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1. Introduction

This paper contains part of the author's Ph.D. dissertation directed by

Frederick Bagemihl at Wayne State University. The research was supported

by a grant from the Michigan Institute of Science and Technology.

Alice Roth has made an extensive study of entire meromorphic functions

with prescribed behavior along half rays emanating from the origin (6). The

question arose whether analogous results could be found for functions meromor-

phic in the unit disk with the same behavior prescribed along an exhaustive

class of spirals emanating from the origin. In this paper, I present a class

of spirals which satisfactorily fills this role. However, I make no claim to

the effect that only this class will suffice.

2. The main results

The circle with origin as center and radius k in the complex plane will be

denoted by C{k) throughout this paper. Similarly, the open disk with origin

as center and radius k will be denoted by D(k).

(2.1) DEFINITION. For each value θ,0^θ<2π, define Sθ={z =

rexp Γiftf+tan-^Y], 0 < r < l] . Further, define S-β = S2π~θ for each θ, O^θ

<2π. These spirals will be called Study spirals (7, p. 45).

Notice that each Study spiral originates at the origin and its argument tends

monotonically to +oo as r tends to 1. Also if θx =¥ θi9 then SΘ1 and SΘ2 have

only the origin in common.

(2. 2) DEFINITION. Let £f represent the class of functions meromorphic

and non-constant in D(l) and which tend to a definite limit, finite or infinite,

on each Study spiral as r tends to 1. (Theorem 2.15 asserts that this class is

rather large.) For each function F{z) define the spiral limit value function /(#),

2ττ, associated with F(z) as follows:
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f(β) = lim F(r exp[_*(#+ tan-^p

(2.3) DEFINITION. For —2π^θ1<Θ2^2π and θ2—βι<2% I shall call the

region bounded by SeltSe2 and C(l) and containing SΘS where #3 = 0!+ —?-~—λ~

a spiral wedge and I shall denote this region by W{θx, θ2). Let W{θly β2) denote

the union of W(θx,θ2), Sβi and SΘ2 and be called a closed spiral wedge.

(2. 4) LEMMA 1. Let F(z)<=S^. In each closed region W(a0, ft,) there is a closed

region W{a,β), where aQ< a< β< βQ, such that either \F(z)\^2 or \F{z)\>:l for

all sufficiently large \z\, where z^W{a,β).

Proof. Assume the conclusion does not hold. Then there exists 1

= Γi > 1/2 such that z^Wia^ βQ) and \F(Z!)\< 1. Since F(z) is continuous at zu

there is an entire arc on \%\=r1 such that \F(z)\< 1 for all z on this arc.

Hence there are values α̂  and βλ such that aQ< <x1< βχ< βQ and for z^W(aty βι)

a n d \z\=rl9\F(z)\<l.

Also there exists 1 > |z 2 | =r2 > 3/4 such that z2^W{auβ1) and \F{z2)\>2.

Since ljF(z) is continuous at z2, there is an entire arc of | z | = r 2 on which

I F(z) I > 2. So there are values a2, β2 such that ax < a2 < β2 < ft and for all z

where z=r 2 exp Γf(#+tan-^2--Y] and a2<θ<β2> \F{z)\>2 .

Continuing on in this way for each n = l , 2 , the argument reads as

follows:

For \z\>2nj2n+2, there exists z2n-λ = r2n-ι exp [/(^n-i+tan-^-^ 1 1 --) ! where

«2»-2 < ^2»-i < ftn-2 and 1 > r2n-χ > - ^ Γ j Γ s u c h t h a t I ^ 2 » - i ) I < 1 B e c a u s e

F(z) is continuous at 2;27i-i? there exists an entire subarc of \z\ =r2n-1 containing

the points z = r2n-x e x p Γ ί ^ + t a n - ^ ^ 1 — )Ί with a2n-x <θ< β2n-i where a2n-2

< <*2n-ι < β2n-i < β2n-2 on which I F(z) | < 1.

Also there exists z2n=r2n exp [*(#2 w+tan—^-)] where 1 > r > » > - | ^ o a n d

«2»-i < 2̂Λ < ft»-i and for which |iΓ(227l)l> 2. Since \jF{z) is continuous at

z2n, there is an entire subarc of \z\ =r2n containing the points z = r2n exp i(θ+

with <x2n<θ<β2n where α 2 n -i< α 2 Λ < ft«< ft»-! on which \F(z)\
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So I have defined the following sequence of open, non-empty, nested intervals
oo

(ctuβi), («2>&)> where ak+1, βk+1 e (ak, βk) fc=0, 1,2, Therefore Π (an, βn)

is not empty. Let γ be in this set. Then for this γ and for all n, I have both

\F(r2n^ exp [f(r+tan^=i-)]) |< 1 and | f(r,Λ exp [f( r-Han-^)]) I > 2

Since lim ^ - ^ l i m r 2 »=l, this implies that no limit exists for F(z) as |z | tends

to 1 along Sr, contrary to my assumption. So the proposition must be true.

(2. 5) DEFINITION. A spiral wedge W{a, β) is called a wedge of conver-

gence for F{z)^S^ if either a finite constant c exists so that l imί ί f r expΓ*(Vτ-

tan-—-)" |)-c| = 0 uniformly for α < 0 < / 3 or if l i m 4 = 0
2 J V j '

uniformly for a ^ # ̂  β.

The range of/(a), denoted by /?(/), is the set of those values assumed by f(z)

at points in D{\) arbitrarily near C(l).

(2. 6) LEMMA 2. Lei F(z) e ^ Λwrf rfς/ϊn« Fw(2;) ίo έ^ F(«) restricted to the

closed spiral wedge W{a, β). If & R{FW) (i.e., the complement of the range of F

restricted to this same wedge) contains more than two elements, then W{a, β) is a wedge

of convergence for F(z).

Proof The region W(a,β) is a simply connected region which possesses C(l)

as a single prime end. Using Caratheodory's classical theorem on prime ends

(3), there is a conformal mapping from W(a,β) onto ZK(l)=|ζ|< 1 such that

the points of Sβ and S$ are mapped conformally onto C / (l)=|ζ | = l with the

exception o f ζ = l . The prime end C(l) corresponds to the point ζ= 1. Let

C=ζ(2) represent this mapping and let z = z(ζ) be its inverse.

Consider the composition w—F*(ζ) = F(z{ζ)) defined for all | ζ | ^ l with the

exception of ζ = l . ^i?(F*(ζ)) contains more than two elements by hypothesis.

That F*(ζ) represents a normal function in Df{\) follows from a corollary in

Noshiro's book (5, p. 89) which states that any meromorphic function defined

in Dr{\) omitting three values is normal. (If F(z) does not omit three values

in W(a,β), it does for all \z\>R for some R<1 and z&W(a9β).) Then map

this region onto Dr[\) in the same way.)

I now refer the reader to a result of O. Lehto and K.I. Virtanen (4, p. 53,

Theorem 2) which states that a normal meromorphic function in a Jordan
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region G having an asymptotic value a at a boundary point P along a Jordan

curve lying in the closure of G possesses an angular limit a at the point P.

I note here that the proof of this theorem yields the result that if the asymptotic

path Γ lies on the boundary of G, the function not only possesses the limit a in

every angle A, but it also tends uniformly to a in the part of G lying between A

and the path Γ.

Let Γβ,Γa be the images of Sβ, SΛ respectively on C'(l). Then assuming F{z)

has the asymptotic values a' and β' along the spirals Sa and Sβ respectively

F*(Q has the asymptotic values af and βr along the paths Γα and Γβ respect-

ively. Then by the above result of Lehto and Virtanan, F*(ζ) has both the

angular limit ar and β' at ζ= 1. Thus ar must equal βr and by the note I made

above jP*(ζ) must tend uniformly to a' as ζ tends to 1 in all of Df{\)—{1}.

Hence for & > 0 there exists a δ > 0 such that for all ζ satisfying 0< |ζ— 1 | < δ

| F * ( ζ ) - α / | < β . Consider | ζ - l | = δ . This circle cuts Γα and Γβ

and the part of this circle in D'(l) together with the initial parts of Γa and Γ^?

up to the points of intersection, forms a closed Jordan curve in Df{\). The

image of this closed Jordan curve under z = z{ζ) is a closed Jordan curve in D{1).

This image has a positive distance d from C(l). Then for z<^W{a,β) and

\z\>l-d, \F{z)-af\ = \F{z(ζ))-a'\ (where 0<|ζ-l |<δ) =|F*(ζ)-αM<β.

Therefore W(α, ]3) is a wedge of convergence for F(z) as was to be proved.

(2. 7) DEFINITION. For f{z)^S*, if there exists a θ such that for every

ε > 0 F(z) assumes all values (including oo) with the possible exception of at

most two infinitely often in W(θ— ε, #+ε), Sθ will be called a Julia spiral.

(2. 8) DEFINITION. Let D(F) represent the set of those points

1/2 exp[ί(0+tan7r/4)] on C(l/2) which are cut by Julia spirals of the function

(2. 9) THEOREM. If F(z)(=^, then D(F) is a nowhere dense closed set. Let

the function g(θ) associate the spiral limit value f(6) with each point 1/2 exp [i{θ+tanπj4:)']

of C(\j2). Then this correspondence is a function of Baire class 0 or 1, whose intervals

of constancy lie dense on C(l/2); this function is constant at least on each arc of C(l/2)

in ^D(F). In every closed spiral wedge which contains no point of the set D{F), F(z)

tends uniformly towards the corresponding constant spiral limit value.

Proof. In each closed disk D{k) where 0<k< 1, F(z) can have at most

finitely many poles. If this were not true it would have a limit point of poles

in D(l), and so not be meromorphic there. So there is an increasing sequence

https://doi.org/10.1017/S0027763000012496 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012496


SPIRAL ASYMPTOTIC VALUES OF FUNCTIONS MEROMORPHIC IN THE UNIT DISK 251

of positive numbers {rn} with lim rn= 1 such that, for every n, F(z) has no poles
n—>oo

on \z\=rn. Thus f(θ) is the limit function of the sequence of continuous

functions fn{θ) = F(rn exp \j(θ+tan-^)]) 0 ̂  θ < 2π .

I claim next that every spiral wedge contains a spiral wedge of convergence.

Lemma 1 (2. 4) allows me to conclude that each spiral wedge contains a closed

spiral wedge W{a,β) in which either \F(z)\<2 or l / |F(s) |^ l for sufficiently

large values of \z\ (i.e., R<\z\<\). For z^W(a9β) and \z\^R9 F{z) cannot

assume any value more than a finite number of times, since F(z) is not constant.

F o r z(ΞW(a,β) a n d R<\z\< 1 \F(z)\<2 (or lj\F{z)\^ 1), a n d so t h e comple-

ment of the range of F{z) (or the complement of the range of \jF{z)) restricted

to W(a, β) contains many more than two elements. Therefore, by Lemma 2

(2.6), W(a,β) is a wedge of convergence for F(z) (or \jF{z)).

Thus it follows that wedges of convergence are everywhere dense in D{\)

and the intersection of the union of all wedges of convergence with C(l/2) is

a set everywhere dense on C(l/2). The function g is constant on the intersection

of each wedge of convergence with C(l/2) and so the intervals of constancy of

g are dense on C(l/2).

Lemma 2 also allows me to conclude that if Sθ is contained in no wedge of

convergence of F(z), then F(z) assumes every value (including oo) with at most

two exceptions infinitely often in W(θ— ε, θ+ε) for each ε > 0. Hence Sθ is a

Julia spiral.

Conversely, no Julia spiral is contained in a wedge of convergence. If

this were not true and W was a wedge of convergence containing a Julia spiral,

W would have to contain an infinite number of α-points (zQ is an tf-point of F(z)

if F(zo) = a) for all complex numbers a with at most two exceptions. Since W

is a wedge of convergence there exists a constant a such that for every ε > 0

there is a 0<R{ε)< 1 such that if ZZΞW and \z\> R(e), |F(z)—α|<e. Let

flbea complex number which is not one of the two exceptional points of F{z)

and | α | > | α | + ε . Then F(z) must have an infinite number of ^-points in

WΠD{R(ε)) and this implies F{z)=a. Since this contradicts the fact that

F{z)^S^, I may conclude that no Julia spiral is contained in a wedge of

convergence. So the set of Julia spirals is identical with the set of Study

spirals that are contained in no wedge of convergence.

The set D(F) is closed since it must contain all its limit points. Also, since

D(F) is the complement of an everywhere dense set, it is nowhere dense on
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C(l/2) and the theorem is proved.

It is natural to ask whether the functions of class &> are characterized com-

pletely by the properties I have just shown for their spiral limit value function.

In other words, suppose a spiral limit value function is given having the pro-

perties stated in the preceding theorem (2.9). Can a function of class &

then be constructed that has this given function as its associated spiral limit

value function? Not only is the answer to this question in the affirmative,

but the desired function can even be constructed so as to be holomorphic. It

is this construction that is the concern of the remainder of this section. The

following two theorems are essential to constructions I will make later on. I

will list them here and refer to them as needed.

(2. 10) T H E O R E M (Mergelyan). If E is a closed bounded set not separating

the plane, and if f(z) is continuous on E and analytic in the interior points of E, then

f(z) can be uniformly approximated on E as closely as desired by a polynomial in z. (8,

p. 367)

(2. 11) THEOREM (Walsh). Let the function f(z) be given on the closed limited

(i.e., bounded) point set C, and let distinct points zlyz2, , zv be given on C. If the

function f(z) can be uniformly approximated on C as closely as desired by a polynomial in

z, then the function can be uniformly approximated on C as closely as desired by a

polynomial p{z) satisfying the auxiliary conditions

f(zk) * = 1 , 2 , ,v.

(8, p. 310).

(2. 12) DEFINITION. A sequence of distinct Jordan curves {/n}7, shall

be called increasing if Jn lies in the interior of Jn+1 for n=l, 2, I shall say

that such a sequence converges to the circle C(k) if the sequence is contained in

D(k) and for any ε > 0 there exists ^0=n0(ε) such that for every n > nQ, Jn lies in

the region k— ε<\z\<k. If {/n}T *s a n increasing sequence I shall define Dn

to be the closed region bounded by and including Jn for n— 1, 2, and D0—φ.

Then I define An=Dn+1-Dn for n = 0, 1, 2,

(2. 13) T H E O R E M . Let {Gw}7 be a sequence of open, disjoint, connected sets in

D(l) such that Gn contains the closed (i.e., closed in D(l)) set Mn for each n= I, 2,

Let fn(z) be defined and holomorphic for z^Gn for each n= I, 2, Given ε*> 0, the

following conditions are sufficient for the existence of a function F(z) holomorphic in D(\)

and satisfying
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\F(z)-fn(z)\< e for z^Mn, n= 1, 2,

1. There exists a sequence of closed sets {Bn}~ having no cluster point* in D{\) such

that for each n, Mn is contained in the interior of Bn and Bn is contained in Gn.

2. There exists an increasing sequence of distinct Jordan curves -f/^K in D(\)

converging to C(l) such that if bn is the boundary of Bn,

a) Jm Π bn is a finite point set for each m and n.

b) AmΓ\bn is a finite number of arcs, each with a finite length, for each m and n.
oo

c) Dn{J(AnO{ U bk}) does not separate the plane for n = 0, 1,
k lk=l

Proof Since Mn is contained in the interior of Bn for each n, bnΓ\Mn = φ for

each n. Fork^n, BkΠBn = φ since Gkf)Gn = φ and so bkf)Mn=φ. Therefore
oo oo

the sets U bk and U Mk have no point in common. Moreover, both of these

sets are closed in D(\) since each term is closed and neither sequence has a

cluster point in D(\).

Let p Λ =( U MΠA n for w = 0, 1, jρn is closed and so has a positive

CO

distance Sn from U Mk, n = 0, 1,2, Since {Bn} has no cluster point in

Z>(1), at most a finite number of terms of this sequence can have a non-empty

intersection with An for n = 0, 1,2, Therefore, since AnΠbm is a finite

number of arcs each with a finite length for each m, jρn has a finite length

which I shall designate by ln for n = 0, 1,2,

For each Sn>0 and ln>0 I define a positive number εn so small that

n = 0

£ ^ - < 2 π ε (1)

and Σ «••/.< 1. (2)
Λ = 0 X J

Since bncGn for each n, fn(z) is continuous on bn for each n. Moreover,

since the terms of On} a r e pairwise disjoint and the sequence has no cluster
oo

point in D{1), a continuous function f(z) can be defined on U bk by the corre-

spondence f(z) = fn{z) for z on bn n = l , 2,

* A point is a cluster point of a sequence {Bn} if every one of its neighborhoods contains a
point from an infinite number of terms of the sequence.
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Let ε(r) be a positive continuous function for 0 ^ r < 1 such that lim ε(r) = 0.

oo

I shall now construct a function Fx(z) holomorphic in D{\) such that for z&Ubk

\F1(z)-f(z)\<ε(\z\).

To this end let e'o, εi, be positive numbers such that εn > ε'n+1 for all n

and εn<ε(r) for r<imax|2 | for n = 0, 1,2, Let J7Λ = εή—ε'w+1 so that η^ηi,
j

00

are positive numbers and Σϊvv = £n n = 0, 1,2,

As has already been pointed out, at most a finite number of terms in the

sequence -[Bny have a non-empty intersection with Jv+1 for each v. Since

h^Ju+i is a finite point set for each &, ( U bk)πjv+1 contains at most a finite

number of points which I shall designate as z[v\ z2

(v)> ....... z%>vγ By Condition

2c in the hypothesis, for y = 0, 1, 2, , Dv{Jp» is a closed bounded set that

does not separate the plane.

Now, by induction, for y = 0, D0\Jp0 satisfies the condition of the theorems in

Sections (2. 10) and (2. 11) and so I may conclude that there is a polynomial

τro(z) such that \f(z)-πo{z)\<τ]o for zeΞZ)0Up0 and f(z°k)=π(zl) for fc=l,2, ,

n(0).

Assume that v > 0 and polynomials πo(z), , τcv-ι(z) have been defined so

that τry-1(2j;-i)=/(βr1)-πo(«Γ1)- - T Γ V ^ Γ 1 ) for ft=l,2, , n(i - l ) . Then

the theorems in Sections (2. 10) and (2. 11) assert the existence of a polynomial

πv(z) so that \πv{z)\<ηv for z(=DV9 \f(z)—[πo(z)+π1(z) + +πv{z)]\<ηv for z^φv,

and πv(z£)=/(sj)— Σπn(zϊ), ft=l, , n(v). Now define ^(2)= Σττv(^).

For 2 G ^ , since DkaDk+n for all n > 1, [ττv(^)|-<^v for * = &,&+1, Also there

are constants ^y//v > 0 such that \πv{z)\< ̂ v for v=l, 2, , fe—1 because 7rv(2;)
00

is a polynomial and Dk is compact. Since 2 v̂ converges, by the Weierstrass

M-test, Σ]7rv(2;) is uniformly convergent on Dk. But every compact subset of

00

D{\) is contained in Dk for some fc. Therefore F1(z)= *Σϊπv{z) converges uni-

formly on every compact subset of D{\) and so represents a holomorphic

function in D(l).

Moreover, for z^pki \f(z)-Fι(z)\ = \f(z)-fίπi,{z)\^\f(z)-ilπi,(z)\+ Σ l̂ («)l
00 00

Σ y» since pkaDk+n for n > 1. B u t Σ ^ v < s!k< εW for r ^ m a x \z\ a n d
A + l A *e/
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oo oo

so in particular for all z^pk. Since k is arbitrary, for any ze U Jβk~ U bn,

\f(z)—F1(z)\< ε{\z\) and the construction is finished.

Using* this function Fτ(z) and the construction employed by Roth (6, pp. 107—

109), the desired function F(z) results.

(2. 14) COROLLARY. If each of the regions Gn in (2. 13) can be mapped

•conformally onto a subset of \z'\< 1 by a function that has a continuous extension onto the

boundary of Gn and also maps G nΠC(l) onto the single point z' = l, then there exists a

Junction F(z) holomorphic in D(l) such that \F{z)—fn{z)\<εfor z^Mn ( n = l , 2 ,

)and also[F(z)—fn(z)] tends uniformly toOas \z\ tends to 1 ( z e M Λ ; n = l , 2, ).

Proof If the given mapping is possible, Gn can be mapped conformally

onto Hn, a subset of the following region H in the ζ-plane, in such a way that

G»Γ)C(1), which I shall call En, corresponds to the point ζ=—oo .

H: R(ζ)<-1 and I/(OK 1.

Let ζ = ζn{z) designate this mapping and let z = zn{ζ) be the inverse of ζ = ζn(z).

For AT sufficiently large, the line ζ=—N+iv, — I < v < + 1 , cuts the region

Hn and divides it into two subsets HI and HI where H% represents the un-

bounded subset. Let Gl and Gl be the images of HI and HI respectively

under z = zn(ζ). lΐ{.zn} is a sequence of points in Gl, \ζ(zn)\<NΛ-l and so no

•sequence in GJ can converge to a point of En and so not to a point of C(l).

Therefore there is a positive distance d{N) between Gl and C(l). If z^Gn and

]z\> l—d{N) then z must be in G% and thus R(ζn(z))< —N (i.e., the real part

of ζn(z)<-N).

Now I have ζn(z) holomorphic in Gn for each w= 1, 2, and for z^MnaGn

and | z | > l—d{N) this implies that R{ζn{z))< —N. So, R(ζn{z))-ϊ — °° uniformly

.as |2|->1 i n M n ( « = l , 2 , ).

Therefore, by (2. 13), there exists a function F*(z) holomorphic in D(l) such

that \F*(z)-ζn(z)\< ε for z<=Mn (w=l, 2, ). Since R(ζn{z))-+-oo uniformly

as \z\-*l in Mny n = l , 2 , , R{F*(z)) ->— oo uniformly as |«|->1 in Mn n = l ,

Since F*(z) is holomorphic in D{1), w{z) = eF*^ is holomorphic in D(l) and

w{z) ψ 0 for 2GD(1). Furthermore, \w{z)\ = eR( F*(z^ -> 0 uniformly as |JS|-> 1 for

ΞMn, n = l , 2 ,

Since fn(z) is holomorphic in Gn for each n and w(z) ψ 0 for any z in GΛ for

>̂ fn(z)lw(z) represents a holomorphic function inGnfor each »=1, 2,
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By (2. 13), there exists a function F**(z) holomorphic in D{1) such that

\F**(z)-fn(z)lw(z)\< e for zeiMn w=l,2, Let F(z) = F**(z) w{z). Then

F(z) is holomorphic for Z<ΞD(1) and \F(z)—fn(z)\<ε\w(z)\ for z<=Mn n = l , 2,

Since | ι φ ) | tends uniformly to 0 as \z\ tends to 1 for zeM u (w=l,2,

), the theorem is proved.

I have now developed enough technique to proceed with the details of the

answer presented on page 260.

(2. 15) THEOREM. Let J be a non-empty closed subset of C(l/2) which is

nowhere dense on C(l/2). Let f(φ) (which may assume the value oo) be defined for

Q^φ<.2π such that when f(φ) is associated by g with each point 1/2 exp[i(φ+tanπl4ί)]

of C (112) 0^φ<2π the correspondence is a function of Baire class 0 or 1 and g is

constant at least on each circular arc disjoint from the set J. Then there exists a function

F(z) holomorphic in D(l) such that:

1) Urn F (r exp [i(φ+tanJψ^)]) = /(<P) 0^φ<2π .

2) If W is a closed spiral wedge which contains no point of j and f(φ) is the

corresponding constant spiral limit value, F(z) tends uniformly to f(φ) as \z\ tends to 1,

3) Every Study spiral cutting C(l/2) at a point of J is a Julia spiral.

Proof* Since f{φ) is defined on C(l/2) and is of Baire class 0 or 1? there

exists a sequence of functions fι[φ), f2(φ)> which are continuous on C(l/2)

and converge to f{φ). Let f{φ) = ro{φ) exp [iθo(φ)] where rQ(φ) and θo(φ) are

continuous functions of φ. Now define fn{φ) = rn{φ) exp [iθn{φ)] where θn(φ)

= θQ{φ) if rn{φ) = 0. Since lim fn(φ)=f(φ), there is a proper determination of

θn(φ) for each n and each φ such that lim0n(<p)=0o(<p) and lim rn(φ) = r0(φ).

Letd™ ^ ^ for n=ι> 25 and n~λ

 < r ^ - ^ Γ Γ . Then

n+1 n

l9 n=l,2, Let A(0) = 0=/o(^). Then for J

set A(rexp[ι(^+tan πrl2)]) = {rn(φ)+dr(rn-1(φ)-rn(φ))} exp[i(θn(φ) + d^iβn-iiψ)

—0n{φ)})]' Then h{z) is continuous in D{1) and it can be easily verified that

* The argument used by Roth (6, p. 117) to construct a function h(z) continuous in the
entire plane does not hold if /(^) = °° for some φ. A slight modification of the construction of
the function h{z) used in the first part of this proof can be used to correct this error.
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Let Γ be the set of all Study spirals that intersect the set j on C(l/2). Then

Γ is closed and nowhere dense inZ)(l). It follows from a theorem of Bagemihl

and Seidel (1, p. 190, Corollary 1) that there exists a function GΓ{z) holomor-

phic in D{\) such that if 1/2 exp[f(^+tan^/4)] is in A then lim GΓ{r exp[i(φ

+tanτrr/2)])=lim h(r exp [z (<p +tan τrr/2)])=/(<?).

The complementary set G = C(l/2) — A is an open subset of C(l/2) and so

consists of countably many pairwise disjoint open arcs gQ, gl9 g2, Let Wn

be the spiral wedge for which WnΓiC(ll2)=gn w = 0, 1,2, Let

Wn=W(an,βn) where S*n and Sβn are the Study spirals that bound Wn, an< βn.

Let Cn (finite or infinite) be the constant value of f{φ) associated with the arc

gn. Let f « = _ « Γ + - K ^ ± l - _ 5 Γ ) (*=3, 4, , 10; n = 0, 1, 2,

DefineΣ.(fc)=

^ . + t a n - ^ - - β S 'fr?')} where at\r) = (1-r) (A.""*) (ifc=3, 4, , 10; n = 0,

1, 2, ). Notice that lim<;?)W = 0 for all ik and w. Thus J}n{k) "opens up"

in Wn as r-> 1 and its "ends" approach S*n and S n̂ asymptotically from within

Wn as r -> 1. Let ^ n = ΣΛ(7). Let £U J be the closed region bounded by 2»(6)

and Σ3τi(8) and containing ^n. Let GUn) be the open region bounded by ΣJn(5)

and Σ»(9). Then B{λn) is closed and contains λn in its interior and B{λn) is

contained in G(^J (n = 0, 1,2, ).

Let τn be the closed region entirely contained in Wn which is bounded by

Σ»(3). Define B{τn) to be the closed region bounded by Σ»(4) and containing

rw in its interior. Let G{τn) be the open region bounded by Σ»(5) and

containing B{τn).

oo

Lastly, let B(Γ) be the closed region bounded by U ΣΛ(10) and containing

oo

Γ in its interior. Let G{Γ) be the open region bounded by U Σ»(9) and con-

taining B{Γ) in its interior.

If I define / w = p l U I = — ^ y ] (w=l,2, ) then {/n} is an increasing

sequence of distinct Jordan curves converging to C(l). Consider the open

regions G{Γ), G{λ0), G(τ0), G{λx)y Gfa), and, for the sake of simple notation,
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Σn(8)

Spiral Wedge Wn=W(anβn)

rename these regions Gl9 G2, Each region contains a certain closed set

(e.g., G{Γ)~DΓ, G{λi)z)λi9 and G^JziΓi) and I shall correspondingly label these

Ml9 M2, The closed set contained in G* and containing Mt in its

interior I shall call B€ (e.g., Gi = G(τi),Bi = B(τi) and M<=r<). It is immediate

at this point that the sequences {Gw}7, {BnJ~, {MW}T and {/„}? have been con-

structed to satisfy the conditions stated in (2. 13).

Now consider Σo(9). It is disjoint from Gn for each w = 0, 1, Let a

represent that part of So(9) denned by [z\z = r exp t^o+tan-^—σT(r)jj l>r

This a is a spiral in D(l) in the z-plane. Let G=D{\)—a. Let D'(l)

represent the set | ζ | < 1. The initial point of a is the impression of one prime

end of G, while every other point of a is the impression of two prime- ends of

G. Since a converges to C(l), C(l) is the impression of a single prime end P of

G. Using Caratheodory's classical results (3), there exists a one-to-one con-
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formal mapping from G onto the unit disk Df{\) so that the initial point of <τ

and the prime end P correspond, respectively, to the points —1,1 while the

other points of a are mapped onto C7(l)—{1, —1}. Let ζ=ζ<y(z) be the mapping

from G to ^ ( 1 ) and z = za(ζ) the inverse of this mapping.

Each of the regions Gn has the property that GnΠC{l) = C(l). Furthermore

ζσ{z) restricted to Gn has a continuous extension onto Gn which maps C(l) onto

the single point ζ = l for each n. Therefore the continuous extension of ζσ(z)

restricted to Gn satisfies the condition stated in (2. 14) for each n = 0, 1,

It remains only for me to define a function fn(z) holomorphic in Gn (n = 0, 1,

) in order for me to be able to use the conclusions of (2. 13) and (2. 14).

To do this I must consider the regions GUG2, as formerly represented:

G(Γ), G(λQ), G(τβ),

Let GΓ{z) be the holomorphic function defined on the region G{Γ). If the

constant Cn associated with Wn is finite, let the function /*(^)=C7l be the

holomorphic function defined on G(τJ. Then define /**(^)=1/C<y(^)— 1 for

zeGUJ. This function is then holomorphic on G(λn) and tends uniformly to

oo as |sI tends to 1 in G(λn).

On the other hand, if Cn = oo for Wn, define /*(s)=l/C,(s)-l for se=G(rJ.

This function is then holomorphic in G(τn) and tends to co uniformly as | z \

tends to 1, zeG(τn). Then define /**(Z)Ξ=0 for seGUJ.

Thus, reverting back to the simpler notation, with each region Gn I have

associated a function fn(z) holomorphic there. Given ε > 0 , (2. 14) allows

me to conclude the existence of a function F(z) holomorphic in D(l) such that

\F(z)—fn(z)\< ε for zeM n (w=l,2, 3, )and also [F(z)—fn(z)] tends uniformly

to zero as \z\ tends to 1, s e M n ( « = l , 2 , ).

Now consider the Study spiral Sφ. For some n, Sφ is eventually in Mn.

Hence there is an R, 0 < R< 1 such that for \z\=r>R and z^Sφ, z^Mn. If

f{ψ) is finite, fn(z)=f{φ) for z<BSφ and\z\ >R and so lim|F(T exp

-f{φ) I ̂  lim I F(r exp [/(^+tan^)])-/ r ι(r exp

+lim I / / r e x p Γ f ( φ + t a n ^ ) Ί ) - / ( ^ ) | = O . Thus, for f(φ) finite, lim F{z) = f{φ).

If, on the other hand, /(<p) = oo,for z^Sφ and \z\>R it is true that \F(z)—fn(z)\

< ε. This implies that \fn{z)\— e <\F(z)\ and since lim \fn{z)\=oo it follows
Z<=Sφ

that lim \F{z)\ =co or lim F(z)=f(φ).
S S
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Now suppose W is a closed spiral wedge which contains no point of J. Then

WΠC(l/2) is contained entirely in gm for some m. It follows then that W is

eventually contained in Mn for some n. That is, there exists 0 < R < 1 such

that for z^W and \z\>R, z^Mn.

If the corresponding constant spiral limit value Cm is finite, fn{z) = Cm for all

n, solim \F{z)—Cm|=lim \F{z)—fn{z)\ and since [F(z)—fn[z)] tends to zero
| | i μ | i

uniformly as |g| tends to 1 for z<=Mn) it follows that F(z) tends uniformly to the

corresponding constant limit value as |z|-> 1 for z^W.

If Cm = oo, fn(z) tends to oo uniformly as U|->1 and z remains in Mn. If

seW, and \z\>R, z must be in Mn. If z^W and |z |>/?, it follows that

\F(z)-fn(z)\< ε. Then | / n ( 2 ) | - e < | F ( 2 ) | and \F{z)\ must tend to oo uniformly

as Î ] —> 1 for z^W. Thus, in this case also, F{z) tends uniformly to the

corresponding constant limit value as \z\ tends to 1 for z&W.

Lastly consider any spiral wedge W* which contains a point of J. Then W*

contains the Study spiral through that point and so cannot be a wedge of

convergence. Since the arcs gl9 g2, are everywhere dense on C(l/2) and

since W*nC(l/2) is not contained entirely in any one of them, W*ΓiC{l/2)

contains at least a part of gn for some n. Thus W* contains at least a terminal

part of λn. Then W* contains spirals along which | F(z) | is both bounded and

unbounded and so | F(z) | is neither bounded or uniformly unbounded in W* ,

as I z I —y 1 and thus T^* cannot be a wedge of convergence. Since I have

previously shown that the set of Julia spirals is identical with the set of Study

spirals that are contained in no wedge of convergence, it follows that each

Study spiral cutting C(l/2) at a point of J is a Julia spiral and the theorem is

complete.

3. An extension to a larger class

Harold Bohr has considered (2) the class of entire functions that are bounded

on each half line emanating from the origin. This class, of course, includes

much of the class of functions considered by Roth and it is natural to ask whether

analogous results can be obtained for functions holomorphic in D(l) where

the class of spirals in the disk plays the role of half lines in the plane. For my

purposes I again consider the class of Study spirals as rather natural analogues

in the disk of the half lines in the plane, but of course make no claim as to

their exclusiveness.

(3. 1) DEFINITION. M* shall denote the class of functions F(z) holomor-
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phic in D(l) and bounded on each Study spiral.

It follows from this that if F(z) is in M* for each θ (0 < θ < 2π) there is a real

positive number L(θ) such that for all zeS β, \F(z)\< Hβ).

I shall use i to denote an open connected subset of C(l/2) and I shall

distinguish between three distinct types of intervals as follows:

1) The entire circle, therefore an interval without frontier points, which

I shall designate as I.

2) An interval with exactly one frontier point .4=1/2 exp ί(α+tan-χ-J ,

therefore the entire circle except this point, which I shall designate by IA.

3) An interval with two frontier points A—1/2 exp| ifα+tan-jΛ and B =

1/2 exp ί'Γ/S+tan-jΛ I I shall designate this interval by IAB where the order

of the two frontier points is so chosen that as z moves from A to B on IAB it

travels in the counterclockwise direction.

(3. 2) DEFINITION. I shall say that F{z)^M* is bounded on an interval i

if F{z) is uniformly bounded on all Study spirals which pass through a point of

i. That is, there must exist a constant B(i) such that for all θ for which Sθ

cuts ί, L(θ)<B(i).

(3. 3) DEFINITION. Concerning two intervals iι and i2, I shall say that ix

is a subinterval of i2 iff not only all points of ix are contained in i2 but also all

frontier points of iι are also in i2.

(3. 4) DEFINITION. An interval i is called a complete interval of bound-

edness for a function F(z)^M* iff 1) F(z) is bounded in every subinterval of i

and 2) F{z) is not bounded in any interval which contains a frontier point of /.

It follows that two complete intervals of boundedness for a given function are

either disjoint or identical. Also, if F(z) is bounded on an interval /', there is

a unique interval i* containing i which is a complete interval of boundedness.

(3.5) THEOREM. If F ( Z ) G M * and i is an arbitrarily small interval on C(l/2),

then i contains a subinterval on which F{z) is bounded. Consequently the complete

intervals of boundedness are everywhere dense on C(1 jf2).

Proof Let i be bounded by l/2exp[t'(αo+tan π/4)] and 1/2 exp [i{βQ

+ tanπ/4)] where α o < A < « o + 2 π and let Fr{θ)=f(r exp [i(θ+ tan jrr/2)]) for
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α0 < Θ < β0. If the theorem is not true, there exists rx and θλ such that

\Frί{θ1)\> 1 . Since Frx is a continuous function of θ, there exists an entire

interval (aly ft) containing 0χ where α 0 < « i < A < A such that \Fr1{θ)\>ϊ for

If (al9 βι) is not an interval of boundedness, then there exists r2 and θ2 such

that |i*Y2(#2)|>2. Again by continuity, there exists an entire interval (αa,A)

containing #2 where αx < α2 < A < βi such that | i<V2(0) | > 2 for 0e (α2, A)

Continuing in this way, if no interval of boundedness is encountered, there
oo

exists # o e Π (α», j9n) such that |/*Vn(0o) I > w for each positive integer n. But this
71 = 1

denies the existence of L(0O) and so proves the theorem.

It is natural to ask, as in the previous section, whether a converse can be

found for this theorem. The following is the affirmative answer.

(3.6) THEOREM. Let ilyi2, be an arbitrary {finite or countably infinite) set

of intervals on C(l/2) such that no two of these intervals possess a common point and the

intervals are everywhere dense on C(l/2). Then there exists a function of class M* whose

complete intervals of boundedness are precisely the intervals iui2,

Proof If I is the only interval that is given, any function constant in Z)(l)
oo

will suffice. Otherwise the set C(l/2)— U in is closed and not empty, and I

shall call it J. Now apply the theorem of Section 2.15 with f(φ) = 0 for all

φ (O^Lφ< 2π)9 and the conclusion follows immediately.
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