GL𝑛 (C) is the decomposition into column vectors. In other words, the
polynomial 𝐹𝐴

𝑖, 𝑗 (𝑔) is the determinant of the matrix obtained from g by replacing the i-th column vector
of g to the j-th column vector of 𝐴𝑔.

Lemma 2.3. Let 𝐴 ∈ 𝔤𝔩𝑛 (C). For 𝑔 ∈ GL𝑛 (C) and 𝑖, 𝑗 ∈ [𝑛], we have

1
det(𝑔)

𝐹𝐴
𝑖, 𝑗 (𝑔) = (𝑔−1𝐴𝑔)𝑖 𝑗 ,

where (𝑔−1𝐴𝑔)𝑖 𝑗 denotes the (𝑖, 𝑗)-th entry of the matrix 𝑔−1𝐴𝑔. In particular, we have

Hess(𝐴, ℎ) = {𝑔𝐵 ∈ GL𝑛 (C)/𝐵 | 𝐹𝐴
𝑖, 𝑗 (𝑔) = 0 for all 1 ≤ 𝑗 ≤ 𝑛 − 1 and ℎ( 𝑗) < 𝑖 ≤ 𝑛}.

Proof. Let 𝑐𝑖 𝑗 be the (𝑖, 𝑗) cofactor of g, namely 𝑐𝑖 𝑗 is obtained by multiplying the (𝑖, 𝑗) minor of g by
(−1)𝑖+ 𝑗 . Set 𝑔̃ = (𝑐𝑖 𝑗 )

𝑡
𝑖, 𝑗∈[𝑛]

= (𝑐 𝑗𝑖)𝑖, 𝑗∈[𝑛] . Since 𝑔−1 = 1
det(𝑔) 𝑔̃, it suffices to show that

𝐹𝐴
𝑖, 𝑗 (𝑔) = (𝑔̃𝐴𝑔)𝑖 𝑗 . (2.4)

We write 𝑔 = (𝑣1 . . . 𝑣𝑛) and 𝐴𝑣 𝑗 = (𝑏1 𝑗 , . . . , 𝑏𝑛 𝑗 )
𝑡 . By the definition of 𝑔̃, we have

(𝑔̃ · 𝐴𝑔)𝑖 𝑗 =
𝑛∑
𝑘=1

𝑐𝑘𝑖𝑏𝑘 𝑗 = det(𝑣1 . . . 𝑣𝑖−1 𝐴𝑣 𝑗 𝑣𝑖+1 . . . 𝑣𝑛),

where we used the cofactor expansion along the i-th column for the last equality. This yields equation
(2.4) as desired. The latter statement follows from the former statement and equation (2.3). �

3. Regular nilpotent Hessenberg varieties

In this section, we review geometric properties for regular nilpotent Hessenberg varieties.
Let N be a regular nilpotent element in 𝔤𝔩𝑛 (C), that is, a matrix whose Jordan canonical form

consists of exactly one Jordan block with corresponding eigenvalue equal to 0. For a Hessenberg
function h, Hess(𝑁, ℎ) is called the regular nilpotent Hessenberg variety. If ℎ = (2, 3, 4, . . . , 𝑛, 𝑛), then
Pet𝑛 � Hess(𝑁, ℎ = (2, 3, 4, . . . , 𝑛, 𝑛)) is called the Peterson variety, which is an object of an intense
study by Dale Peterson [31]. Surprisingly, the Peterson variety is related with the quantum cohomology
of the flag variety ([29, 32]). We will explain the relation in Section 4. For any 𝑝 ∈ GL𝑛 (C), one can
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�

Figure 2. The decomposition of ℎ = (2, 3, 3, 5, 5) into ℎ1 = (2, 3, 3) and ℎ2 = (2, 2)

see that Hess(𝑁, ℎ) � Hess(𝑝−1𝑁𝑝, ℎ) which sends 𝑔𝐵 to 𝑝−1𝑔𝐵. Thus, we may assume that N is in
Jordan form:

𝑁 =

������
0 1

. . .
. . .

0 1
0

������
. (3.1)

We summarize geometric properties of Hess(𝑁, ℎ) as follows.
Theorem 3.1 [5, 26, 29, 34]. Let Pet𝑛 be the Peterson variety. Let Hess(𝑁, ℎ) be the regular nilpotent
Hessenberg variety associated with a Hessenberg function h.

(i) The Peterson variety Pet𝑛 is singular for 𝑛 ≥ 3. Also, Pet𝑛 is normal if and only if 𝑛 ≤ 3.
(ii) The complex dimension of Hess(𝑁, ℎ) is given by

∑𝑛
𝑗=1 (ℎ( 𝑗) − 𝑗). In particular, we have

dimC Pet𝑛 = 𝑛 − 1.
(iii) Hess(𝑁, ℎ) is irreducible.

As a property of regular nilpotent Hessenberg varieties, a special case of Hess(𝑁, ℎ) can be decom-
posed into a product of smaller regular nilpotent Hessenberg varieties, as explained below. To explain
this, we first recall the following terminology from [13, Definition 4.4].
Definition 3.2. A Hessenberg function h is decomposable if ℎ( 𝑗) = 𝑗 for some 𝑗 ∈ [𝑛−1]. A Hessenberg
function h is indecomposable if ℎ( 𝑗) > 𝑗 for all 𝑗 ∈ [𝑛 − 1]. Note that an indecomposable Hessenberg
function h satisfies ℎ(𝑛 − 1) = ℎ(𝑛) = 𝑛.

If h is a decomposable Hessenberg function, that is, ℎ( 𝑗) = 𝑗 for some 𝑗 ∈ [𝑛 − 1], then the
Hessenberg function h can be decomposed into two smaller Hessenberg functions ℎ1 and ℎ2 defined by
ℎ1 = (ℎ(1), . . . , ℎ( 𝑗)) and ℎ2 = (ℎ( 𝑗 + 1) − 𝑗 , . . . , ℎ(𝑛) − 𝑗) as shown in Figure 2.

Then, every 𝑉• ∈ Hess(𝑁, ℎ) has 𝑉 𝑗 = spanC{𝑒1, . . . , 𝑒 𝑗 }, where 𝑒1, . . . , 𝑒𝑛 denote the standard
basis of C𝑛 and hence we have

Hess(𝑁, ℎ) � Hess(𝑁1, ℎ1) × Hess(𝑁2, ℎ2), (3.2)

where 𝑁1 and 𝑁2 are the regular nilpotent matrices in Jordan canonical form of size j and 𝑛 − 𝑗 ,
respectively ([13, Theorem 4.5]).

In a recent paper, Abe–Insko gave the condition that Hess(𝑁, ℎ) is normal as follows.
Theorem 3.3. ([3, Theorem 1.3]) Let h be an indecomposable Hessenberg function. Then the regular
nilpotent Hessenberg variety Hess(𝑁, ℎ) is normal if and only if h satisfies the condition that ℎ(𝑖−1) > 𝑖
or ℎ(𝑖) > 𝑖 + 1 for all 1 < 𝑖 < 𝑛 − 1.

There is a natural partial order on Hessenberg functions. For two Hessenberg functions ℎ : [𝑛] → [𝑛]
and ℎ′ : [𝑛] → [𝑛], we say ℎ′ ⊂ ℎ if ℎ′( 𝑗) ≤ ℎ( 𝑗) for all 𝑗 ∈ [𝑛]. Note that if ℎ′ ⊂ ℎ, then Hess(𝑁, ℎ′)
is a closed subvariety of Hess(𝑁, ℎ) by the definition (2.2). Since ℎ = (2, 3, 4, . . . , 𝑛, 𝑛) is the minimal
Hessenberg function among indecomposable Hessenberg functions with respect to the partial order ⊂,
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the Peterson variety Pet𝑛 is the minimal Hessenberg variety among indecomposable regular nilpotent
Hessenberg varieties with respect to the inclusion.

Let h be a Hessenberg function. One can see that the Hessenberg space 𝐻 (ℎ) in equation (2.1) is
stable under the adjoint action of B, so this induces a B-action on the quotient space 𝔤𝔩𝑛 (C)/𝐻 (ℎ). We
denote by 𝑥 the image of 𝑥 ∈ 𝔤𝔩𝑛 (C) under the surjection 𝔤𝔩𝑛 (C) → 𝔤𝔩𝑛 (C)/𝐻 (ℎ). In [1], we consider
the vector bundle GL𝑛 (C) ×𝐵 (𝔤𝔩𝑛 (C)/𝐻 (ℎ)) over the flag variety GL𝑛 (C)/𝐵 and its section 𝑠𝐴 for
𝐴 ∈ 𝔤𝔩𝑛 (C) defined by

𝑠𝐴 : GL𝑛 (C)/𝐵 → GL𝑛 (C) ×𝐵 (𝔤𝔩𝑛 (C)/𝐻 (ℎ)); 𝑔𝐵 ↦→ [𝑔, 𝑔−1𝐴𝑔],

where we denote by [𝑔, 𝑥] the image of (𝑔, 𝑥) ∈ GL𝑛 (C) × (𝔤𝔩𝑛 (C)/𝐻 (ℎ)) under the surjection
GL𝑛 (C) × (𝔤𝔩𝑛 (C)/𝐻 (ℎ)) → GL𝑛 (C) ×𝐵 (𝔤𝔩𝑛 (C)/𝐻 (ℎ)) such that [𝑔, 𝑥] = [𝑔𝑏, 𝑏−1𝑥𝑏] for all 𝑏 ∈ 𝐵.
By the definition (2.3), one can see that the zero set of 𝑠𝐴 is the Hessenberg variety Hess(𝐴, ℎ).

In general, let 𝜋 : 𝐸 → 𝑋 be a vector bundle of rank r over a scheme X. If s is a section of E, then
the zero scheme Z (𝑠) of s is defined as follows (cf. [20]). Let (𝑈𝑖 , 𝜑𝑖)𝑖 be a local trivialization of E, that
is, an open covering {𝑈𝑖}𝑖 of X and isomorphisms 𝜑𝑖 of 𝜋−1 (𝑈𝑖) with 𝑈𝑖 × C

𝑟 over 𝑈𝑖 such that the
composites 𝜑𝑖 ◦ 𝜑−1

𝑗 are linear. Let 𝑠𝑖 : 𝑈𝑖 → C
𝑟 determine the section s on 𝑈𝑖 , 𝑠𝑖 = (𝑠𝑖1 , . . . , 𝑠𝑖𝑟 ), 𝑠𝑖𝑚

in the coordinate ring of 𝑈𝑖; then Z (𝑠) is defined in 𝑈𝑖 by the ideal generated by 𝑠𝑖1 , . . . , 𝑠𝑖𝑟 .
Motivated by the discussion above, we use the following definition introduced in [1].

Definition 3.4. ([1, Definition 3.1]) Let 𝑁 ∈ 𝔤𝔩𝑛 (C) be the regular nilpotent element in equation (3.1).
For a Hessenberg function h, let Z (𝑁, ℎ) denote the zero scheme in GL𝑛 (C)/𝐵 of the section 𝑠𝑁 .

Locally around 𝑔𝐵 ∈ GL𝑛 (C)/𝐵, the section 𝑠𝑁 is represented by a collection of regular functions,
and the schemeZ (𝑁, ℎ) is locally the zero scheme of those functions. (See [1, Lemma 3.4] for the detail.)

Theorem 3.5. ([1, Proposition 3.6]) If h is an indecomposable Hessenberg function, then the zero
scheme Z (𝑁, ℎ) of the section 𝑠𝑁 is reduced.

We analyze the intersection of Hess(𝑁, ℎ) and the opposite Schubert cell Ω◦
𝑒 associated with the

identity element e. Recall that Ω◦
𝑒 is the 𝐵−-orbit of the identity flag 𝑒𝐵/𝐵 in GL𝑛 (C)/𝐵, where 𝐵−

denotes the set of lower triangular matrices in GL𝑛 (C). In particular, each flag 𝑉• ∈ Ω◦
𝑒 has 𝑉 𝑗 spanned

by the first j columns of a matrix with 1’s in the diagonal positions and 0’s to the right of these 1’s
(cf. [19, Section 10.2]). Thus, one can see that the opposite Schubert cell Ω◦

𝑒 can be regarded as the
following affine space:

Ω◦
𝑒 �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
��������

1
𝑥21 1
𝑥31 𝑥32 1
...

...
. . .

. . .

𝑥𝑛1 𝑥𝑛2 · · · 𝑥𝑛 𝑛−1 1

��������

�����������
𝑥𝑖 𝑗 ∈ C (1 ≤ 𝑗 < 𝑖 ≤ 𝑛)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
� C

1
2 𝑛(𝑛−1) .

Note that Ω◦
𝑒 is an affine open set of the flag variety GL𝑛 (C)/𝐵 and its coordinate ring is isomorphic to

the polynomial ring C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]. Thus, we may identify Ω◦
𝑒 as SpecC[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛].

From now on, we write

𝐹𝑖, 𝑗 � 𝐹𝑁
𝑖, 𝑗 (𝑔) for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛 where 𝑔 =

��������

1
𝑥21 1
𝑥31 𝑥32 1
...

...
. . .

. . .

𝑥𝑛1 𝑥𝑛2 · · · 𝑥𝑛 𝑛−1 1

��������
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for simplicity. Since the first column vector of 𝑁𝑔 is (𝑥21, 𝑥31, 𝑥41, . . . , 𝑥𝑛1, 0)𝑡 and the j-th column
vector of 𝑁𝑔 is (0, . . . , 0︸���︷︷���︸

𝑗−2

, 1, 𝑥 𝑗+1 𝑗 , . . . , 𝑥𝑛 𝑗 , 0︸������������������︷︷������������������︸
𝑛− 𝑗+2

)𝑡 for 𝑗 ≥ 2, we can explicitly write

𝐹𝑖,1 =

�������������

1 0 · · · 0 𝑥21

𝑥21 1
. . .

... 𝑥31
... 𝑥32

. . . 0
...

...
...

. . . 1
...

𝑥𝑖1 𝑥𝑖2 · · · 𝑥𝑖 𝑖−1 𝑥𝑖+1 1

�������������
for 𝑗 = 1; (3.3)

𝐹𝑖, 𝑗 =

�������������

1 0 · · · 0 1

𝑥 𝑗 𝑗−1 1
. . .

... 𝑥 𝑗+1 𝑗

𝑥 𝑗+1 𝑗−1 𝑥 𝑗+1 𝑗
. . . 0

...
...

...
. . . 1

...
𝑥𝑖 𝑗−1 𝑥𝑖 𝑗 · · · 𝑥𝑖 𝑖−1 𝑥𝑖+1 𝑗

�������������
for 𝑗 ≥ 2 (3.4)

from Definition 2.2. Here, we take the convention that 𝑥𝑛+1 𝑗 = 0. The determinant of 𝑔 ∈ Ω◦
𝑒 is 1, so

we have

𝐹𝑖, 𝑗 = 𝐹𝑁
𝑖, 𝑗 (𝑔) = (𝑔−1𝑁𝑔)𝑖 𝑗 for 𝑔 ∈ Ω◦

𝑒 (3.5)

by Lemma 2.3. We set

Z (𝑁, ℎ)𝑒 �Z (𝑁, ℎ) ∩ SpecC[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛] (3.6)
=SpecC[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/((𝑔−1𝑁𝑔)𝑖 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛).

By the discussion above, we have the following.

Proposition 3.6. Let h be a Hessenberg function. Then

Z (𝑁, ℎ)𝑒 = SpecC[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛).

In other words, the set of global sections Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 ) is given by

Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 ) � C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛). (3.7)

In particular, if h is indecomposable, then the coordinate ring C[Hess(𝑁, ℎ) ∩ Ω◦
𝑒] of the open set

Hess(𝑁, ℎ) ∩Ω◦
𝑒 in Hess(𝑁, ℎ) is

C[Hess(𝑁, ℎ) ∩Ω◦
𝑒] = C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 2] and ℎ( 𝑗) < 𝑖 ≤ 𝑛) (3.8)

by Theorem 3.5.

4. The main theorem

It can be extracted from Peterson’s statements in [31] that the coordinate ringC[Pet𝑛 ∩Ω◦
𝑒] is isomorphic

to the quantum cohomology ring of the flag variety 𝑄𝐻∗(𝐹𝑙 (C𝑛)). This result is unpublished, so we also
refer the reader to [29, 32] for the result. In this section, we first review an explicit presentation for the
quantum cohomology ring 𝑄𝐻∗(𝐹𝑙 (C𝑛)) given by [16, 22]. Then we introduce a further quantization of
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the ring presentation for𝑄𝐻∗(𝐹𝑙 (C𝑛)) in natural way. Our main theorem relates Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 )

and our quantized ring presentation.
The quantum cohomology ring of the flag variety 𝑄𝐻∗(𝐹𝑙 (C𝑛)) is given by

𝑄𝐻∗(𝐹𝑙 (C𝑛)) = C[𝑞1, . . . , 𝑞𝑛−1] ⊗C 𝐻∗(𝐹𝑙 (C𝑛))

as C-vector spaces. Here, 𝑞1, . . . , 𝑞𝑛−1 are called the quantum parameters. The product structure of
𝑄𝐻∗(𝐹𝑙 (C𝑛)) is a certain deformation of the cup product in the ordinary cohomology 𝐻∗(𝐹𝑙 (C𝑛)). In
order to describe an explicit presentation for 𝑄𝐻∗(𝐹𝑙 (C𝑛)), we need quantized elementary symmetric
polynomials. Consider the matrix

𝑀̌𝑛 �

����������

𝑥1 𝑞1 0 · · · 0

−1 𝑥2 𝑞2
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 𝑥𝑛−1 𝑞𝑛−1

0 · · · 0 −1 𝑥𝑛

����������
,

and define quantized elementary symmetric polynomials 𝐸̌ (𝑛)
1 , . . . , 𝐸̌ (𝑛)

𝑛 in the polynomial ring
C[𝑥1, . . . , 𝑥𝑛, 𝑞1, . . . , 𝑞𝑛−1] by the following equation

det(𝜆𝐼𝑛 − 𝑀̌𝑛) = 𝜆𝑛 − 𝐸̌ (𝑛)
1 𝜆𝑛−1 + 𝐸̌ (𝑛)

2 𝜆𝑛−2 + · · · + (−1)𝑛𝐸̌ (𝑛)
𝑛 ,

where 𝐼𝑛 is the identity matrix of size n. By using the cofactor expansion along the s-th column for
det(𝜆𝐼𝑠 − 𝑀̌𝑠), we have

det(𝜆𝐼𝑠 − 𝑀̌𝑠) = (𝜆 − 𝑥𝑠) det(𝜆𝐼𝑠−1 − 𝑀̌𝑠−1) + 𝑞𝑠−1 det(𝜆𝐼𝑠−2 − 𝑀̌𝑠−2).

This implies the following recursive formula

𝐸̌ (𝑠)
𝑟 = 𝐸̌ (𝑠−1)

𝑟 + 𝐸̌ (𝑠−1)
𝑟−1 𝑥𝑠 + 𝐸̌ (𝑠−2)

𝑟−2 𝑞𝑠−1 for 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛,

where we take the convention that 𝐸̌ (𝑠−1)
0 = 1, 𝐸̌ (𝑠−2)

−1 = 0 whenever 𝑟 = 1 and 𝐸̌ (𝑠−1)
𝑠 = 0 whenever

𝑟 = 𝑠. By setting 𝑞𝑠 = 0 for all 𝑠 ∈ [𝑛− 1], 𝐸̌ (𝑛)
𝑖 is the (ordinary) i-th elementary symmetric polynomial

in the variables 𝑥1, . . . , 𝑥𝑛.

Theorem 4.1 [16, 22]. There is an isomorphism of C-algebras

𝑄𝐻∗(𝐹𝑙 (C𝑛)) � C[𝑥1, . . . , 𝑥𝑛, 𝑞1, . . . , 𝑞𝑛−1]/(𝐸̌
(𝑛)
1 , . . . , 𝐸̌ (𝑛)

𝑛 ). (4.1)

Remark 4.2. The isomorphism above is stated in [22, Theorem 1] for integral coefficients. An explicit
presentation of the quantum cohomology ring of partial flag varieties is given by [6, 17, 28].

Remark 4.3. By setting 𝑞𝑠 = 0 for all 𝑠 ∈ [𝑛 − 1], the isomorphism (4.1) yields the well-known
presentation for the (ordinary) cohomology ring of 𝐹𝑙 (C𝑛). Note that 𝑥𝑖 is geometrically the first Chern
class of the dual of the i-th tautological line bundle over 𝐹𝑙 (C𝑛). See, for example, [19, Section 10.2,
Proposition 3].

Theorem 4.4 (D. Peterson and [29, 32]). There is an isomorphism of C-algebras

C[Pet𝑛 ∩Ω◦
𝑒] � 𝑄𝐻∗(𝐹𝑙 (C𝑛)).
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Remark 4.5. Although we restricted the above discussion to the case of the full flag variety, the
isomorphism above is in fact stated in [32, Theorem 4.2] for partial flag varieties. We also refer the
reader to a recent paper [10] for general Lie types.

By Theorems 4.1 and 4.4, we obtain an isomorphism

C[Pet𝑛 ∩Ω◦
𝑒] � C[𝑥1, . . . , 𝑥𝑛, 𝑞1, . . . , 𝑞𝑛−1]/(𝐸̌

(𝑛)
1 , . . . , 𝐸̌ (𝑛)

𝑛 ) (4.2)

as C-algebras. One can see from [32, Theorems 3.3 and 4.2] that the isomorphism above sends 𝑥𝑖 𝑗 to
𝐸̌

(𝑛− 𝑗)
𝑖− 𝑗 under the presentation (3.8) for ℎ = (2, 3, 4, . . . , 𝑛, 𝑛). We generalize equation (4.2) to arbitrary

Hessenberg function h.

Definition 4.6. Consider the matrix

𝑀𝑛 �

���������

𝑥1 𝑞12 𝑞13 · · · 𝑞1𝑛
−1 𝑥2 𝑞23 · · · 𝑞2𝑛

0
. . .

. . .
. . .

...
...

. . . −1 𝑥𝑛−1 𝑞𝑛−1 𝑛
0 · · · 0 −1 𝑥𝑛

���������
,

and define 𝑞𝑟𝑠-quantized elementary symmetric polynomials 𝐸 (𝑛)
1 , . . . , 𝐸 (𝑛)

𝑛 in the polynomial ring
C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛] by the following equation

det(𝜆𝐼𝑛 − 𝑀𝑛) = 𝜆𝑛 − 𝐸 (𝑛)
1 𝜆𝑛−1 + 𝐸 (𝑛)

2 𝜆𝑛−2 + · · · + (−1)𝑛𝐸 (𝑛)
𝑛 .

In other words, 𝐸 (𝑛)
𝑖 is the coefficient of 𝜆𝑛−𝑖 for det(𝜆𝐼𝑛 − 𝑀𝑛) multiplied by (−1)𝑖 .

Remark 4.7. If 𝑞𝑟𝑠 = 0 for 𝑠−𝑟 > 1 and 𝑞𝑠 𝑠+1 = 𝑞𝑠 , then the polynomial 𝐸 (𝑛)
𝑖 is equal to the (classical)

quantized elementary symmetric polynomial 𝐸̌ (𝑛)
𝑖 in the polynomial ring C[𝑥1, . . . , 𝑥𝑛, 𝑞1, . . . , 𝑞𝑛−1].

Lemma 4.8. For 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛, we have

𝐸 (𝑠)
𝑟 = 𝐸 (𝑠−1)

𝑟 + 𝐸 (𝑠−1)
𝑟−1 𝑥𝑠 +

𝑟−1∑
𝑘=1

𝐸 (𝑠−1−𝑘)
𝑟−1−𝑘 𝑞𝑠−𝑘 𝑠

with the convention that 𝐸 (∗)

0 = 1 for arbitrary ∗,
∑𝑟−1
𝑘=1 𝐸 (𝑠−1−𝑘)

𝑟−1−𝑘 𝑞𝑠−𝑘 𝑠 = 0 whenever 𝑟 = 1, and
𝐸 (𝑠−1)
𝑠 = 0 whenever 𝑟 = 𝑠.

Proof. It follows from the cofactor expansion along the s-th column for det(𝜆𝐼𝑠−𝑀𝑠) that det(𝜆𝐼𝑠−𝑀𝑠)

is equal to

(−1)𝑠+2𝑞1𝑠 + (−1)𝑠+3𝑞2𝑠 det(𝜆𝐼1 − 𝑀1) + · · · + (−1)𝑠+𝑠𝑞𝑠−1 𝑠 det(𝜆𝐼𝑠−2 − 𝑀𝑠−2) (4.3)
+ (−1)𝑠+𝑠 (𝜆 − 𝑥𝑠) det(𝜆𝐼𝑠−1 − 𝑀𝑠−1).

Since we have

det(𝜆𝐼𝑘 − 𝑀𝑘 ) = 𝜆𝑘 − 𝐸 (𝑘)
1 𝜆𝑘−1 + 𝐸 (𝑘)

2 𝜆𝑘−2 + · · · + (−1)𝑘𝐸 (𝑘)
𝑘

for each 1 ≤ 𝑘 ≤ 𝑠 − 1 by the definition, the coefficient of 𝜆𝑠−𝑟 for equation (4.3) is given by

(−1)𝑟𝑞𝑠−𝑟+1 𝑠 + (−1)𝑟𝑞𝑠−𝑟+2 𝑠𝐸
(𝑠−𝑟+1)
1 + · · · + (−1)𝑟𝑞𝑠−1 𝑠𝐸

(𝑠−2)
𝑟−2

+ (−𝑥𝑠) (−1)𝑟−1𝐸 (𝑠−1)
𝑟−1 + (−1)𝑟𝐸 (𝑠−1)

𝑟 .
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𝑞15 𝑞14 𝑞13 𝑞12 𝑥1

𝑞25 𝑞24 𝑞23 𝑥2

𝑞35 𝑞34 𝑥3

𝑞45 𝑥4

𝑥5

Figure 3. The polynomial ℎ𝐸 ( 𝑗)
𝑖 ∈ C[𝑥1, . . . , 𝑥5, 𝑞12, 𝑞23, 𝑞34, 𝑞35, 𝑞45] for ℎ = (3, 3, 4, 5, 5)

Namely, the coefficient of 𝜆𝑠−𝑟 for det(𝜆𝐼𝑠 − 𝑀𝑠) is

(−1)𝑟
(
𝑞𝑠−𝑟+1 𝑠 + 𝑞𝑠−𝑟+2 𝑠𝐸

(𝑠−𝑟+1)
1 + · · · + 𝑞𝑠−1 𝑠𝐸

(𝑠−2)
𝑟−2 + 𝑥𝑠𝐸

(𝑠−1)
𝑟−1 + 𝐸 (𝑠−1)

𝑟

)
,

as desired. �

Example 4.9. Let 𝑛 = 3. Then the 𝐸 (𝑠)
𝑟 have the following form.

𝐸 (1)
0 = 1, 𝐸 (1)

1 = 𝐸 (0)
0 𝑥1 = 𝑥1,

𝐸 (2)
0 = 1, 𝐸 (2)

1 = 𝐸 (1)
1 + 𝐸 (1)

0 𝑥2 = 𝑥1 + 𝑥2, 𝐸 (2)
2 = 𝐸 (1)

1 𝑥2 + 𝐸 (0)
0 𝑞12 = 𝑥1𝑥2 + 𝑞12,

𝐸 (3)
0 = 1, 𝐸 (3)

1 = 𝐸 (2)
1 + 𝐸 (2)

0 𝑥3 = 𝑥1 + 𝑥2 + 𝑥3,

𝐸 (3)
2 = 𝐸 (2)

2 + 𝐸 (2)
1 𝑥3 + 𝐸 (1)

0 𝑞23 = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑞12 + 𝑞23,

𝐸 (3)
3 = 𝐸 (2)

2 𝑥3 + 𝐸 (1)
1 𝑞23 + 𝐸 (0)

0 𝑞13 = 𝑥1𝑥2𝑥3 + 𝑥1𝑞23 + 𝑥3𝑞12 + 𝑞13.

Definition 4.10. Let ℎ : [𝑛] → [𝑛] be a Hessenberg function. For each 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, we define ℎ𝐸
( 𝑗)
𝑖

as the polynomial 𝐸 ( 𝑗)
𝑖 by setting 𝑞𝑟𝑠 = 0 for all 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠):

ℎ𝐸
( 𝑗)
𝑖 � 𝐸

( 𝑗)
𝑖 |𝑞𝑟𝑠=0 (2≤𝑠≤𝑛 and 1≤𝑟 ≤𝑛−ℎ (𝑛+1−𝑠)) .

The surviving variables in the polynomial ℎ𝐸
( 𝑗)
𝑖 are pictorially shown as follows. Let 𝑤0 be the

longest element of the symmetric group 𝔖𝑛 on n letters [𝑛]. Consider the matrix

𝑤0𝑀𝑛𝑤0 =

���������

𝑥𝑛 −1 0 · · · 0

𝑞𝑛−1 𝑛 𝑥𝑛−1 −1
. . .

...
...

. . .
. . .

. . . 0
𝑞2𝑛 · · · 𝑞23 𝑥2 −1
𝑞1𝑛 · · · 𝑞13 𝑞12 𝑥1

���������
, (4.4)

where 𝑤0 is regarded as the permutation matrix. Then 𝑤0𝑀𝑛𝑤0 ∈ 𝐻 (ℎ) if and only if 𝑞𝑟𝑠 = 0 for all
2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛− ℎ(𝑛+1− 𝑠) where 𝐻 (ℎ) is the Hessenberg space defined in equation (2.1). In
other words, the surviving variables in the polynomial ℎ𝐸 ( 𝑗)

𝑖 are pictorially the variables 𝑞𝑟𝑠 arranged in
𝑤0𝑀𝑛𝑤0 such that 𝑞𝑟𝑠 belongs to the configuration of the shaded boxes for the Hessenberg function h.

Example 4.11. Let 𝑛 = 5 and ℎ = (3, 3, 4, 5, 5), which is depicted in Example 2.1. Then ℎ𝐸
( 𝑗)
𝑖 is a

polynomial in the variables 𝑥1, . . . , 𝑥5, 𝑞12, 𝑞23, 𝑞34, 𝑞35, 𝑞45 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 5, as shown in Figure 3.
Remark 4.12. In our setting, the flag variety 𝐹𝑙 (C𝑛) is identified with GL𝑛 (C)/𝐵, while 𝐹𝑙 (C𝑛) is
regarded as GL𝑛 (C)/𝐵− in [32]. Recall that the conjugation by 𝑤0 gives an isomorphism GL𝑛 (C)/𝐵 �
GL𝑛 (C)/𝐵− since 𝐵− = 𝑤0𝐵𝑤0. This relation might affect the reason why we take the conjugation by
𝑤0 in equation (4.4).

We now state the main theorem of this paper.
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Theorem 4.13. Let ℎ : [𝑛] → [𝑛] be a Hessenberg function and Z (𝑁, ℎ)𝑒 the intersection defined in
equation (3.6). Then there is an isomorphism of C-algebras

Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 ) �
C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]

(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 )
, (4.5)

which sends 𝑥𝑖 𝑗 to ℎ𝐸
(𝑛− 𝑗)
𝑖− 𝑗 under the presentation (3.7). In particular, if h is indecomposable, then there

is an isomorphism of C-algebras

C[Hess(𝑁, ℎ) ∩Ω◦
𝑒] �

C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]

(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 )
, (4.6)

which sends 𝑥𝑖 𝑗 to ℎ𝐸
(𝑛− 𝑗)
𝑖− 𝑗 under the presentation (3.8).

We will prove Theorem 4.13 in Section 7. For this purpose, one first see that the homomorphism in
equation (4.5) is well defined and surjective in the next section.

Remark 4.14. We will introduce certain degrees for the variables {𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛} and
{𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛} so that the two sides of equation (4.5) are graded C-algebras (see Sec-
tion 6 for the detail). We will prove that equation (4.5) is in fact an isomorphism as graded C-algebras
in Section 7.

Remark 4.15. The isomorphism (4.6) in the case of ℎ = (2, 3, 4, . . . , 𝑛, 𝑛) is exactly equation (4.2).

5. Properties of 𝐸 (𝑠)
𝑟

In this section, we see relations between 𝑥𝑠’s, 𝑞𝑟𝑠’s, and 𝐸 (𝑠)
𝑟 ’s. Then we construct an explicit map from

Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 ) to our quotient ring C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 <

𝑠]/(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 ).

Lemma 5.1. For 1 ≤ 𝑟 < 𝑠 ≤ 𝑛, we have

𝑞𝑟𝑠 =

�����������������

1 0 · · · · · · 0 𝐸 (𝑠)
1 − 𝐸 (𝑠−1)

1

𝐸 (𝑠−1)
1 1 0

... 𝐸 (𝑠)
2 − 𝐸 (𝑠−1)

2

𝐸 (𝑠−1)
2 𝐸 (𝑠−2)

1 1
. . .

... 𝐸 (𝑠)
3 − 𝐸 (𝑠−1)

3
...

. . .
. . .

. . . 0
...

...
. . . 𝐸 (𝑟+1)

1 1 𝐸 (𝑠)
𝑠−𝑟 − 𝐸 (𝑠−1)

𝑠−𝑟

𝐸 (𝑠−1)
𝑠−𝑟 · · · · · · 𝐸 (𝑟+1)

2 𝐸 (𝑟 )
1 𝐸 (𝑠)

𝑠−𝑟+1 − 𝐸 (𝑠−1)
𝑠−𝑟+1

�����������������
in the polynomial ring C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛].

Proof. For 1 ≤ 𝑠 ≤ 𝑛, it follows from Lemma 4.8 that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸 (𝑠)
1 = 𝐸 (𝑠−1)

1 + 𝑥𝑠

𝐸 (𝑠)
2 = 𝐸 (𝑠−1)

2 + 𝐸 (𝑠−1)
1 𝑥𝑠 + 𝑞𝑠−1 𝑠

𝐸 (𝑠)
3 = 𝐸 (𝑠−1)

3 + 𝐸 (𝑠−1)
2 𝑥𝑠 + 𝐸 (𝑠−2)

1 𝑞𝑠−1 𝑠 + 𝑞𝑠−2 𝑠
...

𝐸 (𝑠)
𝑠−𝑟+1 = 𝐸 (𝑠−1)

𝑠−𝑟+1 + 𝐸 (𝑠−1)
𝑠−𝑟 𝑥𝑠 + 𝐸 (𝑠−2)

𝑠−𝑟−1𝑞𝑠−1 𝑠 + 𝐸 (𝑠−3)
𝑠−𝑟−2𝑞𝑠−2 𝑠 + · · · + 𝐸 (𝑟 )

1 𝑞𝑟+1 𝑠 + 𝑞𝑟𝑠 .
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In other words, we have

������������

1
𝐸 (𝑠−1)

1 1
𝐸 (𝑠−1)

2 𝐸 (𝑠−2)
1 1

...
. . .

. . .
. . .

...
. . . 𝐸 (𝑟+1)

1 1
𝐸 (𝑠−1)
𝑠−𝑟 · · · · · · 𝐸 (𝑟+1)

2 𝐸 (𝑟 )
1 1

������������

����������

𝑥𝑠
𝑞𝑠−1 𝑠
𝑞𝑠−2 𝑠

...
𝑞𝑟+1 𝑠
𝑞𝑟𝑠

����������
=

�����������

𝐸 (𝑠)
1 − 𝐸 (𝑠−1)

1
𝐸 (𝑠)

2 − 𝐸 (𝑠−1)
2

𝐸 (𝑠)
3 − 𝐸 (𝑠−1)

3
...

𝐸 (𝑠)
𝑠−𝑟 − 𝐸 (𝑠−1)

𝑠−𝑟

𝐸 (𝑠)
𝑠−𝑟+1 − 𝐸 (𝑠−1)

𝑠−𝑟+1

�����������
.

By Cramer’s rule, we obtain the desired result. �

Set

𝑄𝑛 � C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛]/(𝐸 (𝑛)
1 , . . . , 𝐸 (𝑛)

𝑛 ), (5.1)

and define a map 𝜑 from C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛] to the ring 𝑄𝑛 by

𝜑 : C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛] → 𝑄𝑛; 𝑥𝑖 𝑗 ↦→ 𝐸
(𝑛− 𝑗)
𝑖− 𝑗 . (5.2)

Proposition 5.2. The map 𝜑 above sends

𝜑(𝑥𝑛−𝑠+1 𝑛−𝑠 − 𝑥𝑛−𝑠+2 𝑛−𝑠+1) = 𝑥𝑠 for 𝑠 ∈ [𝑛]

𝜑(−𝐹𝑛+1−𝑟 ,𝑛+1−𝑠) = 𝑞𝑟𝑠 for 1 ≤ 𝑟 < 𝑠 ≤ 𝑛.

Here, we take the convention that 𝑥𝑛−𝑠+2 𝑛−𝑠+1 = 0 whenever 𝑠 = 1 and 𝑥𝑛−𝑠+1 𝑛−𝑠 = 0 whenever 𝑠 = 𝑛.
In particular, 𝜑 is surjective.

Proof. First, one can see from Definition 4.6 that

𝐸 (𝑠)
1 = 𝑥1 + · · · + 𝑥𝑠

for any 𝑠 ∈ [𝑛], which implies that 𝑥𝑠 = 𝐸 (𝑠)
1 − 𝐸 (𝑠−1)

1 . By the definition of 𝜑 we have 𝜑(𝑥𝑛−𝑠+1 𝑛−𝑠 −

𝑥𝑛−𝑠+2 𝑛−𝑠+1) = 𝐸 (𝑠)
1 − 𝐸 (𝑠−1)

1 = 𝑥𝑠 for 𝑠 ∈ [𝑛]. (Note that if 𝑠 = 𝑛, then we used the relation 𝐸 (𝑛)
1 = 0 in

the quotient ring 𝑄𝑛 = C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛]/(𝐸 (𝑛)
1 , . . . , 𝐸 (𝑛)

𝑛 ).)
Next, it follows from equation (3.3) that

𝜑(𝐹𝑛+1−𝑟 ,1) =

�����������������

1 0 · · · · · · 0 𝐸 (𝑛−1)
1

𝐸 (𝑛−1)
1 1 0

... 𝐸 (𝑛−1)
2

𝐸 (𝑛−1)
2 𝐸 (𝑛−2)

1 1
. . .

...
...

...
. . .

. . .
. . . 0

...
...

. . . 𝐸 (𝑟+1)
1 1 𝐸 (𝑛−1)

𝑛−𝑟

𝐸 (𝑛−1)
𝑛−𝑟 · · · · · · 𝐸 (𝑟+1)

2 𝐸 (𝑟 )
1 𝐸 (𝑛−1)

𝑛−𝑟+1

�����������������
(5.3)
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for 1 ≤ 𝑟 ≤ 𝑛 − 1. On the other hand, by Lemma 5.1 we have

𝑞𝑟𝑛 =

������������������

1 0 · · · · · · 0 −𝐸 (𝑛−1)
1

𝐸 (𝑛−1)
1 1 0

... −𝐸 (𝑛−1)
2

𝐸 (𝑛−1)
2 𝐸 (𝑛−2)

1 1
. . .

... −𝐸 (𝑛−1)
3

...
. . .

. . .
. . . 0

...

...
. . . 𝐸 (𝑟+1)

1 1 −𝐸 (𝑛−1)
𝑛−𝑟

𝐸 (𝑛−1)
𝑛−𝑟 · · · · · · 𝐸 (𝑟+1)

2 𝐸 (𝑟 )
1 −𝐸 (𝑛−1)

𝑛−𝑟+1

������������������
(5.4)

since 𝐸 (𝑛)
1 = 0, . . . , 𝐸 (𝑛)

𝑛−𝑟+1 = 0 in the quotient ring 𝑄𝑛 = C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤

𝑛]/(𝐸 (𝑛)
1 , . . . , 𝐸 (𝑛)

𝑛 ). By equations (5.3) and (5.4), we have 𝜑(𝐹𝑛−𝑟+1,1) = −𝑞𝑟𝑛 for 1 ≤ 𝑟 ≤ 𝑛 − 1
as desired.

If 𝑠 < 𝑛, then by equation (3.4) we have

𝜑(𝐹𝑛+1−𝑟 ,𝑛+1−𝑠) =

������������������

1 0 · · · · · · 0 1

𝐸 (𝑠)
1 1 0

... 𝐸 (𝑠−1)
1

𝐸 (𝑠)
2 𝐸 (𝑠−1)

1 1
. . .

... 𝐸 (𝑠−1)
2

... 𝐸 (𝑠−1)
2

. . .
. . . 0

...

...
...

. . . 𝐸 (𝑟+1)
1 1

...

𝐸 (𝑠)
𝑠−𝑟+1 𝐸 (𝑠−1)

𝑠−𝑟 · · · 𝐸 (𝑟+1)
2 𝐸 (𝑟 )

1 𝐸 (𝑠−1)
𝑠−𝑟+1

������������������

=

������������������

0 0 · · · · · · 0 1

𝐸 (𝑠)
1 − 𝐸 (𝑠−1)

1 1 0
... 𝐸 (𝑠−1)

1

𝐸 (𝑠)
2 − 𝐸 (𝑠−1)

2 𝐸 (𝑠−1)
1 1

. . .
... 𝐸 (𝑠−1)

2
... 𝐸 (𝑠−1)

2
. . .

. . . 0
...

...
...

. . . 𝐸 (𝑟+1)
1 1

...

𝐸 (𝑠)
𝑠−𝑟+1 − 𝐸 (𝑠−1)

𝑠−𝑟+1 𝐸 (𝑠−1)
𝑠−𝑟 · · · 𝐸 (𝑟+1)

2 𝐸 (𝑟 )
1 𝐸 (𝑠−1)

𝑠−𝑟+1

������������������
(by subtracting the last column from the first column)

= −

������������������

1 0 · · · · · · 0 0

𝐸 (𝑠−1)
1 1 0

... 𝐸 (𝑠)
1 − 𝐸 (𝑠−1)

1

𝐸 (𝑠−1)
2 𝐸 (𝑠−1)

1 1
. . .

... 𝐸 (𝑠)
2 − 𝐸 (𝑠−1)

2
... 𝐸 (𝑠−1)

2
. . .

. . . 0
...

...
...

. . . 𝐸 (𝑟+1)
1 1

...

𝐸 (𝑠−1)
𝑠−𝑟+1 𝐸 (𝑠−1)

𝑠−𝑟 · · · 𝐸 (𝑟+1)
2 𝐸 (𝑟 )

1 𝐸 (𝑠)
𝑠−𝑟+1 − 𝐸 (𝑠−1)

𝑠−𝑟+1

������������������
(by changing the first column and the last column)
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= −

�����������������

1 0 · · · · · · 0 𝐸 (𝑠)
1 − 𝐸 (𝑠−1)

1

𝐸 (𝑠−1)
1 1 0

... 𝐸 (𝑠)
2 − 𝐸 (𝑠−1)

2

𝐸 (𝑠−1)
2 𝐸 (𝑠−2)

1 1
. . .

... 𝐸 (𝑠)
3 − 𝐸 (𝑠−1)

3
...

. . .
. . .

. . . 0
...

...
. . . 𝐸 (𝑟+1)

1 1 𝐸 (𝑠)
𝑠−𝑟 − 𝐸 (𝑠−1)

𝑠−𝑟

𝐸 (𝑠−1)
𝑠−𝑟 · · · · · · 𝐸 (𝑟+1)

2 𝐸 (𝑟 )
1 𝐸 (𝑠)

𝑠−𝑟+1 − 𝐸 (𝑠−1)
𝑠−𝑟+1

�����������������
for 1 ≤ 𝑟 < 𝑠 < 𝑛, which is −𝑞𝑟𝑠 from Lemma 5.1. This completes the proof. �

It follows from Proposition 5.2 that the image of {−𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛} under the
map 𝜑 in equation (5.2) is {𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠)}. Thus, the surjective map 𝜑
induces the surjective homomorphism

𝜑ℎ : C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛) (5.5)

� 𝑄𝑛/(𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠)); 𝑥𝑖 𝑗 ↦→
ℎ𝐸

(𝑛− 𝑗)
𝑖− 𝑗 .

6. Hilbert series

In order to prove that 𝜑ℎ in equation (5.5) is an isomorphism, we introduce certain degrees for the
variables {𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛} and {𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛} so that the two sides of equation
(5.5) are graded C-algebras. We then show that the two sides have identical Hilbert series.

Let C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛] and C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛] be the polynomial rings equipped
with a grading defined by

deg 𝑥𝑖 𝑗 = 2(𝑖 − 𝑗) for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛; (6.1)

deg 𝑥𝑠 = 2 for 𝑠 ∈ [𝑛]; (6.2)

deg 𝑞𝑟𝑠 = 2(𝑠 − 𝑟 + 1) for 1 ≤ 𝑟 < 𝑠 ≤ 𝑛. (6.3)

Remark 6.1. As mentioned in Remark 4.3, 𝑥𝑠’s are degree 2 elements in the cohomology ring of the
flag variety by forgetting quantum parameters. Motivated by this fact, our definition for degrees are
concentrated in even degrees.

Lemma 6.2. For 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛, the polynomial 𝐸 (𝑠)
𝑟 is homogeneous of degree 2𝑟 in the polynomial

ring C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛].

Proof. We prove this by induction on s. The base case is 𝑠 = 1, which is clear since 𝐸 (1)
1 = 𝑥1. Now,

suppose that 𝑠 > 1 and assume by induction that the claim is true for arbitrary 𝑠′ with 𝑠′ ≤ 𝑠 − 1. From
Lemma 4.8, we have

𝐸 (𝑠)
𝑟 = 𝐸 (𝑠−1)

𝑟 + 𝐸 (𝑠−1)
𝑟−1 𝑥𝑠 +

𝑟−1∑
𝑘=1

𝐸 (𝑠−1−𝑘)
𝑟−1−𝑘 𝑞𝑠−𝑘 𝑠 .

By the inductive hypothesis with equations (6.2) and (6.3), one can see that 𝐸 (𝑠)
𝑟 is homogeneous of

degree 2𝑟 . �

In order to see that the polynomial 𝐹𝑖, 𝑗 is homogeneous, we introduce the following polynomials.
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Definition 6.3. Let 1 ≤ 𝑗 ≤ 𝑛 − 1 and 𝑗 ≤ 𝑚 𝑗 < 𝑛. For 𝑖 > 𝑚 𝑗 , we define polynomials 𝐹̃
〈𝑚 𝑗 〉

𝑖, 𝑗 by

𝐹̃ 〈𝑚1 〉
𝑖,1 �

���������������

1 0 · · · · · · 0 𝑥21

𝑥21 1
. . .

... 𝑥31

𝑥31 𝑥32
. . .

. . .
...

...
...

...
. . .

. . . 0
...

𝑥𝑚1 1 𝑥𝑚1 2 · · · 𝑥𝑚1 𝑚1−1 1 𝑥𝑚1+1 1
𝑥𝑖1 𝑥𝑖2 · · · 𝑥𝑖 𝑚1−1 𝑥𝑖 𝑚1 𝑥𝑖+1 1

���������������
;

𝐹̃
〈𝑚 𝑗 〉

𝑖, 𝑗 �

���������������

1 0 · · · · · · 0 1

𝑥 𝑗 𝑗−1 1
. . .

... 𝑥 𝑗+1 𝑗

𝑥 𝑗+1 𝑗−1 𝑥 𝑗+1 𝑗
. . .

. . .
...

...
...

...
. . .

. . . 0
...

𝑥𝑚 𝑗 𝑗−1 𝑥𝑚 𝑗 𝑗 · · · 𝑥𝑚 𝑗 𝑚 𝑗−1 1 𝑥𝑚 𝑗+1 𝑗
𝑥𝑖 𝑗−1 𝑥𝑖 𝑗 · · · 𝑥𝑖 𝑚 𝑗−1 𝑥𝑖 𝑚 𝑗 𝑥𝑖+1 𝑗

���������������
for 𝑗 ≥ 2.

Here, we take the convention that 𝑥𝑛+1 𝑗 = 0 for 𝑗 ∈ [𝑛 − 1].

By equations (3.3) and (3.4) one has

𝐹𝑖, 𝑗 = 𝐹̃ 〈𝑖−1〉
𝑖, 𝑗 (6.4)

for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛.

Lemma 6.4. For 1 ≤ 𝑗 < 𝑖 ≤ 𝑛, the polynomial 𝐹𝑖, 𝑗 is homogeneous of degree 2(𝑖 − 𝑗 + 1) in the
polynomial ring C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛].

Proof. It suffices to show that 𝐹̃ 〈𝑚 𝑗 〉

𝑖, 𝑗 is homogeneous of degree 2(𝑖 − 𝑗 + 1) for 𝑗 ≤ 𝑚 𝑗 < 𝑖 by equation
(6.4). At first, we fix j. We prove this statement by induction on 𝑚 𝑗 with this fixed j. The base case is
𝑚 𝑗 = 𝑗 . For arbitrary 𝑖 > 𝑗 , since we have

𝐹̃ 〈1〉
𝑖,1 =

���� 1 𝑥21
𝑥𝑖1 𝑥𝑖+1 1

���� = 𝑥𝑖+1 1 − 𝑥𝑖1𝑥21 for 𝑗 = 1;

𝐹̃
〈 𝑗 〉
𝑖, 𝑗 =

������ 1 0 1
𝑥 𝑗 𝑗−1 1 𝑥 𝑗+1 𝑗
𝑥𝑖 𝑗−1 𝑥𝑖 𝑗 𝑥𝑖+1 𝑗

������ = 𝑥𝑖+1 𝑗 + 𝑥 𝑗 𝑗−1𝑥𝑖 𝑗 − 𝑥𝑖 𝑗−1 − 𝑥 𝑗+1 𝑗𝑥𝑖 𝑗 for 𝑗 > 1,

one can easily see from equation (6.1) that 𝐹̃ 〈 𝑗 〉
𝑖, 𝑗 is homogeneous of degree 2(𝑖 − 𝑗 + 1). This shows the

base case.
We proceed to the inductive step. Suppose now that 𝑚 𝑗 > 𝑗 and that the claim holds for 𝑚 𝑗 − 1

with any allowable choices of the first subscript 𝑖′ in 𝐹̃
〈𝑚 𝑗−1〉
𝑖′, 𝑗 . By the cofactor expansion along the

second-to-last column, we have

𝐹̃
〈𝑚 𝑗 〉

𝑖, 𝑗 = 𝐹̃
〈𝑚 𝑗−1〉
𝑖, 𝑗 − 𝑥𝑖 𝑚 𝑗 𝐹̃

〈𝑚 𝑗−1〉
𝑚 𝑗 , 𝑗

.

By the inductive hypothesis and equation (6.1), the right-hand side above is homogeneous of degree
2(𝑖 − 𝑗 + 1), as desired. This completes the proof. �
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Recall from the end of Section 5 that we constructed the map 𝜑ℎ in equation (5.5) from C[𝑥𝑖 𝑗 | 1 ≤

𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛− 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛) to 𝑄𝑛/(𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛− ℎ(𝑛 + 1− 𝑠)).
One can see from Lemmas 6.2 and 6.4 that these are graded C-algebras. (Note that 𝑄𝑛 is also a graded
C-algebra.) For the rest of this section, we prove that these graded C-algebras have the same Hilbert
series.

Definition 6.5. Let 𝑅 = ⊕∞
𝑖=0𝑅𝑖 be a graded C-algebra where each homogeneous component 𝑅𝑖 of

degree i is a finite-dimensional vector space over C. Then its Hilbert series is defined to be

Hilb(𝑅, 𝑡) �
∞∑
𝑖=0

dimC 𝑅𝑖 𝑡
𝑖 .

A sequence of homogeneous polynomials 𝜃1, . . . , 𝜃𝑝 ∈ 𝑅 of positive degrees is a regular sequence in
R if 𝜃𝑘 is a nonzero divisor of 𝑅/(𝜃1, . . . , 𝜃𝑘−1) for all 1 ≤ 𝑘 ≤ 𝑝.

The following facts are well known in commutative algebra. See [35, Chapter I, Section 5]. (See also
[18, Proposition 5.1].)

Lemma 6.6. Let 𝑅 = ⊕∞
𝑖=0𝑅𝑖 be a graded C-algebra with dimC 𝑅𝑖 < ∞ for each i. A sequence of

homogeneous polynomials 𝜃1, . . . , 𝜃𝑝 ∈ 𝑅 of positive degrees is a regular sequence in R if and only if
the Hilbert series of 𝑅/(𝜃1, . . . , 𝜃𝑝) is given by

Hilb(𝑅/(𝜃1, . . . , 𝜃𝑝), 𝑡) = Hilb(𝑅, 𝑡) ·
𝑝∏
𝑘=1

(1 − 𝑡deg 𝜃𝑘 ).

Lemma 6.7. Let R be a polynomial ring C[𝑦1, . . . , 𝑦𝑛]. A sequence of homogeneous polynomials
𝜃1, . . . , 𝜃𝑛 ∈ 𝑅 of positive degrees is a regular sequence in R if and only if the solution set of the
equations 𝜃1 = 0, . . . , 𝜃𝑛 = 0 in C𝑛 consists only of the origin {0}.

We remark that the number of the homogeneous polynomials 𝜃1, . . . , 𝜃𝑛 is equal to the number of the
variables 𝑦1, . . . , 𝑦𝑛 in the polynomial ring C[𝑦1, . . . , 𝑦𝑛] in Lemma 6.7. By using two lemmas above,
we compute the Hilbert series of C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛) and
𝑄𝑛/(𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠)).

Lemma 6.8. The polynomials 𝐹𝑖, 𝑗 (1 ≤ 𝑗 < 𝑖 ≤ 𝑛) form a regular sequence in the polynomial ring
C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛].

Proof. By Lemma 6.7, it is enough to show that the solution set of the equations 𝐹𝑖, 𝑗 = 0 (1 ≤ 𝑗 < 𝑖 ≤ 𝑛)

in C 1
2 𝑛(𝑛−1) (with the variables 𝑥𝑖 𝑗 (1 ≤ 𝑗 < 𝑖 ≤ 𝑛)) consists only of the origin {0}. The intersection of

the zero set of 𝐹𝑖, 𝑗 for all 1 ≤ 𝑗 < 𝑖 ≤ 𝑛 is Hess(𝑁, 𝑖𝑑) ∩Ω◦
𝑒 by Lemma 2.3. However, since Hess(𝑁, 𝑖𝑑)

consists only of the point {𝑒𝐵}, this means that the equations 𝐹𝑖, 𝑗 = 0 (1 ≤ 𝑗 < 𝑖 ≤ 𝑛) implies that
𝑥𝑖 𝑗 = 0 for all 1 ≤ 𝑗 < 𝑖 ≤ 𝑛, as desired. �

Proposition 6.9. The Hilbert series of C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛)
equipped with a grading in equation (6.1) is equal to

Hilb(C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛), 𝑡)

=
∏

1≤ 𝑗≤𝑛−1
𝑗<𝑖≤ℎ ( 𝑗)

1
1 − 𝑡2(𝑖− 𝑗+1) ·

𝑛−1∏
𝑘=1

(1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑘 ).
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Figure 4. The values 2(𝑖 − 𝑗) and 2(𝑖 − 𝑗 + 1) for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛

Proof. Since a subsequence of a regular sequence is also a regular sequence from the definition of a
regular sequence, by Lemma 6.8, the polynomials 𝐹𝑖, 𝑗 ( 𝑗 ∈ [𝑛 − 1], ℎ( 𝑗) < 𝑖 ≤ 𝑛) form a regular
sequence in the polynomial ring C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]. Thus, it follows from Lemma 6.6 that

Hilb(C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛), 𝑡) (6.5)

=Hilb(C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛], 𝑡) ·
∏

1≤ 𝑗≤𝑛−1
ℎ ( 𝑗)<𝑖≤𝑛

(1 − 𝑡deg𝐹𝑖, 𝑗 )

=
∏

1≤ 𝑗<𝑖≤𝑛

1
1 − 𝑡2(𝑖− 𝑗)

·
∏

1≤ 𝑗≤𝑛−1
ℎ ( 𝑗)<𝑖≤𝑛

(1 − 𝑡2(𝑖− 𝑗+1) ) (by Lemma 6.4).

Here, we note that∏
1≤ 𝑗<𝑖≤𝑛

1
1 − 𝑡2(𝑖− 𝑗)

· (1 − 𝑡2)𝑛−1 =
∏

1≤ 𝑗<𝑖≤𝑛

1
1 − 𝑡2(𝑖− 𝑗+1) · (1 − 𝑡4) (1 − 𝑡6) · · · (1 − 𝑡2𝑛).

In fact, exponents appeared on the left-hand side and exponents on the right-hand side are described as
numbers in shaded boxes of the left figure and the right figure in Figure 4, respectively.

This equality leads us to the equality∏
1≤ 𝑗<𝑖≤𝑛

1
1 − 𝑡2(𝑖− 𝑗)

=
∏

1≤ 𝑗<𝑖≤𝑛

1
1 − 𝑡2(𝑖− 𝑗+1) ·

𝑛−1∏
𝑘=1

(1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑘 ),

so by equation (6.5), one has

Hilb(C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹𝑖, 𝑗 | 𝑗 ∈ [𝑛 − 1] and ℎ( 𝑗) < 𝑖 ≤ 𝑛), 𝑡)

=
∏

1≤ 𝑗<𝑖≤𝑛

1
1 − 𝑡2(𝑖− 𝑗+1) ·

𝑛−1∏
𝑘=1

(1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑘 ) ·
∏

1≤ 𝑗≤𝑛−1
ℎ ( 𝑗)<𝑖≤𝑛

(1 − 𝑡2(𝑖− 𝑗+1) )

=
∏

1≤ 𝑗≤𝑛−1
𝑗<𝑖≤ℎ ( 𝑗)

1
1 − 𝑡2(𝑖− 𝑗+1) ·

𝑛−1∏
𝑘=1

(1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑘 ),

as desired. �

Lemma 6.10. The polynomials 𝐸 (𝑛)
1 , . . . , 𝐸 (𝑛)

𝑛 , 𝑞𝑟𝑠 (1 ≤ 𝑟 < 𝑠 ≤ 𝑛) form a regular sequence in the
polynomial ring C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛].
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Proof. From Lemma 6.7, it suffices to show that the solution set of the equations 𝐸 (𝑛)
1 = 0, . . . , 𝐸 (𝑛)

𝑛 =

0, 𝑞𝑟𝑠 = 0 (1 ≤ 𝑟 < 𝑠 ≤ 𝑛) in C 1
2 𝑛(𝑛+1) (with the variables 𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 (1 ≤ 𝑟 < 𝑠 ≤ 𝑛))

consists only of the origin {0}. Since 𝑞𝑟𝑠 = 0 for all 1 ≤ 𝑟 < 𝑠 ≤ 𝑛, 𝐸 (𝑛)
1 = 0, . . . , 𝐸 (𝑛)

𝑛 = 0
implies that 𝑒1(𝑥1, . . . , 𝑥𝑛) = 0, . . . , 𝑒𝑛 (𝑥1, . . . , 𝑥𝑛) = 0, where 𝑒𝑖 (𝑥1, . . . , 𝑥𝑛) is the (ordinary) i-th
elementary symmetric polynomial in the variables 𝑥1, . . . , 𝑥𝑛. Then one can easily see that 𝑥𝑖 = 0
for all 𝑖 ∈ [𝑛]. In fact, 𝑥1𝑥2 · · · 𝑥𝑛 = 𝑒𝑛 (𝑥1, . . . , 𝑥𝑛) = 0 implies that some 𝑥𝑖 must be equal to 0.
Without loss of generality, we may assume that 𝑥𝑛 = 0. This implies that 𝑒𝑖 (𝑥1, . . . , 𝑥𝑛−1) = 0 for all
𝑖 ∈ [𝑛 − 1]. Proceeding in this manner, we conclude that 𝑥𝑖 = 0 for all 𝑖 ∈ [𝑛]. Thus, the equations
𝐸 (𝑛)

1 = 0, . . . , 𝐸 (𝑛)
𝑛 = 0, 𝑞𝑟𝑠 = 0 (1 ≤ 𝑟 < 𝑠 ≤ 𝑛) implies that 𝑥𝑖 = 0 for all 𝑖 ∈ [𝑛] and 𝑞𝑟𝑠 = 0 for all

1 ≤ 𝑟 < 𝑠 ≤ 𝑛, as desired. �

Proposition 6.11. The Hilbert series of 𝑄𝑛/(𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠)) equipped
with a grading in equations (6.2) and (6.3) is equal to

Hilb(𝑄𝑛/(𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠)), 𝑡)

=
∏

1≤ 𝑗≤𝑛−1
𝑗<𝑖≤ℎ ( 𝑗)

1
1 − 𝑡2(𝑖− 𝑗+1) ·

𝑛−1∏
𝑘=1

(1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑘 ).

Proof. Recall from the definition (5.1) that

𝑄𝑛 = C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛]/(𝐸 (𝑛)
1 , . . . , 𝐸 (𝑛)

𝑛 ).

Lemma 6.10 implies that the monomials 𝑞𝑟𝑠 (2 ≤ 𝑠 ≤ 𝑛, 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠)) form a regular
sequence in 𝑄𝑛 by the definition of a regular sequence. Hence, by Lemma 6.6, we have

Hilb(𝑄𝑛/(𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠)), 𝑡) (6.6)

=Hilb(𝑄𝑛, 𝑡) ·
∏

2≤𝑠≤𝑛
1≤𝑟≤𝑛−ℎ (𝑛+1−𝑠)

(1 − 𝑡deg 𝑞𝑟𝑠 )

=Hilb(𝑄𝑛, 𝑡) ·
∏

2≤𝑠≤𝑛
1≤𝑟≤𝑛−ℎ (𝑛+1−𝑠)

(1 − 𝑡2(𝑠−𝑟+1) ).

Since a subsequence of a regular sequence is again a regular sequence from the definition of a
regular sequence, the polynomials 𝐸 (𝑛)

1 , . . . , 𝐸 (𝑛)
𝑛 form a regular sequence in the polynomial ring

C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛] by Lemma 6.10. By using Lemma 6.6 again, one has

Hilb(𝑄𝑛, 𝑡) =Hilb(C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛], 𝑡) ·
𝑛∏
𝑘=1

(1 − 𝑡deg𝐸 (𝑛)
𝑘 ) (6.7)

=
1

(1 − 𝑡2)𝑛
·

∏
1≤𝑟<𝑠≤𝑛

1
1 − 𝑡2(𝑠−𝑟+1) ·

𝑛∏
𝑘=1

(1 − 𝑡2𝑘 ) (by Lemma 6.2)

=
∏

1≤𝑟<𝑠≤𝑛

1
1 − 𝑡2(𝑠−𝑟+1) ·

𝑛−1∏
𝑘=1

(1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑘 ).
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By equations (6.6) and (6.7), we obtain

Hilb(𝑄𝑛/(𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠)), 𝑡)

=
∏

1≤𝑟<𝑠≤𝑛

1
1 − 𝑡2(𝑠−𝑟+1) ·

𝑛−1∏
𝑘=1

(1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑘 ) ·
∏

2≤𝑠≤𝑛
1≤𝑟≤𝑛−ℎ (𝑛+1−𝑠)

(1 − 𝑡2(𝑠−𝑟+1) )

=
∏

1≤ 𝑗<𝑖≤𝑛

1
1 − 𝑡2(𝑖− 𝑗+1) ·

𝑛−1∏
𝑘=1

(1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑘 ) ·
∏

1≤ 𝑗≤𝑛−1
ℎ ( 𝑗)+1≤𝑖≤𝑛

(1 − 𝑡2(𝑖− 𝑗+1) )

(by setting 𝑖 = 𝑛 + 1 − 𝑟 and 𝑗 = 𝑛 + 1 − 𝑠 in the third product)

=
∏

1≤ 𝑗≤𝑛−1
𝑗<𝑖≤ℎ ( 𝑗)

1
1 − 𝑡2(𝑖− 𝑗+1) ·

𝑛−1∏
𝑘=1

(1 + 𝑡2 + 𝑡4 + · · · + 𝑡2𝑘 ),

as desired. �

7. Proof of Theorem 4.13

We now prove Theorem 4.13.

Proof of Theorem 4.13. We first note that there exists a canonical isomorphism

𝑄𝑛/(𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 − ℎ(𝑛 + 1 − 𝑠))

�C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]/(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 )

by Definition 4.10 and equation (5.1). Under the identification above and the presentation in equation
(3.7), we can rewrite 𝜑ℎ in equation (5.5) as

𝜑ℎ : Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 ) �
C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]

(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 )
,

which is defined by

𝜑ℎ (𝑥𝑖 𝑗 ) =
ℎ𝐸

(𝑛− 𝑗)
𝑖− 𝑗 .

Here, by slightly abuse of notation we used the same symbol 𝜑ℎ for the map above. The map 𝜑ℎ is
surjective and this preserves the gradings on both gradedC-algebras from equation (6.1) and Lemma 6.2.
It follows from Propositions 6.9 and 6.11 that the two sides of 𝜑ℎ have identical Hilbert series. Therefore,
we conclude that 𝜑ℎ is an isomorphism. �

Remark 7.1. Our proof gives an alternative proof of the isomorphism (4.2).
Corollary 7.2. There is an isomorphism of C-algebras

Γ(Z (𝑁, 𝑖𝑑)𝑒,OZ (𝑁 ,𝑖𝑑)𝑒 ) � 𝐻∗(𝐹𝑙 (C𝑛)).

Proof. Applying the isomorphism (4.5) to the case when ℎ = 𝑖𝑑, we obtain

Γ(Z (𝑁, 𝑖𝑑)𝑒,OZ (𝑁 ,𝑖𝑑)𝑒 ) � C[𝑥1, . . . , 𝑥𝑛]/(𝑒1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑒𝑛 (𝑥1, . . . , 𝑥𝑛)),

where 𝑒𝑖 (𝑥1, . . . , 𝑥𝑛) denotes the i-th elementary symmetric polynomial in the variables 𝑥1, . . . , 𝑥𝑛. As
is well known, the right hand side above is a presentation for the cohomology ring 𝐻∗(𝐹𝑙 (C𝑛)) (e.g.,
[19, Section 10.2, Proposition 3]). �
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We constructed the isomorphism of graded C-algebras

𝜑ℎ : Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 )
�
−→
C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]

(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 )
, (7.1)

which sends 𝑥𝑖 𝑗 to ℎ𝐸
(𝑛− 𝑗)
𝑖− 𝑗 for all 1 ≤ 𝑗 < 𝑖 ≤ 𝑛 from the homomorphism 𝜑 in equation (5.2). The

following result follows from Proposition 5.2.

Proposition 7.3. The inverse map of 𝜑ℎ in equation (7.1) is given by

𝜑−1
ℎ (𝑥𝑠) = 𝑥𝑛−𝑠+1 𝑛−𝑠 − 𝑥𝑛−𝑠+2 𝑛−𝑠+1 for 𝑠 ∈ [𝑛]

𝜑−1
ℎ (𝑞𝑟𝑠) = −𝐹𝑛+1−𝑟 ,𝑛+1−𝑠 for 2 ≤ 𝑠 ≤ 𝑛 and 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠

with the convention that 𝑥𝑛−𝑠+2 𝑛−𝑠+1 = 0 whenever 𝑠 = 1 and 𝑥𝑛−𝑠+1 𝑛−𝑠 = 0 whenever 𝑠 = 𝑛.

We conclude the following result from the discussion above.

Corollary 7.4. Let ℎ : [𝑛] → [𝑛] be a Hessenberg function. Then the following commutative diagram
holds

C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]
𝜑

−−−−−−→
�

C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛]

(𝐸 (𝑛)
1 , . . . , 𝐸 (𝑛)

𝑛 )⏐⏐�𝐹𝑖, 𝑗=0 (1≤ 𝑗≤𝑛−1 and ℎ ( 𝑗)<𝑖≤𝑛)
⏐⏐�𝑞𝑟𝑠=0 (2≤𝑠≤𝑛 and 1≤𝑟 ≤𝑛−ℎ (𝑛+1−𝑠))

Γ(Z (𝑁, ℎ)𝑒,OZ (𝑁 ,ℎ)𝑒 )
𝜑ℎ

−−−−−−→
�

C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]

(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 )
,

where both vertical arrows denote the canonical surjective maps under the presentation (3.7). In
particular, if h is indecomposable, then we obtain the following commutative diagram

C[𝐹𝑙 (C𝑛) ∩Ω◦
𝑒]

𝜑
−−−−−−→
�

C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛]

(𝐸 (𝑛)
1 , . . . , 𝐸 (𝑛)

𝑛 )⏐⏐�𝐹𝑖, 𝑗=0 (1≤ 𝑗≤𝑛−2 and ℎ ( 𝑗)<𝑖≤𝑛)
⏐⏐�𝑞𝑟𝑠=0 (3≤𝑠≤𝑛 and 1≤𝑟 ≤𝑛−ℎ (𝑛+1−𝑠))

C[Hess(𝑁, ℎ) ∩Ω◦
𝑒]

𝜑ℎ
−−−−−−→
�

C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]

(ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 )
,

where the left vertical arrow is induced from the inclusion Hess(𝑁, ℎ) ∩Ω◦
𝑒 ↩→ 𝐹𝑙 (C𝑛) ∩Ω◦

𝑒. Note that
both vertical arrows are surjective.

8. Jacobian matrix

It is an interesting and challenging problem to find an explicit description of the singular locus of
(regular nilpotent) Hessenberg varieties Hess(𝑁, ℎ). There are already partial results for the problem
stated above in [3, 15, 26]. For the rest of the paper, we will analyze the singular locus of Hess(𝑁, ℎ)∩Ω◦

𝑒

for some Hessenberg function h as an application of our result. The isomorphism (4.6) in Theorem 4.13
yields that if h is indecomposable, then the singular locus of the open set Hess(𝑁, ℎ) ∩Ω◦

𝑒 in Hess(𝑁, ℎ)

is isomorphic to the singular locus of the zero set defined by n polynomials ℎ𝐸 (𝑛)
1 , . . . , ℎ𝐸 (𝑛)

𝑛 in
C
𝑛+

∑𝑛
𝑗=1 (ℎ ( 𝑗)− 𝑗)) with the variables 𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 (2 ≤ 𝑠 ≤ 𝑛, 𝑛−ℎ(𝑛+1−𝑠) < 𝑟 < 𝑠). In this section, we

give an explicit formula for partial derivatives 𝜕𝐸 (𝑛)
𝑖 /𝜕𝑥𝑠 (1 ≤ 𝑠 ≤ 𝑛) and 𝜕𝐸 (𝑛)

𝑖 /𝜕𝑞𝑟𝑠 (1 ≤ 𝑟 < 𝑠 ≤ 𝑛)
for each 𝑖 ∈ [𝑛].

https://doi.org/10.1017/fms.2024.142 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.142


24 T. Horiguchi and T. Shirato

For positive integers a and b with 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑛, we set

[𝑎, 𝑏] � {𝑎, 𝑎 + 1, . . . , 𝑏}.

As in Definition 4.6, we introduce the following polynomials.

Definition 8.1. Let 𝑀[𝑎,𝑏] be the matrix of size (𝑏 − 𝑎 + 1) × (𝑏 − 𝑎 + 1) defined as

𝑀[𝑎,𝑏] �

���������

𝑥𝑎 𝑞𝑎 𝑎+1 𝑞𝑎 𝑎+2 · · · 𝑞𝑎 𝑏
−1 𝑥𝑎+1 𝑞𝑎+1 𝑎+2 · · · 𝑞𝑎+1 𝑏

0
. . .

. . .
. . .

...
...

. . . −1 𝑥𝑏−1 𝑞𝑏−1 𝑏
0 · · · 0 −1 𝑥𝑏

���������
.

We define polynomials 𝐸 [𝑎,𝑏]
1 , . . . , 𝐸 [𝑎,𝑏]

𝑏−𝑎+1 ∈ C[𝑥𝑎, . . . , 𝑥𝑏 , 𝑞𝑟𝑠 | 𝑎 ≤ 𝑟 < 𝑠 ≤ 𝑏] by

det(𝜆𝐼𝑏−𝑎+1 − 𝑀[𝑎,𝑏] ) = 𝜆𝑏−𝑎+1 − 𝐸 [𝑎,𝑏]
1 𝜆𝑏−𝑎 + 𝐸 [𝑎,𝑏]

2 𝜆𝑏−𝑎−1 + · · · + (−1)𝑏−𝑎+1𝐸 [𝑎,𝑏]
𝑏−𝑎+1.

Note that if 𝑎 = 1, then we obtain

𝐸 [1,𝑏]
𝑖 = 𝐸 (𝑏)

𝑖 for each 𝑖 ∈ [𝑏] (8.1)

by the definition. In what follows, we use the symbol

[𝑎, 𝑎 − 1] � ∅ for each 𝑎 ∈ [𝑛 + 1]

and we take the following convention

𝐸 [𝑎,𝑏]
𝑖 �

{
1 if 𝑖 = 0,
0 if 𝑖 > 𝑏 − 𝑎 + 1

(8.2)

for 𝑏 ≥ 𝑎 − 1. By the same argument for the proof of Lemma 4.8, one can prove the lemma below. We
leave the detail to the reader.

Lemma 8.2. Let 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑛. For 1 ≤ 𝑖 ≤ 𝑏 − 𝑎 + 1, we have

𝐸 [𝑎,𝑏]
𝑖 = 𝐸 [𝑎,𝑏−1]

𝑖 + 𝐸 [𝑎,𝑏−1]
𝑖−1 𝑥𝑏 +

𝑖−1∑
𝑘=1

𝐸 [𝑎,𝑏−1−𝑘 ]
𝑖−1−𝑘 𝑞𝑏−𝑘 𝑏

with the convention that
∑𝑖−1
𝑘=1 𝐸 [𝑎,𝑏−1−𝑘 ]

𝑖−1−𝑘 𝑞𝑏−𝑘 𝑏 = 0 whenever 𝑖 = 1.

Lemma 8.3. 1. Let 𝑠 ∈ [𝑛]. For 𝑖 ∈ [𝑛], we have

𝜕

𝜕𝑥𝑠
𝐸 (𝑛)
𝑖 =

𝑖−1∑
𝑘=0

𝐸 [1,𝑠−1]
𝑖−1−𝑘 𝐸 [𝑠+1,𝑛]

𝑘 .

2. Let 1 ≤ 𝑟 < 𝑠 ≤ 𝑛. Then

𝜕

𝜕𝑞𝑟𝑠
𝐸 (𝑛)
𝑖+𝑠−𝑟 =

{
0 if 1 − (𝑠 − 𝑟) ≤ 𝑖 ≤ 0,∑𝑖−1
𝑘=0 𝐸 [1,𝑟−1]

𝑖−1−𝑘 𝐸 [𝑠+1,𝑛]
𝑘 if 1 ≤ 𝑖 ≤ 𝑛 − (𝑠 − 𝑟).
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Proof. (1) By Definition 4.6, one has

det(𝜆𝐼𝑛 − 𝑀𝑛) = 𝜆𝑛 − 𝐸 (𝑛)
1 𝜆𝑛−1 + 𝐸 (𝑛)

2 𝜆𝑛−2 + · · · + (−1)𝑛𝐸 (𝑛)
𝑛 . (8.3)

We think of 𝜆 as a variable in the equality above, and we partial differentiate the both sides with respect
to 𝑥𝑠 . Then 𝜕

𝜕𝑥𝑠
𝐸 (𝑛)
𝑖 is equal to the coefficient of 𝜆𝑛−𝑖 for 𝜕

𝜕𝑥𝑠
det(𝜆𝐼𝑛 −𝑀𝑛) multiplied by (−1)𝑖 . Since

the variable 𝑥𝑠 appears in only the (𝑠, 𝑠)-th entry of the matrix (𝜆𝐼𝑛 −𝑀𝑛), from the cofactor expansion
along the s-th column for det(𝜆𝐼𝑛 − 𝑀𝑛), we can write

det(𝜆𝐼𝑛 − 𝑀𝑛) = (𝜆 − 𝑥𝑠) det(𝜆𝐼𝑠−1 − 𝑀[1,𝑠−1] ) det(𝜆𝐼𝑛−𝑠 − 𝑀[𝑠+1,𝑛] ) + 𝐹

for some polynomial 𝐹 ∈ C[𝑥1, . . . , 𝑥𝑠 , . . . , 𝑥𝑛, 𝑞𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛]. Here, the caret sign̂ over 𝑥𝑠 means
that the entry is omitted. Hence, we obtain

𝜕

𝜕𝑥𝑠
det(𝜆𝐼𝑛 − 𝑀𝑛) = − det(𝜆𝐼𝑠−1 − 𝑀[1,𝑠−1] ) det(𝜆𝐼𝑛−𝑠 − 𝑀[𝑠+1,𝑛] )

= −

(
𝑠−1∑
𝑢=0

(−1)𝑢𝐸 [1,𝑠−1]
𝑢 𝜆𝑠−1−𝑢

) (
𝑛−𝑠∑
𝑣=0

(−1)𝑣𝐸 [𝑠+1,𝑛]
𝑣 𝜆𝑛−𝑠−𝑣

)
(by Definition 8.1)

= −

𝑠−1∑
𝑢=0

𝑛−𝑠∑
𝑣=0

(−1)𝑢+𝑣𝐸 [1,𝑠−1]
𝑢 𝐸 [𝑠+1,𝑛]

𝑣 𝜆𝑛−1−(𝑢+𝑣)

= −

𝑛−1∑
ℓ=0

(
ℓ∑
𝑘=0

(−1)ℓ𝐸 [1,𝑠−1]
ℓ−𝑘 𝐸 [𝑠+1,𝑛]

𝑘

)
𝜆𝑛−1−ℓ .

Therefore, we conclude that the coefficient of 𝜆𝑛−𝑖 for 𝜕
𝜕𝑥𝑠

det(𝜆𝐼𝑛 −𝑀𝑛) multiplied by (−1)𝑖 is equal to

𝜕

𝜕𝑥𝑠
𝐸 (𝑛)
𝑖 =

𝑖−1∑
𝑘=0

𝐸 [1,𝑠−1]
𝑖−1−𝑘 𝐸 [𝑠+1,𝑛]

𝑘 ,

as desired.
(2) We partial differentiate the both sides of equation (8.3) with respect to 𝑞𝑟𝑠 , then 𝜕

𝜕𝑞𝑟𝑠
𝐸 (𝑛)
𝑗 is equal

to the coefficient of 𝜆𝑛− 𝑗 for 𝜕
𝜕𝑞𝑟𝑠

det(𝜆𝐼𝑛 − 𝑀𝑛) multiplied by (−1) 𝑗 . Since the variable 𝑞𝑟𝑠 appears in
only the (𝑟, 𝑠)-th entry of the matrix (𝜆𝐼𝑛 −𝑀𝑛), one can see from similar arguments as in the previous
case that

𝜕

𝜕𝑞𝑟𝑠
det(𝜆𝐼𝑛 − 𝑀𝑛) = (−1)𝑟+𝑠

𝜕

𝜕𝑞𝑟𝑠
(−𝑞𝑟𝑠) det(𝜆𝐼𝑟−1 − 𝑀[1,𝑟−1] ) det(𝜆𝐼𝑛−𝑠 − 𝑀[𝑠+1,𝑛] )

= (−1)𝑟+𝑠+1

(
𝑟−1∑
𝑢=0

(−1)𝑢𝐸 [1,𝑟−1]
𝑢 𝜆𝑟−1−𝑢

) (
𝑛−𝑠∑
𝑣=0

(−1)𝑣𝐸 [𝑠+1,𝑛]
𝑣 𝜆𝑛−𝑠−𝑣

)
= (−1)𝑟+𝑠+1

𝑟−1∑
𝑢=0

𝑛−𝑠∑
𝑣=0

(−1)𝑢+𝑣𝐸 [1,𝑟−1]
𝑢 𝐸 [𝑠+1,𝑛]

𝑣 𝜆𝑛−1−(𝑢+𝑣+𝑠−𝑟 )

= (−1)𝑟+𝑠+1
𝑛−1∑
ℓ=𝑠−𝑟

(
ℓ−𝑠+𝑟∑
𝑘=0

(−1)ℓ−𝑠+𝑟𝐸 [1,𝑟−1]
ℓ−𝑠+𝑟−𝑘𝐸

[𝑠+1,𝑛]
𝑘

)
𝜆𝑛−1−ℓ .
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Thus, the coefficient of 𝜆𝑛− 𝑗 for 𝜕
𝜕𝑞𝑟𝑠

det(𝜆𝐼𝑛 − 𝑀𝑛) multiplied by (−1) 𝑗 is

𝜕

𝜕𝑞𝑟𝑠
𝐸 (𝑛)
𝑗 =

{
0 if 1 ≤ 𝑗 ≤ 𝑠 − 𝑟,∑ 𝑗−1−𝑠+𝑟
𝑘=0 𝐸 [1,𝑟−1]

𝑗−1−𝑠+𝑟−𝑘𝐸
[𝑠+1,𝑛]
𝑘 if 𝑠 − 𝑟 + 1 ≤ 𝑗 ≤ 𝑛,

as desired. This completes the proof. �

In what follows, we set

𝑞𝑠𝑠 � 𝑥𝑠 for 𝑠 ∈ [𝑛], (8.4)

and we see the Jacobian matrix
(

𝜕
𝜕𝑞𝑟𝑠

𝐸 (𝑛)
𝑖

)
𝑖, (𝑟 ,𝑠) below.

Example 8.4. Let 𝑛 = 3. Then the Jacobian matrix
(

𝜕
𝜕𝑞𝑟𝑠

𝐸 (3)
𝑖

)
𝑖, (𝑟 ,𝑠) is described as

𝐸 (3)
1

𝐸 (3)
2

𝐸 (3)
3

𝜕
𝜕𝑥1

𝜕
𝜕𝑥2

𝜕
𝜕𝑥3

𝜕
𝜕𝑞12

𝜕
𝜕𝑞23

𝜕
𝜕𝑞13

�������
1 1 1 0 0 0

𝐸 [2,3]
1 𝐸 [1,1]

1 + 𝐸 [3,3]
1 𝐸 [1,2]

1 1 1 0

𝐸 [2,3]
2 𝐸 [1,1]

1 𝐸 [3,3]
1 𝐸 [1,2]

2 𝐸 [3,3]
1 𝐸 [1,1]

1 1

�������
by Lemma 8.3. Also, the Jacobian matrix

(
𝜕

𝜕𝑞𝑟𝑠
𝐸 (4)
𝑖

)
𝑖, (𝑟 ,𝑠) for 𝑛 = 4 is given by

𝐸
(4)
1

𝐸
(4)
2

𝐸
(4)
3

𝐸
(4)
4

𝜕
𝜕𝑥1

𝜕
𝜕𝑥2

𝜕
𝜕𝑥3

𝜕
𝜕𝑥4

𝜕
𝜕𝑞12

𝜕
𝜕𝑞23

𝜕
𝜕𝑞34

𝜕
𝜕𝑞13

𝜕
𝜕𝑞24

𝜕
𝜕𝑞14

������������

1 1 1 1 0 0 0 0 0 0

𝐸
[2,4]
1 𝐸

[1,1]
1 + 𝐸

[3,4]
1 𝐸

[1,2]
1 + 𝐸

[4,4]
1 𝐸

[1,3]
1 1 1 1 0 0 0

𝐸
[2,4]
2 𝐸

[1,1]
1 𝐸

[3,4]
1 + 𝐸

[3,4]
2 𝐸

[1,2]
2 + 𝐸

[1,2]
1 𝐸

[4,4]
1 𝐸

[1,3]
2 𝐸

[3,4]
1 𝐸

[1,1]
1 + 𝐸

[4,4]
1 𝐸

[1,2]
1 1 1 0

𝐸
[2,4]
3 𝐸

[1,1]
1 𝐸

[3,4]
2 𝐸

[1,2]
2 𝐸

[4,4]
1 𝐸

[1,3]
3 𝐸

[3,4]
2 𝐸

[1,1]
1 𝐸

[4,4]
1 𝐸

[1,2]
2 𝐸

[4,4]
1 𝐸

[1,1]
1 1

�������������
.

The Jacobian matrices above have a full rank. In general, one can verify from Lemma 8.3 that the rank of
the Jacobian matrix

(
𝜕

𝜕𝑞𝑟𝑠
𝐸 (𝑛)
𝑖

)
𝑖, (𝑟 ,𝑠) is full for arbitrary n. This fact also follows from the well-known

fact that 𝐹𝑙 (C𝑛) ∩Ω◦
𝑒 is smooth and Theorem 4.13 for the case when ℎ = (𝑛, . . . , 𝑛).

Let ℎ : [𝑛] → [𝑛] be a Hessenberg function. As in Definition 4.10, for 0 ≤ 𝑖 ≤ 𝑛 and 𝑎, 𝑏 with
𝑏 ≥ 𝑎 − 1, we define

ℎ𝐸 [𝑎,𝑏]
𝑖 � 𝐸 [𝑎,𝑏]

𝑖 |𝑞𝑟𝑠=0 (2≤𝑠≤𝑛 and 1≤𝑟 ≤𝑛−ℎ (𝑛+1−𝑠)) . (8.5)

Note that we take the convention in equation (8.2). By the definition (8.5), it is straightforward to see that
for arbitrary Hessenberg function ℎ : [𝑛] → [𝑛], 𝑖 ∈ [𝑛], and (𝑟, 𝑠) with 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ(𝑛 + 1 − 𝑠) <
𝑟 ≤ 𝑠,

𝜕

𝜕𝑞𝑟𝑠
ℎ𝐸 (𝑛)

𝑖 =

(
𝜕

𝜕𝑞𝑟𝑠
𝐸 (𝑛)
𝑖

)����
𝑞𝑢𝑣=0 (2≤𝑣≤𝑛 and 1≤𝑢≤𝑛−ℎ (𝑛+1−𝑣))

.
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Combining this and Lemma 8.3, we have that for 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛,

𝜕

𝜕𝑞𝑟𝑠
ℎ𝐸 (𝑛)

𝑖+𝑠−𝑟 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 1 − (𝑠 − 𝑟) ≤ 𝑖 ≤ 0,
1 if 𝑖 = 1,∑𝑖−1
𝑘=0

ℎ𝐸 [1,𝑟−1]
𝑖−1−𝑘

ℎ𝐸 [𝑠+1,𝑛]
𝑘 if 2 ≤ 𝑖 ≤ 𝑛 − (𝑠 − 𝑟).

(8.6)

For 2 ≤ 𝑚 ≤ 𝑛 − 1, we define a Hessenberg function ℎ𝑚 : [𝑛] → [𝑛] by

ℎ𝑚 = (𝑚, 𝑛, . . . , 𝑛). (8.7)

The zero set of {ℎ𝑚𝐸 (𝑛)
1 , . . . , ℎ𝑚𝐸 (𝑛)

𝑛 } in C 1
2 𝑛(𝑛+1)−(𝑛−𝑚) with the variables 𝑥1. . . . , 𝑥𝑛, 𝑞𝑟𝑠 (2 ≤ 𝑠 ≤

𝑛, 𝑛 − ℎ𝑚(𝑛 + 1 − 𝑠) < 𝑟 < 𝑠) is denoted by 𝑉
(
ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
, that is,

𝑉
( ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
� {(𝑎, 𝑝) ∈ C

1
2 𝑛(𝑛+1)−(𝑛−𝑚) | ℎ𝑚𝐸 (𝑛)

𝑖 (𝑎, 𝑝) = 0 for 𝑖 ∈ [𝑛]}, (8.8)

where (𝑎, 𝑝) � (𝑎1, . . . , 𝑎𝑛, 𝑝𝑟𝑠)2≤𝑠≤𝑛,𝑛−ℎ𝑚 (𝑛+1−𝑠)<𝑟<𝑠 .
Proposition 8.5. Let 2 ≤ 𝑚 ≤ 𝑛 − 1 and ℎ𝑚 be the Hessenberg function in equation (8.7). Then, the
singular locus of 𝑉

(
ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
in equation (8.8) is given by the solution set of the equations

𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑛 = 0 for all 2 ≤ 𝑠 ≤ 𝑛 and 𝑛 − ℎ𝑚(𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠.

Here, we recall our convention (8.4) that 𝑞𝑟𝑠 = 𝑥𝑠 whenever 𝑟 = 𝑠.
Before we prove Proposition 8.5, we give an example of the singular locus of the zero set

𝑉
(
ℎ𝑚𝐸 (3)

1 , ℎ𝑚𝐸 (3)
2 , ℎ𝑚𝐸 (3)

3
)

for 𝑚 = 2 by using Proposition 8.5.
Example 8.6. Consider the case when ℎ = (2, 3, 3) for 𝑛 = 3. The Jacobian matrix(

𝜕
𝜕𝑞𝑟𝑠

ℎ𝐸 (3)
𝑖

)
𝑖, (𝑟 ,𝑠)≠(1,3) is obtained from

(
𝜕

𝜕𝑞𝑟𝑠
𝐸 (3)
𝑖

)
𝑖, (𝑟 ,𝑠) by forgetting the quantum parameter 𝑞13.

As seen in Example 8.4, the Jacobian matrix
(

𝜕
𝜕𝑞𝑟𝑠

ℎ𝐸 (3)
𝑖

)
𝑖, (𝑟 ,𝑠)≠(1,3) is shown as

ℎ𝐸 (3)
1

ℎ𝐸 (3)
2

ℎ𝐸 (3)
3

𝜕
𝜕𝑥1

𝜕
𝜕𝑥2

𝜕
𝜕𝑥3

𝜕
𝜕𝑞12

𝜕
𝜕𝑞23

�������
1 1 1 0 0

ℎ𝐸 [2,3]
1

ℎ𝐸 [1,1]
1 + ℎ𝐸 [3,3]

1
ℎ𝐸 [1,2]

1 1 1

ℎ𝐸 [2,3]
2

ℎ𝐸 [1,1]
1

ℎ𝐸 [3,3]
1

ℎ𝐸 [1,2]
2

ℎ𝐸 [3,3]
1

ℎ𝐸 [1,1]
1

�������
.

It follows from Proposition 8.5 that the singular locus of𝑉
(
ℎ𝐸 (3)

1 , ℎ𝐸 (3)
2 , ℎ𝐸 (3)

3
)

is given by the solution
set of the equations ℎ𝐸 [2,3]

2 = ℎ𝐸 [1,1]
1

ℎ𝐸 [3,3]
1 = ℎ𝐸 [1,2]

2 = ℎ𝐸 [3,3]
1 = ℎ𝐸 [1,1]

1 = 0. The resulting
solution is as follows:

𝑥1 = 0, 𝑥3 = 0, 𝑞12 = 0, 𝑞23 = 0.

Then it follows from equation (4.6) and Proposition 7.3 that the singular locus of Pet3 ∩Ω◦
𝑒 is given by

the solution set of the equations 𝑥32 = 0, 𝑥21 = 0, 𝐹3,2 = 0, 𝐹2,1 = 0. This is equivalent to

𝑥21 = 0, 𝑥32 = 0, 𝑥31 = 0.

Hence, the singular locus of Pet3 ∩Ω◦
𝑒 is {𝑒𝐵}. Note that the singular locus of the Peterson variety Pet𝑛

is given by [26]. We will explain this in Appendix A.
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Proof of Proposition 8.5. Recall that a point (𝑎, 𝑝) � (𝑎1, . . . , 𝑎𝑛, 𝑝𝑟𝑠)2≤𝑠≤𝑛,𝑛−ℎ𝑚 (𝑛+1−𝑠)<𝑟<𝑠 in
C

1
2 𝑛(𝑛+1)−(𝑛−𝑚) is a singular point of𝑉

(
ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
if and only if the rank of the Jacobian ma-

trix
(

𝜕
𝜕𝑞𝑟𝑠

ℎ𝑚𝐸 (𝑛)
𝑖 (𝑎, 𝑝)

)
𝑖, (𝑟 ,𝑠) is not full. It is clear that the Jacobian matrix

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑖 (𝑎, 𝑝)
)
𝑖, (𝑟 ,𝑠) is

not full if the n-th row vector is zero. Thus, it is enough to prove that if a point (𝑎, 𝑝) in C 1
2 𝑛(𝑛+1)−(𝑛−𝑚)

is a singular point of 𝑉
(
ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
, then the n-th row vector

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑛 (𝑎, 𝑝)
)
(𝑟 ,𝑠) of the

Jacobian matrix is zero.
Since the column vector with respect to 𝜕

𝜕𝑞𝑟𝑠
of the Jacobian matrix

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑖 (𝑎, 𝑝)
)
𝑖, (𝑟 ,𝑠) is of

the form (0, . . . , 0︸���︷︷���︸
𝑠−𝑟

, 1, ∗, . . . , ∗)𝑡 by equation (8.6), the first 𝑛 − 1 row vectors of the Jacobian matrix

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑖 (𝑎, 𝑝)
)
𝑖, (𝑟 ,𝑠) are linearly independent. By the assumption that

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑖 (𝑎, 𝑝)
)
𝑖, (𝑟 ,𝑠)

does not have full rank, the n-th row vector must be written as a linear combination of the first 𝑛− 1 row
vectors, that is, (

𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑛 (𝑎, 𝑝)

)
(𝑟 ,𝑠)

=
𝑛−1∑
𝑖=1

𝑐𝑖

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑖 (𝑎, 𝑝)

)
(𝑟 ,𝑠)

(8.9)

for some 𝑐1, . . . , 𝑐𝑛−1 ∈ C. We note that the pair (𝑟, 𝑠) can be taken as 2 ≤ 𝑠 ≤ 𝑛 and
𝑛 − ℎ𝑚(𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠 in the equality above. Recall that we denote the singular point
(𝑎1, . . . , 𝑎𝑛, 𝑝𝑟𝑠)2≤𝑠≤𝑛,𝑛−ℎ𝑚 (𝑛+1−𝑠)<𝑟<𝑠 of 𝑉

(
ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
by (𝑎, 𝑝).

Claim 1. The coefficients 𝑐𝑖 of equation (8.9) must be (−1)𝑛−𝑖+1𝑎𝑛−𝑖𝑛 for 𝑖 ∈ [𝑛 − 1].

We prove Claim 1 by descending induction on i. The base case is 𝑖 = 𝑛 − 1. Comparing the
(𝑟, 𝑠) = (1, 𝑛 − 1)-th component of equation (8.9), we have

ℎ𝑚𝐸 [𝑛,𝑛]
1 (𝑎, 𝑝) = 𝑐1 · 0 + 𝑐2 · 0 + · · · + 𝑐𝑛−2 · 0 + 𝑐𝑛−1 · 1

by equation (8.6). Since ℎ𝑚𝐸 [𝑛,𝑛]
1 = 𝑥𝑛, the equality above implies that 𝑎𝑛 = 𝑐𝑛−1. This shows the base

case.
We now assume that 𝑖 < 𝑛 − 1 and the assertion of the claim holds for arbitrary k with 𝑘 ≥ 𝑖 + 1. It

follows from equation (8.6) that the (𝑟, 𝑠) = (𝑛 − 𝑖, 𝑛 − 1)-th component of equation (8.9) gives

ℎ𝑚𝐸 [1,𝑛−𝑖−1]
𝑛−𝑖−1 (𝑎, 𝑝) · ℎ𝑚𝐸 [𝑛,𝑛]

1 (𝑎, 𝑝)

=𝑐𝑖 · 1 + 𝑐𝑖+1 ·
(
ℎ𝑚𝐸 [1,𝑛−𝑖−1]

1 (𝑎, 𝑝) + ℎ𝑚𝐸 [𝑛,𝑛]
1 (𝑎, 𝑝)

)
+ 𝑐𝑖+2 ·

(
ℎ𝑚𝐸 [1,𝑛−𝑖−1]

2 (𝑎, 𝑝) + ℎ𝑚𝐸 [1,𝑛−𝑖−1]
1 (𝑎, 𝑝) · ℎ𝑚𝐸 [𝑛,𝑛]

1 (𝑎, 𝑝)
)

+ 𝑐𝑖+3 ·
(
ℎ𝑚𝐸 [1,𝑛−𝑖−1]

3 (𝑎, 𝑝) + ℎ𝑚𝐸 [1,𝑛−𝑖−1]
2 (𝑎, 𝑝) · ℎ𝑚𝐸 [𝑛,𝑛]

1 (𝑎, 𝑝)
)

+ · · · + 𝑐𝑛−1 ·
(
ℎ𝑚𝐸 [1,𝑛−𝑖−1]

𝑛−𝑖−1 (𝑎, 𝑝) + ℎ𝑚𝐸 [1,𝑛−𝑖−1]
𝑛−𝑖−2 (𝑎, 𝑝) · ℎ𝑚𝐸 [𝑛,𝑛]

1 (𝑎, 𝑝)
)
.

Since ℎ𝑚𝐸 [𝑛,𝑛]
1 (𝑎, 𝑝) = 𝑎𝑛 and 𝑐𝑘 = (−1)𝑛−𝑘+1𝑎𝑛−𝑘𝑛 for all 𝑖+1 ≤ 𝑘 ≤ 𝑛−1 by our inductive assumption,

ℎ𝑚𝐸 [1,𝑛−𝑖−1]
𝑛−𝑖−1 (𝑎, 𝑝) · 𝑎𝑛 is equal to

𝑐𝑖 +
𝑛−𝑖−1∑
𝑘=1

(−1)𝑛−𝑖−𝑘+1𝑎𝑛−𝑖−𝑘𝑛

(
ℎ𝑚𝐸 [1,𝑛−𝑖−1]

𝑘 (𝑎, 𝑝) + ℎ𝑚𝐸 [1,𝑛−𝑖−1]
𝑘−1 (𝑎, 𝑝) · 𝑎𝑛

)
=𝑐𝑖 + (−1)𝑛−𝑖𝑎𝑛−𝑖−1

𝑛 · 𝑎𝑛 + 𝑎𝑛 ·
ℎ𝑚𝐸 [1,𝑛−𝑖−1]

𝑛−𝑖−1 (𝑎, 𝑝).

This yields that 𝑐𝑖 = (−1)𝑛−𝑖+1𝑎𝑛−𝑖𝑛 and we proved Claim 1.
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It follows from Claim 1 and equation (8.9) that(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑛 (𝑎, 𝑝)

)
(𝑟 ,𝑠)

=
𝑛−1∑
𝑖=1

(−1)𝑛−𝑖+1𝑎𝑛−𝑖𝑛

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑖 (𝑎, 𝑝)

)
(𝑟 ,𝑠)

(8.10)

for all 2 ≤ 𝑠 ≤ 𝑛 and 𝑛 − ℎ𝑚 (𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠.

Claim 2. It holds that 𝑝𝑖𝑛 = 0 for all 𝑛 − 𝑚 + 1 ≤ 𝑖 ≤ 𝑛 − 1.

We show Claim 2 by descending induction on i. The base case is 𝑖 = 𝑛 − 1. The (𝑟, 𝑠) = (1, 𝑛 − 2)-th
component of equation (8.10) is equal to

ℎ𝑚𝐸 [𝑛−1,𝑛]
2 (𝑎, 𝑝) = −𝑎2

𝑛 · 1 + 𝑎𝑛 ·
ℎ𝑚𝐸 [𝑛−1,𝑛]

1 (𝑎, 𝑝)

from equation (8.6). Since ℎ𝑚𝐸 [𝑛−1,𝑛]
2 (𝑎, 𝑝) = 𝑎𝑛−1𝑎𝑛 + 𝑝𝑛−1 𝑛 and ℎ𝑚𝐸 [𝑛−1,𝑛]

1 (𝑎, 𝑝) = 𝑎𝑛−1 + 𝑎𝑛, we
have 𝑝𝑛−1 𝑛 = 0, which proves the base case.

Suppose now that 𝑖 < 𝑛 − 1 and that the claim holds for any k with 𝑘 ≥ 𝑖 + 1, that is, 𝑝𝑘𝑛 = 0 for all
𝑖 + 1 ≤ 𝑘 ≤ 𝑛 − 1. By equation (8.6), the (𝑟, 𝑠) = (1, 𝑖 − 1)-th component of equation (8.10) is

ℎ𝑚𝐸 [𝑖,𝑛]
𝑛−𝑖+1(𝑎, 𝑝) =(−1)𝑛−𝑖+2𝑎𝑛−𝑖+1

𝑛 · 1 + (−1)𝑛−𝑖+1𝑎𝑛−𝑖𝑛 · ℎ𝑚𝐸 [𝑖,𝑛]
1 (𝑎, 𝑝) (8.11)

+ (−1)𝑛−𝑖𝑎𝑛−𝑖−1
𝑛 · ℎ𝑚𝐸 [𝑖,𝑛]

2 (𝑎, 𝑝) + · · · + 𝑎𝑛 ·
ℎ𝑚𝐸 [𝑖,𝑛]

𝑛−𝑖 (𝑎, 𝑝).

Here, we note that

det(𝜆𝐼𝑛−𝑖+1 − 𝑀[𝑖,𝑛] ) |𝑞𝑘𝑛=0 (𝑖+1≤𝑘≤𝑛−1) = (−1)𝑛−𝑖 (−𝑞𝑖𝑛) + det(𝜆𝐼𝑛−𝑖 − 𝑀[𝑖,𝑛−1] ) · (𝜆 − 𝑥𝑛)

by the cofactor expansion along the last column. The left-hand side is written as

𝑛−𝑖+1∑
ℓ=0

(
(−1)ℓ𝐸 [𝑖,𝑛]

ℓ |𝑞𝑘𝑛=0 (𝑖+1≤𝑘≤𝑛−1)
)
𝜆𝑛−𝑖+1−ℓ ,

and the right-hand side is

𝜆𝑛−𝑖+1 +

𝑛−𝑖∑
ℓ=1

(
(−1)ℓ (𝑥𝑛𝐸 [𝑖,𝑛−1]

ℓ−1 + 𝐸 [𝑖,𝑛−1]
ℓ )

)
𝜆𝑛−𝑖+1−ℓ + (−1)𝑛−𝑖+1(𝑥𝑛𝐸

[𝑖,𝑛−1]
𝑛−𝑖 + 𝑞𝑖𝑛)

by definition. Thus, we obtain that

𝐸 [𝑖,𝑛]
ℓ |𝑞𝑘𝑛=0 (𝑖+1≤𝑘≤𝑛−1) = 𝑥𝑛𝐸

[𝑖,𝑛−1]
ℓ−1 + 𝐸 [𝑖,𝑛−1]

ℓ for 1 ≤ ℓ ≤ 𝑛 − 𝑖;

𝐸 [𝑖,𝑛]
𝑛−𝑖+1 |𝑞𝑘𝑛=0 (𝑖+1≤𝑘≤𝑛−1) = 𝑥𝑛𝐸

[𝑖,𝑛−1]
𝑛−𝑖 + 𝑞𝑖𝑛.

In particular, by our inductive hypothesis 𝑝𝑘𝑛 = 0 for all 𝑖 + 1 ≤ 𝑘 ≤ 𝑛 − 1, one has

ℎ𝑚𝐸 [𝑖,𝑛]
ℓ (𝑎, 𝑝) = 𝑎𝑛

ℎ𝑚𝐸 [𝑖,𝑛−1]
ℓ−1 (𝑎, 𝑝) + ℎ𝑚𝐸 [𝑖,𝑛−1]

ℓ (𝑎, 𝑝) for 1 ≤ ℓ ≤ 𝑛 − 𝑖;
ℎ𝑚𝐸 [𝑖,𝑛]

𝑛−𝑖+1(𝑎, 𝑝) = 𝑎𝑛
ℎ𝑚𝐸 [𝑖,𝑛−1]

𝑛−𝑖 (𝑎, 𝑝) + 𝑝𝑖𝑛.

Substituting these equalities to equation (8.11), the left-hand side of equation (8.11) is

𝑎𝑛
ℎ𝑚𝐸 [𝑖,𝑛−1]

𝑛−𝑖 (𝑎, 𝑝) + 𝑝𝑖𝑛.
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On the other hand, the right-hand side of equation (8.11) is

(−1)𝑛−𝑖+2𝑎𝑛−𝑖+1
𝑛 +

𝑛−𝑖∑
𝑘=1

(−1)𝑛−𝑖−𝑘+2𝑎𝑛−𝑖−𝑘+1
𝑛 ·

(
𝑎𝑛

ℎ𝑚𝐸 [𝑖,𝑛−1]
𝑘−1 (𝑎, 𝑝) + ℎ𝑚𝐸 [𝑖,𝑛−1]

𝑘 (𝑎, 𝑝)
)

=𝑎𝑛 ·
ℎ𝑚𝐸 [𝑖,𝑛−1]

𝑛−𝑖 (𝑎, 𝑝).

Hence, we obtain that 𝑝𝑖𝑛 = 0 as desired. This proves Claim 2.
Claim 3. We have 𝑎𝑛 = 0.

It follows from Theorem 4.13 that

Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒 � 𝑉

( ℎ𝑚𝐸 (𝑛)
1 , . . . , ℎ𝑚𝐸 (𝑛)

𝑛

)
.

We denote by 𝑏 = (𝑏𝑖 𝑗 )1≤ 𝑗<𝑖≤𝑛 ∈ Hess(𝑁, ℎ𝑚) ∩ Ω◦
𝑒 ⊂ C

1
2 𝑛(𝑛−1) the image of the singular point

(𝑎, 𝑝) of 𝑉
(
ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
under the isomorphism above. One can see from Proposition 7.3 and

Claim 2 that

𝐹𝑖,1 (𝑏) = −𝑞𝑛+1−𝑖 𝑛 (𝑎, 𝑝) = −𝑝𝑛+1−𝑖 𝑛 = 0 for 2 ≤ 𝑖 ≤ 𝑚. (8.12)

Since 𝑏 ∈ Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒, we also have

𝐹𝑖,1 (𝑏) = 0 for 𝑚 + 1 ≤ 𝑖 ≤ 𝑛 (8.13)

by Lemma 2.3. It follows from equations (8.12) and (8.13) and Lemma 2.3 again that the point
𝑏 = (𝑏𝑖 𝑗 )1≤ 𝑗<𝑖≤𝑛 belongs to Hess(𝑁, ℎ1) ∩ Ω◦

𝑒, where ℎ1 is the decomposable Hessenberg function
defined by ℎ1 � (1, 𝑛, . . . , 𝑛). As seen in Definition 3.2 and surrounding discussion, every flag
𝑉• ∈ Hess(𝑁, ℎ1) has 𝑉1 = C · (1, 0, . . . , 0)𝑡 which implies that 𝑏𝑖1 = 0 for all 2 ≤ 𝑖 ≤ 𝑛. It then
follows from Proposition 7.3 that

𝑎𝑛 = 𝑥𝑛 (𝑎, 𝑝) = −𝑥21 (𝑏) = −𝑏21 = 0,

as desired. We have proven Claim 3.
Combining Claim 3 and equation (8.10), we conclude that the n-th row vector

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑛 (𝑎, 𝑝)
)
(𝑟 ,𝑠)

of the Jacobian matrix is zero. This completes the proof. �

By using Proposition 8.5, we will explicitly describe the singular locus of Hess(𝑁, ℎ𝑚) ∩ Ω◦
𝑒 in

Section 10. For this purpose, we will first study the singularity of Hess(𝑁, ℎ2) ∩Ω◦
𝑒 in next section.

9. Cyclic quotient singularity

In this section, we analyze the singularity of Hess(𝑁, ℎ2) ∩ Ω◦
𝑒, where ℎ2 = (2, 𝑛, . . . , 𝑛). In fact, we

see that the singularity is related with a cyclic quotient singularity. Then we can explicitly describe the
singular locus of Hess(𝑁, ℎ2) ∩Ω◦

𝑒.
First, we study relations between 𝐹𝑖, 𝑗 ’s and 𝐹̃

〈𝑚 𝑗 〉

𝑖, 𝑗 ’s, which are defined in equations (3.3) and (3.4),
and Definition 6.3, respectively.
Lemma 9.1. Let 1 ≤ 𝑗 ≤ 𝑛 − 1 and 𝑗 ≤ 𝑚 𝑗 < 𝑛. For 𝑖 > 𝑚 𝑗 , we have

𝐹𝑖, 𝑗 = 𝐹̃
〈𝑚 𝑗 〉

𝑖, 𝑗 −

𝑖−1∑
ℓ=𝑚 𝑗+1

𝑥𝑖ℓ𝐹ℓ, 𝑗 ,

where we take the convention that
∑𝑚 𝑗

ℓ=𝑚 𝑗+1 𝑥𝑖ℓ𝐹ℓ, 𝑗 = 0.
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Proof. It suffices to show that

𝐹̃ 〈𝑖−𝑘 〉
𝑖, 𝑗 = 𝐹̃

〈𝑚 𝑗 〉

𝑖, 𝑗 −

𝑖−𝑘∑
ℓ=𝑚 𝑗+1

𝑥𝑖ℓ𝐹ℓ, 𝑗 for 1 ≤ 𝑘 ≤ 𝑖 − 𝑚 𝑗 . (9.1)

Indeed, equation (9.1) for 𝑘 = 1 is the desired equality by equation (6.4). We prove equation (9.1) by
descending induction on k. The base case is 𝑘 = 𝑖 − 𝑚 𝑗 , which is clear. Now, suppose that 𝑘 < 𝑖 − 𝑚 𝑗

and assume by induction that the claim is true for 𝑘 + 1, that is,

𝐹̃ 〈𝑖−𝑘−1〉
𝑖, 𝑗 = 𝐹̃

〈𝑚 𝑗 〉

𝑖, 𝑗 −

𝑖−𝑘−1∑
ℓ=𝑚 𝑗+1

𝑥𝑖ℓ𝐹ℓ, 𝑗 . (9.2)

Then we show equation (9.1). The left-hand side of equation (9.1) is equal to

𝐹̃ 〈𝑖−𝑘−1〉
𝑖, 𝑗 − 𝑥𝑖 𝑖−𝑘𝐹𝑖−𝑘, 𝑗

by using the cofactor expansion along the second-to-last column. Combining this with the inductive
hypothesis (9.2), we have proven equation (9.1). �

Proposition 9.2. Let 1 ≤ 𝑗 ≤ 𝑛 − 1 and 𝑗 ≤ 𝑚 𝑗 < 𝑛. For 𝑖 > 𝑚 𝑗 , the ideal

(𝐹𝑚 𝑗+1, 𝑗 , 𝐹𝑚 𝑗+2, 𝑗 , . . . , 𝐹𝑖, 𝑗 )

is equal to the ideal

(𝐹̃
〈𝑚 𝑗 〉

𝑚 𝑗+1, 𝑗 , 𝐹̃
〈𝑚 𝑗 〉

𝑚 𝑗+2, 𝑗 , . . . , 𝐹̃
〈𝑚 𝑗 〉

𝑖, 𝑗 )

in the polynomial ring C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]. In particular, if ℎ : [𝑛] → [𝑛] is an indecomposable
Hessenberg function such that ℎ ≠ (𝑛, . . . , 𝑛), then we have

C[Hess(𝑁, ℎ) ∩Ω◦
𝑒] � C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹̃

〈ℎ ( 𝑗) 〉
𝑖, 𝑗 | 𝑗 ∈ 𝐽ℎ and ℎ( 𝑗) < 𝑖 ≤ 𝑛), (9.3)

where 𝐽ℎ � { 𝑗 ∈ [𝑛 − 2] | ℎ( 𝑗) < 𝑛}.

Proof. We prove the first statement by induction on i. The base case 𝑖 = 𝑚 𝑗 + 1 is clear since 𝐹𝑚 𝑗+1, 𝑗 =

𝐹̃
〈𝑚 𝑗 〉

𝑚 𝑗+1, 𝑗 by equation (6.4). We proceed to the inductive step. Suppose that 𝑖 > 𝑚 𝑗 + 1 and that the claim
holds for 𝑖 − 1. Then we have

(𝐹𝑚 𝑗+1, 𝑗 , . . . , 𝐹𝑖−1, 𝑗 , 𝐹𝑖, 𝑗 ) = (𝐹𝑚 𝑗+1, 𝑗 , . . . , 𝐹𝑖−1, 𝑗 , 𝐹̃
〈𝑚 𝑗 〉

𝑖, 𝑗 ) (from Lemma 9.1)

= (𝐹̃
〈𝑚 𝑗 〉

𝑚 𝑗+1, 𝑗 , . . . , 𝐹̃
〈𝑚 𝑗 〉

𝑖−1, 𝑗 , 𝐹̃
〈𝑚 𝑗 〉

𝑖, 𝑗 ) (by the inductive assumption)

as desired. The isomorphism (9.3) follows from equation (3.8) and the former statement by setting
𝑚 𝑗 = ℎ( 𝑗). �
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Example 9.3. Let 𝑚 𝑗 = 𝑗 + 1. Then one has

𝐹̃ 〈2〉
𝑖,1 =

������ 1 0 𝑥21
𝑥21 1 𝑥31
𝑥𝑖1 𝑥𝑖2 𝑥𝑖+1 1

������ for 𝑖 > 2; (9.4)

𝐹̃
〈 𝑗+1〉
𝑖, 𝑗 =

��������
1 0 0 1

𝑥 𝑗 𝑗−1 1 0 𝑥 𝑗+1 𝑗
𝑥 𝑗+1 𝑗−1 𝑥 𝑗+1 𝑗 1 𝑥 𝑗+2 𝑗
𝑥𝑖 𝑗−1 𝑥𝑖 𝑗 𝑥𝑖 𝑗+1 𝑥𝑖+1 𝑗

�������� for 2 ≤ 𝑗 ≤ 𝑛 − 2 and 𝑖 > 𝑗 + 1.

By equation (9.3), the coordinate ring C[Pet𝑛 ∩Ω◦
𝑒] is

C[Pet𝑛 ∩Ω◦
𝑒] � C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹̃

〈 𝑗+1〉
𝑖, 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛 − 2 and 𝑗 + 1 < 𝑖 ≤ 𝑛). (9.5)

We now explain the cyclic quotient singularity which is also called the type A-singularity. Let 𝜁 be
a primitive n-th root of unity and ℭ𝑛 the cyclic group of order n generated by 𝜁 . Consider the action of
ℭ𝑛 on C2 defined by 𝜁 · (𝑥, 𝑦) = (𝜁𝑥, 𝜁−1𝑦) for 𝜁 ∈ ℭ𝑛 and (𝑥, 𝑦) ∈ C2. This induces the action of ℭ𝑛
on the polynomial ring C[𝑥, 𝑦] (which is the coordinate ring of C2), and it is given by 𝜁 · 𝑥 = 𝜁𝑥 and
𝜁 · 𝑦 = 𝜁−1𝑦. As is well known, the ℭ𝑛-invariants in C[𝑥, 𝑦] is isomorphic to

C[C2/ℭ𝑛] � C[𝑥, 𝑦]ℭ𝑛 � C[𝑋,𝑌, 𝑍]/(𝑋𝑌 − 𝑍𝑛),

which sends X to 𝑥𝑛, Y to 𝑦𝑛, and Z to 𝑥𝑦. The quotient space C2/ℭ𝑛 is called the cyclic quotient
singularity or the type 𝐴𝑛−1-singularity.

Example 9.4. Let 𝑛 = 3. As seen in Example 9.3, the coordinate ring of Pet3 ∩Ω◦
𝑒 is given by

C[Pet3 ∩Ω◦
𝑒] � C[𝑥21, 𝑥31, 𝑥32]/(𝐹̃

〈2〉
3,1 ).

Here, one can compute 𝐹̃ 〈2〉
3,1 as

𝐹̃ 〈2〉
3,1 =

������ 1 0 𝑥21
𝑥21 1 𝑥31
𝑥31 𝑥32 0

������ = 𝑥2
21𝑥32 − 𝑥21𝑥31 − 𝑥31𝑥32

= −𝑥3
21 + (𝑥2

21 − 𝑥31) (𝑥21 + 𝑥32).

Thus, we have

C[Pet3 ∩Ω◦
𝑒] � C[𝑋,𝑌, 𝑍]/(𝑋𝑌 − 𝑍3),

which sends X to 𝑥2
21 − 𝑥31, Y to 𝑥21 + 𝑥32 and Z to 𝑥21. The ring isomorphism above yields the

isomorphism Pet3 ∩Ω◦
𝑒 � C

2/ℭ3.

In Example 9.4, we constructed the polynomial 𝑋𝑌 − 𝑍𝑛 from 𝐹̃ 〈2〉
3,1 for 𝑛 = 3. We now generalize

this fact to arbitrary n. More specifically, we construct the polynomial 𝑋𝑌 − 𝑍𝑛 from 𝐹̃ 〈2〉
𝑖,1 (2 < 𝑖 ≤ 𝑛)

defined in equation (9.4). By the cofactor expansion along the second column, we have

𝐹̃ 〈2〉
𝑖,1 =

���� 1 𝑥21
𝑥𝑖1 𝑥𝑖+1 1

���� − 𝑥𝑖2

���� 1 𝑥21
𝑥21 𝑥31

���� for 𝑖 > 2. (9.6)
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Lemma 9.5. For 2 < 𝑖 ≤ 𝑛, we have

𝐹̃ 〈2〉
𝑛,1 + 𝑥21𝐹̃

〈2〉
𝑛−1,1 + 𝑥2

21𝐹̃
〈2〉
𝑛−2,1 + · · · + 𝑥𝑛−𝑖21 𝐹̃ 〈2〉

𝑖,1

=

���� 1 𝑥𝑛−𝑖+1
21

𝑥𝑖1 0

���� − (𝑥𝑛2 + 𝑥21𝑥𝑛−1 2 + 𝑥2
21𝑥𝑛−2 2 + · · · + 𝑥𝑛−𝑖21 𝑥𝑖2)

���� 1 𝑥21
𝑥21 𝑥31

����.
Proof. We prove this by descending induction on i. The base case 𝑖 = 𝑛 is the equality (9.6) for 𝑖 = 𝑛.
Suppose now that 𝑖 < 𝑛 and that the claim holds for 𝑖 + 1. Then we have

𝐹̃ 〈2〉
𝑛,1 + 𝑥21𝐹̃

〈2〉
𝑛−1,1 + 𝑥2

21𝐹̃
〈2〉
𝑛−2,1 + · · · + 𝑥𝑛−𝑖−1

21 𝐹̃ 〈2〉
𝑖+1,1 + 𝑥𝑛−𝑖21 𝐹̃ 〈2〉

𝑖,1

=

���� 1 𝑥𝑛−𝑖21
𝑥𝑖+1 1 0

���� − (𝑥𝑛2 + 𝑥21𝑥𝑛−1 2 + 𝑥2
21𝑥𝑛−2 2 + · · · + 𝑥𝑛−𝑖−1

21 𝑥𝑖+1 2)

���� 1 𝑥21
𝑥21 𝑥31

���� + 𝑥𝑛−𝑖21 𝐹̃ 〈2〉
𝑖,1

(by our descending induction hypothesis)

=

���� 1 𝑥𝑛−𝑖21
𝑥𝑖+1 1 0

���� − (𝑥𝑛2 + 𝑥21𝑥𝑛−1 2 + 𝑥2
21𝑥𝑛−2 2 + · · · + 𝑥𝑛−𝑖−1

21 𝑥𝑖+1 2)

���� 1 𝑥21
𝑥21 𝑥31

����
+ 𝑥𝑛−𝑖21

���� 1 𝑥21
𝑥𝑖1 𝑥𝑖+1 1

���� − 𝑥𝑛−𝑖21 𝑥𝑖2

���� 1 𝑥21
𝑥21 𝑥31

���� (by equation (9.6))

=

���� 1 𝑥𝑛−𝑖+1
21

𝑥𝑖1 0

���� − (𝑥𝑛2 + 𝑥21𝑥𝑛−1 2 + 𝑥2
21𝑥𝑛−2 2 + · · · + 𝑥𝑛−𝑖21 𝑥𝑖2)

���� 1 𝑥21
𝑥21 𝑥31

����
as desired. �

Proposition 9.6. We set ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋 = 𝑥2

21 − 𝑥31

𝑌 = 𝑥𝑛−2
21 + 𝑥32𝑥

𝑛−3
21 + · · · + 𝑥𝑛−1 2𝑥21 + 𝑥𝑛2

𝑍 = 𝑥21.

Then one can write

𝐹̃ 〈2〉
𝑛,1 + 𝑥21𝐹̃

〈2〉
𝑛−1,1 + 𝑥2

21𝐹̃
〈2〉
𝑛−2,1 + · · · + 𝑥𝑛−3

21 𝐹̃ 〈2〉
3,1 = 𝑋𝑌 − 𝑍𝑛.

Proof. By using Lemma 9.5 for 𝑖 = 3, we obtain

𝐹̃ 〈2〉
𝑛,1 + 𝑥21𝐹̃

〈2〉
𝑛−1,1 + 𝑥2

21𝐹̃
〈2〉
𝑛−2,1 + · · · + 𝑥𝑛−3

21 𝐹̃ 〈2〉
3,1

=

���� 1 𝑥𝑛−2
21

𝑥31 0

���� − (𝑥𝑛2 + 𝑥21𝑥𝑛−1 2 + 𝑥2
21𝑥𝑛−2 2 + · · · + 𝑥𝑛−3

21 𝑥32)

���� 1 𝑥21
𝑥21 𝑥31

����
= − 𝑥𝑛−2

21 𝑥31 − (𝑥𝑛2 + 𝑥21𝑥𝑛−1 2 + 𝑥2
21𝑥𝑛−2 2 + · · · + 𝑥𝑛−3

21 𝑥32) (𝑥31 − 𝑥2
21)

= − 𝑥𝑛21 + 𝑥𝑛−2
21 (𝑥2

21 − 𝑥31) + (𝑥𝑛2 + 𝑥21𝑥𝑛−1 2 + 𝑥2
21𝑥𝑛−2 2 + · · · + 𝑥𝑛−3

21 𝑥32) (𝑥
2
21 − 𝑥31)

= − 𝑥𝑛21 + (𝑥𝑛2 + 𝑥21𝑥𝑛−1 2 + 𝑥2
21𝑥𝑛−2 2 + · · · + 𝑥𝑛−3

21 𝑥32 + 𝑥𝑛−2
21 ) (𝑥2

21 − 𝑥31)

=𝑋𝑌 − 𝑍𝑛. �

Theorem 9.7. If ℎ2 = (2, 𝑛, . . . , 𝑛), then there is an isomorphism of C-algebras

C[Hess(𝑁, ℎ2) ∩Ω◦
𝑒] �

C[𝑋,𝑌, 𝑍]

(𝑋𝑌 − 𝑍𝑛)
⊗ C[𝑥32, 𝑥42, . . . , 𝑥𝑛−1 2] ⊗ C[𝑥𝑖 𝑗 | 3 ≤ 𝑗 < 𝑖 ≤ 𝑛]
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which sends

𝑋 ↦→ 𝑥2
21 − 𝑥31;

𝑌 ↦→ 𝑥𝑛−2
21 + 𝑥32𝑥

𝑛−3
21 + · · · + 𝑥𝑛−1 2𝑥21 + 𝑥𝑛2;

𝑍 ↦→ 𝑥21;
𝑥𝑖2 ↦→ 𝑥𝑖2 for 3 ≤ 𝑖 ≤ 𝑛 − 1;
𝑥𝑖 𝑗 ↦→ 𝑥𝑖 𝑗 for 3 ≤ 𝑗 < 𝑖 ≤ 𝑛.

(9.7)

In other words,

Hess(𝑁, ℎ2) ∩Ω◦
𝑒 � C

2/ℭ𝑛 × C
1
2 (𝑛−1) (𝑛−2)−1.

Remark 9.8. We have seen the case when 𝑛 = 3 in Example 9.4.

Proof of Theorem 9.7. By equation (9.3), we have

C[Hess(𝑁, ℎ2) ∩Ω◦
𝑒] � C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹̃ 〈2〉

3,1 , 𝐹̃
〈2〉
4,1 , . . . , 𝐹̃

〈2〉
𝑛,1 ). (9.8)

Put

𝑃𝑛 � (𝑥2
21 − 𝑥31) (𝑥

𝑛−2
21 + 𝑥32𝑥

𝑛−3
21 + · · · + 𝑥𝑛−1 2𝑥21 + 𝑥𝑛2) − 𝑥𝑛21.

It then follows from Proposition 9.6 that

C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹̃ 〈2〉
3,1 , . . . , 𝐹̃

〈2〉
𝑛−1,1, 𝐹̃

〈2〉
𝑛,1 ) � C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹̃ 〈2〉

3,1 , . . . , 𝐹̃
〈2〉
𝑛−1,1, 𝑃𝑛).

(9.9)

By the definition (9.4), 𝐹̃ 〈2〉
𝑖,1 = 0 if and only if

𝑥𝑖+1 1 = 𝑥21𝑥𝑖1 + 𝑥31𝑥𝑖2 − 𝑥2
21𝑥𝑖2

for 3 ≤ 𝑖 ≤ 𝑛 − 1. These equalities for 𝑖 = 𝑛 − 1, 𝑛 − 2, . . . , 3 lead us to the isomorphism

C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝐹̃ 〈2〉
3,1 , . . . , 𝐹̃

〈2〉
𝑛−1,1, 𝑃𝑛) � C[𝑥21, 𝑥31, 𝑥𝑖 𝑗 | 2 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝑃𝑛). (9.10)

It is straightforward to see that

C[𝑥21, 𝑥31, 𝑥𝑖 𝑗 | 2 ≤ 𝑗 < 𝑖 ≤ 𝑛]/(𝑃𝑛) (9.11)
�C[𝑋,𝑌, 𝑍]/(𝑋𝑌 − 𝑍𝑛) ⊗ C[𝑥32, 𝑥42, . . . , 𝑥𝑛−1 2] ⊗ C[𝑥𝑖 𝑗 | 3 ≤ 𝑗 < 𝑖 ≤ 𝑛],

which sends

𝑋 ↦→ 𝑥2
21 − 𝑥31;

𝑌 ↦→ 𝑥𝑛−2
21 + 𝑥32𝑥

𝑛−3
21 + · · · + 𝑥𝑛−1 2𝑥21 + 𝑥𝑛2;

𝑍 ↦→ 𝑥21;
𝑥𝑖2 ↦→ 𝑥𝑖2 for 3 ≤ 𝑖 ≤ 𝑛 − 1;
𝑥𝑖 𝑗 ↦→ 𝑥𝑖 𝑗 for 3 ≤ 𝑗 < 𝑖 ≤ 𝑛.
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In fact, the inverse map is given by

𝑥21 ↦→ 𝑍;
𝑥31 ↦→ −𝑋 + 𝑍2;
𝑥𝑛2 ↦→ 𝑌 − 𝑍𝑛−2 − 𝑥32𝑍

𝑛−3 − · · · − 𝑥𝑛−1 2𝑍;
𝑥𝑖2 ↦→ 𝑥𝑖2 for 3 ≤ 𝑖 ≤ 𝑛 − 1;
𝑥𝑖 𝑗 ↦→ 𝑥𝑖 𝑗 for 3 ≤ 𝑗 < 𝑖 ≤ 𝑛.

Combining equations (9.8), (9.9), (9.10) and (9.11), we conclude that

C[Hess(𝑁, ℎ2) ∩Ω◦
𝑒] �

C[𝑋,𝑌, 𝑍]

(𝑋𝑌 − 𝑍𝑛)
⊗ C[𝑥32, 𝑥42, . . . , 𝑥𝑛−1 2] ⊗ C[𝑥𝑖 𝑗 | 3 ≤ 𝑗 < 𝑖 ≤ 𝑛] .

We complete the proof. �

For a polynomial 𝑓 ∈ C[Ω◦
𝑒] � C[𝑥𝑖 𝑗 | 1 ≤ 𝑗 < 𝑖 ≤ 𝑛], we denote the zero set of f by

𝑉 ( 𝑓 ) � {𝑔 ∈ Ω◦
𝑒 � C

1
2 𝑛(𝑛−1) | 𝑓 (𝑔) = 0}. (9.12)

Corollary 9.9. The singular locus of Hess(𝑁, ℎ2) ∩Ω◦
𝑒 is given by

Sing(Hess(𝑁, ℎ2) ∩Ω◦
𝑒) =

𝑛⋂
𝑖=2

𝑉 (𝑥𝑖1) ∩𝑉 (𝑥𝑛2).

Proof. By Theorem 9.7, we have

Hess(𝑁, ℎ2) ∩Ω◦
𝑒 � C

2/ℭ𝑛 × C
1
2 (𝑛−1) (𝑛−2)−1 � 𝑉 (𝑋𝑌 − 𝑍𝑛).

Here, 𝑉 (𝑋𝑌 − 𝑍𝑛) denotes the hypersurface defined by the equation 𝑋𝑌 − 𝑍𝑛 = 0 in C 1
2 (𝑛−1) (𝑛−2)+2

with the variables 𝑋,𝑌, 𝑍, 𝑥32, 𝑥42, . . . , 𝑥𝑛−1 2, 𝑥𝑖 𝑗 (3 ≤ 𝑗 < 𝑖 ≤ 𝑛). The singular locus of 𝑉 (𝑋𝑌 − 𝑍𝑛)
is the solution set of the equations

𝑋 = 0, 𝑌 = 0, 𝑍 = 0.

It follows from the correspondence (9.7) that the image of the ideal (𝑋,𝑌, 𝑍) under the isomorphism
C[Hess(𝑁, ℎ2) ∩Ω◦

𝑒] �
C[𝑋,𝑌 ,𝑍 ]
(𝑋𝑌−𝑍𝑛)

⊗ C[𝑥32, 𝑥42, . . . , 𝑥𝑛−1 2] ⊗ C[𝑥𝑖 𝑗 | 3 ≤ 𝑗 < 𝑖 ≤ 𝑛] is

(𝑥2
21 − 𝑥31, 𝑥

𝑛−2
21 + 𝑥32𝑥

𝑛−3
21 + · · · + 𝑥𝑛−1 2𝑥21 + 𝑥𝑛2, 𝑥21) = (𝑥31, 𝑥𝑛2, 𝑥21)

in C[Hess(𝑁, ℎ2) ∩ Ω◦
𝑒]. Hence, by the presentation (9.3), the singular locus of Hess(𝑁, ℎ2) is the

solution set of the equations ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥21 = 0
𝑥31 = 0
𝑥𝑛2 = 0
𝐹̃ 〈2〉
𝑖,1 = 0 for 3 ≤ 𝑖 ≤ 𝑛 − 1.

(9.13)

Note that the equation 𝐹̃ 〈2〉
𝑛,1 = 0 can be removed above since 𝐹̃ 〈2〉

𝑛,1 = 0 is derived from the equations
(9.13) by Proposition 9.6. It then follows from the equality 𝐹̃ 〈2〉

𝑖,1 = 𝑥𝑖+1 1 + 𝑥2
21𝑥𝑖2 − 𝑥21𝑥𝑖1 − 𝑥31𝑥𝑖2 for

3 ≤ 𝑖 ≤ 𝑛 − 1 that the solution set of the equations (9.13) is given by 𝑥𝑖1 = 𝑥𝑛2 = 0 for 2 ≤ 𝑖 ≤ 𝑛, as
desired. �
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10. Singular locus of Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒

We now give an explicit description for the singular locus of Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒 where ℎ𝑚 is defined in

equation (8.7).

Theorem 10.1. Let 2 ≤ 𝑚 ≤ 𝑛 − 1. Then, the singular locus of Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒 is described as

Sing(Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒) =

𝑛⋂
𝑖=2

𝑉 (𝑥𝑖1) ∩
𝑚⋂
𝑗=2

𝑉 (𝑥𝑛 𝑗 ),

where the notation 𝑉 ( 𝑓 ) is defined in equation (9.12).

Proof. We prove this by induction on m. The base case is 𝑚 = 2, which follows from Corollary 9.9.
Suppose now that 𝑚 > 2 and that the claim holds for 𝑚 − 1. It follows from Proposition 8.5 that the
singular locus of 𝑉

(
ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
is given by the solution set of the equations

𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑛 = 0 for all 2 ≤ 𝑠 ≤ 𝑛 and 𝑛 − ℎ𝑚(𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠. (10.1)

By Lemma 8.2, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸 [𝑛,𝑛]
1 = 𝑥𝑛

𝐸 [𝑛−1,𝑛]
2 = 𝐸 [𝑛−1,𝑛−1]

1 𝑥𝑛 + 𝑞𝑛−1 𝑛

𝐸 [𝑛−2,𝑛]
3 = 𝐸 [𝑛−2,𝑛−1]

2 𝑥𝑛 + 𝐸 [𝑛−2,𝑛−2]
1 𝑞𝑛−1 𝑛 + 𝑞𝑛−2 𝑛

...

𝐸 [𝑛−𝑚+1,𝑛]
𝑚 = 𝐸 [𝑛−𝑚+1,𝑛−1]

𝑚−1 𝑥𝑛 + · · · + 𝐸 [𝑛−𝑚+1,𝑛−𝑚+1]
1 𝑞𝑛−𝑚+2 𝑛 + 𝑞𝑛−𝑚+1 𝑛.

(10.2)

Since it holds that

ℎ𝑚𝐸 [𝑛−𝑖+1,𝑛]
𝑖 =

𝜕

𝜕𝑞1 𝑛−𝑖

ℎ𝑚𝐸 (𝑛)
𝑛 = 0 for all 1 ≤ 𝑖 ≤ 𝑚

by equations (8.6) and (10.1), the equalities (10.2) lead us to the following equation

���������

1
ℎ𝑚𝐸 [𝑛−1,𝑛−1]

1 1
ℎ𝑚𝐸 [𝑛−2,𝑛−1]

2
ℎ𝑚𝐸 [𝑛−2,𝑛−2]

1 1
...

...
. . .

. . .
ℎ𝑚𝐸 [𝑛−𝑚+1,𝑛−1]

𝑚−1
ℎ𝑚𝐸 [𝑛−𝑚+1,𝑛−2]

𝑚−2 · · · ℎ𝑚𝐸 [𝑛−𝑚+1,𝑛−𝑚+1]
1 1

���������
��������

𝑥𝑛
𝑞𝑛−1 𝑛
𝑞𝑛−2 𝑛

...
𝑞𝑛−𝑚+1 𝑛

��������
=

��������

0
0
0
...
0

��������
,

which yields that 𝑥𝑛 = 𝑞𝑛−1 𝑛 = 𝑞𝑛−2 𝑛 = · · · = 𝑞𝑛−𝑚+1 𝑛 = 0. Since we have 𝑞𝑛−𝑚+1 𝑛 = 0 and(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚𝐸 (𝑛)

𝑛

)����
𝑞𝑛−𝑚+1𝑛=0

=
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚−1𝐸 (𝑛)

𝑛

for 2 ≤ 𝑠 ≤ 𝑛 and 𝑛 − ℎ𝑚−1(𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠, the equations (10.1) imply that⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚−1𝐸 (𝑛)

𝑛 = 0 for all 2 ≤ 𝑠 ≤ 𝑛 and 𝑛 − ℎ𝑚−1 (𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠
𝜕

𝜕𝑞𝑛−𝑚+1𝑛
ℎ𝑚𝐸 (𝑛)

𝑛 = 0
𝑞𝑛−𝑚+1 𝑛 = 0.

(10.3)
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Conversely, the equations (10.3) yield equation (10.1). In fact, since one can write ℎ𝑚𝐸 (𝑛)
𝑛 = ℎ𝑚−1𝐸 (𝑛)

𝑛 +

𝑞𝑛−𝑚+1 𝑛 ·𝐹 for some polynomial F by Definition 4.10, we have 𝜕
𝜕𝑞𝑟𝑠

ℎ𝑚𝐸 (𝑛)
𝑛 = 𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚−1𝐸 (𝑛)

𝑛 +𝑞𝑛−𝑚+1 𝑛 ·
𝜕

𝜕𝑞𝑟𝑠
𝐹 for all 2 ≤ 𝑠 ≤ 𝑛 and 𝑛 − ℎ𝑚−1(𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠. Hence, equation (10.1) is equivalent to

equation (10.3). One has

𝜕

𝜕𝑞𝑛−𝑚+1 𝑛

ℎ𝑚𝐸 (𝑛)
𝑛 = ℎ𝑚𝐸 [1,𝑛−𝑚]

𝑛−𝑚 = ℎ𝑚𝐸 (𝑛−𝑚)
𝑛−𝑚

from equations (8.1) and (8.6), so the singular locus of 𝑉
(
ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
is given by the solution

set of the equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚−1𝐸 (𝑛)

𝑛 = 0 for all 2 ≤ 𝑠 ≤ 𝑛 and 𝑛 − ℎ𝑚−1(𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠
ℎ𝑚𝐸 (𝑛−𝑚)

𝑛−𝑚 = 0
𝑞𝑛−𝑚+1 𝑛 = 0.

By Corollary 7.4, the following commutative diagram holds

C[𝐹𝑙 (C𝑛) ∩Ω◦
𝑒]

𝜑
−−−−−−→
�

C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 1 ≤ 𝑟 < 𝑠 ≤ 𝑛]

(𝐸 (𝑛)
1 , . . . , 𝐸 (𝑛)

𝑛 )⏐⏐�𝐹𝑖,1=0 (𝑚+1≤𝑖≤𝑛) ⏐⏐�𝑞𝑟𝑛=0 (1≤𝑟 ≤𝑛−𝑚)

C[Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒]

𝜑ℎ𝑚
−−−−−−→
�

C[𝑥1, . . . , 𝑥𝑛, 𝑞𝑟𝑠 | 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ𝑚 (𝑛 + 1 − 𝑠) < 𝑟 < 𝑠]

(ℎ𝑚𝐸 (𝑛)
1 , . . . , ℎ𝑚𝐸 (𝑛)

𝑛 )
,

(10.4)

where both vertial arrows are surjective. The ideal defining the singular locus of the zero set
𝑉

(
ℎ𝑚𝐸 (𝑛)

1 , . . . , ℎ𝑚𝐸 (𝑛)
𝑛

)
is(

𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚−1𝐸 (𝑛)

𝑛

���� 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ𝑚−1 (𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠

)
+ (ℎ𝑚𝐸 (𝑛−𝑚)

𝑛−𝑚 ) + (𝑞𝑛−𝑚+1 𝑛).

The image of the ideal above under the isomorphism 𝜑−1
ℎ𝑚

in equation (10.4) is equal to(
𝜑−1

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚−1𝐸 (𝑛)

𝑛

)���� 2 ≤ 𝑠 ≤ 𝑛, 𝑛 − ℎ𝑚−1 (𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠

)
+ (𝑥𝑛𝑚) + (𝐹𝑚,1)

in C[Hess(𝑁, ℎ𝑚) ∩ Ω◦
𝑒] by the definition (7.1) and Proposition 7.3. Hence, the singular locus of

Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒 is the solution set of the equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜑−1

(
𝜕

𝜕𝑞𝑟𝑠
ℎ𝑚−1𝐸 (𝑛)

𝑛

)
= 0 for all 2 ≤ 𝑠 ≤ 𝑛 and 𝑛 − ℎ𝑚−1 (𝑛 + 1 − 𝑠) < 𝑟 ≤ 𝑠

𝐹𝑚,1 = 0
𝐹𝑖,1 = 0 for all 𝑚 + 1 ≤ 𝑖 ≤ 𝑛

(10.5)

and

𝑥𝑛𝑚 = 0

by Lemma 2.3. Since the singular locus of Hess(𝑁, ℎ𝑚−1) ∩Ω◦
𝑒 is the solution set of the equations (10.5)

from Proposition 8.5, Theorem 4.13 and Lemma 2.3 again, we can describe

Sing(Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒) = Sing(Hess(𝑁, ℎ𝑚−1) ∩Ω◦

𝑒) ∩𝑉 (𝑥𝑛𝑚).

https://doi.org/10.1017/fms.2024.142 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.142


38 T. Horiguchi and T. Shirato

One can see from our inductive assumption that Sing(Hess(𝑁, ℎ𝑚−1) ∩ Ω◦
𝑒) =

⋂𝑛
𝑖=2 𝑉 (𝑥𝑖1) ∩⋂𝑚−1

𝑗=2 𝑉 (𝑥𝑛 𝑗 ), so we complete the proof. �

Let 𝔖𝑛 be the permutation group on [𝑛]. For 𝑤 ∈ 𝔖𝑛, the Schubert cell 𝑋◦
𝑤 is defined to be the B-

orbit of the permutation flag 𝑤𝐵 in the flag variety GL𝑛 (C)/𝐵. The Schubert variety 𝑋𝑤 is defined by
the closure of the Schubert cell 𝑋◦

𝑤 , that is, 𝑋𝑤 = 𝐵𝑤𝐵/𝐵. We put 𝐹𝑖 � spanC{𝑒1, . . . , 𝑒𝑖} for 𝑖 ∈ [𝑛],
where 𝑒1, . . . , 𝑒𝑛 are the standard basis for C𝑛. Under the identification 𝐹𝑙 (C𝑛) � GL𝑛 (C)/𝐵, one can
describe the Schubert variety 𝑋𝑤 as

𝑋𝑤 = {𝑉• ∈ 𝐹𝑙 (C𝑛) | dim(𝑉𝑝 ∩ 𝐹𝑞) ≥ 𝑟𝑤 (𝑝, 𝑞) for all 𝑝, 𝑞 ∈ [𝑛]},

where 𝑟𝑤 (𝑝, 𝑞) = |{𝑖 ∈ [𝑝] | 𝑤(𝑖) ≤ 𝑞}| (e.g., [19, Section 10.5]). For 2 ≤ 𝑚 ≤ 𝑛 − 1, we define the
permutation 𝑤𝑚 ∈ 𝔖𝑛 as

𝑤𝑚(𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if 𝑖 = 1,
𝑛 + 1 − 𝑖 if 2 ≤ 𝑖 ≤ 𝑚,

𝑛 if 𝑖 = 𝑚 + 1,
𝑛 + 2 − 𝑖 if 𝑚 + 2 ≤ 𝑖 ≤ 𝑛.

(10.6)

Then one can verify from [21] that the Schubert variety 𝑋𝑤𝑚 is described as

𝑋𝑤𝑚 = {𝑉• ∈ 𝐹𝑙 (C𝑛) | dim(𝑉1 ∩ 𝐹1) ≥ 1 and dim(𝑉𝑚 ∩ 𝐹𝑛−1) ≥ 𝑚}.

In other words, 𝑉• ∈ 𝑋𝑤𝑚 if and only if 𝑉1 = 𝐹1 = span
C
{𝑒1} and 𝑉𝑚 ⊂ 𝐹𝑛−1 = span

C
{𝑒1, . . . , 𝑒𝑛−1}.

In particular, we have

𝑋𝑤𝑚 ∩Ω◦
𝑒 =

𝑛⋂
𝑖=2

𝑉 (𝑥𝑖1) ∩
𝑚⋂
𝑗=2

𝑉 (𝑥𝑛 𝑗 ).

Hence, we obtain the following result from Theorem 10.1.

Corollary 10.2. Let 2 ≤ 𝑚 ≤ 𝑛 − 1. Then, the singular locus of Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒 is equal to

Sing(Hess(𝑁, ℎ𝑚) ∩Ω◦
𝑒) = 𝑋𝑤𝑚 ∩Ω◦

𝑒 .

Remark 10.3. Let A be a nilpotent matrix (not necessarily regular nilpotent). Then it is known from
[15, Theorem 5] that the singular locus of Hess(𝐴, ℎ𝑛−1) is

Sing(Hess(𝐴, ℎ𝑛−1)) = Hess(𝐴, ℎ = (1, 𝑛 − 1, . . . , 𝑛 − 1, 𝑛)).

Consider the regular nilpotent case. The Hessenberg function ℎ = (1, 𝑛−1, . . . , 𝑛−1, 𝑛) is decomposable,
so every flag 𝑉• ∈ Hess(𝑁, ℎ) has 𝑉1 = span

C
{𝑒1} and 𝑉𝑛−1 = span

C
{𝑒1, . . . , 𝑒𝑛−1} (see Definition 3.2

and surrounding discussion). Hence, the result of [15, Theorem 5] for 𝐴 = 𝑁 gives

Sing(Hess(𝑁, ℎ𝑛−1)) = 𝑋𝑤𝑛−1 .

A. Singular locus of Peterson variety

The singular locus of the Peterson variety Pet𝑛 has been studied in [26]. Combining the result of [26]
and some result in [2], we describe the decomposition for the singular locus of the Peterson variety into
irreducible components.
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It is known that the flag variety 𝐹𝑙 (C𝑛) has a decomposition into Schubert cells

𝐹𝑙 (C𝑛) =
⊔
𝑤 ∈𝔖𝑛

𝑋◦
𝑤 , (A.1)

where each 𝑋◦
𝑤 is isomorphic to Cℓ (𝑤) and ℓ(𝑤) denotes the length of w (e.g., [19]). Tymoczko

generalized this fact to the Hessenberg varieties in [36]. In what follows, we explain the work in [36]
for the case of the Peterson variety Pet𝑛.

Let I be a subset of [𝑛 − 1]. We may regard [𝑛 − 1] as the set of vertices of the Dynkin diagram in
type 𝐴𝑛−1. Then, 𝐼 ⊂ [𝑛 − 1] can be decompose into the connected components of the Dynkin diagram
of type 𝐴𝑛−1:

𝐼 = 𝐼1 � 𝐼2 � · · · � 𝐼𝑚.

In other words, each 𝐼 𝑗 (1 ≤ 𝑗 ≤ 𝑚) denotes a maximal consecutive subset of [𝑛−1]. To each connected
component 𝐼 𝑗 , one can assign the longest element 𝑤 (𝐼 𝑗 )

0 of the permutation subgroup 𝔖𝐼 𝑗 on 𝐼 𝑗 . Then,
we define the permutation 𝑤𝐼 ∈ 𝔖𝑛 by

𝑤𝐼 � 𝑤 (𝐼1)
0 𝑤 (𝐼2)

0 · · ·𝑤 (𝐼𝑚)

0 .

Example A.1. Let 𝑛 = 9 and 𝐼 = {1, 2, 3} � {6, 7}. Then, the one-line notation of 𝑤𝐼 is

𝑤𝐼 = 432158769.

The Schubert cell 𝑋◦
𝑣 intersects with the Peterson variety Pet𝑛 if and only if 𝑣 = 𝑤𝐼 for some

𝐼 ⊂ [𝑛 − 1] by [36] (see also [2, Lemma 3.5]). We set

𝑋◦
𝐼 � 𝑋◦

𝑤𝐼
∩ Pet𝑛 and 𝑋𝐼 � 𝑋𝑤𝐼 ∩ Pet𝑛 = 𝑋◦

𝑤𝐼
∩ Pet𝑛 .

By intersecting with the Peterson variety Pet𝑛, the decomposition in equation (A.1) yields that

Pet𝑛 =
⊔

𝐽 ⊂[𝑛−1]
𝑋◦
𝐽 .

It is known from [36] that 𝑋◦
𝐽 � C

|𝐽 | for any 𝐽 ⊂ [𝑛 − 1]. In general, it follows from [2, Equation (3.7)]
that for each 𝐼 ⊂ [𝑛 − 1], we have

𝑋𝐼 =
⊔
𝐽 ⊂𝐼

𝑋◦
𝐽 . (A.2)

It is known that 𝑋𝐼 is a regular nilpotent Hessenberg variety for a certain Hessenberg function ℎ𝐼 as
described below. For 𝐼 ⊂ [𝑛 − 1], we define a Hessenberg function ℎ𝐼 : [𝑛] → [𝑛] by

ℎ𝐼 (𝑖) �

{
𝑖 + 1 if 𝑖 ∈ 𝐼,

𝑖 if 𝑖 ∉ 𝐼 .

Note that if 𝐼 = [𝑛 − 1], then ℎ𝐼 = (2, 3, 4, . . . , 𝑛, 𝑛) is the Hessenberg function for the Peterson case.
Otherwise, ℎ𝐼 is decomposable (Definition 3.2).

Proposition A.2. ([2, Proposition 3.4]) For a subset I of [𝑛 − 1], we have

𝑋𝐼 = 𝑋◦
𝐼 = Hess(𝑁, ℎ𝐼 ),

where N is the regular nilpotent element defined in equation (3.1).
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It follows from Theorem 3.1 and Proposition A.2 that 𝑋𝐼 is irreducible for any 𝐼 ⊂ [𝑛 − 1]. For
positive integers 𝑎, 𝑏 with 𝑎 ≤ 𝑏, we denote by [𝑎, 𝑏] the set {𝑎, 𝑎 + 1, . . . , 𝑏}. The singular locus of
the Peterson variety Pet𝑛 is described in [26] as follows.

Theorem A.3. ([26, Theorem 4]) The singular locus of Pet𝑛 is given by

Sing(Pet𝑛) =
⊔

𝐽⊂[𝑛−1]
𝐽≠[𝑛−1], [2,𝑛−1], [1,𝑛−2]

𝑋◦
𝐽 .

Lemma A.4. We have

{𝐽 ⊂ [𝑛 − 1] | 𝐽 ≠ [𝑛 − 1], [2, 𝑛 − 1], [1, 𝑛 − 2]} =
𝑛−2⋃
𝑗=2

{𝐽 ⊂ [𝑛 − 1] | 𝐽 ∌ 𝑗} ∪ {𝐽 ⊂ [2, 𝑛 − 2]}.

Proof. We first show that the left-hand side is included in the right-hand side. For this, we take a subset
J of [𝑛 − 1] such that 𝐽 ≠ [𝑛 − 1], [2, 𝑛 − 1], [1, 𝑛 − 2]. Note that |𝐽 | ≤ 𝑛 − 2.

Case (i): Suppose that |𝐽 | ≤ 𝑛 − 3. If J contains [2, 𝑛 − 2], then 𝐽 = [2, 𝑛 − 2] since |𝐽 | ≤ 𝑛 − 3.
Otherwise, we have 𝐽 ∌ 𝑗 for some 2 ≤ 𝑗 ≤ 𝑛 − 2. In both cases, J belongs to the right-hand side.

Case (ii): Suppose that |𝐽 | = 𝑛 − 2. Since 𝐽 ≠ [2, 𝑛 − 1], [1, 𝑛 − 2], we see that 𝐽 = [𝑛 − 1] \ { 𝑗} for
some 2 ≤ 𝑗 ≤ 𝑛 − 2, which belongs to the right-hand side.

Hence, we proved that the left-hand side is included in the right-hand side.
Conversely, let J be a subset of [𝑛 − 1] appeared in the right-hand side. If 𝐽 ∌ 𝑗 for some

2 ≤ 𝑗 ≤ 𝑛 − 2, then we have that 𝐽 ≠ [𝑛 − 1], [2, 𝑛 − 1], [1, 𝑛 − 2]. If 𝐽 ⊂ [2, 𝑛 − 2], then it is clear
that 𝐽 ≠ [𝑛 − 1], [2, 𝑛 − 1], [1, 𝑛 − 2]. Thus, the right-hand side is included in the left-hand side, so the
equality holds. �

The following proposition gives the decomposition for the singular locus of the Peterson variety into
irreducible components.

Proposition A.5. The singular locus of Pet𝑛 is decomposed into irreducible components as follows:

Sing(Pet𝑛) =
���

⋃
2≤ 𝑗≤𝑛−2

𝑋[𝑛−1]\{ 𝑗 }
��� ∪ 𝑋[2,𝑛−2]

=
���

⋃
2≤ 𝑗≤𝑛−2

Hess(𝑁, ℎ [𝑛−1]\{ 𝑗 })
��� ∪ Hess(𝑁, ℎ [2,𝑛−2] ).

Proof. By Theorem A.3 and Lemma A.4, we have

Sing(Pet𝑛) =
���

⋃
2≤ 𝑗≤𝑛−2

⊔
𝐽 ⊂[𝑛−1]\{ 𝑗 }

𝑋◦
𝐽
��� ∪ ���

⊔
𝐽 ⊂[2,𝑛−2]

𝑋◦
𝐽
���.

By using the decomposition in equation (A.2), the right-hand side above is equal to

���
⋃

2≤ 𝑗≤𝑛−2
𝑋[𝑛−1]\{ 𝑗 }

��� ∪ 𝑋[2,𝑛−2] ,

as desired. Also, this coincides with
(⋃

2≤ 𝑗≤𝑛−2 Hess(𝑁, ℎ [𝑛−1]\{ 𝑗 })
)
∪ Hess(𝑁, ℎ [2,𝑛−2] ) by

Proposition A.2. �
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