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Abstract
How do children learn to communicate, and what do they learn? Traditionally, most
theories have taken an associative, compositional approach to these questions,
supposing children acquire an inventory of form-meaning associations, and procedures
for composing / decomposing them; into / from messages in production and
comprehension. This paper presents an alternative account of human communication
and its acquisition based on the systematic, discriminative approach embodied in
psychological and computational models of learning, and formally described by
communication theory. It describes how discriminative learning theory offers an
alternative perspective on the way that systems of semantic cues are conditioned onto
communicative codes, while information theory provides a very different view of the
nature of the codes themselves. It shows how the distributional properties of languages
satisfy the communicative requirements described in information theory, enabling
language learners to align their expectations despite the vastly different levels of
experience among language users, and to master communication systems far more
abstract than linguistic intuitions traditionally assume. Topics reviewed include
morphological development, the acquisition of verb argument structures, and the
functions of linguistic systems that have proven to be stumbling blocks for
compositional theories: grammatical gender and personal names.
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What do children learn when they learn to communicate?

Most theoretical accounts of human communication assume that languages comprise
an inventory of elements and some procedures for combining them into messages.
These elements are conceived of at various levels of description: PHONEMES, the
acoustic/psychological equivalent of letters; MORPHEMES, basic units of meaning that
cannot be further decomposed (such that the word uni-corn-s comprises three
morphemes); WORDS, which can be either mono- or multi-morphemic; and SENTENCES

which comprise more complex combinations of words / morphemes. It is further
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assumed that the way meanings combine in these more complex structures follows the
principle of compositionality, which holds that “the meaning of an expression is a
function of the meanings of its parts and the way they are syntactically combined”
(Partee, 1984).

Yet although human communication is almost universally assumed to be
compositional, attempts to cash out this assumption have inevitably proven
unsuccessful (Ramscar & Port, 2016). Phonemes fail to capture many of the acoustic
properties that are essential to spoken communication, and although phonemes are
assumed to ‘spell out’ speech signals, they are often impossible to identify from
acoustic information alone (Port & Leary, 2005; Samuel, 2020). The idea that
morphemes comprise basic sound-meaning units has been undermined by analyses
of their functions (which are often meaningless), and the discovery of context effects
that contradict the idea of them being elemental units of meaning (Blevins, 2016;
Lieber, 2019). Meanwhile, centuries of dedicated research has failed to make
theoretical sense of meaning units (with philosophers such as Wittgenstein, 1953,
and Quine, 1960, concluding that meanings cannot possibly be atomic), while efforts
to find psychological evidence for their existence have produced more questions than
answers (Ramscar & Port, 2015). Since similar problems have arisen when theories
have attempted to explain how smaller ‘elements of meaning’ are combined to form
larger compositional elements (Culicover, 1999), it seems that viewed dispassionately,
the results of the massive body of research seeking to explain language processing in
terms of the composition and decomposition of basic elements of form and meaning
do not so much support this view as indicate that human communication does not
work that way at all.

This paper describes an alternative theory of language that begins with learning, a
subject that ought to lie at the heart of any theory of language acquisition, and ends
with an account of human communication that is in many ways the opposite of
received wisdom. It describes how research on ‘associative’ learning has resulted in
theories that are DISCRIMINATIVE in processing terms, and explains how this further
undermines the idea that languages comprise inventories of discrete form-meaning
associations, or that human communication is a compositional process. Instead,
because the best models of learning and communication are fundamentally
systematic, fundamentally probabilistic, and fundamentally discriminative (such that
the processes that underlie the use of language are also likely to be systematic,
probabilistic, and discriminative), this account reframes human communication and
its learning in these terms – so as to make it compatible with these processes. It also
results in a number of concrete predictions about the kinds of problems that
children will encounter in learning a language, and the kinds of properties we should
expect human communicative codes to possess for children to learn them. In keeping
with the spirit of this special issue, these predictions will be highlighted as this
review seeks to explain why (theoretically) communication and children’s learning to
communicate are best characterized in discriminative terms.

How do children learn?

Accounts of communicative learning seek to answer two questions: WHAT do children
learn, and HOW do they learn it? Since starting from HOW they learn allows for the
establishment of useful constraints on WHAT children might be able to learn, it seems
reasonable to begin by offering an account of learning. Beginning with learning also
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benefits from the fact that considerable agreement exists about the nature of many basic
learning processes, which tend to be specified in greater detail than is the case in
linguistics. There are two main reasons for this: first, humans share their basic
learning mechanisms with other animals, allowing animal models to offer insight into
the neural processes of learning (O’Doherty, Dayan, Friston, Critchley & Dolan, 2003;
Schultz, 2006); second, human and animal learning mechanisms appear to be
error-driven, a learning method that has been subject to a large amount of
computational research that provides considerable insight into the capabilities of – and
constraints on – this kind of learning in real-world situations (Hinton, McClelland &
Rumelhart, 1986; Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Vanhoucke, Nguyen,
Kingsbury & Sainath, 2012; Hannun, Case, Casper, Catanzaro, Diamos, Elsen,
Prenger, Satheesh, Sengupta, Coates & Ng, 2014; LeCun, Bengio & Hinton, 2015).

With regards to animal learning, it has long been known that simple association
rates (the frequency at which a ‘stimulus’ – say the German article das – is associated
with a ‘response,’ the noun Mädchen) are incapable of explaining basic conditioning
(Ramscar, Dye & McCauley, 2013a). Two further factors are critical to predicting
and explaining learning the predictive relationships between cues and events: cue
BACKGROUND RATES (Rescorla, 1968; Ramscar, Dye & Klein, 2013b; how often das
occurs absent Mädchen), and BLOCKING (Kamin, 1969; Arnon & Ramscar, 2012; the
prior predictability of Mädchen in context). Learning is then a product of the
interactions between these factors in experience, with association rates tending to
promote learning, and blocking and background rates tending to inhibit it.

Formal models embodying these principles are adept at fitting and predicting
learning effects. A classic example, the Rescorla and Wagner (1972) learning rule
specifies how learning can be described in terms of the computation of discrepancies
between a learner’s expectations and reality, with the difference between the two
serving to modify the values of a set of predictive cues in relation to a set of
expected outcomes in trial-by-trial learning. Although it was originally proposed as
part of an elemental model of learning couched in associative terms (see also Miller,
Barnet & Grahame, 1995; Siegel & Allan, 1996; Ellis, 2006), the error-driven learning
mechanism described by the rule is best understood by re-conceptualizing learning
as a discriminative process that reduces uncertainty about events in the world, such
that learning only occurs when uncertainty is present (Ramscar, Yarlett, Dye, Denny
& Thorpe, 2010; Hoppe, Hendriks, Ramscar & van Rij, in press). If an event
(outcome) whose likelihood is underestimated occurs, the values of cues to it are
strengthened, whereas if its likelihood is overestimated, the values of these cues are
weakened. Because uncertainty is finite (learning can often result in certainty), cues
compete for predictive value, leading to the discovery of reliable cues through
competition, and the discriminatory weakening and elimination of others.

The Rescorla-Wagner learning rule is relatively simple, allowing processes such as
error-driven learning and cue competition to be explained in relatively intuitive terms.
However the algorithm it describes is simply the linear form of an earlier rule
proposed by Widrow and Hoff (1960; see Stone, 1986), that is in turn formally
equivalent to the delta-rule used in connectionist networks (Sutton & Barto, 1981). In
all of these variants, error-driven learning is a systematic process that produces a
mapping that best discriminates the informative relationships in a set of inputs and a
set of outputs given a training schedule. Because of this, Ramscar et al. (2010) suggest
that from a computational perspective it is best understood as describing a
discriminative learning mechanism (this point also applies to the error-driven learning
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algorithms found at the heart of most connectionist / neural network model; Ng &
Jordan, 2002, and Bayesian models of learning, e.g., Daw, Courville & Dayan, 2008).
Conceptually, the logic of discrimination enshrined in these models is far removed
from the “blooming, buzzing confusion” assumed in many developmental theories.

For the sake of clarity, it is worth noting that ‘discrimination learning’ has been used
in at least three ways in the literature (see Hoppe, van Rij, Hendriks & Ramscar, 2021
for discussion). The term DISCRIMINATION LEARNING was widely used in the animal
learning literature in the early twentieth century, and, consistent with the
behaviourist principles that dominated theory at this time, it was (and still is) used
in a mechanism-neutral way to describe the fact that, objectively, both animals and
humans are capable of learning different responses to different stimuli (Rescorla &
Wagner, 1972). The second area to use the term discrimination learning is machine
learning, where the concept of a discriminative model was introduced to provide a
mechanism neutral contrast to GENERATIVE MODELS. Whereas the latter learn the data
that generates a set of labels, DISCRIMINATIVE MODELS simply learn to maximize the
conditional probabilities of labels for a set of labels given an input representation
(Ng & Jordan, 2002). Finally, DISCRIMINATIVE LEARNING can be used to describe the
mechanism implemented in the error-driven learning models. Because in most
learning situations this mechanism enforces cue competition –which serves to
discriminate against or in favor of the units that serve as inputs by re-weighting the
influence of individual units – it serves to re-represent an input representation so as
to maximize its informativity about a set of outputs (Ramscar et al., 2010).

From this latter perspective, the mind of a newborn learner can be thought of as an
undifferentiated set of inputs that are connected to an undifferentiated set of output
states. Starting from what is, in functional terms, a system containing a single entity,
the learner’s representation of the world will grow into a larger set of (more or less
individuated) entities as the error resulting from perceptible variances and
invariances in the environment produces differentiation, increasing the degree of
discrimination between inputs and outputs (Ramscar et al., 2010, 2013a; see also
James, 1890).

Learning and morphology –where connectionism went wrong

To turn the second question posed above –WHAT do children learn about language? – I
will initially consider it in relation to linguistic morphology, and, in particular, English
inflectional morphology. Although this is a relatively simple morphological system, its
properties embody many characteristics of language as a whole: it is SYSTEMATIC (the
formation of most but not all English plurals can be described as adding an
allomorph of the morpheme –s to a singular noun form); it is PRODUCTIVE (children
can readily generate past tenses for novel forms such as rick-ricked); and yet the
system is QUASIREGULAR in that irregular forms deviate by degrees from the regular
pattern (e.g., knife-knives, mouse-mice, child-children; Seidenberg & Plaut, 2014;
Ramscar, in press).

These properties have led to morphological development being used as a test domain
for theories of language acquisition, with the question of WHAT children learn in
acquiring a morphological system being the subject of considerable debate. For
example, Pinker (1998) claimed that COMPOSITIONAL RULES are explicitly represented
components of MORPHOLOGICAL knowledge, and argued that the processes of
inflectional morphology, which seemingly distinguish productive regular items from
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unproductive irregulars, provide evidence for this claim. This was in contrast to the
classic connectionist model presented by Rumelhart and McClelland (1986), which
took the phonological form of a verb’s present tense as input, and generated the
phonological form of its past tense as output, using a uniform procedure for the
generation of both regular and irregular (and novel) forms (see Ramscar, in press,
for a review).

For current purposes, what was notable about the famous ‘past tense’ debate is that
both sides agreed that WHAT children learn in the course of morphological development
are ways of composing and decomposing morphemes (Ramscar, in press). In the case of
English plurals, it is assumed that a child learns a morpheme that associates the concept
mouse with the word ‘mouse,’ an association between the concept mice and ‘mice,’ an
association between the concept rat and ‘rat,’ and an association between the concept
for PLURALITY (or sets of objects, excluding multiple mouses etc.) and a morpheme +s,
etc. Yet the discrete system of associations between forms and meanings envisaged
here is difficult to reconcile with the highly interconnected systems that associative
learning actually produces. Moreover, this neat picture of form-meaning mapping is
also inconsistent with the results of research into human categorization, which show
that human performance on categorization tasks is best accounted for by models that
treat categorization as a process in which discrete outcomes such as labels, responses,
etc., are discriminated in context from a more continuous system of inputs (Love,
Medin & Gureckis, 2004).

If we allow that morphological systems are not sets of discrete mappings between
units of meaning and lexical forms, some of the limitations in the assumptions
shared by both sides of this debate become apparent. The Rumelhart and
McClelland (1986) model assumed children learn transformational rules that add a
discrete English past tense morpheme +ed to a verb stem to generate a past tense
form, or a discrete plural morpheme +s to a singular noun stem to generate a plural.
In keeping with this, the model’s training set is a list of uninflected stems that are
transformed into past tense forms, as if the learning environment contained speakers
producing repetitive bursts of singular-plural forms. Yet in reality, adults do not go
around repeating, “go-went, walk-walks.” Instead children learn in context, from
hearing sentences like, “shall we go walk the dog?” (Gleitman, 1965). Thus not only
is the learning scenario assumed implausible, but critically, Rumelhart and
McClelland’s theoretical account of inflection learning appears to be compositional,
even though it is implemented in a discriminative learning model (in which
compositionality seems to make little sense, Lake & Baroni, 2018). All of which
raises a question: what might a discriminative theoretical account of morphological
development actually look like?

A discriminative model of morphological development and processing

If we accept that children encounter morphological variations in contexts that offer no
obvious evidence for transformation (they don’t actually here numerous repetitions of
“go-went, dog-dogs), the WHAT of learning in morphological development can be
straightforwardly recast in terms of their learning WHAT it is about the environment
that warrants the use of a given linguistic form in a given context (Ramscar, in
press). To illustrate how this works, I will briefly describe how a discriminative
model learning English noun morphology accounts for the patterns of
over-regularization often observed in development (Seidenberg & Plaut, 2014). The
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model uses essentially the same learning rule as the Rumelhart and McClelland (1986)
model. Where it differs is how it represents the learning task, and the nature of
linguistic knowledge itself (representations critical to the performance of learning
models, Bröker & Ramscar, 2020).

Because of the nature of the input, English noun inflection is difficult to learn even
in comparison to verb inflection. Whereas children encounter more inflected than
uninflected verb forms, and more of these forms (by token) are irregular than
regular, plurals are different. Children mainly encounter singular nouns, and most
plural noun types and tokens are regular. Yet as with the past tense, children’s
irregular plural production follows a ‘U-shaped’ developmental trajectory. Children
who have produced ‘mice’ in one context will still produce over-regularized forms
like ‘mouses’ in others (Ramscar & Yarlett, 2007).

The discriminative model of morphological development described here (Ramscar &
Yarlett, 2007; Ramscar & Dye, 2009; Ramscar et al., 2013a) is based on results indicating
that lexical learning involves discriminating the cues to word use (Ramscar, Thorpe &
Denny, 2007; Ramscar et al., 2010; Ramscar et al., 2013b), and that patterns of
morphological variation reflect similar semantic and contextual factors (Ramscar,
2002; Ramscar & Dye, 2011; Ramscar, Dye & Hübner, 2013c). Accordingly, the model
assumes that children encounter words and morphological variations in context, and
are faced with the task of discriminating the cues that are informative about their use.
Since initially any kind of stuff in the world is potentially informative about any
lexical contrast, an important aspect of learning to discriminate the cues to noun
forms involves discriminating the more specific cue dimensions in the objects
associated with them from the other, less specific dimensions they also comprise (that
mousiness is a better cue to ‘mice’ than stuff). Similarly, learning to discriminate
singulars from plurals requires learning the dimensions of NUMEROSITY that best predict
different forms (that multiple mouse objects best predicts ‘mice’).

Figure 1a depicts some of the environmental dimensions that reliably covary with
the irregular plural ‘mice.’ Critically, while ALL these dimensions co-occur with ‘mice’
at the same rate, their covariance with other nouns differs, resulting in cue
competition. Because generic cues like stuff are reinforced when ‘mice’ is
encountered, learners will expect mice to occur whenever stuff is present, resulting in
prediction-error in the contexts where stuff occurs and ‘mice’ is not heard. This
process will cause the value of these generic cues to weaken over time, such that
multiple mouse-items will be learned as the best cue to ‘mice.’

Accordingly, the actual pattern of reinforcement and unlearning of the
environmental cues to different forms will depend on their distribution in the
learning environment. Figure 1b shows how the various potential semantic cues to
‘mice’ overlap relative to a simple set of idealized cues to different singular and plural
forms – irregulars, regular stems, and the regular plural contrast +s – in learning.
Broadly speaking, the plural forms classed as ‘regular’ in English are similar in that
they all end in a final sibilant that discriminates plural from singular forms (they
also differ slightly in that different forms use different allomorphs of this final
sibilant). By contrast, irregulars discriminate singular from plural forms in various
ways. It is thus important to note that in this model, ‘rats’ is not conceptualized as
comprising a stem that is inflected for plurality by adding +s, but rather, ‘rat’ and
‘rats’ are different word forms. Children must learn to discriminate one from the
other, and the contextual cues appropriate to the usage of each (see Hoppe et al.,
in press, for a comprehensive tutorial on this kind of learning process).
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At the same time, because ‘rat’ and ‘rats’ are very similar forms that appear in very
similar ratty contexts, the specific cues to them are difficult to discriminate. Similarly,
the fact that a final sibilant discriminates the plural and singular forms of a great many
words means that it is difficult to discriminate the specific semantic cues to the final
sibilant in ‘rats’ ‘cats’ and ‘bats’. Given the distribution of cues and forms – in which
regulars are by far more frequent – a learner’s language model will initially come to
expect plural forms that end in sibilants whenever sets of objects are described. This
over-general expectation causes interference when irregular plurals are produced,
causing the production of over-regularized forms.

However, further exposure to the same distribution serves to eliminate this
interference. This is because the same generic cues that lead to over-regularization
must inevitably also produce expectations for irregular forms (‘mice’) in contexts
where REGULAR forms will be used. The prediction errors that result from this will
cause the unlearning of these generic dimensions as cues to mice, increasing the
relative strength of more specific cues, and reducing the likelihood of future
over-regularization. Accordingly, this model makes a clear, unambiguous prediction:
at an appropriate stage of development, exposing children to REGULAR FORMS ALONE

ought to serve to reduce over-regularization, in any morphological paradigm.1 To
perform a test of this hypothesis in relation to English plurals, regular and irregular
plural and singular forms were elicited from two groups of children, after which one
performed a control task and the other a task that required them to access the
regular forms from the elicitation test in memory. Whereas children in the control

Figure 1. A: Some of the semantic dimensions that will be present whenever a child is exposed to the word
‘mice’ in the context of mice. B: A more abstract representation of the relative specificity of these dimensions
as cues to plural forms. Although the less specific cues (stuff and mousiness) will be reinforced during early
in learning, their ubiquity will ultimately cause them to produce more errors than the uniquely informative
cues. As a result, the influence of these less specific cues will wane as experience grows.

1For example, although the semantic structure of verb arguments is more subtle than that of noun
phrases (a point I shall return to later), the contextual cues to past tense forms appear to be sufficiently
straightforward to support a simple adaptation of the plural model above. In this model, contextual
features would serve to cue irregular past / present tense forms that will be suppletive, whereas for
regulars, although +ed serves to discriminate tense at a form level, their morphological features
otherwise offer little information in this regard. The approach to learning implemented in the plural
models described earlier employed a set of forms sharing a common context – form mapping (in this
case, would be past-context–+ed) to generate error in the representations of a set of ‘exceptions,’ thereby
reducing the noise in the system that led to over- regularization. Applying the same logic here predicts
that getting children of an appropriate age to repeatedly produce past tense forms in context ought to
result in the same kind of reduction in over- regularization for verbs as was described for nouns above.
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task over-regularized at the same rate in a posttest, the experimental manipulation –
which involved processing ONLY REGULAR FORMS– produced a significant DECREASE in
the rate at which IRREGULAR FORMS were over-regularized (Ramscar et al., 2013a).

Regularity, information and coding

The plural learning model described above offers an interesting perspective on the idea
of regularity in language. From a generative/compositional perspective, regularity is
often assumed to be a desirable or normative goal for morphological systems, such
that irregular paradigms represent deviations from the norm. However this
assumption is at odds with phenomena like suppletion, where the exponents of
inflectional paradigms are more or less related allomorphs (e.g., ‘go’-‘went’ /‘mouse’-‘mice’)
that serve to obscure the form-meaning relationship in the paradigm as a whole.
Critically, although suppletive forms are often type infrequent, they tend to be HIGHLY

FREQUENT as tokens, raising the question of what ‘normative’ means when languages
are viewed statistically. It is thus interesting to note that in the model described
above, suppletive forms serve to ACCELERATE the discrimination of the specific cues to
individual forms in learning. From this perspective, suppletive irregular forms like
‘went’ and ‘feet’ can be seen to encode strong examples of the FORM CONTRASTS that
learning and communication ultimately rely upon. Given that these processes will be
facilitated by strong contrasts – ‘one,’ ‘two,’ ‘three’ – and impaired by weak
contrasts – ‘one,’ ‘john,’ ‘gone’ –when seen from the perspective of learning and
communication it is not suppletion that needs explaining so much as regularity
(Ramscar, Dye, Blevins & Baayen, 2018): why do languages tolerate the less
discriminative form contrasts that lead to over-regularization?

In answering to this question, it will help to imagine a world whose language is
defined in an enormous codebook. The code comprises a set of sound-symbols
(codewords), each of which serves to uniquely discriminate one of the many, specific
messages a speaker might possibly wish to send from the other messages they might
have sent, such that the task facing a learner is that of memorizing every codeword /
message of what is a fully suppletive language. Using this language will prove
problematic, and considering why can help highlight some problems – especially with
regards to learning – that any ACTUAL language must solve.

First, given that people will want to communicate many different messages, the
codebook will be have to be enormous (in fact, boundless). Second, in order to
generate the enormous number of codewords this will require, many codewords will
have to be long and/or complex. Third, since memorizing the whole book will be
impossible, each individual will have learned only a fraction of it, restricting
communication to only those codewords speakers share knowledge of. These factors
will make the language massively inefficient, if not unusable.

How might one offset these problems? One way to simplify the code would be to
employ combinatorics: codewords that discriminate different KINDS of messages –
questions, declarations, etc. – could be defined, and combined with other codewords in
SIGNALS, enabling the number of unique words required to be reduced. The code could
be further improved by analyzing the RATE at which people use each message. SHORTER
SIGNALS could then be assigned to MORE FREQUENT MESSAGES, making it easier for people
to learn the signals they are more likely to use before less generally useful signals.

These latter modifications presuppose there is some consistency in the likelihood
with which every person wants to send any given message. Yet how likely is it that
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this will always be the case? To address this, a further, less obvious modification could
be made: an analysis could be made of the various kinds of signals people send, along
with their probabilities. The code could then be redesigned so as to distribute the
discriminatory power of different kinds of codewords more efficiently and more
abstractly across signals. The idea would be to strike a balance, such that shared
needs use less coding resources, and those that vary a lot require more, so that the
code’s overall structure was matched to the collective needs of the community.

Finally, the code could be modified so as to tolerate AMBIGUITY. If the same
codewords/signals could be used to communicate different (yet similar) messages,
and if speakers were to use context to resolve any uncertainty about the different
meanings intended, the code’s impossibly vast vocabulary could be reduced
dramatically (Piantadosi, Tily & Gibson, 2012).

However, whereas learning the original code simply involved memorizing
form-meaning pairings one-by-one, it is far from clear this strategy will be
compatible with all of these modifications. While combinatorics is compatible with
the memorization of form-meaning pairs, this strategy would become less plausible
as the code began to get more complex, and as its level of abstraction grew. Finally,
when ambiguity – and the requirement that context be used to resolve uncertainty
about intended meanings – are introduced, the codebook and the memorization of
form-meaning pairs become unworkable. If context is necessary to learn how signals
are used, then either the codebook will have to describe context, which is impossible
(the book would have to resemble the fabulous cartographers’ 1:1 scale map of the
empire, Borges, 1946), or else the code will have to be learned in context, and its
design will somehow have to facilitate this process.

Given this imaginary language was initially defined in a book, it made sense to talk
about it through a process of top down analysis and modification modification.
However, if we allow that human communicative codes have evolved in response to
the selection pressures that arise out of people’s desire to communicate more or less
important things more or less successfully, we might allow that the ambiguous,
highly abstract structure of the modified code might arise naturally, as codes are
used, reused and changed by successive generations. In what follows, I will assume
that it is exactly this kind of socially evolved code that children must learn in order
to enter into a linguistic community. I will seek to elucidate how these codes work,
describe in detail how some aspects of them are learned, and illustrate how in fact,
rather their being unlearnable (as other characterizations of language suggest), it
appears that the structures of human communicative codes have evolved (culturally)
to support their learning.

Before doing so, it is worth noting that thinking in theoretical linguistics (Goldberg,
2003; Partee, 2007; Ellis & Ferreira-Junior, 2009) and computational linguistics (Bender
& Koller, 2020; Lake & Baroni, 2018) is still dominated by the assumption that
languages revolve around inventories of form-meaning parings, such that language
acquisition is usually thought to involve learning these pairings (Pinker, 1998; Bohn
& Frank, 2019). This is despite the fact that, as noted earlier, centuries of study have
failed to provide a detailed account of what form-meaning parings are, or how
children learn them. By contrast, the plural model described above did not learn a
set of individual form-meaning pairings. Rather, it learned the systematic
relationships between a set of environmental cues and a set of forms based on their
distribution in training. In this model (and in more sophisticated versions of it),
prior learning serves to eliminate the majority of potential relationships between a
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given set of inputs and the totality of possible outputs, such that more or less ‘discrete’
form-meaning ‘pairings’ emerge dynamically (and probabilistically) as the model is run
(as it processes the inputs present in a given context). Thus while the model learns
comparatively discrete mapping between the form mice and its contextual cues,
many of the cues it learns to regular plural forms (cats, rats) are generic, such that in
most cases the model DOES NOT learn a simple pairing between a set of meaning cues
and a form, but rather it learns to ‘pair’ various aspects of meaning with various sets
of forms.

These generic mappings –which underpin the model’s ability to infer the form of
novel plurals – are often described as ‘distributed representations’ in the connectionist
literature (Rumelhart, Hinton & McClelland, 1986). However, the use of
‘representation’ here is somewhat misleading, because the outputs of error-driven
learning models cannot be read from the ‘representations’ they learn (the weights
between their input and output layers), because as the generic cues in the plural
model described above serve to highlight, error-driven learning models do not learn
discrete pathways from inputs to outputs. Rather it is the interaction between a
specific set of inputs and the learned state of a model (that occurs as it is run) that
serves to discriminate an output state (such that similar inputs can result in the same
or different outputs, depending on training).

In practice – given an appropriately structured environment and an appropriate
amount of training – these models settle into learned states which represent
distributed, somewhat abstract relationships between their sets of inputs and outputs
that are stable and predictable even in the absence of a discrete pathway from a
given input to an output. This points to an interesting state of affairs: although these
models don’t learn form-meaning pairings, they are able to simulate combinatoric
generalization WITHOUT ever implementing a compositional system (as when the
plural inflection model described above infers that a novel noun should end in a
sibilant in a context where plurality is implied). Moreover, these models can also
help explain the intuitions that people have about form-meaning pairings and
compositionality, and why these intuitions are ultimately misleading, because they
can explain how people can learn to discriminate specific form-meaning
relationships in USE (Wittgenstein, 1953) WITHOUT ever learning inventories of
‘form-meaning pairings’ (see also Ramscar, in press).

These considerations point in turn to a clear difference in the predictions that
compositional accounts of language make about the way that linguistic forms are
distributed, and the kind of distributive predictions made by the highly abstract
communicative systems described here. If languages are compositional, we should
expect the distribution of form-meaning pairings to reflect human habit and interest.
That is, if people prefer red to green, then this preference, and its degree, ought to
be reflected in the distribution of the words ‘red’ and ‘green,’ such that patterns of
usage should reflect patterns of relevance.

By contrast, if human communicative codes are akin to the final iteration of the
imaginary language described above – such that meanings and messages are
distributed abstractly across the code – this predicts that any relationships between
patterns of usage and patterns of human interest ought to be FAR more abstract. If
languages are communication systems, THE USE OF INDIVIDUAL WORDS AND

CONSTRUCTIONS OUGHT TO BE DETERMINED BY COMMUNICATIVE CONSTRAINTS, AND WE SHOULD

EXPECT THAT PATTERNS OF USAGE REFLECT THESE CONSTRAINTS.
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To offer a first test of these different hypotheses, Figure 2a plots the usage
frequencies (in the Corpus of Contemporary American English, Davies, 2009) for a
set of common colour words taken from Wikipedia (red, orange, yellow, green, blue,
purple, brown, magenta, tan, cyan, olive, maroon, navy, aquamarine, turquoise, silver,
lime, teal, indigo, violet, pink, black, white, grey/gray). Figure 2b then shows how the
distribution of these frequencies is geometric (the geometric being the discrete form
of the exponential distribution).

Empirically, it appears when people talk about colour in English, they use white
exponentially more frequently than black, black exponentially more frequently than
red, and red exponentially more frequently than green etc. Figure 3a then plots the
COCA frequencies of a set of common kinship terms (mother, father, son, daughter,
brother, sister, uncle, grandmother, aunt, grandfather, cousin, grandson, nephew, niece,
granddaughter; taken from Kemp & Regier, 2012), and Figure 3b shows that the
distribution of these words is also geometric.

Figure 4 plots the correlation between the distributions of colour and kin word
(along with a replication using the 100 million-word British National Corpus),
showing how the usage of what are supposed to be compositional items in these
completely different domains follows exactly the same – highly abstract – pattern.
Given sufficient time and effort, it is clear one could come up with
plausible-sounding stories to account for these patterns of use. One might argue that
colour word usage reflects biases on people’s colour concepts, and that kinship usage
reflects other biases, and that the suspicious similarities between their usage patters
are coincidental, a consideration that points to a problem facing scientific studies of
human communication: ‘language’ is such a complex and poorly defined construct
that it is unclear that any of the many theories that compete to explain it can be
falsified on the basis of a few failed predictions or contrary findings.

This should not surprise us, since this problem is not unique to the study of
language. Indeed, despite the importance of falsification to science (Popper, 1958), it
is far from clear that theories themselves are actually falsifiable. Rather, it seems that
whereas falsification allows for the rejection of specific hypotheses, it is explanatory
adequacy that ultimately determines the fate of theories (Kuhn, 1962). Thus,
although the account of learning and communication presented here predicts these
exact patterns, AND PREDICTS THAT THEY SHOULD BE UBIQUITOUS IN COMMUNICATIVE CODES

ACROSS DIFFERENT LEVELS OF DESCRIPTION (RAMSCAR, 2019, 2020; LINKE & RAMSCAR,
2020) – SUCH THAT THE THEORY WOULD BE FALSIFIED IF COMMUNICATIVE CODES WERE NOT

STRUCTURED IN THIS WAY
2, the exact prediction and the exact findings that would falsify

it are ultimately determined by the specific details of the various mechanisms
proposed by different parts of the theory. Just like any other theory, the accuracy of

2The prediction is that the statistical structure of codes should respect communicative constraints at
every level of analysis, such that in context, their structure should be better described by communicative
(and related combinatoric) factors than, say, compositionality. For example, at a lexical level, the theory
predicts that in comparisons of languages like English and German, whose articles and pronominal
adjectives convey different amounts of information about upcoming nouns, the extra reliance of English
on adjectives as compared to German (Dye, Milin, Futrell & Ramscar, 2017; Dye, Milin, Futrell &
Ramscar, 2018) will be reflected in the frequency distributions of the words in the two languages.
Specifically, to return to the example of color words above, it predicts that color words will be much
more frequent in English than German. It further predicts that this difference will simply reflect the
different information structures of these two languages, and not that English speakers are somehow
more ‘interested’ in color than German speakers.
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the communicative account of language learning / use presented here will ultimately
stand (or fall) on its ability to predict and explain linguistic phenomena more
adequately and more accurately than other theories (Kuhn, 1962; Cohen, 2017).
Accordingly, the remainder of this article describes the mechanisms that predict

Figure 2. A: Corpus of Contemporary American English (COCA) frequencies of 24 color common English color
words B: Log frequency x frequency rank plot of the same words (linear = exponential, R2=.98).
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these usage patterns in more detail, along with other predictions and explanations that
can be derived from them, and findings in other domains that further support these
analyses.

Figure 3. A: COCA frequencies of 15 common English kinship terms (Kemp & Regier, 2012) B: Log frequency x
frequency rank plot of the same word frequencies (R2=.98).
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Information theory and human communication

One advantage of framing human communication in discriminative terms is that it
enables linguistic theory to benefit from the insights gained from the study of
discriminative codes in information theory. This work has shown, for example, how

Figure 4. Point-wise comparisons of (A) the COCA probabilities of the 15 most frequent English colour words in
Figure 1 (H=3.4 bits, calculated over all 24 items) and the probabilities of the English kin terms (3 bits) in Figure 3
(R2=.997), and (B) the same probabilities in the BNC (R2=.97; colour 3.4 bits; kin, 3 bits).
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variable-length codes (in which codewords comprise a variable number of bits) enable
the efficiency of communication to be maximized close to its theoretical limit
(Shannon, 1948). The benefits of variable-length coding can be explained in intuitive
terms: if one is easy to articulate, whereas five and twenty require successively more
effort, then making one highly frequent and five and twenty successively less frequent
will reduce the effort speakers must expend on number articulation. As the
distribution and articulation of one, five and twenty suggests, the organization of
natural languages do appear to reduce articulatory effort in this way (Lindblom,
1990): word lengths and frequencies are reliably associated, with more frequent
words (one) being shorter than less frequent words (nineteen, Piantadosi, Tily &
Gibson, 2011).

In recent years the development of massive speech and text corpora, and the tools to
analyze and mine them has served to highlight these kinds of statistical regularities in
linguistic codes. Studies of speech production have shown how words that are more
predictable in context are more likely to undergo articulatory reduction (Bell,
Brenier, Gregory, Girand & Jurafsky, 2009; Seyfarth, 2014; Linke & Ramscar, 2020),
whereas disfluencies and other difficulties in language processing are strongly
associated with increases in lexical information (Howes, 1957; van Rooij & Plomp,
1991; Westbury, Shaoul, Moroschan & Ramscar, 2016). The frequency distributions
of words in natural languages have been shown to resemble variable length codes in
that they are systematically skewed (Estoup, 1916), so that half the words in a corpus
will reliably comprise tokens of around a hundred high-frequency types (‘and’, ‘the’),
while the other half comprises very large numbers of low-frequency types (‘comprise’,
‘corpus’). The fact that word frequency distributions appear to have power law
distributions has been taken as evidence that they have evolved (culturally) to
optimize communication (Zipf, 1935, 1949), and many theories seek to explain how
they help optimize linguistic communication (Mandelbrot, 1966; Manin, 2009;
Piantadosi, 2014). These methods have also led to a resurgence of interest in the
application of information theory to linguistics with many similarities between
human and digital communication systems (and human behaviour and information
theoretic predictions) being highlighted (Gibson et al., 2019).

At the same time, however, some important properties of the communicative model
described by information theory are difficult to reconcile with what is known about
natural languages, and these differences become particularly salient when we
consider how children learn to communicate, and what they must learn in doing so:

1. Shannon’s (1948) theory of communication describes a SYSTEM solution to the
problem of signaling over a noisy channel (MacKay, 2003), based on
predefined SOURCE and CHANNEL CODES. Like the codebook of the imaginary
language, SOURCE CODES map messages onto source symbols (which are
configured to optimize the use of bandwidth), while CHANNEL CODING increases
the reliability of transmission by adding REDUNDANCY to coded vectors of source
symbols. These codes define a probabilistic model SHARED by every sender/
receiver in a system. However the distributions of words in languages, and the
fact that people LEARN them, guarantees NO speaker / hearer ever learns an
entire code (Ramscar, Hendrix, Love & Baayen, 2013d).

2. Individual samples of linguistic codes vary enormously (Ramscar et al., 2014;
Ramscar, Sun, Hendrix & Baayen, 2017) suggesting that the probability models
individuals learn may also vary considerably. By contrast, in information
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systems the provision of common codes ensures there is NO DIFFERENCE between
the individual probability models of each sender / receiver.

3. The power law distributions observed in natural languages are NOT the most
efficient distributions for variable length codes (Huffman, 1952; Gallager &
Van Voorhis, 1975).

In other words, information theoretic models of communication are predicated on
SHARED CODES, whereas human communicative codes do not seem to be shared in
anything like the same way. Further, while information theory describes a number of
specific features that enable the development of optimized codes, these features do
not appear to be present in linguistic codes. Finally, information theory describes a
deductive process (Shannon, 1956) that serves to eliminate a receiver’s uncertainty
about the identity of a sender’s message, using common codes that maximize the
discriminability of messages while minimizing the cost of signaling. By contrast,
most linguistic theories, even when they claim inspiration from information theory,
adhere to compositional principles that make inductive assumptions about the way
meanings are communicated.

These concerns differ in the degree to which they undermine the application of
information theoretic concepts to human communication: however, they highlight
two problems that appear to be critical. First, how do natural languages provide a
degree of SYSTEMATICITY that is at least SUFFICIENT to support communication (how can
they allow users to communicate despite their having partial access to a code)?
Second, how do users of natural languages learn probability models that converge
SUFFICIENTLY for languages to be PROBABILISTIC SYSTEMS (how can the common model
that defines the INFORMATION in a communication system be acquired and
transmitted)? Unless these questions are answered, it would appear that the analogies
researchers draw between language use and information theory, as well as any talk
about languages as ‘probabilistic codes,’ can only be speculative at best

Partial attestation, regularity and the poverty of the stimulus

The productive nature of the morphological neighbourhoods found across languages
suggests at least a partial solution to the first of these problems, in that they provide
a means for CONSISTENTLY filling the inevitable gaps in individual language users’
experience (Ramscar et al., 2018). Formally, this solution emerges as a virtuous
outcome of learning from the same distribution of forms that led to OVER-
REGULARIZATION in the discriminative model of plural morphology described above
(see also Marzi, Ferro & Pirrelli, 2019). In that model, the distribution of regular
plural forms inhibited the unlearning of generic meaning cues (such that the cues to
regular plurals typically comprised a mix of generic and specific cues). One
consequence of learning this pattern of input-output relationships is that the
representations the model learned serve to implicitly encode the forms of regular
noun plurals BEFORE they are encountered.

This result suggests an alternative perspective on the coexistence of regular and
irregular patterns in morphology, since it suggests that the existence of regular and
irregular forms represents a trade-off that balances the opposing communicative
pressures of DISCRIMINABILITY and LEARNABILITY in the evolution of communicative
codes. From this perspective, the existence of frequent, well-discriminated irregular
forms serves to make important communicative contrasts more discriminable and
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thus also more learnable. By contrast, BECAUSE regularity entails less discriminability,
learners’ representations of lexico-morphological neighbourhoods will tend to be
more generic, which causes the forms of large numbers of less frequent items to be
learned IMPLICITLY, compensating for the incompleteness of individual experience.

It follows that if natural languages are communicative systems in the probabilistic,
discriminative way learning and information theory suggest, we should expect
linguistic codes to be structured along these lines at every level of description. The
structure of forms known to all speakers should tend to maximize discriminability in
learning and communication, while the distributional structure of less frequent forms
should support productive regularities of the kind that maintain systematicity. With
this in mind, I next consider the form and function of a linguistic subsystem that
will be noticeable for its absence in the other articles in this special issue: systems of
personal names. It turns out that, as a subsystem, names provide a helpful
introduction to reasons why, theoretically, probabilistic theories of communication
predict the occurrence of specific kinds of distributional structure EVERYWHERE, while
also offering an intuitive introduction to what it is that ‘meaningful communication’
actually involves from a discriminative, non-compositional perspective.

Learnability and the cost of naming

Personal names serve to discriminate individuals from their peers. Given that an
obvious way of achieving this would be to give each individual a unique name, it
seems that if any subsystem of language is going to be suppletive, it is names. It is
thus notable that the world’s languages DO NOT take a suppletive approach to
naming. Rather, somewhat strikingly, all languages adopt the same combinatoric
solution to the problem of discriminating individuals, forming personal names from
sequences of hierarchically structured name tokens that allow huge sets of identifiers
to be constructed from relatively small sets of name types (Ramscar, Smith, Dye,
Futrell, Hendrix, Baayen & Starr, 2013e).

Name grammars

Formally, the information provided by a set of discrete codewords depends on their
distribution (Shannon, 1948; see also Hartley, 1928; Nyquist, 1924). Perhaps
surprisingly, names offer a very intuitive explanation of this idea. Imagine that 33%
of males are called John, and only 1% Cornelius. In this scenario, learning someone
is named Cornelius is more informative than learning their name is John (Corneliuses
are better discriminated by their names than Johns). On the other hand, Johns will
be easier to remember (guessing ‘John’ will be correct 1/3 of the time). Further,
although the memory advantage of John relies on its frequency, the memorability of
Cornelius also benefits from this: Cornelius is easier to remember if the system
contains fewer names (also, as discussed earlier, if John is easier to say than
Cornelius, this will reduce the average effort of name articulation).

Finally, since John is so easy to remember and articulate, it may be possible to figure
out a way of distributing names so that combining John with a high frequency word that
serves as a name in context (Green, Smith etc.) can allow us to produce a combinatoric
name that requires little/no more processing effort than Cornelius. That is, if the names
John and Cornelius are distributed along the lines just described, one might possibly
devise a system that balances the competing demands of discriminating individuals
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for communication purposes, while managing the processing and memory demands of
using a code, in a near optimal way. Information theory offers formal proofs of these
points, and shows that the most efficient way of distributing codewords (John,
Cornelius) is by distributing their probabilities geometrically (Gallager & Van
Voorhis, 1975; the geometric distribution being the discrete form of the exponential).3

The actual name grammars of languages have been heavily impacted by name laws
in the modern era, and the formal fixing of patronymic ‘family names’ for legal
purposes in particular (in the Sinosphere, given names were legislated into
patronyms, whereas in the West, bynames have become patronyms). While this has
resulted in significant changes to the traditional, vernacular naming systems that
existed before these laws were imposed (Ramscar, 2019), it is still possible to
discern a common structure in the name grammars of many languages. Perhaps
surprisingly, the form of this structure is remarkably close to the John/Cornelius
example above.

Names in modern Chinese (a family of Sino-Tibetan languages, Handel, 2008) and
modern Korean, a language isolate (Song, 2006) typically comprise two or three
elements (Kiet, Baek, Kim & Jeong, 2007). As a Korean name is encountered in
speech, these comprise sequentially: first, one of a small number of family names
(patronyms), second, a clan/generational name, and third, a given name. The size of
the set of name tokens each is drawn from increases as names unfold, such that
these names have a hierarchical structure in which each element simultaneously
increases the degree to which an individual is identified, and reduces the number of
alternatives that need to be discriminated between at each step.

Historically Sinosphere first names were drawn from a small set comprising around
100 or so name tokens (Baek, Kiet & Kim, 2007), and unlike family names in most of
the world’s languages (whose distributions appear to follow power laws) Chinese and
Korean family names have been shown to be geometrically distributed (Yuan, 2002;
Kiet et al., 2007; Guo, Chen & Wang, 2011). Since this suggests that the name
grammars of Korean and Chinese may provide an optimal solution to some of the
communicative problems posed by naming, Ramscar (2019) reconstructed a partial
Vietnamese family name distribution from US census data (most Vietnamese
Americans in the 2000 US census were named in Vietnam), and compared this to
data from the 2000 South Korean census to examine whether this finding generalized
to another, unrelated language (Vietnamese, which also employs patronyms as first
names, is an Austroasiatic language, albeit with many lexical borrowings from
Chinese; Sidwell & Blench, 2011). As Figure 5 shows, the distribution of US
Vietnamese and Korean first names is essentially identical.

The distribution of English first names

The organization of Western and Sinosphere names suggests that Western given names
and Sinosphere family names share a similar communicative function: given names
come first as Western names are encountered in speech, and are drawn from a far
smaller set than family names, which come last). However, analyses of U.S. census
data show contemporary English first names to be Zipf distributed (Ramscar, 2019).
This is hardly surprising, first because the US population is over 325 million people
(making it empirically impossible for individuals to sample the entire name

3In the LEAST efficient distribution, names are equiprobable.
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distribution), and second because mixtures of exponentials often form produce power
law distributions (Newman, 2005). What is more relevant to actual communication –
and critically, its development – are the distributions learners actually experience. In
this regard, it is notable that analyses of the US social security records for the 50 US
states and the District of Columbia across the 20th Century (Ramscar, 2020), show
the average cumulative distributions of first names from 1910-2010 across the States
to be geometric.

However, perhaps the most striking evidence for the communicative function of first
names comes from comparing first name distributions in 18th Century Scotland and
England (Ramscar, 2019) with those of China and Korea. Historically, first names in
the latter comprised a stock of around 100 names (the colloquial Chinese expression
for the common people – ‘Baijiāxìng’ –means ‘the hundred names’) and local name
stocks for England and Scotland also comprised around 100 names, such that the
distribution (r2=.96) and information entropy (Korea=4.7 bits; Scotland=4.8 bits) of
historical Scottish / modern Korean first names share remarkably similar information
structures (Ramscar, 2019; Figure 6e)

How do name grammars work?

If we assume names encode identities (something neurotypical human brains seem to
be adapted to discriminate, Kanwisher, McDermott & Chun, 1997), it seems that the
codes people use to communicate them employ exactly the kind of structures
information theoretic accounts of human communication predict. Importantly, what
should also be clear from the foregoing is that the function served by the name

Figure 5. A frequency normalized comparison of the distribution of the 60 most frequent first names in the 2000
South Korean Census to the 60 most frequent first names in a Vietnamese first name distribution constructed
from the 2000 US Census (R2=.96; data from Ramscar, 2019).
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David is simply that of maximizing the likelihood that Davids (identities conditioned on
David) will be discriminated from Marys etc. in communication (Figure 7).

In some contexts, comprehenders may be able to discriminate a communicated
message (identity) from a first name alone; in others, more information will have to
be signaled. If we assume the contextual distributions of surnames are similar to
those of first names, then empirical name grammars will tend to generate signals
that minimize the average cost of name processing (Meylan & Griffiths, 2017),
smooth the information communicated across signals (Aylett & Turk, 2004), and
make names easier to access, use and recall (Dye, Johns, Jones & Ramscar, 2016). It
is thus important to note that from this perspective the name David Bowie is
discriminative encoding, and its function can be explained WITHOUT assuming that it
is composed from the concepts DAVID and BOWIE.

Memorylessness and the alignment of communicative models

Thus far our discussion of geometric distributions has focused on their contribution to
the efficiency of communication. However, these distributions have a further property
that is particularly important to communicative learning. The geometric distribution is
unique in being the only discrete MEMORYLESS distribution ( just as the exponential
distribution is unique in being the only continuous MEMORYLESS distribution). This
property is important because it suggests a solution to a problem, raised above, of
explaining how learners with very different experiences of a probability distribution

Figure 6. A: Probabilities of the 100 most frequent given names (98% of population) by frequency rank in 4
Scottish parishes 1701–1800 plotted against an idealized exponential distribution. B: Pointwise comparison of
the observed distribution to idealized exponential distribution. C: Pointwise comparison of the observed
distribution to an idealized power-law distribution. D: Log (normalized) frequency x frequency rank plot
comparing the distribution of first names in South Korea 2000 to that in Scotland 1701–1800 (Ramscar, 2019).
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nevertheless learn the same model of it, so that their communicative expectations are
actually shared (a problem ALL probabilistic models of communication must face).

The memoryless property is best explained in terms of waiting times: if the
probabilities of encountering people at any given point in time are distributed
exponentially, then (because of the way these distributions interact with the laws of
conditional probability) it can be proven that the probability of encountering
someone at any specific point in time tn is independent of the time that has elapsed
since t1, the time a person was last encountered. A counterintuitive result of this
proof is that when the periods between encounters are exponentially distributed, the
likelihood of encountering another individual in a minute is independent of the time

Figure 7. Pictures discriminated by the search terms “David”, “David Bowie”, and “David Bowie Ziggy period” by
Google image search (13/2/2019). “David” eliminates pictures not related to David, and “David Bowie” and
“David Bowie Ziggy period” refine this discriminative process.
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that has elapsed since the last person was encountered, such that the likelihood is the
same 30 minutes after the last encounter as it was 2 minutes after; and it will remain
the same 2 hours later.

If we assume these probability laws apply to learning from lexical distributions, it
follows that when words are geometrically distributed individuals will learn similar
models of the words’ underlying probabilities, even if the size of two samples varies
considerably (Townsend & Ashby, 1983, pp. 38–45; Linke & Ramscar, 2020).
Accordingly, it is further worth noting that the human frontal cortex develops over a
prolonged period, such that the control mechanisms that allow mature learners to
more flexibly sample their environments take two to three decades to develop. From
a communicative perspective this a hugely beneficial developmental trait, since
restricting learners to a naïve sampling strategy will further increase the likelihood
that typically developing children learn the same communicative models as their
peers (Ramscar & Gitcho, 2007; Thompson-Schill, Ramscar & Chrysikou, 2009;
Ramscar et al., 2013b; Ramscar, Dye, Gustafson & Klein, 2013f).

Whether these mathematical points about sampling and learning actually apply to
human learners are empirical questions. This account makes clear predictions in
regard to them: if learners are exposed to sets of geometrically distributed forms,
they should acquire models of their probabilities that better approximate one another
than when learning from other distributions. Conversely, if learning from geometric
distributions does not produce convergence, it would suggest the probabilistic
account of communication described here (indeed, any probabilistic account of
communication) is false.4

Semantics and the distributional structure of codes

As noted above, while almost all linguistic theories assume compositionality, no
adequate account of what compositional meanings are, or how they are learned,
actually exists (Ramscar & Port, 2015). While the many difficulties involved in
defining meanings are acknowledged, the consensus is that these problems MUST be
solvable. If children learn to use words like dog or red, this MUST BE because they
learn – or innately have – the concepts DOG and RED. The communicative account
of names presented above offers a way out of this circular thinking. If we accept that
the information contributed by Mary is not derived from the concept MARY, but
rather is a function of Mary’s role in a discriminative system of names, then

4As a reviewer helpfully pointed out, because of the recurrent levels of structure in natural languages
(Ramscar, 2019, Linke & Ramscar, 2020), any empirical test of these predictions must involve some
analysis of the information structure of the forms in these distributions as well. Whereas word learning
studies typically involve arbitrary forms, and ‘control for frequency’ by employing uniform frequency
distributions in training, natural lexical distributions are inevitably highly skewed, and the
discriminability of the forms they comprise seems to change as frequency ranks descend (compare one
and two with fourteen and fifteen). This indicates that training on new (i.e., unknown) natural
languages might produce different results to training on completely novel forms. Similarly, while
uniform frequency distributions offer an obvious control when it comes to testing the kind of input that
does or does not lead to the alignment of learners expectations, further questions arise as to the degree
to which different distributions – e.g., power law versus geometric – do or do not result in alignment.
While this suggests that such testing must necessarily be somewhat exhaustive, it is interesting to note
that insofar as artificial language learning studies ignore these matters – as most currently do – they raise
the question of how much these studies actually have to tell us about language learning.
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providing a non-compositional account of how names are learned and used in context
is a straightforward task. This line of reasoning points to an interesting conclusion:
although the theoretical problems posed by compositionality seem particularly acute
with regards to names (Gray, 2014; Fara, 2015), a series of analyses by Wittgenstein
(1953) indicate that the problems involved in explaining the meanings of common
nouns and names are ultimately the same. If Wittgenstein’s analyses are right, then
the use of nouns, verbs and adjectives etc., should be amenable to the same
functional analysis.

A source of support for this suggestion comes from studies of colour and number
words. Although infants can distinguish basic colour categories (Bornstein, Kessen &
Weiskopf, 1976), and despite their high frequencies in the input, children’s use of
colour words is haphazard for a surprisingly long period (Sandhofer & Smith, 1999).
Children’s learning of number words shows a very similar pattern of problems, and
again, these do not stem from an inability to discriminate along the appropriate
dimension (Ramscar, Dye, Popick & O’Donnell-McCarthy, 2011). Discriminatively,
the obvious problem here is that while children might encounter ‘three apples’ or
‘red apples,’ three and red are never encountered independently. Rather, since these
words inevitably occur in ambiguous contexts (Figure 8) children must learn to
discriminate the cues to their use in context. As with the learning of the cues to
mouse and mice described earlier, if language is used informatively, children will be
able to solve this problem by discriminating a distributed representation of the
environmental features that predict the use of various lexical contrasts in context in
the code. However, because DISCRIMINATIVE learning relies on cue competition and
prediction error, the temporal structure of information is a critical factor in it.

This point is best illustrated by comparing the effects of learning in contexts when
complex (multi-feature) stimuli predict discrete linguistic forms (Labels), to its
inverse. In the examples described so far in this paper, FEATURES in the world have
served as cues to LABELS (FL-learning; Ramscar et al., 2010), an information
structure that naturally allows for features to compete as cues to labels. When this
relationship is reversed (see Figure 9), such that labels serve as cues (LF-learning),
cue competition becomes problematic, because the serial nature of speech means
that only one label cue is present at any time. Since a single cue cannot compete
with itself, learning ceases to be discriminative, and produces a representation of
the probability of each feature given the label instead (Ramscar, 2013; Hoppe
et al., 2021, Vujović, Ramscar & Wonnacott, 2021; see also Rische & Komarova,
2016; Ma & Komarova, 2017).

With regards to colours and numbers, although discourse factors may make these
temporal relationships rather more complicated in the real world, this analysis
predicts that post-nominal constructions will be more likely to facilitate the
discrimination of the appropriate system of cues to set of these words than
pre-nominal constructions. Empirical results support this prediction, showing that
training with post-nominal constructions significantly improves the accuracy and
consistency of two-year olds’ number and colour word use, whereas pre-nominal
training has no effect on their performance. These results also help explain why
children struggle to learn colour and number words despite their frequency in the
input: in English, where these problems have mostly been studied, children
overwhelmingly encounter colour and number words in pre-nominal constructions
(Ramscar et al., 2010, 2011).
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However, this analysis raises a question: if sentences like “red ball” are unhelpful to
learners, why do people use them so often? The answer appears to lie in the specific
problems nouns pose in communication. Because humankind has a propensity for
inventing things that need names, in most languages nouns comprise a very large set
of types. Analyses show that, by splitting them into classes, the German grammatical
gender system serves to reduce the uncertainty associated with nouns in context, a
function that English (a largely non-gendered language), achieves through its
distribution of pre-nominal adjectives (which are more frequent, and more
informative about nouns than German pre-nominal adjectives; Dye, Milin, Futrell &
Ramscar, 2017; Dye, Milin, Futrell & Ramscar, 2018).

These findings indicate that gender systems may communicate more information
about content than is often supposed (and that English pre-nominal adjectives
communicate more grammatical information than is often supposed), but more
importantly, they also indicate that content information may be far more DISTRIBUTED

than compositional theories assume.

Figure 8. An illustration of the challenge presented by colour and number learning. This picture contains: six
circles, and three squares; white circles and black squares; and more circles than squares / less squares
than circles; some of the circles and squares are larger and some are smaller. Somehow children must learn
the cues that discriminate between the appropriate and inappropriate use of these words in context.

Figure 9. The possible predictive relationships labels (words or affixes) can enter into with the other features of
the world (or a code). A feature-to-label relationship (left) will tend to facilitate cue competition between
features, and the abstraction of the informative dimensions that predict labels in learning, whereas a label-
tofeature relationship (right) will facilitate learning of the probabilities of the features given the label.
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Meaning, function, and the distributional structure of codes

The distinction between function and content words that is assumed in many linguistic
theories appears to be further complicated by findings showing that measures derived
from the distributional patterns of words can accurately predict human behaviour in
tasks normally associated with ‘semantic processing’ (Landauer & Dumais, 1997;
McDonald & Ramscar, 2001; Ramscar, 2002; Ramscar & Yarlett, 2003; Johns &
Jones, 2010). These models are typically described at a lexical level, as capturing
distributional aspects of the ‘meaning’ of individual lexical items. However, for
present purposes, what is important to understand about these models is that they
simply measure the conditioning history of a word in relation to the other words in
a sample. When two words have the same conditioning histories (if their
co-occurrence patterns are identical), then although learning will discriminate them
from words that don’t share their history, it will not result in their being
discriminated from one another. Further, because learning is probabilistic, when a
subset of words share conditioning histories that only slightly vary from one another,
a learner’s expectations about the behaviour of the words within this subset will be
far less discriminated from each other than they will be from the rest of the lexical
system. The members of this subset will thus form a probabilistic cluster within this
system, and a learner’s expectations will tend to relate as much to this subset as any
individual item within it.

These considerations suggest that, because semantically similar words covary
systematically in the lexicon, they will cluster together when they are learned in
context. From this perspective, co-occurrence patterns can be seen to discriminate a
level of coarse semantic similarities that is at a higher level than content words, and
yet informative about them (again, blurring distinctions between ‘content’ and
‘function’ words). Which further suggests that all meaningful linguistic
communication – including communication about seemingly concrete things like
nouns –might be discriminative, based on the same process of incremental
uncertainty reduction as names. This hypothesis makes clear, falsifiable predictions:
If grammar works discriminatively, then for the same functional reasons that name
distributions are geometrically distributed, it predicts any other class of words that is
systematically encoded in distributional patterns should also be geometrically
distributed. Moreover, the theory further predicts that children should be able to
learn these classes along with their native language.5 Initial support for this
prediction comes from analyses showing how a set of relatively unambiguous
semantic clusters that can be reliably extracted from child-directed speech using a
range of co-occurrence model (Asr, Willits & Jones, 2016; see Table 1) are
geometrically distributed (Ramscar, 2109; Figure 10). Assuming these findings
generalize to the other lexical subcategories discriminated by co-occurrence patterns
in speech (see Figure 5), they can begin to explain how adult and child speakers are
able to align their communicative expectations.

5This prediction comprises two parts, one relating to the distribution of forms in context, and the other
to the abilities of young learners, and whether they are able to learn and use contextual information in the
way that adult learners seem to do (MacDonald & Ramscar, 2001). Accordingly, while testing the first part
of this prediction will involve the analysis of corpus data (and possibly the development of appropriate
corpora), the second part will involve empirical analyses of what children can learn from distributional
information, and analysis of the degree to which these capacities support the kind of processing
envisaged here.
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Learning verbs and arguments

So far this article focused on the learning of systems of lexical items and morphological
contrasts, albeit that it has sought to emphasize the importance of context in defining
these classes, and the way that the learning of classes of items depends on shared
patterns of variance and invariance in relation to other items. From this perspective,
a long-studied feature of verbs is particularly notable: namely, that verbs inevitably
take arguments, the structure of which often differs systematically across verb classes.
Thus unlike nouns and names, which can be characterized as being learned as
classes of lexical items, verbs are different. Verb learning seems to be best
characterized in terms of the acquisition of classes of arguments (patterns of
relations between lexical items), because an aspect of verbs that is relatively invariant
across contexts is their relationship to the arguments they occur in.

The idea that distributional patterns might systematically discriminate verbs into
coherent subcategories has a long history (Levin, 1993), and numerous theories have
been put forward to explain the relationship between the semantic properties of verb
subcategories and their different argument structures (Fillmore, 1968; Jackendoff,
1972; Goldberg, 1995), and the way children learn corrects patterns of generalization
within them (Gropen, Pinker, Hollander & Goldberg, 1991; Brooks & Zizak, 2002;
Ambridge et al., 2013, 2014). For example, constructionist accounts of argument
learning propose that a child’s knowledge of a language is initially a set of initial
fixed patterns, which then develop into semi-productive item-based constructions,
before adult competence (in which the scope of some constructions remains limited,
while the scope of others seems more open-ended) is achieved.

At a broad level these theories account well for the patterns of behaviour associated
with verb argument learning (Goldberg, 1995; Cameron-Faulkner, Lieven & Tomasello,
2003; Tomasello, 2006; Ambridge & Lieven, 2011; Ambridge et al., 2014). However, the
mechanisms that they use to explain the developmental progression described above –
schematization and analogy – tend to be poorly specified (Beekhuizen, Bod &
Verhagen, 2014), as is the relationship between traditional and constructionist ideas
about the basic functions of language, such as compositionality (Kay & Michaelis,
2012). By contrast, the processes of ‘schematization’ and ‘analogy’ (or at least their
discriminative analogues) are clearly specified in learning models. Cue competition

Table 1: Nouns in two categories defined by context in CHILDES (Asr et al., 2016).
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leads to abstraction, while overgeneralization / analogy simply represent the probabilistic
output of a system given its current state of learning (Ramscar et al., 2013a).

To date, however, there have been very few investigations of verb argument learning
from an explicitly discriminative perspective, such that when it comes to accounting for
their acquisition, only promissory notes and predictions can be offered in this article
(though see Bidgood et al., 2021; Ambridge et al., 2020, for encouraging signs in this

Figure 10. Log frequency x frequency rank plots of the two noun categories extracted from by CHILDES (Asr
et al, 2016). As can be seen, both of these categories, which are discriminated by the contexts in which they
occur, have a geometric distribution.
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direction). Accordingly, what is notable for current purposes is the degree of
compatibility between constructionist accounts of verb argument acquisition and a
discriminative learning perspective. One aspect of children’s early grammars
emphasized by the former is that they appear to comprise a mixture of words,
holophrases and ‘unanalyzed expressions’ (Pine & Lieven, 1997; Tomasello, 2003),
such that when language use initially becomes productive, utterances tend to be
organized around particular words (Tomasello, 2000). These early constructions
typically comprise what Braine (1976) describes as ‘pivot words’ (specific relational
terms, which are typically verbs), and ‘open slots,’ that are filled in turn by a wider
range of words or expressions (typically semantically appropriate nouns). Initially,
only the items that are related by pivot words tend to vary, with variance in other
words only emerging later, as children’s experience grows.

This pattern of learning is highly compatible with the behaviour of discriminative
learning models, in which the initial process of association is always maximal: when
a child hears a string comprised of a series of novel acoustic contrasts for the very
first time, all and any available contextual / semantic cues in the environment will be
associated to that string (Arnon & Ramscar, 2012). The discrimination of the more
or less discrete ‘components’ in a system then depends on experience and error; such
that the degree to which different aspects of form and meaning are associated in
context will be a function of the distribution of the forms and a learner’s experience
of it (Ramscar et al., 2013a). Moreover, explicitly treating the learning of argument
structure as a discriminative process also highlights the way that communicative
systems have evolved to support learning: analyses of the empirical distribution of a
set of English verb subcategories defined by the shared alternation patterns of their
members (Levin, 1993) reveal that like nouns and names, verb arguments are
geometrically distributed (Ramscar, 2019, 2020; see Figure 11 for an example).

In the light of this discussion of the discriminability and learnability of forms in
morphological paradigms, it is worth highlighting a further aspect of the distribution
of verb alternation subcategories: that the most frequent arguments in each
distribution tend to involve irregular verbs (strongly marking at least some of the
semantic contrasts in the argument), whereas the less frequent arguments are regular,
a pattern that will appear to support the appropriate generalization of lower
frequency items across the full set of alternations warranted by each subcategory.
Given that the account of verb learning put forward here assumes that learning to
produce a plural or use an argument differ only in their degrees of complexity, it
follows that this discriminative account of the acquisition of verb arguments predicts
that the incorrect use of arguments (*don’t giggle me) is not merely the product of a
child’s failure to adequately learn the specific cues to a particular argument, but also
their failure to UNLEARN the generic cues that lead to over-generalization. The theory
thus predicts that, at an appropriate stage of development, training children on
correct arguments (don’t tickle me) should result in a DECREASE in over-generalization
errors (*don’t giggle me). Failure to find evidence for this would not only falsify this
prediction (and the assumptions that inform it), it would also raise serious questions
about the account of morphological development described earlier.6

6Children’s production of verb arguments also appears to be U-shaped. While younger children produce
sentences that violate normal argument conventions – e.g., saying, “don’t giggle me” – they eventually
converge on the same model as adults – preferring, “don’t make me giggle” – in much the same way as
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Figure 11. Table 2 shows the verbs in the Build subcategory (Levin, 1993). The top panel plots their frequencies
in CHILDES, and the bottom panel shows the fit of these frequencies to a geometric distribution. A comparison
of 40 sets of verb alternation patterns to the sets of verbs beginning with the 20 most frequent English letters
showed that although the frequency distributions of verbs following letters are Zipf distributed, the frequency
distributions of the verbs defined by their alternation patterns are all geometric (Ramscar, 2020).

they come to produce ‘mice’ rather than ‘mouses’ (Ambridge et al., 2013). Because the semantic structure of
verbs appears to be more abstract than that of noun phrases, and because verbs always tend to appear in
arguments, this makes their structure more complex in modeling terms (a point discussed further below):
however, because it seems that the same learning principles underlie this pattern of behavior as well, it
follows that to be consistent with the approach to learning argued for above, one would have to predict
that given an appropriate analysis, an intervention based on the same logic of using a set of dominant
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Models of learning and representation

It is clear that modeling the acquisition and processing of verbs is a more complicated
task than modeling inflectional morphology or number and colour word learning.
While the semantic dimensions of the morphological models described earlier were
crude, they succeeded in capturing many of the more important features of the
discriminative puzzle solved by a child learning to use plural forms in a useful,
informative way (and as Box, 1979, pointed out, usefulness is all scientific models
can aspire to). Moreover, the fact that the representations employed in the various
models described earlier were actually sufficient for their purpose highlights a
commonality in all of them: that seemingly different learning tasks such as
inflectional morphology and colour word learning both involve the discrimination of
relationships between relatively straightforward perceptual/contextual dimensions and
relatively simple forms. The simplicity of this approach came with clear theoretical
benefits, in that it is amenable to modeling using simple two-layer networks. In
these, the discriminative nature of error-driven learning, the contribution of the
input and output representation, and any theoretical insights that might be gleaned
from interactions between them, can be made fairly transparent.

By contrast, given what they communicate – causality, agency, manner, etc., often all
at once – learning to use verb arguments involves the task of discriminating semantic
relationships that are multidimensional, that are distributed across different items
that arguments comprise, and that are likely far more semantically abstract than
anything considered earlier. Meanwhile, the distributions described above guarantee
that learners encounter some argument structures at very high rates, and others
hardly at all. It thus follows that in any individual, the degree to which learning will
have discriminated any given argument structure along its various semantic / form
dimensions is likely to vary considerably at any given time. For example, in the 460+
million word COCA corpus, make, the most frequent of the build verbs described
above, occurs 130,000 times; embroider, the least frequent, occurs 5 times. Learners
will thus encounter make across a wide range of contexts, in which a wide variety of
forms will fill its arguments. This will lead them to discriminate very abstract
representations of the relationship between make arguments and the cues to the
forms they comprise. By contrast, embroider will be encountered in a far more
restrictive set of contexts in which a small set of forms comprise its arguments.
Accordingly, learners will acquire representations that are less abstract, such that at
the form level embroider will be associated more with specific items and less with
abstract classes, while, at the semantic level, the cues to embroider arguments will be
more associated with the whole structure, and less with specific parts of it (in both

Table 2: The ‘Build’ verb alternation class (Levin, 1993).

forms to generate error in the representations of a set of ‘exceptions’ ought to result in the same pattern of
reduction in over generalization.
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cases, this is a consequence of the fact that learners will have had less opportunity to
discriminate more abstract relationships at the form and semantic level; Ramscar
et al., 2013a). In other words, not only must learners discriminate their representations
of the cues to make and embroider arguments across multiple dimensions (e.g.,
between forms and forms, and semantics and forms) at multiple levels of abstraction
at the same time, but since their experiences of the two different arguments will
differ greatly, their representations of them will likely differ greatly as well.

Since the two-layer networks described earlier are ill-suited to modeling interactions at
multiple layers of abstraction in learning, it follows that accounting for verb argument
learning in children will involve the addressing of some difficult methodological and
theoretical challenges. For example, at first blush, multi-layer, deep learning networks
appear ideally suited to capturing this kind of complex multidimensional learning
(LeCun et al., 2015). They develop representations at multiple layers of abstraction
(Kozma, Ilin & Siegelmann, 2018), and appear – at least in principle – to be capable of
learning many of the complex relational patterns that characterize human
communicative codes (Graves, 2012; Hannun et al., 2014; Sutskever, Vinyals & Le, 2014;
Jozefowicz, Vinyals, Schuster, Shazeer & Wu, 2016). However, although multi-layer
networks are theoretically capable of the kind of complex, multi-level learning that
appears to characterize this domain, this kind of modeling often leads to Bonini’s
problem (Bonini, 1963), in that understanding exactly how these models actually learn
their functions can be as challenging as understanding children’s learning itself.

Given this problem, recent attempts to understand the performance of multi-layer
networks in language processing tasks by treating them as experimental subjects
(McCloskey, 1991) are interesting (see e.g., Futrell, Wilcox, Morita, Qian, Ballesteros &
Levy, 2019; Linzen, Dupoux & Goldberg, 2016; Wilcox, Levy, Morita & Futrell, 2018),
first because these approaches underline the difficulties involved in actually translating
the complexities of learning at multiple levels of abstraction into theoretical insight
(Bonini’s paradox), and secondly because they suggest that the study of communicative
development may be maturing away from straw-man arguments about learnability, and
towards the development of accounts of what human communication actually
comprises and what learning to communicate actually entails.

As well as requiring the kind of reappraisal of the processes involved in human
communication outlined here, it seems inevitable that explaining how children learn to
communicate will also involve a reappraisal of what we might expect from theories and
models themselves. For example, just as there seems little use in asking whether
multi-layer network models of language processing are capable of compositionality if it
turns out that human communication is not compositional, the complex architecture of
the human brain seems to rule out the idea that human learning can be reduced to a
single set of representations that are processed in a uniform fashion within a single model.

Whereas for the purposes of exposition this article has treated ‘error-driven learning’
as a somewhat monolithic, abstract concept, it seems clear that the brain contains a
range of different circuits that are capable of learning from prediction error
depending upon the complexity of the stimuli and the temporal dynamics of the
learning ‘episode’7 involved (Freedberg, Toader, Wassermann & Voss, 2020). For
example, dissociable neurobiological circuits implementing error sensitive learning
mechanisms have been identified in the striatum (Schultz, Dayan & Montague, 1997;

7The models described earlier treat time as a discrete sequence of events, yet the temporal dynamics of
even simple learning scenarios are far more subtle and complex than this (Apfelbaum & McMurray, 2017).
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Daw, Niv & Dayan, 2005) and the medial temporal lobe (MTL; Delgado & Dickerson,
2012; Shohamy & Daw, 2014), yet they appear to differ in their temporal sensitivity to
prediction error. In tasks that tap people’s ability to learn probabilistic associations, the
performance of amnesic patients with MTL damage is impaired when
response-contingent feedback is delayed, but not when feedback is provided
immediately. By contrast, patients with Parkinson’s disease (which involves the
progressive degeneration of substantia nigra dopaminergic neurons and their
projections into the striatum) show the opposite pattern (Foerde, Race, Verfaellie &
Shohamy, 2013). These findings suggest that changes in trial durations on the ‘same’
task can elicit responses from different learning circuits in the brain, resulting in
concomitant differences in what is learned.

In a similar vein, the fact that learners simultaneously appear sensitive to both the
specifics of individual experiences and abstractions from them indicates that the brain’s
multiple learning mechanisms produce multiple representations at multiple levels of
abstraction (Squire, 2004), suggesting that no single ‘language learning model’ will
suffice to account for the full range of linguistic behaviour observed in individuals.
Thus although many theories have suggested that the ‘end state’ of language learning
can be characterized by the acquisition of a particular set of abstract linguistic
representations (Gold, 1967; Pinker, 1998) or that abstractions are barely learned at all
(Ambridge, 2020), it seems far more likely to be the case that language learning has
no end state, and that explaining an individual’s communicative capacities requires
more than a single model operating on one level of representation.

Rather, in the same way that linguistic units are better thought of as descriptive
idealizations as opposed to psychological elements (Ramscar & Port, 2016; Samuel,
2020), we should accept that the linguistic representations posited by all theories of
communicative development are wrong, yet some will prove more theoretically useful
than others. Accordingly, it is to be hoped the focus of the field of language
development can move away from vague questions about ‘learnability’ to more
specific questions about what children learn and how they learn it. To return to an
earlier example, the WHAT and HOW of Rumelhart and McClelland’s (1986) past tense
model are easily stated: it assumed that morphological learning involves mastering
the transformation of root forms into past tense forms using phonetic information
alone. Given a set of phonological cues representing root forms, it used error-driven
learning in order to try to discriminate the set of values that best predicted a
corresponding set of phonological representations representing past tense forms.
From the perspective of the discriminative models of inflection described earlier, the
Rumelhart and McClelland model used the wrong input-output representations
(sound-to-sound) and attempted to learn the wrong function (transforming root
forms into past tense forms, rather than trying to use context to predict the forms of
words, Ramscar, in press). However, the important point here is not so much which
of these models is ‘right’ and which is ‘wrong’ (though there are numerous reasons
to believe that Rumelhart & McClelland’s approach was misguided from the outset,
Ramscar, in press), but rather what is important is that although these models all use
the same basic learning algorithm, they embody very different theoretical models,
and these differences matter (Bröker & Ramscar, 2020).

From the perspective outlined here, a child learning to communicate must master a
systematic set of mappings between their experiences of ‘the world’ and a highly
structured, resolutely probabilistic system of forms. Since any model of this process is
likely to be complex and ‘incomplete,’ understanding how a specific model
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contributes to theory must necessarily involve a discussion of its limitations as well as
its capabilities. For example, when it comes to word learning and what it means for a
child to ‘know a word,’ there is a vast difference between learning about yellow from
lexical co-occurrence data and learning about yellow as most children eventually do
(as ‘embodied’ sensory agents, in contexts where objects of various hues are
experienced along with various form contrasts). However, it is likely that, for a child,
learning that yellow serves as a cue to just a subset of words can still be useful in
language processing even before the child knows what yellow ‘means’, because
pronominal adjectives can provide statistical information about upcoming nouns
even before one understands their semantic relationship to the world (Dye et al.,
2017). However to conflate knowledge of the former with knowledge of the latter is a
theoretical failure. Rather, when it comes to understanding how language is used and
processed in communication, it seems clear that what is required are more subtle
and more detailed theoretical approaches that break these different senses of a child’s
‘knowing’ a word down into their component parts. In this review, I have tried to
show how information theory and learning theory can offer important tools for the
development of these kinds of more subtle and detailed kinds of theoretical description.

Conclusion: learning, communication and discrimination

One of the most important ideas contributed by information theory is the proposal that
codewords do not contribute information in isolation, but rather as part of a SYSTEM.
The information value of any given codeword is a function of the SET of codewords it
belongs to – i.e., the codewords that might be expected to occur in a given context – and
it contributes information as a function of the expectancies provided by the system, in
an ELIMINATIVE rather than compositional manner. Similarly, one of the most important
ideas contributed by learning theory is the proposal that what is learned is not just a
function of events that occur together, but also of events that might have been expected
to occur but do not. And again, this process works in an ELIMINATIVE manner,
discriminating against and eliminating potential associations that result in error so as to
positively weight informative cues and negatively weight uninformative cues. In reality,
learning is as much about learning to ignore as it is about learning to associate.

To date it seems fair to say that the literature on human communication and its
development has not covered itself in glory when it comes to grasping either of these
ideas. However there seems to be no principled reason to suppose that progress
towards better models of these processes is impossible. What I have sought to
outline here is how, when seen through the lens of learning and information theory,
much of the structure of natural communications systems begin to make sense, and
many of the mysteries of communicative development begin to seem a lot less
puzzling. Clearly a more complete discriminative theory of human communication
will require more flesh on its bones than this short review can provide. A better
alignment between linguistic theory and the appropriate formal models of
communication, computation and learning can only help in this regard.
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