SPIRAL ASYMPTOTIC VALUES OF FUNCTIONS
MEROMORPHIC IN THE UNIT DISK

J.L. Stebbins

1. Introduction

This paper contains part of the author’s Ph.D. dissertation directed by
Frederick Bagemihl at Wayne State University. The research was supported
by a grant from the Michigan Institute of Science and Technology.

Alice Roth has made an extensive study of entire meromorphic functions
with prescribed behavior along half rays emanating from the origin (6). The
question arose whether analogous results could be found for functions meromor-
phic in the unit disk with the same behavior prescribed along an exhaustive
class of spirals emanating from the origin. In this paper, I present a class
of spirals which satisfactorily fills this role. However, I make no claim to
the effect that only this class will suffice.

2. The main results

The circle with origin as center and radius % in the complex plane will be
denoted by C(k) throughout this paper. Similarly, the open disk with origin
as center and radius & will be denoted by D(k).

(2. 1)  DEFINITION. For each value 6, 0<6<2r, define S,={z=
7 exp [i(0+tan%>], 0<r< 1} . Further, define S_¢=S2x—¢ for each 9, 09
= 2x. These spirals will be called Study spirals (7, p. 45).

Notice that each Study spiral originates at the origin and its argument tends

monotonically to +co as 7 tends to 1. Also if 4, % ¢, then Ss, and Ss, have
only the origin in common.

(2. 2) DeriniTioN. Let &¥ represent the class of functions meromorphic
and non-constant in D(1) and which tend to a definite limit, finite or infinite,
on each Study spiral as » tends to 1. (Theorem 2.15 asserts that this class is
rather large.) For each function F(z) define the spiral limit value function f(6),
0= 9 << 2r, associated with F(z) as follows:
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f(@)=lim F(r exp[i(ﬁ—i—tan”—zr)]) .

r—1

(2.3) DerFintTION. For —27r=<6,<60,<2z and 6,—6, <2z I shall call the

region bounded by Ss,, S5, and C(1) and containing Se, where 6,=6,+ iz_gﬂ_

a spiral wedge and I shall denote this region by W(4,,6,). Let W(é,,6,) denote
the union of W(8,,6,), So, and So, and be called a closed spiral wedge.

(2.4) Lemma 1. Let Fz)e”. In each closed region W (e, By) there is a closed
region W(a, B), where a,<<a<B<p, Such that either |F(2)|<2 or |F(z)|=1 for
all sufficiently large |z|, where zeW (e, p).

Proof.  Assume the conclusion does not hold. Then there exists 1>|z,|
=r, > 1/2 such that z,&W(ea,, 8,) and [F(z;)|< 1. Since F(z) is continuous at z,,
there is an entire arc on |?| =7, such that |F(z)]<<1 for all z on this arc.
Hence there are values a; and g, such that ey << @, < 8, < 8, and for zeW(a;, §;)
and [z| =7, [F(z)|< 1.

Also there exists 1>|z,]=r,>3/4 such that z,eWl(a;, 8;) and |F(z,)|>2.
Since 1/F(z) is continuous at z,, there is an entire arc of |z|=7, on which
|F(z)|>2. So there are values a,, 8, such that ;< a,< g, < g, and for all z

where z=7, exp [i(ﬂ-l—tan—’r—gLﬂ and a, < 0<B, |F(z)|>2.

Continuing on in this way for each »=1,2,...... the argument reads as
follows:

For |2|>2n/2n4-2, there exists 2;,-;=73,-; €XP [i(ﬁm_1+tanﬂ22’ﬂ—>] where

Qpn—z < Oyp-1<Pan-z and 1 >r,; > such that [F(2,,-1)]<<1. Because

2n
2n+2
F(z) is continuous at z,,-,, there exists an entire subarc of |z|=7,,-, containing
the points z=7,,-, exp[z‘(f)—i—tan—”—raEl—)] with  a@pa-1 <0< Ban-1 Where ay,—,

< tzn-1 < Brn-1 << f2n-» on Which |F(z)|<< 1.

Also there exists z,,=7,, exp [i<02n+tan—"f221'—>:| where 1 >r,, > 2ntl

2n+2
Can-1 < Oy < Paa-i and for which |F(z,,)|>2. Since 1/F(z) is continuous at

and
2:n, there is an entire subarc of |z|=r,, containing the points z=7,, exp [i(()+

tan—”%—'—'—)] with a,, <0< B, Where @y, < @t3n < f2a < P2n-1 On which |F(z)|

>2.
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So I have defined the following sequence of open, non-empty, nested intervals
(a1, B1)s (@ Ba)y wevee- where i1, Bir1 € (aw B) £=0,1,2, ...... Therefore nfi l(a,,,, 8z
is not empty. Let y be in this set. Then for this y and for all #, I have both
IF(r:,"_1 exp [i(r-l—tan T 3n=1 )]) |<1 and ]F(rz,. expl: <r+tan T an >]> | >2.

Since lim 7,,-,=lim r,,= 1, this implies that no limit exists for F(z) as |z| tends

n—00 Nn—>00

to 1 along S,, contrary to my assumption. So the proposition must be true.

(2.5) DerintTiON. A spiral wedge W(e,p) is called a wedge of conver-

gence for F(z)e & if either a finite constant ¢ exists so that lin}[F<r exp [i(0+

tan%Lﬂ)— ] 0 uniformly for e <6=<g or if 11 1

1 F(rexp| i <0+tan )])

The range of f(z), denoted by R( f), is the set of those values assumed by f(z)
at points in D(1) arbitrarily near C(1).

uniformly for a <9< .

(2.6) LemMA 2. Let F(z) € & and define F,(z) to be F(z) restricted to the
closed spiral wedge W(a, 8). If & R(F,) (i.., the complement of the range of F
restricted to this same wedge) contains more than two elements, then W(a, p) is a wedge
of convergence for F(z).

Proof. The region W(e, g) is a simply connected region which possesses C(1)
as a single prime end. Using Carathéodory’s classical theorem on prime ends
(3), there is a conformal mapping from W(e, g) onto D’(1)=]{|]< 1 such that
the points of S, and Sz are mapped conformally onto C’(1)=|{]| =1 with the
exception of {=1. The prime end C(1) corresponds to the point {=1. Let
{={(» represent this mapping and let z=z(¢) be its inverse.

Consider the composition w=F*{)=F(z(¢)) defined for all [{|<1 with the
exception of {=1. & R(F*({)) contains more than two elements by hypothesis.
That F*) represents a normal function in D’(1) follows from a corollary in
Noshiro’s book (5, p. 89) which states that any meromorphic function defined
in D’'(1) omitting three values is normal. (If F(z) does not omit three values
in W(e, ), it does for all |z|> R for some R< 1 and z&W(a,$).) Then map
this region onto D’(1) in the same way.)

I now refer the reader to a result of O. Lehto and K.I. Virtanen (4, p. 53,
Theorem 2) which states that a normal meromorphic function in a Jordan
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region G having an asymptotic value e at a boundary point P along a Jordan
curve lying in the closure of G possesses an angular limit « at the point P.
I note here that the proof of this theorem yields the result that if the asymptotic
path I" lies on the boundary of G, the function not only possesses the limit & in
every angle A, but it also tends uniformly to « in the part of G lying between A
and the path I.

Let I'g, I', be the images of Sg, S, respectively on C’(1). Then assuming F(z)
has the asymptotic values o’ and g along the spirals S, and Sj respectively
F*(¢) has the asymptotic values o’ and g along the paths I', and I'g respect-
ively. Then by the above result of Lehto and Virtanan, F*() has both the
angular limit ¢’ and g’ at {=1. Thus «’ must equal 8 and by the note I made
above F*(¢) must tend uniformly to a’ as{ tends to 1 in all of D()—{13}.

Hence for ¢ > 0 there exists a § > 0 such that for all ¢ satisfying 0<<|{—1]<é
and ¢eD/(1), | F¥¢)—a’|<e. Consider |[{—1]|=6. This circle cuts I', and I'g
and the part of this circle in D’(1) together with the initial parts of I", and I,
up to the points of intersection, forms a closed Jordan curve in D’(1). The
image of this closed Jordan curve under z=z2(() is a closed Jordan curvein D(1).
This image has a positive distance d from C(1). Then for zeW/(a, g) and
lzl>1—d, |F@z)—a'|=|Fz&)—a’| (where 0<<|l—1|<d) =|F¥)—d|<e.
Therefore W(a, ) is a wedge of convergence for F(z) as was to be proved.

(2. 7) DermurioN. For f(z)e.5”, if there exists a ¢ such that for every
¢ >0 F(z) assumes all values (including ) with the possible exception of at
most two infinitely often in W(6—e¢, 6+c¢), S, will be called a Julia spiral.

(2. 8) DEFINITION. Let D(F) represent the set of those points
1/2 exp [i(6+tanz/4)] on C(1/2) which are cut by Julia spirals of the function
F(z)e &~.

(2.9) TueOREM. I[If F(2)€.S”, then D(F) is a nowhere dense closed set. Let
the function g(6) associate the spiral limit value f(6) with each point 1|2 exp [i(6-+tann/4)]
of C(1/2).  Then this correspondence ts a _function of Baire class O or 1, whose intervals
of constancy lie dense on C(1/2); this function is constant at least on each arc of C(1/2)
in & D(F). In every closed spiral wedge which contains no point of the set D(F), F(z)
tends uniformly towards the corresponding constant spiral limit value.

Proof. In each closed disk D) where 0<%k <1, F(z) can have at most
finitely many poles.  If this were not true it would have a limit point of poles
in D(1), and so not be meromorphic there. So there is an increasing sequence
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of positive numbers {r,} with lim »,=1 such that, for every n, F(z) has no poles

on |z|=r, Thus f(¢) is the limit function of the sequence of continuous
. _ ; T,
functions fn(ﬁ)—F(r,,, exp [z<¢9+tan—2 >]> 0<6<2r.

I claim next that every spiral wedge contains a spiral wedge of convergence.
Lemma 1 (2. 4) allows me to conclude that each spiral wedge contains a closed
spiral wedge W(a, p) in which either |F(z)|=<2 or 1/|F(z)|<1 for sufficiently
large values of |z| (i.e., R<|z|<1). ForzeW(e,p) and [2|<R, F(z) cannot
assume any value more than a finite number of times, since F(z) is not constant.

"For zeW(e, f) and R<|z|< 1 |F(2)|=2 (or 1/|F(2)]=<1), and so the comple-
ment of the range of F(z) (or the complement of the range of 1/F(z)) restricted
to W(e, ) contains many more than two elements. Therefore, by Lemma 2
(2.6), W(e, p) is a wedge of convergence for F(z) (or 1/F(z)).

Thus it follows that wedges of convergence are everywhere dense in D(1)
and the intersection of the union of all wedges of convergence with C(1/2) is
a set everywhere dense on C(1/2). The function g is constant on the intersection
of each wedge of convergence with C(1/2) and so the intervals of constancy of
g are dense on C(1/2).

Lemma 2 also allows me to conclude that if S, is contained in no wedge of
convergence of F(z), then F(z) assumes every value (including o) with at most
two exceptions infinitely often in W(6—e, 6+¢) for each ¢ >0. Hence S, is a
Julia spiral.

Conversely, no Julia spiral is contained in a wedge of convergence. If
this were not true and W was a wedge of convergence containing a Julia spiral,
W would have to contain an infinite number of ¢-points (z, is an a-point of F(z)
if F(z,)=a) for all complex numbers ¢ with at most two exceptions. Since W
is a wedge of convergence there exists a constant « such that for every >0
there is a 0 << R(¢)<< 1 such that if zeW and |z|> R(¢), |F(z)—a|<<e Let
abea Cé’mplex number which is not one of the two exceptional points of F(z)
and |a|>|a|+e. Then F(z) must have an infinite number of a-points in
WND(R(¢)) and this implies F(z)=a. Since this contradicts the fact that
F(z)e &#, I may conclude that no Julia spiral is contained in a wedge of
convergence. So the set of Julia spirals is identical with the set of Study
spirals that are contained in no wedge of convergence.

The set D(F) is closed since it must contain all its limit points. Also, since
D(F) is the complement of an everywhere dense set, it is nowhere dense on
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C(1/2) and the theorem is proved.

It is natural to ask whether the functions of class & are characterized com-
pletely by the properties I have just shown for their spiral limit value function.
In other words, suppose a spiral limit value function is given having the pro-
perties stated in the preceding theorem (2.9). Can a function of class &
then be constructed that has this given function as its associated spiral limit
value function? Not oniy is the answer to this question in the affirmative,
but the desired function can even be constructed so as to be holomorphic. It
is this construction that is the concern of the remainder of this section. The
following two theorems are essential to constructions I will make later on. I
will list them here and refer to them as needed.

(2. 10) TueOrREM (Mergelyan). If E is a closed bounded set not separating
the plane, and if f(z) is continuous on E and analytic in the interior points of E, then

f(2) can be uniformly approximated on E as closely as desired by a polynomial in z. (8,
p. 367)

(2. 11) Tueorem (Walsh). Let the function f(z) be given on the closed limited
(i.e., bounded) point set C, and let distinct points z,, z,, ...... , 2, be given on C. If the
Sunction f(2) can be uniformly approximated on C as closely as desired by a polynomial in
z, then the function can be uniformly approximated on C as closely as desired by a
polynomial p(z) satisfying the auxiliary conditions

P(z)=f(2) k=1,2, ... S V.
(8, p. 310).

(2. 12) DeriniTioN. A sequence of distinct Jordan curves {J,)}, shall
be called increasing if J, lies in the interior of J,., for n=1,2,...... I shall say
that such a sequence converges to the circle C(k) if the sequence is contained in
D(k) and for any e > 0 there exists #,=n,(¢) such that for every n >n,, J, lies in
the region k—e <|z|<k. If {J,}3 is an increasing sequence I shall define D,
to be the closed region bounded by and including J, forn=1,2, ...... and D,=¢.
Then I define A,=D,,,—D, for n=0,1,2,......

(2. 13) Tueorem. Let {G,); be a sequence of open, disjoint, connected sets in
D(1) such that G, contains the closed (i.e., closed in D(1)) set M,, for each n=1,2,......
Let f,(2) be defined and holomorphic for z=G,, for each n=1,2, ...... Given >0, the
Jollowing conditions are sufficient for the existence of a function F(z) holomorphic in D(1)
and satisfying
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| F(z)— fa(2)|< e JorzeM,, n=1,2,....

1. There exists a sequence of closed sets {B,}; having no cluster point* in D(1) such
that for each n, M, is contained in the interior of B, and B, is contained in G,.

2. There exists an increasing sequence of distinct Jordan curves {],}; in D(1)
converging to C(1) such that if b, is the boundary of B.,,
a)  JwNb, is a finite point set for each m and n.
b) A,Nb, is a finite number of arcs, each with a finite length, for each m and n.

c) DnU(A,,,ﬂ{kajlbk}) does not separate the plane for n=0, 1, ......

Proof. Since M, is contained in the interior of B, for each #, b,NM,=¢ for
each n. For k< n, B.nB,=4¢ since G,NG,=¢ and so bNM,=¢. Therefore

the sets kul b, and kU M, have no point in common. Moreover, both of these
= =1

sets are closed in D(1) since each term is closed and neither sequence has a
).

cluster point in D(1

Let p":(k§1 b )NA, for =»=0,1, ... . P is closed and so has a positive

distance S, from Y M, n=0,1,2, ... . Since {B,} has no cluster point in
=1

D(1), at most a finite number of terms of this sequence can have a non-empty
intersection with 4, for =0, 1, 2, ...... . Therefore, since A,Nb,, is a finite
number of arcs each with a finite length for each m, p, has a finite length
which I shall designate by [, for n=0,1,2, ...... .

For each S, >0 and /,=0 I define a positive number ¢, so small that

2 ently
X< e (1)
and ii]oen'l"< 1. (2)

Since b, G, for each #, f,(z) is continuous on b, for each n. Moreover,
since the terms of {b,} are pairwise disjoint and the sequence has no cluster

point in D(1), a continuous function f(z) can be defined on kljl be by the corre-

spondence f(z)=f,(z) forz on b, n=1,2, ... .

* A point is a cluster point of a sequence {B,} if every one of its neighborhoods contains a
point from an infinite number of terms of the sequence.
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Let ¢(r) be a positive continuous function for 0 =<7 < 1 such that lim ¢(r)=0.

7—1
I shall now construct a function F,(z) holomorphic in D(1) such that for zekLiJolbk

[Fi(2)—f(2)]< e(]2]).

To this end let ¢, ¢, ...... be positive numbers such that e, > ¢,,, for all n
and ¢, < ¢(r) for r_émjgx]zl for n=0,1,2,...... Let 5,=¢,—e¢nss s0 that g, 9y,
ZE Jp+1

[ee)
...... are positive numbers and Xy, =¢, 7=0,1,2,.......
yv=n

As has already been pointed out, at most a finite number of terms in the
sequence {B,} have a non-empty intersection with J,,, for each ». Since

beN J,41 18 a finite point set for each F, <kU b,,)ﬂ J,+1 contains at most a finite
=1

number of points which I shall designate as z{>, 2,0, ...... » 28y By Condition

2¢ in the hypothesis, for v=0, 1,2, ...... , D,up, is a closed bounded set that
does not separate the plane.

Now, by induction, for v=0, D,U p, satisfies the condition of the theorems in
Sections (2. 10) and (2. 11) and so I may conclude that there is a polynomial
7,(z) such that |f(z)—my(2)|<7, for z&D,Up, and f(28)=n(z}) for k=1,2,...... 5

n(0).
Assume that v > 0 and polynomials ry(z), ...... , m,-(z) have been defined so
that m,-,(22-1) = f(22=1)—my(22=1)—++--oe —m,5(z2~1) for k=1,2,...... , n(v—1). Then

the theorems in Sections (2. 10) and (2. 11) assert the existence of a polynomial
7,(2) so that |n,(2)| <<y, for z&D,, | f(z)—[ry(2) +mi(2) 4+ +m,(2)]ll< 1y, for zep,,

and ny(z;)=f(z,’;)—yg:z,,(z;), k=1, ... , n(v). Now define F,(z)= é”v(")'

For ze D,, since D,C Dy, for all n =1, |7,(2)| <y, for v=Fk, k+1,...... . Also there
are constants _#, > 0 such that |r,(z)|< _#, for v=1,2, ...... , k—1 because =,(z)

is a polynomial and D, is compact. Since Zkv;,, converges, by the Weierstrass
=

M-test, Xim,(z) is uniformly convergent on D,. But every compact subset of
v=0

D(1) is contained in D, for some k. Therefore F,(z)= io‘.ony(z) converges uni-

formly on every compact subset of D(1) and so represents a holomorphic
function in D(1).

Moreover, for 2 By, | /(2)= Fy2)| = | f2)= Em(2)|<1 £&)—~ Em(a) + 31 |m(@)]

<yt % 7y since p,C Dy, for n=1. But Z;.cm < &, < ¢(r) for < max |z| and
y=kKk-4 Y=

2€ Ji1
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so in particular for all zep,. Since % is arbitrary, for any zeku D= U by,
=0 n=1

| f(z)—F1(2)|< ¢(|2]) and the construction is finished.
Using-this function Fy(z) and the construction employed by Roth (6, pp. 107-
109), the desired function F(z) results.

(2. 14) CororraRrY. If each of the regions G, in (2. 13) can be mapped
conformally onto a subset of |2’ |<1 by a function that has a continuous extension onto the
boundary of G, and also maps G,NC(1) onto the single point 2’=1, then there exists a
Sunction F(z) holomorphic in D(1) such that |F(z)—fa(2)|<e for zeM, (n=1,2,
...... ) and also [F(z)— f(2)] tends uniformly to 0 as |z| tends to 1 (zeM,; n=1,2, ......).

Proof. 1If the given mapping is possible, G, can be mapped conformally
onto H,, a subset of the following region H in the ¢{-plane, in such a way that
G,NC(1), which I shall call E,, corresponds to the point {=—co .

H: RY< -1 and 1 1¢ < 1.

Let {={,(z) designate this mapping and let z=2,(¢) be the inverse of {={,(2).

For N sufficiently large, the line {=—N+iv, —1 <v< +1, cuts the region
H, and divides it into two subsets H! and H2 where H} represents the un-
bounded subset. Let G: and G2 be the images of Hj and H} respectively
under z=2,((). If{z,} is a sequence of points in G}, |{(z,)|< N+1 and so no
sequence in G} can converge to a point of E, and so not to a point of C(1).
‘Therefore there is a positive distance d(N) between G; and C(1). If zeG, and
12z]> 1—d(N) then z must be in G2 and thus R(,(z))<—N (i.e., the real part
of ¢,(z) < —N).

Now I have ,(z) holomorphic in G, for each n=1,2,...... ; and for ze M, cG,
and |z|> 1—d(N) this implies that R(£,(2)) < —N. So, R({.(2)) = —co uniformly
as |z|->1lin M, (n=1,2, ...... ).

Therefore, by (2. 13), there exists a function F*(z) holomorphic in D(1) such
that | F*(z)—C,(2)|< ¢ for zeM, (n=1,2, ...... ). Since R({,(z)) = —oo uniformly
as [z|—>1lin M, n=1,2,..... , R(F*(z)) - —co uniformly as |z]—>1in M, n=1,
2y eeree .

Since F*(z) is holomorphic in D(1), w(z)=eF*® is holomorphic in D(1) and
w(z) % 0 for z&D(1). Furthermore, |w(z)| =eRF*®) - uniformly as |z|—1 for
zeM,, n=1,2,...... .

Since f,(2) is holomorphic in G, for each » and w(z) + 0 for any z in G, for
each n, f,(2)/w(z) represents a holomorphic function in G, for each n=1,2, .......
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By (2.13), there exists a function F**(z) holomorphic in D(1) such that
| F¥*(z)— fa(2)|w(z)|<< e for zeM, n=1,2, ...... . Let F(z)=F*%z).w(z). Then
F(2) is holomorphic for zeD(1) and |F(2)—f,(2)|< elw(z)| for zeM, n=1, 2,
...... . Since |w(z)| tends uniformly to O as |z| tends to 1 for zeM, (n=1, 2,
...... ), the theorem is proved.

I have now developed enough technique to proceed with the details of the
answer presented on page 260.

(2.15) THEOREM.  Let 4 be a non-empty closed subset of C(1/2) which is
nowhere dense on C(1/2). Let f(¢) (which may assume the value o) be defined for
0 =< o<2r such that when f(¢) is associated by g with each point 12 exp [i(¢+tann[4)]
of C(1/2) 0= ¢ <2 the correspondence is a function of Baire class O or 1 and g is
constant at least on each circular arc disjoint from the set 4. Then there exists a function
F(2) holomorphic in D(1) such that:

1) lm F(rexp [i(¢+tan”—2">})=f(¢) 0<o<2r.

r—1
2) If W s a closed spiral wedge which contains no point of 4 and f(¢) is the

corresponding constant spiral limit value, F(z) tends uniformly to f(¢) as |z| tends to 1,
zeW.

3)  Every Study spiral cutting C(1/2) at a point of 4 is a Julia spiral.

Proof.* Since f(¢) is defined on C(1/2) and is of Baire class O or 1, there
exists a sequence of functions fy(¢), fa(@), ...... which are continuous on C(1/2)
and converge to f(¢). Let f(¢)=ry(¢) exp [i0,(¢)] where r|(¢) and 6,(¢) are
continuous functions of ¢. Now define f,(¢)=r,(¢) exp [i0.(¢)] Where 0,(¢)
=04(¢p) if 7,(¢)=0. Since 111_1’)1;10 Sfal@)=f(¢), there is a proper determination of
0.(¢) for each » and each ¢ such that il_)rg 0.(¢0)=0,(¢) and nlgg ralo)=ry(0).

n
" ntl - n—1 n
Let d'=—— T for n=1, 2, ...... and o <Tr=— - Then
n+1 n
0=d®<1, n=1,2, ... . Let #(0)=0=f,(¢). Then for ";1 <r=-A-

set h(r exp [i(¢+tan 77r/2)]) = {ru(¢)+di(ra-1(@) — 7a(@))} €Xp [i(0a(¢) + d7{On-1(¢)
—0.(¢)})]. Then h(z) is continuous in D(1) and it can be easily verified that
l}g} h(r exp [i(p+tanar/2)])= f(¢).

* The argument used by Roth (6, p. 117) to construct a function A(z) continuous in the
entire plane does not hold if f(p)=oo for some ¢. A slight modification of the construction of
the function 4(z) used in the first part of this proof can be used to correct this error.
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Let I" be the set of all Study spirals that intersect the set 4 on C(1/2). Then
I is closed and nowhere dense in D(1). It follows from a theorem of Bagemihl
and Seidel (1, p. 190, Corollary 1) that there exists a function Gp(z) holomor-
phic in b(l) such that if 1/2 exp[i(¢+tan=/4)] is in 4 then 1}_1;111 Gr(r expli(e

+tan mf/Q)])=lrirr11 h(r exp [i(¢+tanar/2)])= f(¢).

The complementary set G=C(1/2) —4 is an open subset of C(1/2) and so
consists of countably many pairwise disjoint open arcs gy, ¢i, g, -....- . Letw,
be the spiral wedge for which W,nC(1/2)=g, #n=0,1,2,...... . Let
W =W (an, ) where S,, and S,, are the Study spirals that bound W, a, < ..
Let C,, (finite or infinite) be the constant value of f(¢) associated with the arc

o N 1/n+l = _ L
gn Letrp=—1t +T(—n+2 —_n+1> (k=3,4,......, 10; n=0,1,2,......) .

Define 33,(k)={z|z=r exp [i(an—}—tan-’fQL +a(k”)(7’))] , 1>r=7rPYu{z|z=rexp [i(ﬁ,,
+tan % —a‘k"’(r)ﬂ , 1>r=rP} Uz = r{%exp if| a,+tan Tk é") + PP <46

=Bat+ tan—”—’:zgi——aﬁc"’(r;"’)} where ¢§°(r) = (I—r)ﬁ";#“) (k=3,4, ...... , 10; n=0,

1,2,.... ). Notice that lrl_I)Ill a(r)=0 for all k and ». Thus X,(k) “opens up”
in W, as r —» 1 and its “ends” approach S., and S, asymptotically from within
W,.asr—>1. Let2a,=X,(7). LetB(2,) be the closed region bounded by 33,(6)
and X,(8) and containing 2,. Let G(2,) be the open region bounded by >1.(5)
and 31,(9). Then B(1,) is closed and contains 2, in its interior and B(1,) is
contained in G(1,) (n=0,1,2,...... ).

Let 7, be the closed region entirely contained in W, which is bounded by
>14(8). Define B(z,) to be the closed region bounded by XI,(4) and containing
7, in its interior. Let G(r,) be the open region bounded by >,(5) and
containing B(z,).

Lastly, let B(I') be the closed region bounded by U >1.(10) and containing
n=0
I in its interior. Let G(I') be the open region bounded by U 23.(9) and con-
n=0
taining B(I') in its interior.
If T define ],,=[zl Izl=—n—iT} (n=1,2,...... ) then {J,} is an increasing

sequence of distinct Jordan curves converging to C(1). Consider the open
regions G(I'), G(,), G(zy), G(A1), G(Ty), cevere and, for the sake of simple notation,
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=2
—

121=252

3
+
Do

rename these regions Gy, G, ....... Each region contains a certain closed set
(e.g., G(INDI, G(2;)D2;, and G(r;)D7;) and I shall correspondingly label these
M, M, ...... . The closed set contained in G; and containing M; in its
interior I shall call B; (e.g., G;=G(z;), B;=B(z;) and M;=7;). Itis immediate
at this point that the sequences {G,)3, {B.)%, {M,); and {J,); have been con-
structed to satisfy the conditions stated in (2. 13).

Now consider 3},(9). It is disjoint from G, for each »=0,1,...... . Letg

represent that part of X},(9) defined by [zlz =7 exp i<,8°+tan”—27—a§,°’(r)>:l 1>r

=r{|. This ¢ is a spiral in D(1) in the z-plane. Let G=D(1)—a. Let D'(1)

represent the set |{|< 1. The initial point of ¢ is the impression of one prime
end of G, while every other point of ¢ is the impression of two prime ends of
G. Since ¢ converges to C(1), C(1) is the impression of a single prime end P of
G. Using Carathéodory’s classical results (3), there exists a one-to-one con-
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formal mapping from G onto the unit disk D’(1) so that the initial point of «
and the prime end P correspond, respectively, to the points —1, I while the
other points of ¢ are mapped onto C’(1)—{1, —1}. Let {=¢,(z) be the mapping
from G to D’(1) and z=¢,({) the inverse of this mapping.

Each of the regions G, has the property that G,NC(1)=C(1). Furthermore
¢,(2) restricted to G, has a continuous extension onto G, which maps C(1) onto
the single point {=1 for each n. Therefore the continuous extension of ,(z)
restricted to G, satisfies the condition stated in (2. 14) for each »=0,1,...... .

It remains only for me to define a function f,(z) holomorphic in G, (n=0, 1,
...... ) in order for me to be able to use the conclusions of (2.13) and (2. 14).
To do this I must consider the regions Gy, G,, ...... as formerly represented:
G(I), G(2y), G(zy), -..... .

Let G (2) be the holomorphic function defined on the region G(I"). If the
constant C, associated with W, is finite, let the function f*(z)=C, be the
holomorphic function defined on G(z,). Then define f**(2)=1/{,(z)—1 for
2€G(4,). This function is then holomorphic on G(2,) and tends uniformly to
oo as |z] tends to 1 in G(2,).

On the other hand, if C,=c for W,, define f*(z)=1/(,(z)—1 for z&G(c,).
This function is then holomorphic in G(r,) and tends to oo uniformly as |z]
tends to 1, z&€G(z,). Then define f**(z)=0 for zeG(2,).

Thus, reverting back to the simpler notation, with each region G, I have
associated a function f,(z) holomorphic there. Given ¢>0, (2. 14) allows
me to conclude the existence of a function F(z) holomorphic in D(1) such that
|Fz)—fp2)|<efor zeM,(n=1,2,3, ...... )and also [F(z)— f.(2)] tends uniformly
to zero as |z| tends to 1, zeM, (n=1,2, ...... ).

Now consider the Study spiral S,. For some %, S, is eventually in M,.
Hence there is an R, 0 < R<1 such that for |z]=r> R and z€S,, zeM,. If

() is finite, £4(2) = f(¢) for &S, and |z|>R and so lim| F<r exp [i(q:—l—tan”_;):l)
—fte)=lim| F(r exp [i(o+tan ) )= fu(r exp | i( o +tan G- ) )
+171_{Yll |fn<r exp [i<¢+tan—”27;>}>—f(¢)l =0. Thus, for f(¢) finite, Ilzllr_r)l1 F@2)=f(e).

zeS,

If, on the other hand, f(¢)=co,for z&S, and |z|> R it is true that | F(z)— f,(z)|
<<e. 'This implies that | f,(z)|— ¢ <|F(2)] and since Ililml | fo(z)] =co it follows

zeSy

that lim | F(z)] = or lim F(z)=f(¢).
3 25

https://doi.org/10.1017/50027763000012496 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012496

260 J-L. STEBBINS

Now suppose W is a closed spiral wedge which contains no point of 4. Then
W NC(1/2) is contained entirely in g,, for some m. It follows then that W is
eventually contained in M, for some n. That is, there exists 0 < R<<1 such
that for zeW and [z|> R, zeM,,.

If the corresponding constant spiral limit value C,, is finite, f,(z)=C,, for all
2€M,, so Ilzllr_I:.1 | F(2)—C| =|lzi|r£11|F(z)——fn(z)| and since [F(z)— f,(2)] tends to zero

zew ze M,
uniformly as |z] tends to 1 for ze M, it follows that F(z) tends uniformly to the

corresponding constant limit value as [z|— 1 for zeW.

If C,=c0, f,(2) tends to oo uniformly as [z]—1 and z remains in M,. If
2€W, and |z|> R, z must be in M,. If zeW and |z|> R, it follows that
|F(z)— fa(z)|<<e. Then |f,(z)|—e<|F(z)| and | F(z)| must tend to o uniformly
as |z]—1 for zeW. Thus, in this case also, F(z) tends uniformly to the
corresponding constant limit value as [z] tends to 1 for zeW.

Lastly consider any spiral wedge W* which contains a point of 4. Then W*
contains the Study spiral through that point and so cannot be a wedge of
convergence.  Since the arcs g;, gy, ...... are everywhere dense on C(1/2) and
since W*NC(1/2) is not contained entirely in any one of them, W*nC(1/2)
contains at least a part of g, for some ». Thus W* contains at least a terminal
part of 2,. Then W* contains spirals along which | F(z)| is both bounded and
unbounded and so | F(z)| is neither bounded or uniformly unbounded in W*
as |z|—>1 and thus W* cannot be a wedge of convergence. Since I have
previously shown that the set of Julia spirals is identical with the set of Study
spirals that are contained in no wedge of convergence, it follows that each
Study spiral cutting C(1/2) at a point of 4 is a Julia spiral and the theorem is
complete.

3. An extension to a larger class

Harold Bohr has considered (2) the class of entire functions that are bounded
on each half line emanating from the origin. This class, of course, includes
much of the class of functions considered by Roth and it is natural to ask whether
analogous results can be obtained for functions holomorphic in D(1) where
the class of spirals in the disk plays the role of half lines in the plane. For my
purposes I again consider the class of Study spirals as rather natural analogues
in the disk of the half lines in the plane, but of course make no claim as to

their exclusiveness.

(3. 1) DerintTioN. M* shall denote the class of functions F(z) holomor-
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phic in D(1) and bounded on each Study spiral.

It follows from this that if F(z) is in M* for each 6 (0 < # < 2x) there is a real
positive number L(6) such that for all zeS,, | F(z)|<< L(6).

I shall use ¢ to denote an open connected subset of C(1/2) and I shall
distinguish between three distinct types of intervals as follows:

1) The entire circle, therefore an interval without frontier points, which
I shall designate as I.

2) An interval with exactly one frontier point A=1/2 exp [i(a—i—tan%—ﬂ,

therefore the entire circle except this point, which I shall designate by 1,.

3) An interval with two frontier points A=1/2 exp [i<a+tan—;i—)] and B=

1/2 exp [i(ﬂ—!—tan%):l. I shall designate this interval by I, where the order

of the two frontier points is so chosen that as z moves from A to B on 5 it
travels in the counterclockwise direction.

(8.2) DerintTioN. I shall say that F(z)e M* is bounded on an interval i
if F(z) is uniformly bounded on all Study spirals which pass through a point of
i. That is, there must exist a constant B(:) such that for all ¢ for which S,
cuts ¢, L(8) < B(z).

(3.3) DeriniTioN. Concerning two intervals i, and i, I shall say that i,
is a subinterval of i, iff not only all points of i, are contained in 7, but also all
frontier points of ¢, are also in ¢,.

(3.4) DeriNITION.  An interval i is called a complete interval of bound-
edness for a function F(z)eM* iff 1) F(z) is bounded in every subinterval of i
and 2) F(z) is not bounded in any interval which contains a frontier point of i.

It follows that two complete intervals of boundedness for a given function are
either disjoint or identical. Also, if F(z) is bounded on an interval i, there is
a unique interval i* containing ¢ which is a complete interval of boundedness.

(8.5) THEOREM. If F(z)eM* and i is an arbitrarily small interval on C(1/2),
then i contains a subinterval on which F(z) is bounded. Consequently the complete
intervals of boundedness are everywhere dense on C(1/2).

Proof. Let i be bounded by 1/2expl[i(a,+tan =/4)] and 1/2exp[i(B
+tan=/4)] where << a,+2x and let F,(0)=f(r exp[i(6+tan ar/2)]) for
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a,<<0<<B. If the theorem is not true, there exists », and 4, such that
| Fr(6,)]>1. Since F», is a continuous function of 4, there exists an entire
interval (a,, 8;) containing 6, where a,< a;<p,<pg, such that |F»(6)|>1 for
o< (ay, Br).

If (@, ) is not an interval of boundedness, then there exists 7, and 6, such
that |F»,(0,)|>2. Again by continuity, there exists an entire interval (a,, f,)
containing 6, where a; < a,<<f,<< g such that |Fr(0)]|>2 for o0& (ay, 8).

Continuing in this way, if no interval of boundedness is encountered, there

exists §,& N (a,, B,) such that [F»(6,)|> n for each positive integer n. But this
n=1

denies the existence of L(4,) and so proves the theorem.
It is natural to ask, as in the previous section, whether a converse can be

found for this theorem. The following is the affirmative answer.

(3.6) TuEOREM. Let iy,iy,...... be an arbitrary ( finite or countably infinite) set
of intervals on C(1/2) such that no two of these intervals possess a common point and the
intervals are everywhere dense on C(1/2). Then there exists a function of class M whose
complete intervals of boundedness are precisely the intervals iy, iy, ...... .

Proof. If I is the only interval that is given, any function constant in D(1)
will suffice. Otherwise the set C(1/2)— Bli” is closed and not empty, and I

shall call it 4. Now apply the theorem of Section 2.15 with f(¢)=0 for all
¢ (0= ¢ < 2n), and the conclusion follows immediately.
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