Vol. 43 (1991) [137-140]

NEW CRITERIA FOR MEROMORPHIC STARLIKE UNIVALENT FUNCTIONS

B.A. URALEGADDI AND C. SOMANATHA

This paper establishes new criteria for meromorphic starlike univalent functions of the form

$$f(z) = \frac{a_{-1}}{z} + \sum_{k=0}^{\infty} a_k z^k, \ (a_{-1} \neq 0).$$

Further property preserving integrals are considered.

1. Introduction

Let Σ denote the class of functions of the form $f(z) = (a_{-1}/z) + \sum_{k=0}^{\infty} a_k z^k$, $(a_{-1} \neq 0)$, regular in the punctured disk $E = \{z : 0 < |z| < 1\}$.

Define

$$D^0 f(z) = f(z),$$

 $D^1 f(z) = \frac{a_{-1}}{z} + 2a_0 + 3a_1z + 4a_2z^2 + \dots,$
 $D^2 f(z) = D(D^1 f(z)),$

and for n = 1, 2, 3, ...

(1.1)
$$D^{n}f(z) = D(D^{n-1}f(z))$$
$$= \frac{a_{-1}}{z} + \sum_{m=2}^{\infty} m^{n} a_{m-2} z^{m-2}.$$

In this paper we shall show that a function f(z) in Σ , which satisfies one of the conditions

(1.2)
$$\operatorname{Re}\{D^{n+1}f(z)/D^nf(z)-2\} < -\alpha, |z| < 1, 0 \le \alpha < 1 \text{ and } n \in N_0 = \{0, 1, 2, ...\} \text{ is univalent in } 0 < |z| < 1.$$

More precisely it is proved that for the classes $B_n(\alpha)$ of functions in Σ satisfying (1.2),

$$(1.3) B_{n+1}(\alpha) \subset B_n(\alpha) \text{ holds.}$$

Since $B_0(\alpha)$ equals $\Sigma^*(\alpha)$ (the class of meromorphic starlike functions of order α) the univalence of members in $B_n(\alpha)$ is a consequence of (1.3). Further property preserving integrals are considered, a known result of Goel and Sohi [2, Corollary 1] is obtained as a particular case and a result of Bajpai [1, Theorem 1] is extended.

In [4] Ruscheweyh obtained the new criteria for univalent functions.

Received 15 March 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

2. THE CLASS
$$B_n(\alpha)$$

THEOREM 2.1. $B_{n+1}(\alpha) \subset B_n(\alpha)$ for each $n \in N_0$.

PROOF: Let $f(z) \in B_{n+1}(\alpha)$. Then

(2.1)
$$\operatorname{Re}\{D^{n+2}f(z)/D^{n+1}f(z)-2\}<-\alpha, \quad |z|<1.$$

We have to show that (2.1) implies the inequality

$$\operatorname{Re}\{D^{n+1}f(z)/D^nf(z)-2\}<-\alpha.$$

Define a regular function w(z) in the unit disk $\triangle = \{z : |z| < 1\}$ by

(2.2)
$$D^{n+1}f(z)/D^nf(z)-2=-\frac{1+(2\alpha-1)w(z)}{1+w(z)}.$$

Clearly w(0) = 0.

The equation (2.2) may be written as

(2.3)
$$D^{n+1}f(z)/D^nf(z) = \frac{1+(3-2\alpha)w(z)}{1+w(z)}.$$

Differentiating (2.3) logarithmically and using the identity (easy to verify)

$$(2.4) z(D^n f(z))' = D^{n+1} f(z) - 2D^n f(z)$$

we obtain

$$(2.5) \quad \frac{\left(D^{n+2}f(z)/D^{n+1}f(z)\right)-2+\alpha}{1-\alpha}=\frac{2zw'(z)}{(1+w(z))(1+(3-2\alpha)w(z))}-\frac{1-w(z)}{1+w(z)}.$$

We claim that |w(z)| < 1 for $z \in \Delta$. Otherwise there exists a point z_0 in |z| < 1 such that $\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1$. From a well-known result due to Jack [3], there is then a real number $k \ge 1$ such that

(2.6)
$$z_0 w'(z_0) = k w(z_0).$$

From (2.5) and (2.6) we obtain

$$\frac{\left(D^{n+2}f(z_0)/D^{n+1}f(z_0)\right)-2+\alpha}{1-\alpha}=\frac{2kw(z_0)}{(1+w(z_0))(1+(3-2\alpha)w(z_0))}-\frac{1-w(z_0)}{1+w(z_0)}.$$

Thus

$$\operatorname{Re}\frac{\left(D^{n+2}f(z_0)/D^{n+1}f(z_0)\right)-2+\alpha}{1-\alpha}\geqslant \frac{1}{2(2-\alpha)}>0$$

which contradicts (2.1). Hence |w(z)| < 1 for $z \in \Delta$ and from (2.2) it follows that $f \in B_n(\alpha)$.

THEOREM 2.2. Let $f \in \Sigma$ and for a given $n \in N_0$, c > 0, let f satisfy the condition

(2.7)
$$\operatorname{Re}\{D^{n+1}f(z)/D^nf(z)-2\}<-\alpha+\frac{1-\alpha}{2(1-\alpha+c)} \text{ for } z\in\Delta;$$

then $F(z) = (c/z^{c+1}) \int_0^z t^c f(t) dt \in B_n(\alpha)$.

PROOF: From the definition of F we have

(2.8)
$$z(D^n F(z))' = cD^n f(z) - (c+1)D^n F(z)$$

and also

(2.9)
$$z(D^n F(z))' = D^{n+1} F(z) - 2D^n F(z).$$

Using (2.8) and (2.9) the condition (2.7) may be written as

(2.10)
$$\operatorname{Re}\left(\frac{D^{n+2}F(z)/D^{n+1}F(z)+(c-1)}{1+(c-1)D^{n}F(z)/D^{n+1}F(z)}-2\right)<-\alpha+\frac{1-\alpha}{2(1-\alpha+c)}.$$

We have to prove that (2.10) implies the inequality

$$Re\{D^{n+1}F(z)/D^nF(z)-2\}<-\alpha.$$

Define a regular function w(z) in the unit disk $\Delta = \{z : |z| < 1\}$ by

(2.11)
$$D^{n+1}F(z)/D^nF(z)-2=-\frac{1+(2\alpha-1)w(z)}{1+w(z)};$$

clearly w(0) = 0.

The equation (2.11) may be written as

(2.12)
$$D^{n+1}F(z)/D^nF(z) = \frac{1+(3-2\alpha)w(z)}{1+w(z)}.$$

Differentiating (2.12) logarithmically and simplifying we obtain

(2.13)
$$\frac{D^{n+2}F(z)/D^{n+1}F(z) + (c-1)}{1 + (c-1)D^{n}F(z)/D^{n+1}F(z)} - 2$$

$$= -\left[\alpha + (1-\alpha)\frac{1-w(z)}{1+w(z)}\right] + \frac{2(1-\alpha)zw'(z)}{(1+w(z))(c+(2-2\alpha+c)w(z))}.$$

The remaining part of the proof is similar to that of Theorem 2.1.

0

0

REMARKS. (i) A result of Goel and Sohi [2, Corollary 1] turns out to be a particular case of the above theorem when $a_{-1} = 1$, n = 0 and $\alpha = 0$.

(ii) For $a_{-1} = 1$, n = 0, $\alpha = 0$ and c = 1 the above theorem extends a result of Bajpai [1, Theorem 1].

THEOREM 2.3. $f \in B_n(\alpha)$ if and only if $F(z) = 1/z^2 \int_0^z t f(t) dt \in B_{n+1}(\alpha)$.

PROOF: From the definition of F we have

$$D^{n}(zF'(z)) + 2D^{n}F(z) = D^{n}f(z).$$

That is,

(2.14)
$$z(D^n F(z))' + 2D^n F(z) = D^n f(z).$$

By using the identity (2.4), (2.14) reduces to $D^n f(z) = D^{n+1} F(z)$. Hence $D^{n+1} f(z) = D^{n+2} F(z)$.

Therefore

$$D^{n+1}f(z)/D^nf(z) = D^{n+2}F(z)/D^{n+1}F(z)$$

and the result follows.

REFERENCES

- [1] S.K. Bajpai, 'A note on a class of meromorphic univalent functions', Rev. Roumanie Math. Pures Appl. 22 (1977), 295-297.
- [2] R.M. Goel and N.S. Sohi, 'On a class of meromorphic functions', Glas. Mat. 17 (1981), 19-28.
- [3] I.S. Jack, 'Functions starlike and convex of order α', J. London Math. Soc. (2) 3 (1971), 469-474.
- [4] S. Ruscheweyh, 'New criteria for univalent functions', Proc. Amer. Math. Soc. 49 (1975), 109-115.

Department of Mathematics Karnatak University Dharwad - 580 003 India