
J. Fluid Mech. (2024), vol. 997, A34, doi:10.1017/jfm.2024.783

Zigzag instability of columnar Taylor–Green
vortices in a strongly stratified fluid

Junwei Guo1, John R. Taylor2 and Qi Zhou1,†
1Department of Civil Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

(Received 10 April 2024; revised 19 June 2024; accepted 8 July 2024)

We investigate the dynamics of a columnar Taylor–Green vortex array under strong
stratification, focusing on Froude numbers 0.125 ≤ Fr ≤ 1.0, with the aim of identifying
and understanding the primary instabilities that lead to the vortices’ breakdown. Linear
stability analysis reveals that the fastest-growing vertical wavenumber scales with Fr−1,
while the dimensionless growth rate remains approximately constant. The most unstable
eigenmode, identified as the mixed hyperbolic mode by Hattori et al. (J. Fluid Mech.,
vol. 909, 2021, A4), bears significant similarities to the zigzag instability, first discovered
by Billant & Chomaz (J. Fluid Mech., vol. 418, 2000, pp. 167–188). Direct numerical
simulations further confirm that the zigzag instability is crucial in amplifying initial
random perturbations to finite amplitude, with the flow structure and modal growth
rate consistent with the linear stability analysis. In particular, the characteristic vertical
length scale of turbulence matches that of the fastest-growing linear mode. These findings
underscore the broader relevance of the zigzag instability mechanism beyond its initial
discovery in vortex pairs, demonstrating its role in facilitating direct energy transfer from
vertically uniform vortical motions to a characteristic vertical length scale proportional to
Fr in strongly stratified flows.
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1. Introduction

Columnar vortices can be viewed as an idealization of the structure generated by horizontal
shear in geophysical settings, for example, the vortex street forming behind an island in the
atmosphere (see e.g. Potylitsin & Peltier 1998; Spedding 2014). In density-stratified flow
experiments, turbulence generation often involves external stirring with a set of vertical
bars (e.g. Holford & Linden 1999), leading to vortex columns with pronounced vertical
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vorticity (Praud, Fincham & Sommeria 2005), which may become unstable and lead
to turbulence. Numerical simulations often adopt a similar approach for energy injection
into a stratified flow system, where turbulence is sustained by forcing the vertically
uniform vortical modes (e.g. Waite & Bartello 2004; Brethouwer et al. 2007; Howland,
Taylor & Caulfield 2020). The instabilities of such vertically uniform vortical motions are
considered to provide an important link in the downscale energy transfer within strongly
stratified turbulent flows (Augier, Chomaz & Billant 2012; Waite 2013).

One particular route for this energy pathway from (large) horizontal scales
characterizing columnar vortices to (small) vertical scales influenced by buoyancy is the
zigzag instability, first discovered by Billant & Chomaz (2000a,b,c). A distinguishing
feature of this instability is that the most unstable vertical wavelength scales with
U0/N, while the corresponding growth rate scales with U0/L. Here, U0 and L are the
characteristic horizontal velocity and length scale, respectively, and N is the buoyancy
frequency. Billant and Chomaz demonstrated how a columnar vortex pair (or a dipole),
initially uniform in the vertical direction, would undergo a sinusoidal deformation that
self-amplifies and results in the vortex dipole’s breakdown. Direct numerical simulations
(DNS) studies of the zigzag instability have been focused on a pair of vortices (Otheguy,
Chomaz & Billant 2006; Deloncle, Billant & Chomaz 2008; Waite & Smolarkiewicz 2008;
Augier & Billant 2011; Augier et al. 2012), with the notable exception of Deloncle, Billant
& Chomaz (2011), who investigated an array of vortices where the spacing between the
vortices is much larger than the vortex size.

In the present study, we focus on a configuration featuring a two-by-two array of
columnar vortices. The base flow, which can be considered as a vertically uniform variant
of the flow first investigated by Taylor & Green (1937), is visualized in figure 1. The
stability properties of various types of columnar vortex arrays have been studied for
density-stratified and/or rotating fluids (Dritschel & de la Torre Juárez 1996; Potylitsin
& Peltier 1998; Deloncle et al. 2011; Suzuki, Hirota & Hattori 2018; Hattori et al.
2021; Hattori & Hirota 2023). Suzuki et al. (2018) considered two-dimensional (2-D)
Taylor–Green (TG) vortices under stable stratification, highlighting the role of hyperbolic
stagnation points in the instabilities of vortex arrays. They introduced a class of instabilities
termed ‘strato-hyperbolic’ (SH), resulting from the interaction of hyperbolic instabilities
in non-stratified TG vortices (see e.g. Leblanc & Godeferd 1999) with internal gravity
waves being phase-shifted near the hyperbolic stagnation points. More recently, Hattori
et al. (2021) identified additional instability types within the TG vortex array, including a
novel ‘mixed hyperbolic’ (MH) instability. Hattori & Hirota (2023) further incorporated
the effects of rotation in their stability analysis.

Despite being considered a generic mechanism (Billant & Chomaz 2000c), the zigzag
instability has yet to be identified in the context of a columnar vortex array, except in
cases where the vortices are well separated from each other (Deloncle et al. 2011). Suzuki
et al. (2018) made a comparison between the zigzag and SH instabilities, describing the
latter as a ‘short-wave’ instability for which the vertical wavelength and the horizontal
scale of the vortices are comparable. In contrast, the zigzag instability was considered by
Suzuki et al. (2018) as a ‘long-wave’ instability with wavelengths larger than the size of the
vortices, although the authors also stated that this wavelength could decrease with strong
stratification. Our paper will demonstrate that the instabilities in a columnar vortex array
can indeed be short-wave. Hattori & Hirota (2023) contrasted the instabilities observed in
TG vortices with those in the vortex array scenario investigated by Deloncle et al. (2011),
noting that zigzag instability is more likely in the latter configuration due to the relatively
large spacing between the vortices. They suggest that the absence of zigzag instability in
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Figure 1. Visualization of columnar Taylor–Green vortices, i.e. the base flow described by (2.7). Colour
illustrates the vertical vorticity Ωz ≡ ∂xV − ∂yU.

TG vortices could be attributed to the ‘strong symmetry’ enforced by the periodicity over
the horizontal plane.

When stratification is strong, i.e. when the Froude number (Fr) is order 1 or below,
Hattori et al. (2021) showed that the MH instability tends to produce the most unstable
mode across all vertical wavenumbers. The MH modes were shown to have vortical
structures that are different from the SH modes. The fastest-growing wavenumber in MH
modes, kfgm, is smaller than in SH modes, and kfgm increases as Fr decreases for MH
modes, which is reminiscent of the scaling expected of zigzag instabilities. Hattori et al.
(2021) did not describe the physical mechanism associated with the growth of MH modes.
The possible connection between MH modes and zigzag instability also remains unclear.
To our knowledge, there have been no detailed studies of the MH modes beyond the linear
stability analysis by Hattori et al. (2021), and their exact role in the breakdown of columnar
vortex arrays warrants further investigation.

In this paper, we examine the stability properties of columnar TG vortices using both
linear stability analysis and DNS, with the main aim of understanding the primary
instability of such a vortex array. We focus on Fr ≤ 1, for which the stratification is
strong enough such that the most unstable wavelength of the primary instability, as we
will show, follows the buoyancy scaling of U0/N (Billant & Chomaz 2001). In § 2, we
present the linear stability analysis, elucidate the instability mechanism of the unstable
linear eigenmodes, and discuss connections with the zigzag instability. In § 3, we use fully
nonlinear simulations to validate whether the linear instability identified in § 2 is indeed
dynamically relevant in the breakdown of the TG vortices. Concluding remarks are offered
in § 4.

2. Linear stability analysis

2.1. Formulation
The incompressible Navier–Stokes equations under the Boussinesq approximation are
expressed in dimensional form as

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = − 1

ρ0
∇∗Π∗ + ν ∇∗2u∗ + ρ∗

ρ0
g, (2.1a)

∇∗ · u∗ = 0. (2.1b)
997 A34-3
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Here, u∗ is the velocity field, ρ0 is the reference density, ν is the kinematic viscosity,
g = −gk̂ is the gravitational acceleration, and ρ∗ and Π∗ represent the density and
pressure deviations from the background density profile and the hydrostatic pressure
balance, respectively. The total density ρtot is decomposed into

ρtot(x∗, t∗) = ρ0 + ρ∗
b (z

∗)+ ρ∗(x∗, t∗), (2.2)

where the background density ρ∗
b varies only with z∗. In the present study, ρ∗

b decreases
linearly with z∗, which leads to a uniform buoyancy frequency N = √−(g/ρ0)(dρ∗

b/dz∗).
The evolution of ρ∗ follows the advection–diffusion equation,

∂ρ∗

∂t∗
+ ∇∗ · (ρ∗u∗)+ w∗ dρ∗

b
dz∗ = κ ∇2ρ∗, (2.3)

where κ is the diffusivity of density.
By non-dimensionalizing (2.1) and (2.3) using a characteristic length scale L, velocity

scale U0, and time scale L/U0, and rescaling ρ∗ and Π∗ as

ρ∗ ∼ N2L
g
ρ0, Π∗ ∼ ρ0U2

0, (2.4a,b)

respectively, we obtain the dimensionless governing equations

∂u
∂t

+ u · ∇u = −∇Π + Re−1 ∇2u − Fr−2 ρk̂, (2.5a)

∇ · u = 0, (2.5b)

∂ρ

∂t
+ u · ∇ρ − w = (Re Pr)−1 ∇2ρ. (2.5c)

Here, the Reynolds, Froude and Prandtl numbers are

Re = U0L
ν
, Fr = U0

NL
, Pr = ν

κ
, (2.6a–c)

respectively. In this paper, U0 is chosen such that dimensionless velocity in the base flow
varies between +1 and −1, and L is chosen such that the scaled wavelength of the base
flow in the horizontal directions is 2π. In the remainder of this paper, we set Re to 1600
and Pr to 0.70, and focus on the effects of Fr on the dynamics. The choice of Re helps to
keep the computational demands of DNS (§ 3) manageable.

We consider the 2-D base flow given by

(U,V,W) = (sin x cos y,− cos x sin y, 0), (2.7)

for x, y ∈ [0, 2π) at t = 0, which consists of an array of columnar vortices as illustrated in
figure 1. The base flow is periodic in both horizontal directions, x and y, and uniform in z.
The pressure field P0, streamfunctionψ , and vertical component of vorticityΩz associated
with the base flow are

P0 = 1
4 (cos 2x + cos 2y), ψ = sin x sin y, Ωz = 2 sin x sin y, (2.8a–c)

respectively. The streamfunction and vorticity are related via ∇2ψ = −Ωz. Incidentally,
for this base flow, ψ and Ωz have the same dependence on x and y. Due to viscous
effects, the base flow velocities (U, V) and pressure (P0) would decay as exp(−2t/Re) and
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exp(−4t/Re), respectively (see e.g. Kim & Moin 1985), in the absence of flow instabilities.
Our linear stability analysis detailed below, however, will focus on the base flow at t = 0,
disregarding its considerably slow decay (Re � 1) due to viscosity.

We seek infinitesimal, three-dimensional (3-D) perturbations to the base flow that are
expressed in normal modes in the z-direction:

(u′, v′,w′, ρ′, p′) = (û, v̂, ŵ, ρ̂, p̂) exp(ikz + σ t)+ c.c., (2.9)

where the ·̂ quantities vary in (x, y). For simplicity, all primes on the perturbation variables
will be dropped for the remainder of this paper. Linearizing the governing equations (2.5)
for the base flow (2.7) yields the generalized eigenvalue problem

σ

⎡
⎣Δ

Δ
I

⎤
⎦

⎡
⎣û
v̂

ρ̂

⎤
⎦ =

⎡
⎣Luu Luv Luρ

Lvu Lvv Lvρ
Lρu Lρv Lρρ

⎤
⎦

⎡
⎣û
v̂

ρ̂

⎤
⎦ , (2.10)

where I is an identity matrix, and the other linear operators are as follows:

Δ = ∂xx + ∂yy − k2, (2.11a)

Luu = (−Δ+ ∂xx)(U ∂x + V ∂y + ∂xU)+ ∂xy(∂xV)

− ∂x(U ∂x + V ∂y) ∂x + Re−1Δ2, (2.11b)

Luv = (−Δ+ ∂xx) ∂yU + ∂xy(∂yV + U ∂x + V ∂y)

− ∂x(U ∂x + V ∂y) ∂y, (2.11c)

Luρ = Fr−2 (ik) ∂x, (2.11d)

Lvu = (−Δ+ ∂yy) ∂xV + ∂yx(∂xU + U ∂x + V ∂y)

− ∂y(U ∂x + V ∂y) ∂x, (2.11e)

Lvv = (−Δ+ ∂yy)(U ∂x + V ∂y + ∂yV)+ ∂xy(∂yU)

− ∂y(U ∂x + V ∂y) ∂y + Re−1Δ2, (2.11f )

Lvρ = Fr−2 (ik) ∂y, (2.11g)

Lρu = −(ik)−1 ∂x, (2.11h)

Lρv = −(ik)−1 ∂y, (2.11i)

Lρρ = −(U ∂x + V ∂y)+ (Re Pr)−1Δ. (2.11j)

The full derivation of this linear system is given in Appendix A. A formulation similar
to the present one to identify 3-D perturbations in a 2-D base flow (thus referred to as
‘2B3P’) was used successfully to analyse experimental data from a stratified inclined duct
(Chomaz 2018; Lefauve et al. 2018). The eigenvalue problem (2.10) is solved numerically
using the MATLAB eig function. The differential operators along the periodic x- and
y-directions are discretized with the Fourier differentiation matrix (Weideman & Reddy
2000), ensuring the horizontal periodicity of the resulting eigenmodes. The size of
the eigenvalue problem is considerably large: using N̂ Fourier points to discretize one
horizontal direction results in two matrices of size 3N̂2 by 3N̂2 in (2.10). We used N̂ = 64
and 72 to solve the linear system, which produced nearly identical physical eigenvalues
and eigenmodes between the two N̂ values. Unphysical, spurious eigenmodes may arise,
which are identifiable through a comparison of results from the two N̂ values tested.
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Figure 2. Growth rate σr plotted against (a) k and (b) k Fr for the solution branch containing the
fastest-growing mode: ♦, Fr = 1.0;

�
, Fr = 0.5; ∗, Fr = 0.25; �, Fr = 0.125.

2.2. Linear dispersion relation
Our investigation will focus on the effects of varying Fr, specifically for Fr ∈
{1, 1/2, 1/4, 1/8}. We selected this range of Fr because, as we will demonstrate, the
fastest-growing modes at these values exhibit zigzag-like properties. Billant & Chomaz
(2000c) observed zigzag instabilities in vortex dipoles when Fr < 0.2. The apparent
inconsistency in the Fr ranges associated with zigzag instabilities arises from the
difference in the choices of velocity and length scales used to define Fr. This distinction
is also crucial for comparing dimensional quantities across different set-ups, as we discuss
later in this subsection. We will report DNS conducted in a triply periodic domain for these
Fr values in § 3. For linear stability analysis, we vary the vertical wavenumber k within the
range 1–20 (integers only) due to the constraint that only integer modes of k are permissible
in the DNS for domain height 2π. We display the solution branch that produces the
fastest-growing mode across all wavenumbers for each Fr in figure 2. For this specific
branch of eigenmodes, the imaginary part of σ is zero, i.e. σi ≡ Im(σ ) = 0, suggesting
that all these modes are stationary. Another solution branch (not shown in figure 2) that
emerges from the stability analysis corresponds to the pure hyperbolic (PH) mode that was
investigated by Hattori et al. (2021). The PH modes can be easily distinguished from the
solution branch shown in figure 2 as the PH modes have a non-zero frequency (σi /= 0).
The instability mechanism of the PH mode does not require stratification (Leblanc &
Godeferd 1999), and the most unstable mode occurs at k = 0, i.e. when the perturbation
structure is 2-D.

Figure 2 demonstrates that the growth rate σr ≡ Re(σ ) initially increases with k for
smaller values of k, and subsequently decreases as k increases further. The fastest-growing
k (table 1) shifts to the left as Fr increases. When k is adjusted by multiplying it by Fr, the
increasing flank of the curves nearly collapses, and the peak growth rate occurs within a
narrow range of k Fr between 1.1 and 2.0, i.e. for the most unstable mode,

k ∼ Fr−1. (2.12)

Or, in dimensional form, the fastest-growing wavelength λ∗z ≡ (2π/k)L scales as

λ∗z ∼ (2π)(U0/N). (2.13)

The maximum non-dimensional growth rates σ , summarized in table 1, exhibit no
significant variability with respect to Fr. Accordingly, the dimensional growth rate
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Zigzag instability of columnar Taylor–Green vortices

Fr k σ

1.000 2 0.2108 + 0.0000i
0.500 3 0.2251 + 0.0000i
0.250 5 0.2422 + 0.0000i
0.125 9 0.1998 + 0.0000i

Table 1. The most unstable mode at each Fr considered.

σ ∗ ≡ σU0/L scales as
σ ∗ ∼ U0/L. (2.14)

In their examination of zigzag instability, Billant & Chomaz (2000b) (hereafter referred
to as BC00) observed that the vertical scale most susceptible to zigzag instability in
a vortex pair scales with U0/N, i.e. (2.13), and the maximum growth rate with U0/L,
i.e. (2.14). These scalings are markedly similar to the results presented above for the
vortex array. The scaling (2.12) is in contrast to the elliptic instability for which the
fastest-growing wavenumber and growth rate both increase with Fr (see e.g. figure 2
of Billant & Chomaz 2000c). Figure 2 presents dispersion relations that are at least
qualitatively similar to those identified by BC00 (see e.g. their figure 7), i.e. the growth
rate σr peaks at a non-zero vertical wavenumber k. This contrasts with horizontally sheared
flows, which feature a one-dimensional velocity profile varying along the horizontal
direction with gravity oriented in the spanwise direction (Deloncle, Chomaz & Billant
2007; Arobone & Sarkar 2012; Lucas, Caulfield & Kerswell 2017). In such flows, the most
unstable modes have a zero vertical wavenumber, an observation considered by Deloncle
et al. (2007) as an extension of Squire’s theorem to stratified flows.

Additionally, the primary instability of a TG vortex array resembles the zigzag
instability observed in vortex dipoles in several key aspects. For both cases, the eigenvalues
for the fastest-growing modes are real (σi = 0), and the dispersion relation reveals an
approximately linear relationship between the dimensionless growth rate (σr) and small
values of k Fr, as shown in figure 9 of Billant & Chomaz (2000c). Data for the vortex array
included in figure 2(b) suggest a linear relation (not shown) between σr and k Fr, which
collapses data across various Fr values between 0.125 and 0.5 for k Fr � 1. Furthermore,
the magnitude of the peak growth rates, when dimensionalized, lies between 0.20 and 0.24
times U0/L, or 0.63–0.75 times U0/D, where D = πL represents the distance between the
centres of two adjacent oppositely signed vortices (figure 1). Using similar metrics, the
dimensional growth rate σ ∗ typically ranges from 0.6 to 0.7 times U0/D in the dipole
scenario, according to figure 9 of Billant & Chomaz (2000c), where D ≈ L following
figure 1 of BC00.

As discussed earlier, our study focuses on the range 0.125 ≤ Fr ≤ 1, where the primary
instability exhibits many characteristics similar to the zigzag instability. For Fr values
outside this range, the PH mode (Hattori et al. 2021) shows a higher growth rate across
all wavenumbers. Specifically, for Fr < 0.125, the dispersion relation of the zigzag modes
at Fr = 0.0625 (not shown) exhibits a reduced maximum growth rate, and the latter is
also lower than that of the PH mode at this Fr. For larger Fr values, figure 8 of Hattori
et al. (2021) indicates that the PH mode becomes the dominant instability for Fr > π,
surpassing the zigzag modes. Currently, we do not have sufficient data to pinpoint the exact
transition point in terms of Fr between zigzag and PH modes, and this critical Fr value
might also vary with Re. Nonetheless, the evidence available seems to suggest that this
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Figure 3. Base flow characteristics: (a) vorticity Ωz, (b) streamfunction ψ , and (c) pressure P0. The dashed
line in (a) marks the line y = x, along which a vertical transect is illustrated in figure 5. The contours of ψ are
shown in (b) for 0.125 ≤ |ψ | ≤ 0.875, with an interval of 0.125 between adjacent contour levels. The symbol�

in (b) indicates the location of an elliptical stagnation point, and � indicates a hyperbolic stagnation point.

transitional Fr is likely to be greater than 1 and probably of O(1). In summary, within the
Fr range O(0.1) to O(1), the zigzag mode, whose most unstable eigenmode appears to be
3-D (k /= 0), tends to dominate. Outside this Fr range, the fastest-growing instability shifts
to the 2-D PH modes (k = 0), whose instability mechanism does not rely on stratification.

2.3. Instability mechanism
We now turn our attention to the most unstable eigenmode at k = 3 for Fr = 0.5, using it
as an example to shed light on the underlying instability mechanism. The characteristics
of the 2-D base flow are illustrated in figure 3, while the horizontal structure of the
3-D eigenmode is displayed in figure 4. In particular, figure 4(a), which shows the
vertical vorticity perturbation ωz ≡ ∂xv − ∂yu, reveals horizontal structures similar to
those presented in figure 5 of Hattori et al. (2021) (hereafter referred to as H21).
These structures are identified by H21 as MH modes. In line with our results in § 2.2,
H21 demonstrated that the MH modes, specifically the branch with σi = 0, yield the
highest growth rate σr for their cases with Fr ≤ π/2 (equivalently, Fh ≤ 0.5 in the H21
terminology, with Fh ≡ Fr/π due to the differences in the definitions). Furthermore, H21
noted an increase in the fastest-growing k as Fr decreased from 0.2π to 0.1π, consistent
with the expected behaviour for zigzag instabilities.

H21 classified these MH modes as a subtype of hyperbolic instabilities, alongside PH
modes, which are independent of stratification, and SH modes, which result from the
phase shifts in internal gravity waves induced by PH modes. The ‘mixed’ nature of these
modes arises, according to H21, from the vorticity distribution being a combination of both
PH and SH instabilities. H21 did not describe the physical mechanism of MH modes in
detail. Here, we will take a different perspective and elucidate how the MH modes become
unstable by drawing parallels to the zigzag instabilities in the vortex dipole case studied
by BC00.

To start, it is useful to summarize the zigzag instability mechanism for dipoles
as outlined by BC00. The mechanism begins with an initial pressure distribution P0
associated with the base flow. A height-varying horizontal displacement of the dipole
column induces a vertical pressure gradient, leading to isopycnal deformation (as shown
in their figure 3a) due to the hydrostatic balance between the density perturbation ρ and
pressure perturbation p. This mechanism, which was also considered by Basak & Sarkar
(2006), is described by the linearized vertical momentum equation (A1c) in hydrostatic

997 A34-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

78
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.783


Zigzag instability of columnar Taylor–Green vortices

0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

–0.30

–0.15

0

0.15

0.30

0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

–0.06

–0.03

0

0.03

0.06

0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

–0.08

–0.04

0

0.04

0.08

x/π

y/π

x/π x/π

(b)(a) (c)

Figure 4. Horizontal transect of perturbation (a) ωz at z = z0, (b) ρ at z = z+, and (c) w at z = z+, for the
eigenmode with k = 3 at Fr = 0.5. The heights z0 and z+ are specified in figure 5. The amplitude of the
eigenmode is normalized such that the kinetic energy associated with the horizontal perturbation velocities
(u, v) constitutes 1 % of the kinetic energy in the base flow (U,V). The dashed line indicates the streamline
corresponding to ψ = 0.25, and the solid dot indicates the starting point of a particle trajectory considered in
figure 6.

balance, i.e.
−∂zp ≈ Fr−2 ρ. (2.15)

The displacement of isopycnals due to ρ initiates a vertical velocity w as per the linearized
density equation (A6), assuming negligible diffusion,

∂tρ + (U ∂x + V ∂y)ρ ≈ w, (2.16)

where the right-hand side arises due to the perturbation vertical velocity w, and the
non-dimensional background density gradient dρb/dz = −1. The linear equation (A6)
indicates that a fluid parcel, while being transported by the base flow (U,V), undergoes
density fluctuations directly coupled to vertical velocity w. A distinct feature of the zigzag
instability is its stationarity, i.e. σi = 0, as discussed in § 2.2. As a result, the motion
of a fluid parcel undergoing zigzag instability can be seen as traversing a loop that
samples a stationary, horizontal pattern of the flow (see figure 3(a) of BC00), rather
than linear oscillation around an equilibrium position as in an internal wave (σi /= 0).
This vertical motion induced by this mechanism causes straining in the vertical direction,
i.e. ∂zw /= 0, leading to diverging horizontal perturbation velocities (∂xu + ∂yv /= 0).
The horizontal perturbation velocities (u, v) further displace the dipole horizontally and
introduce rotational ‘twists’ within the dipole, thus amplifying the initial perturbations and
completing the feedback loop that characterizes the zigzag instability mechanism.

Some key features of the TG base flow are revisited in figure 3 in light of the zigzag
mechanism. The TG base flow vorticity Ωz (figure 3a) and streamfunction ψ (figure 3b)
have the same structure over the x–y plane, which means that a fluid parcel advected by
the base flow would encounter a constant Ωz along a streamline. Two types of stagnation
points exist (figure 3b): elliptical and hyperbolic. Figure 3(c) demonstrates that the base
flow pressure P0 attains its highest values at the hyperbolic stagnation points, and lowest
at the elliptical stagnation points.

To leading order, the perturbations to the vortex dipole analysed by BC00 involve a
simple horizontal translation of the vortical structure, resulting in a sinusoidal deformation
of the vortex column, as illustrated in their figure 3. In the TG case, the ωz perturbations
displayed in figure 4(a) reveal more complex spatial variations than would be expected
from a mere horizontal translation of columnar vortices. The vertical–horizontal transects
presented in figure 5 demonstrate how the base flow Ωz in figure 5(a) is modified by the
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Figure 5. Vertical–horizontal transect of (a) base flow Ωz, (b) perturbation ωz, (c) Ωz + ωz, and (d) vertical
velocity w. The horizontal axis x′ represents the distance from the origin along the line y = x, indicated
by a white dashed line in figure 3. One full vertical wavelength is shown in z. Dotted lines in (a) and
(c) display vertical vorticity contours at 0.2 and 1.8, respectively. Symbols

�
and

�
mark the heights z+

and z−, respectively, where w attains its maximum magnitude, and ◦ is the height z0 = (z+ + z−)/2, where ωz
reaches the maximum magnitude.

perturbation ωz in figure 5(b) to form the ‘bent’ pattern in figure 5(c), similar to the dipole
scenario. Figure 5(b) suggests that large magnitudes of ωz are located at the ‘edges’ of the
vortex column, leading to pronounced bending at these locations – for instance, see the
contour of the perturbed vorticityΩz + ωz, at 0.2 in figure 5(c). Conversely, the magnitude
of ωz near the centre of the columns is relatively small, resulting in less pronounced
bending and in a direction opposite to that at the edges, as shown by the Ωz + ωz contour
at 1.8 in figure 5(c). Strictly speaking, the zigzag instability involves only a displacement
of the vortex core as a whole. The vortex structure depicted here also shows an internal
deformation of the vortex, which might seem closer to the elliptic instability in appearance
(see e.g. figure 4 of Otheguy et al. 2006). However, it will be demonstrated in the following
that the instability mechanism is indeed ‘zigzag-like’.

Following the BC00 argument, the deformation of the vortex columns (figure 5c)
produces a horizontal shift of the associated pressure field P0 (figure 3c). This shift results
in a z-dependent pressure field (∂zp /= 0), which is associated with density perturbations
ρ (figure 4b) through the hydrostatic balance (2.15). The ρ perturbation is then associated
with vertical velocities w (figure 4c) via (2.16). The vertical structures of such w
perturbations are presented in figure 5(d). Consistent with figure 3(b) of BC00, figure 5(d)
demonstrates that w vanishes at z = z0 where |ωz| reaches maximum, i.e. where the vortex
column experiences the greatest horizontal displacement. The magnitude of w peaks a
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Figure 6. Profiles of perturbation ωz, ρ and w along a specific base flow streamline (ψ = 0.25) at various
heights: (a) z = z+, (b) z = z0 and (c) z = z−. This particular streamline is marked in figure 4 with a white
dashed line. The profiles commence at the location indicated by a solid dot in figure 4, and trace the ψ contour
in the anticlockwise direction, following the path of a fluid parcel moving according to the base flow (U,V).

quarter vertical wavelength away from z0 at z+ or z−, coinciding with the heights at which
|ωz| is at its lowest.

The connection between the ρ and w perturbations, shown in figures 4(b) and 4(c),
respectively, becomes clear when considering (2.16) within the scenario of a fluid parcel
moving with the base flow. We focus on a particular streamline, marked by a dashed line
in figure 4, and examine perturbations along this streamline at various heights as shown in
figure 6. In terms of the ωz perturbation, as discussed previously, its magnitude reaches the
maximum at z = z0, and nearly vanishes at z = z+ and z−. In contrast, the perturbations
ρ and w exhibit significant magnitudes at z = z+ and z−, where both quantities are of
the same magnitude but oppositely signed at z = z+ and z−, respectively, for any given
point along the streamline, reflecting the anti-symmetry about the height z = z0. The rate
of change of ρ with respect to the distance (s) along the streamline, ∂sρ, a proxy for the
left-hand side of (2.16), is closely associated with w, as evidenced by figure 6. For example,
∂sρ > 0 tends to coincide with w > 0, and vice versa. This confirms that ρ and w are
coupled via (2.16) at a given height of the columnar vortex, highlighting a key element in
the zigzag mechanism.

With isopycnal deformations inducing z-dependent w perturbations, ∂zw becomes
non-zero, balanced by non-zero ∂xu + ∂yv in the continuity equation. Figure 7(a) shows the
flow pattern over an x–y plane, where the (u, v) velocities typically originate from regions
of vertical convergence (∂zw < 0) and move towards regions of divergence (∂zw > 0)
to maintain continuity. This complex flow pattern results in the formation of vortical
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Figure 7. Horizontal velocity vector field (u, v) visualized by arrows, overlaid by colour maps showing
(a) ωz, and (b) ∂zw, at z = z0.

structures (figure 7b), including a pair of vortices with opposite signs near the hyperbolic
stagnation point at (x, y) = (π,π). Such vortical perturbations, manifested asωz, complete
the dynamical feedback loop initiated by the deformation of the columnar vortices
(figure 4a). As a result, the instability is expected to grow, following the dynamics outlined
above, which closely resemble those of the zigzag instability proposed by BC00.

3. Direct numerical simulations

3.1. Numerical configuration
To examine the nonlinear evolution of the unstable modes identified in § 2 and their role
in the breakdown of columnar TG vortices into turbulence, we conducted DNS using the
lattice Boltzmann (LB) method. The LB flow solver, known as ‘OpenLB’, was developed
by Krause et al. (2020) and has been adapted to solve the Boussinesq-approximated
Navier–Stokes equations (2.5) by Guo, Zhou & Wong (2023) for wall-bounded stratified
turbulent flows. An overview of the LB solver is provided in Appendix B. Additionally,
we performed further validation of this LB solver against pseudo-spectral DNS in a triply
periodic configuration, an effort that is also documented in Appendix B.

We carried out four simulations of the columnar TG flow within a triply periodic domain
of length 2π in each direction, employing the same parameters examined in § 2. The
specifics of these simulations are detailed in table 2. The computational mesh is uniform
and isotropic. The grid spacing is no more than twice the Kolmogorov scale during peak
dissipation. The simulations were initiated with the base flow defined by (2.7) at t = 0,
with the phases of the sinusoidal functions slightly altered by random noise. Specifically,
the initial conditions were set as

(U,V,W) = [sin(x + ε1) cos( y + ε2),− cos(x + ε3) sin( y + ε4), 0 + sin(ε5)], (3.1)

where the phase shifts (ε) are computer-generated pseudo-random numbers uniformly
distributed within the range [−0.01, 0.01]. This introduction of low-level noise is critical
for symmetry breaking and triggering instabilities, as suggested by Riley & de Bruyn Kops
(2003) in their study of the turbulence generated by the breakdown of 3-D TG vortices.
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Fr (Nx,Ny,Nz) 
t σ̄ kfgm λfgm �v Frv

1.000 (252, 252, 252) 1.44 × 10−4 0.189 2 3.14 2.42 0.413
0.500 (252, 252, 252) 1.44 × 10−4 0.198 3 2.09 1.84 0.272
0.250 (503, 503, 503) 7.22 × 10−5 0.191 5 1.26 1.09 0.229
0.125 (503, 503, 503) 3.61 × 10−5 0.158 9 0.70 0.74 0.169

Table 2. Parameters of DNS for (Re,Pr) = (1600, 0.7) and various Froude numbers. Here, (Nx,Ny,Nz) are
the number of lattice points used in each direction, 
t is the time step size, σ̄ is the estimated overall linear
growth rate (§ 3.3), kfgm and λfgm are the observed fastest-growing wavenumber and wavelength, respectively,
and �v and Frv are the vertical length scale (3.4) and Froude number (3.5), respectively, for the time when the
perturbation kinetic energy Ek in (3.3a,b) first exceeds 0.01.

3.2. Flow phenomenology
The evolution of the flow is visualized through volume-rendered colour images of vertical
vorticity in figure 8 for the case Fr = 0.5. The sequence starts with an image at t = 32,
where the vortex structure is similar to the base flow (figure 1), with weak perturbations
manifesting as corrugations on the surface of the vortex tube. By t = 40 (top right image),
these corrugations have intensified. Images in the middle row reveal the emergence
of nonlinear dynamics, such as secondary perturbations between and then within the
columns, which quickly evolve into turbulence for 44 ≤ t ≤ 52. The bottom row illustrates
the decay of turbulence from its maximum intensity. Figure 9 shows the corresponding
sequence of images for Fr = 0.25. Relative to the Fr = 0.5 case, the corrugations on
the vortex tube surface appear at a finer vertical length scale, and the transition to a
fully disorganized state at t = 56 (bottom left image) appears to occur more gradually
as compared to the Fr = 0.5 case.

3.3. The energetics
The flow field can be decomposed into a vertically averaged component Ū = (Ū, V̄, 0)
and the fluctuation u = (u, v,w). The kinetic energy contained in the mean velocities can
be quantified by

Ēk = 1
2 〈Ū · Ū〉, (3.2)

where 〈·〉 ≡ (2π)−3 ∫∫∫
(·) dx dy dz denotes volume average over the entire domain. There

is no mean potential energy associated with the density perturbation ρ. Note that Ū in
general differs from the base flow (2.7) due to viscous decay and flow instabilities. The
kinetic energy and potential energy contained in the fluctuation field are

Ek = 1
2
〈u · u〉, Ep = 1

2 Fr2 〈ρ2〉, (3.3a,b)

respectively.
We examine the energetics in the system through figure 10, taking the Fr = 0.5 and

0.25 cases as an example. Figures 10(a,b) display energy on a linear scale, revealing
that for a significant duration, up to t � 40 for Fr = 0.5, and t � 45 for Fr = 0.25, the
kinetic energy is dominated by the vertically uniform (mean) component, Ēk. The mean
kinetic energy slowly decays linearly due to viscosity at the anticipated rate exp(−4t/Re).
Figures 10(c,d), where energy is plotted on a logarithmic scale, indicate that following
the initial adjustments to the random noise, the fluctuation kinetic and potential energy
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Figure 8. Snapshots of the vertical vorticity field from the DNS with Fr = 0.5. The initial image in the
sequence was captured at time t = 32. Subsequent images are spaced at regular intervals of 4.0 units of time,
arranged from left to right and top to bottom.

(Ek and Ep, respectively) grow linearly with time, i.e. Ek,Ep ∝ exp(2σ̄ t). The overall
growth rates σ̄ , which do not vary significantly across all four Fr cases, are tabulated
in table 2. At t ≈ 40 for Fr = 0.5 and t ≈ 45 for Fr = 0.25, both Ek and Ep experience a
significant upsurge as shown in the linear plots, alongside a rapid decline in the mean Ēk
as the flow transitions to turbulence. The fluctuation energies Ek and Ep depart from the
linear trend and saturate by t ≈ 50 for Fr = 0.5, and by t ≈ 55 for Fr = 0.25, at which
stage the mean energy component has been reduced significantly. Beyond this point, the
fluctuating Ek becomes the dominant form of kinetic energy and starts to decrease rapidly,
along with the potential energy Ep.

The growth in the fluctuation energy is contributed by various vertical wavenumbers k.
In figure 11, we examine the vertical spectra of kinetic energy of Ek, denoted as Ẽk, as they
vary with k and over time for Fr = 0.5. Figure 11(a) demonstrates the overall growth of
kinetic energy across a range of vertical wavenumbers for 16 ≤ t ≤ 40, coinciding with the
linear growth phase of the instabilities (see figure 10c). The linear growth is non-uniform
across wavenumbers. By t = 24, the mode of k = 3 has surpassed all other modes in terms
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Figure 9. Same layout as figure 8 for the case with Fr = 0.25.

of the energy level. Incidentally, k = 3 is also the fastest-growing mode predicted by the
linear stability analysis (table 1); more discussion on this will follow in the next subsection.
Figure 11(b) shows that each mode of different k also follows its own rate of linear growth,
σ(k). Again, the mode with k = 3 gains the most energy during the linear growth stage of
the instabilities.

In figure 12, we investigate the vertical length scale �v , which characterizes the
energy-containing scales in the initially uniform z-direction. Similar to Zhou & Diamessis
(2019), who used �v to characterize the vertical scale associated with spontaneously
formed shear layers in stratified turbulent wakes, we define

�v(t) ≡ 2π

∫ knyq

kmin

k−1 Ẽk(k, t) dk
/∫ knyq

kmin

Ẽk(k, t) dk, (3.4)

where kmin = 1.0 is the minimum wavenumber, and knyq is the Nyquist wavenumber (knyq
is 126 for Fr ≥ 0.5, and 251 for Fr < 0.5). Figure 12 indicates that �v stays relatively
constant over time after the initial transients, but exhibits a strong dependence on Fr. As
Fr decreases, the vertical length scale that emerges before the breakdown of columnar
vortices also decreases, again reminiscent of the anticipated scaling of zigzag instabilities.
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Figure 10. Time series of various energy components, for (a,c) Fr = 0.5 and (b,d) Fr = 0.25. Energy is
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Figure 11. Sample fluctuation kinetic energy spectra for Fr = 0.5 displayed (a) as a function of k, and (b) as a
function of t. For (a), the spectra are selected from 16 ≤ t ≤ 40, at intervals of 4.0 time units, with the curves
shifting upwards as time progresses.

To examine whether the dimensional vertical length scale �∗v ≡ �vL follows the expected
U0/N scaling, it is helpful to examine an inverse vertical Froude number,

Fr−1
v = �∗vN

U0
= �v

Fr
. (3.5)
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Figure 12. Time series of the energy-containing vertical length scale �v in (3.4), for different values of Fr.
Grey circles indicate the time at which Ek first exceeds 0.01; the �v values at these times are tabulated in table 2
for comparison with λfgm.
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Figure 13. Flow structure observed at t = 32 in the DNS for Fr = 0.5. The layout is the same as figure 4.
(a) The vertical vorticity perturbation ωz displayed for z = z0 where ωz reaches its largest magnitude. (b,c) The
ρ and w perturbations at z+ = z0 + λfgm/4.

Characteristic values of Frv are tabulated in table 2, where they exhibit the same order of
magnitude and a decreasing trend as Fr decreases. This relationship between Frv and Fr is
consistent with the results from forced DNS by Waite & Bartello (2004) and Brethouwer
et al. (2007). In contrast, in the decaying turbulence simulations by Maffioli & Davidson
(2016), Frv was observed to approach a relatively narrow range as the flow transitions
towards relaminarization.

3.4. Comparison with linear stability analysis
In figures 13 and 14, we examine the flow structure in the DNS of Fr = 0.5, captured at
t = 32 during the linear growth stage of the instabilities (figure 10). Figure 13 displays the
perturbation field over the x–y plane. The ωz field is taken at the height (z0) where the ωz
magnitude is found to be at maximum, and ρ and w are shown at the height one-quarter
vertical wavelength λfgm ≡ 2π/kfgm above z0. Here, kfgm is taken to be 3 following the
observation in figure 11, which is also consistent with the linear stability analysis (figure 2).
The pattern found in figure 13 is in strong agreement with the most unstable eigenmode
presented in figure 4. Figure 14 displays a full vertical wavelength λfgm of the DNS
field, exhibiting similarities to figure 4 where the fastest-growing eigenmode is presented.
The DNS field presents additional complexities, likely due to the presence of multiple
wavenumbers beyond the single wavenumber (k = 3) included in figure 5. The agreement
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Figure 14. Vertical–horizontal transects of the DNS flow field at t = 32 for Fr = 0.5, presented in a layout
identical to figure 5. One full wavelength according to the fastest-growing kfgm = 3 is shown in the vertical.
The vertically uniform component of vorticity, Ω̄z, is calculated based on the vertically averaged flow field Ū .
Plots are for (a) Ω̄z, (b) ωz, (c) Ω̄z + ωz, and (d) w.

in terms of flow structure between the DNS and linear stability analysis indicates that these
linear modes are indeed vital in leading to the breakdown of the columnar vortices.

Figure 15 compares the predicted growth rates for each mode, shown previously in
figure 2, with their DNS counterparts estimated from the time series of modal energy such
as those shown in figure 11(b). The DNS growth rates are estimated over approximately
20 time units during which linear growth is observed; this period is determined through
visual inspection of plots such as those in figure 11(b). The error bars associated with
the σ estimates (not shown) are smaller than or similar in size to the symbols used
in figure 15. The agreement between DNS and linear stability analysis is generally
good, particularly in that the fastest-growing mode observed in the DNS has a vertical
wavenumber matching the most unstable mode found using the linear stability analysis.
This agreement underscores the pivotal role of linear instabilities in determining the
structure of turbulence. The wavelength of the most unstable mode, λfgm, closely matches
the energy-containing vertical scale �v , as listed in table 2. Both λfgm and �v decrease
with a reduction in Fr, aligning with the expected scaling for layering induced by zigzag
instabilities.

4. Concluding remarks

We investigated the dynamics of columnar Taylor–Green (TG) vortices under strong
stratification (Fr ≤ 1.0), with a particular focus on identifying and understanding the
primary instabilities (§ 2) that lead to the breakdown of such vortices (§ 3). Our
analysis revisited the instability mechanism of the most unstable eigenmode, identified
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Figure 15. Comparison of the mode-by-mode growth rate σ(k) estimated from DNS data with the prediction
(figure 2) of the linear stability analysis (LSA) presented in § 2. Here, (a) Fr = 1.0, (b) Fr = 0.5, (c) Fr = 0.25
and (d) Fr = 0.125.

by Hattori et al. (2021) as the mixed hyperbolic (MH) mode. We discovered that for the
range of parameters investigated, these MH modes exhibit fastest-growing wavenumbers
that are inversely proportional to Fr and an approximately constant dimensionless growth
rate (§ 2.2), similar to the zigzag instability (Billant & Chomaz 2000b). A closer look
at the eigenmode (§ 2.3) revealed that the MH mode within the columnar TG vortices
bears structural and dynamical resemblance to the zigzag instability, hinting at the zigzag
mechanism’s broader relevance beyond its initial discovery in vortex pairs (dipoles). The
DNS results presented in § 3 confirm that the zigzag-like linear instabilities are crucial in
growing the initial perturbations to a finite amplitude, with the observed flow structure and
growth rate aligning closely with the linear stability analysis. The dominance of the linear
instabilities in the TG vortices contrasts with the non-normal, transient growth mechanism
considered recently by Lewin & Caulfield (2024) for horizontally sheared stratified flows.

Our understanding of the zigzag instability originates from the pioneering work of
Billant and Chomaz on vortex dipoles and the observed scaling k ∼ Fr−1. We have
discovered that similar dynamics apply to vortex arrays, which implies that the zigzag
mechanism is at least somewhat generic. Various DNS studies (e.g. Basak & Sarkar 2006;
Brethouwer et al. 2007) have invoked the zigzag mechanism to explain the vertically
non-uniform structures scaled by U0/N. However, attributing the k ∼ Fr−1 scaling solely
to zigzag instability may be premature, as the U0/N scaling could arise from generic
scaling arguments (Billant & Chomaz 2001) and not necessarily from one specific linear
or nonlinear process.
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This paper has focused on the linear aspects of zigzag instability in a vortex array.
The exact path through which the primary zigzag instability transitions to secondary
instabilities and subsequently to turbulence is highly interesting, and these nonlinear
dynamics are the subjects of ongoing investigation. Given that zigzag instability can
channel energy from large-scale horizontal vortical motions directly into vertical scales
of U0/N, this study’s implications could extend to the understanding of energy pathways
in stratified turbulence (Waite 2013), with potential applications in modelling geophysical
flows and predicting energy transfers in various atmospheric and oceanic contexts. In such
contexts, the Reynolds number is expected to be many orders of magnitude larger than
the single Re value considered in this paper. Billant & Chomaz (2000c) demonstrated
the variation of the peak growth rate with Re, and noted minimal impact of Re on the
most unstable wavenumber kfgm. Hattori et al. (2021) reported that a tenfold reduction
in Re reduces growth rates at higher wavenumbers, likely due to increased viscous
damping, with kfgm remaining relatively constant with varying Re. Our analysis in § 2.2
reveals that zigzag modes are stabilized for Fr < 0.125 at Re = 1600, which prompts
several questions. Could this lower bound of Fr for zigzag instability decrease further
at higher Re values? How might a large Re alter the capacity of zigzag instability
to initiate secondary instabilities and transition to turbulence at very low Fr values?
Is there a connection between zigzag instability and the layered anisotropic stratified
turbulence (LAST) regime (Caulfield 2021), and if so, how could one rigorously establish
the dynamical path from the generic linear instability (e.g. zigzag) to the layered and
potentially self-organized (see e.g. Zhou 2022) state that characterizes the LAST regime?
These inquiries await answers as our ability to perform large-Re simulations advances
with time.
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Appendix A. Formulation of the eigenvalue problem

Linearizing the momentum equation (2.5a) for the 2-D base flow (2.7) yields

∂tu + Au = −∂xp + Re−1 ∇2u, (A1a)

∂tv + Av = −∂yp + Re−1 ∇2v, (A1b)

∂tw + Aw = −∂zp + Re−1 ∇2w − Fr−2 ρ, (A1c)
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where the advection terms are

Au = (∂xU + U ∂x + V ∂y)u + v ∂yU, (A2a)

Av = (∂yV + U ∂x + V ∂y)v + u ∂xV, (A2b)

Aw = (U ∂x + V ∂y)w, (A2c)

respectively. Taking the divergence of (A1) yields

∂xAu + ∂yAv + ∂zAw = −
p − Fr−2 ∂zρ, (A3)

where 
 ≡ ∇2 is the Laplacian operator. Introducing

F ≡ −
p = ∂xAu + ∂yAv + ∂zAw + Fr−2 ∂zρ, (A4)

and taking the Laplacians of (A1a) and (A1b), respectively, the horizontal momentum
equations can be rewritten as

∂t
u +
Au = ∂x
F + Re−1
(
u), (A5a)

∂t
v +
Av = ∂y
F + Re−1
(
v). (A5b)

The linearized density equation (2.5c) reads

∂tρ + (U ∂x + V ∂y)ρ − w = (Re Pr)−1
ρ. (A6)

Dropping all ·̂ for the remainder of this appendix, and applying continuity to the ansatz
(2.9), one obtains (for k /= 0),

w = −(ik)−1(∂xu + ∂yv), (A7)

which can then be substituted into (A2c) and (A6) to eliminate w, while keeping (u, v, ρ)
in the linear system. Substituting the ansatz (2.9) into (A5) and (A6) yields

σ 
u = −
Au + ∂xF + Re−1
2u

= −
Au + ∂xxAu + ∂xyAv + (ik) ∂xAw

+ Fr−2 (ik) ∂xρ + Re−1
2u, (A8a)

σ 
v = −
Av + ∂yF + Re−1
2v

= −
Av + ∂yyAv + ∂yxAu + (ik) ∂yAw

+ Fr−2 (ik) ∂yρ + Re−1
2v, (A8b)

σρ = −(U ∂x + V ∂y)ρ − (ik)−1(∂xu + ∂yv)

+ (Re Pr)−1
ρ. (A8c)

Assembling the above linear equations in (u, v, ρ) in the matrix form yields the
generalized eigenvalue problem expressed in (2.10) in § 2.1.

Appendix B. The LB flow solver

The LB method offers a robust and efficient approach to solving the Navier–Stokes
equations. In § 3, we adopted the ‘OpenLB’ code (Krause et al. 2020) to simulate
density-stratified flows under the Boussinesq approximation (see full details in
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Figure 16. Time series of (a) Ek and Ep, and (b) εk + εp. The pseudo-spectral results by Jadhav & Chandy
(2021) are plotted using circles, and the LB results using lines.

Guo et al. 2023). The LB solver advances the buoyancy and velocity fields in time through
discrete lattice models and employing the Bhatnagar–Gross–Krook (BGK) collision
operator. For the buoyancy field, the solver utilizes a D3Q7 lattice, where the buoyancy
distribution functions are updated using the LB equation with a BGK collision operator.
This operator allows the buoyancy distribution to relax towards an equilibrium state
defined by the local buoyancy, fluid velocity and lattice weights, over a characteristic
time scale set by the diffusivity of buoyancy. This process captures the advection and
diffusion of buoyancy within the fluid. For the velocity field, a D3Q27 lattice is used in
the present study, following the recommendation of Wilde et al. (2023). The LB equation
for velocity includes both the standard BGK collision operator and an additional source
term representing the buoyancy force. The BGK operator here ensures the relaxation of the
velocity distribution towards its equilibrium over a time scale set by the fluid’s viscosity,
and the source term provides the dynamical coupling from buoyancy to velocity.

Guo et al. (2023) validated the LB solver’s accuracy for a stratified, doubly periodic,
wall-driven turbulent flow. Additional validation is performed as a part of the present study
for a triply periodic flow under the 3-D TG configuration studied by Riley & de Bruyn
Kops (2003). Specifically, the initial flow field for the validation case has a z-dependence:

(U,V,W) = (sin x cos y cos z,− cos x sin y cos z, 0). (B1)

The flow parameters were set to (Re,Fr,Pr) = (1600, 1.0, 0.7) for comparison with the
DNS data from Jadhav & Chandy (2021), who used a conventional pseudo-spectral solver
with a 5123 grid, and applied the 2/3 truncation rule for dealiasing. The LB simulation
was conducted on a 2523 grid, achieving resolution up to approximately 1.6 times the
Kolmogorov scale at peak dissipation. Figure 16 compares the evolution of turbulent
kinetic energy Ek and potential energy Ep, along with the sum of their dissipation rates,
εk + εp, where

εk = 1
Re

〈
∂ui

∂xj

∂ui

∂xj

〉
, εp = 1

Re Pr Fr2

〈
∂ρ

∂xi

∂ρ

∂xi

〉
. (B2a,b)

The comparison suggests good agreement between the pseudo-spectral and LB results.
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