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Abstract

The Nagata automorphism is a kind of complicated automorphism on the affine
3-space C3. For a long time, it remained unknown whether or not the Nagata automor-
phism is tame until Shestakov and Umirbaev at last proved that it is not tame in 2004,
by purely algebraic methods (e.g. Poisson algebra). In this paper, we consider a certain
necessary condition for a given automorphism on C3 to be tame from the point of view of
the Sarkisov program established by Corti. Furthermore, by using it, we shall give a new
algebro-geometric proof of the non-tameness of the Nagata automorphism.

1. Introduction

Throughout the present paper we work over the field of complex numbers C. In affine algebraic
geometry, it is important to understand the structure of the group of automorphisms Gn :=
AutC(C[x1, . . . , xn]) on polynomial rings in n variables over C. An automorphism τ on C[x1, . . . , xn]
is called affine (respectively de Jonquière) if τ(xi) =

∑n
j=1 aij xj +bi with aij , bi ∈ C and det(aij ) �= 0

(respectively τ(xi) = aixi + fi(xi+1, . . . , xn) with ai �= 0, fi ∈ C[xi+1, . . . , xn] (1 � i < n) and
fn ∈ C). We shall introduce three subgroups of Gn. Let An (respectively Jn) be the subgroup of
Gn consisting of all affine transformations (respectively de Jonquière transformations). We denote
by Tn the subgroup of Gn generated by An and Jn. An automorphism τ is said to be tame if it is
contained in Tn. For the case n = 2, it is classically known that all automorphisms on C[x1, x2] are
tame, i.e. G2 = T2 (cf. [Nag72, AM75, Miy78]). On the other hand, for the higher-dimensional case
n � 3, we know very little concerning the structure of Gn. In what follows, we shall especially pay
attention to the case n = 3, and write C[x, y, z] instead of the notation C[x1, x2, x3]. In order to
indicate the complexity of the group G3, let us consider the following famous automorphism, the
so-called Nagata automorphism (cf. [Nag78, p. 16]):

σ :




x �→ x− 2y(xz + y2)− z(xz + y2)2,
y �→ y + z(xz + y2),
z �→ z.

Although the Nagata automorphism σ seems to be simple, for a long time it remained unknown
whether or not σ is tame. Although the structure on G3 itself cannot be understood in detail at
the present time, Shestakov and Umirbaev developed a technique to decide the tameness of a given
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automorphism on C[x, y, z] by purely algebraic methods (cf. [SU04a, SU04b]). As a consequence,
they proved at last that σ is, indeed, not tame, i.e. σ �∈ T3. However, as mentioned just above, since
their method is purely algebraic based on the treatment of Poisson algebra, it is complicated and
lacks the intrinsic geometry hiding in the Nagata automorphism σ. One of the main purposes in
this paper is to give an alternative proof of non-tameness on σ from the point of view of birational
geometry, more precisely, the Sarkisov program (cf. [Cor95, Cor00, Mat01, Kis05]). Roughly speak-
ing, the Sarkisov program gives us a useful tool for the factorization of a given birational map
between three-dimensional Mori fiber spaces into certain kinds of simple birational maps, so-called
elementary links. But, in general, it is difficult to perform explicit factorizations into elementary
links. This difficulty mainly seems to result from the lack of classification of three-dimensional
terminal divisorial contractions. (Nevertheless, there exists something remarkable concerning the
classification of three-dimensional terminal divisorial contractions due to Kawamata, Kawakita and
Tziolas et al.; see [Kaw96, Ka01, Ka02, Ka05, Tzi03].) We shall make use of an algorithm of the
Sarkisov program (see § 2) for the investigation of the Cremona transformation Φθ : P3 ����� P3

induced by an automorphism θ ∈ G3 on C3. The explicit Sarkisov factorization of Φθ itself is usually
difficult to perform. However, it is possible, in theory, to determine the maximal center (cf. Defini-
tion 2.2) of the first elementary link appearing in the Sarkisov factorization of Φθ once θ is given
concretely. As far as we are concerned with the (non-)tameness of a given θ, the investigation of
a maximal center of the first elementary link gives us useful information. Namely, we prove the
following theorem.

Theorem 1.1. Let θ be a tame automorphism on the affine 3-space C3, and Φθ the Cremona
transformation on P3 induced by θ in a natural way. Then, for any Sarkisov factorization of Φθ, say

Φθ = χ′
s ◦ · · · ◦ χ′

1,

the maximal center of the maximal divisorial blow-up (Definition 2.2) appearing in the first elemen-
tary link χ′

1 is either a point or a line on the hyperplane at infinity.

Once we have obtained Theorem 1.1, we can prove the following result.

Theorem 1.2 (cf. [SU04a, SU04b]). The Nagata automorphism is not tame.

In fact, the Nagata automorphism σ is naturally extended to the Cremona transformation Φσ :
P3 · · · → P3 as in the following fashion:

Φσ :




x �→ xt4 − 2y(xz + y2)t2 − z(xz + y2)2,
y �→ (yt2 + z(xz + y2))t2,
z �→ zt4,

t �→ t5,

where the hyperplane at infinity H∞ with respect to the canonical open immersion C3(x, y, z) ↪→ P3

is defined by t = 0. As for this Cremona transformation, fortunately, in our previous paper [Kis05],
we succeeded in the explicit factorization of Φσ into eight elementary links by making use of the
Sarkisov program. According to this, we see that the first elementary link starts with a blow-up along
a smooth conic on H∞ to deduce that σ is not tame by Theorem 1.1. However, in consideration
of Theorem 1.1, it is useful to give a proof of the non-tameness of σ that depends only on the
investigation of a maximal center of the first link, for further applications. That is why we shall give
a new proof from this viewpoint in § 4.

We shall state the scheme of this paper. In § 2, we recall the definitions of the Sarkisov program
and elementary links. In particular, Sarkisov degree and maximal center are indispensable in order to
explain the mechanism of the Sarkisov program. But, since we are able to find accessible explanations
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in many articles (cf. [Cor95, Cor00, Mat01]), we only summarize in brief. In § 3, we give a proof of
Theorem 1.1. In § 4, we give a proof of Theorem 1.2, that is, a new proof on the non-tameness of
the Nagata automorphism σ, which relies only on the investigation of a maximal center of the first
elementary link appearing in the Sarkisov factorization of Φσ, as an application of Theorem 1.1.
In fact, we can see that a maximal center must be a smooth conic on the hyperplane at infinity.
Here, for the exclusion of other subvarieties as maximal centers, we make use of the technique
due to Corti in [Cor00, § 3]. We think that the new proof lets us recognize the importance and
utility of the Sarkisov program for the further investigation of automorphisms on C[x, y, z] from an
algebro-geometric viewpoint.

Notation, convention and definition

In this paper, we use the following:

(i) KV , the canonical divisor of a variety V ;

(ii) multW D, the multiplicity of a scheme D on V along a subvariety W ⊂ D;

(iii) ∼, the linear equivalence;

(iv) ≡, the numerical equivalence;

(v) a(ν;KV +αHV ), the discrepancy of a discrete valuation ν of the function field C(V ) of V with
respect to KV + αHV ;

(vi) CenterV (ν), the center on V of a discrete valuation ν of C(V ).

2. Summary of the Sarkisov program

In this section, we shall summarize the Sarkisov program. Since accessible explanations concerning
the Sarkisov program can be found in many articles [Cor95, Cor00, Mat01, KSC04], we do not
repeat these here in detail, and we shall only prepare some indispensable terminology and sketch
the mechanism to apply the Sarkisov program in the subsequent sections of this paper. In what
follows in this section, we use ‘Mfs’ instead of a three-dimensional Mori fiber space for short. The
Sarkisov program gives us a useful algorithm to factorize a given birational map between two
Mfs into some kind of simple birational maps between Mfs, so-called elementary links (cf. [Cor95,
Cor00]). The elementary links are divided into four types (types I, II, III and IV) as in the following
diagrams.

Z
p

����
��

��
��

����� X1

φ1

��

X

φ

��
S S1

��

Z
p

����
��

��
��

����� Z1

p1

���
��

��
��

�

X

φ

��

X1

φ1

��
S S1

Type I Type II
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X

φ

��

����� Z1

p1

���
��

��
��

�

X1

φ1

��
S �� S1

X

φ

��

��������� X1

φ1

��
S

���
��

��
��

� S1

����
��

��
��

T

Type III Type IV

Here p : Z → X and p1 : Z1 → X1 are the divisorial contractions (or the maximal divisorial blow-
up; see Definition 2.2 below) and each of the birational maps denoted by horizontal dotted arrows,
which may be an identity, is a composite of log flips (i.e. inverse flips, flops and flips), φ : X → S,
φ1 : X1 → S1 are Mfs and 	(X/S) = 	(X1/S1) = 	(S/T ) = 	(S1/T ) = 1.

We shall recall the definition of the Sarkisov degree. Let ϕ : X/S ����� X ′/S′ be a given
birational map between Mfs φ : X → S and φ′ : X ′ → S′.

Definition 2.1 (Sarkisov degree). Let H′ = |−µ′KX′ + φ′∗(A′)| be a very ample complete linear
system on X ′, where µ′ is a positive integer and A′ is a sufficiently ample Cartier divisor on S′. This
choice of H′ is made once and for all at the beginning of the factorization process and H′ remains
unchanged throughout. Let H := ϕ−1∗ (H′) be the proper transform of H′ by ϕ. Since φ : X → S is
Mfs, H is written uniquely as H ≡ −µKX + φ∗(A), where µ is a positive rational number and A
is a Q-Cartier, Q-divisor on S. This µ is called the quasi-effective threshold of the pair (X,H). Let
c := sup{λ ∈ Q : KX + λH is canonical}, which is said to be the canonical threshold of (X,H). (In
the case BsH = ∅ we put c = +∞.) Finally, let e be the number of discrete valuations {E} of C(X)
which are exceptional over X and have discrepancy a(E;KX + cH) = 0. (Note that e � 0 is finite.)
The triplet (µ, c, e) is called the Sarkisov degree of (X,H).

We shall define the lexicographical order on the set of Sarkisov degrees as follows. When two
birational maps X/S

ϕ
����� X ′/S′ ϕ1��� � � X1/S1 between Mfs are given, we have two Sarkisov

degrees (µ, c, e) and (µ1, c1, e1) of the pairs (X,H) and (X1,H1) as defined just above, where H
(respectivelyH1) is the proper transform ofH′ by ϕ (respectively ϕ1). We write (µ, c, e) > (µ1, c1, e1)
if one of the following is satisfied:

(i) µ > µ1, or

(ii) µ = µ1 and c < c1 (not miswriting!!), or

(iii) µ = µ1, c = c1 and e > e1.

The essential idea in the Sarkisov program lies in untwisting the original birational map ϕ by
suitable elementary links to decrease the Sarkisov degree and to use the Noether–Fano–Iskovskih
inequality (cf. [Cor95, Cor00, Mat01]). We shall sketch the mechanism of the Sarkisov program
to factorize ϕ : X/S ����� X ′/S′. The reader should refer to [Cor95, Cor00, Mat01] for a more
detailed explanation. Roughly speaking, the four kinds of elementary links (types I–IV) are divided
into two groups, types I and II, and types III and IV, according as KX + (1/µ)H is canonical or
not.

If KX +(1/µ)H is canonical and nef, then ϕ is an isomorphism as Mfs by virtue of the Noether–
Fano–Iskovskih inequality (cf. [Cor95, Cor00]) and there is nothing to do. Otherwise, we need to
consider whether KX + (1/µ)H is canonical or not, separately.

In the case that KX + (1/µ)H is canonical but not nef, we can find a (KX + (1/µ)H)-negative
extremal ray, say P, by the cone theorem (cf. [KMM87]), and consider the extremal face F spanned
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by P and R, where R is an extremal ray giving rise to Mfs φ : X → S. Let contF : X → T be the
contraction of F. Note that since R ⊂ F, the contraction contF factors through φ = contR : X → S.
We run (KX + (1/µ)H)-MMP over T . Then we reach at the end either a log minimal model or a
log Mfs (with respect to KX + (1/µ)H over T ). Thus we obtain a link of type III or IV according
as the last birational contraction in this (KX + (1/µ)H)-MMP over T is divisorial or not.

On the other hand, if KX +(1/µ)H is not canonical, i.e. c < 1/µ, then we need to take a suitable
birational modification according to the singularities of a general member of H as follows.

Definition 2.2. We call p : Z → X a maximal divisorial blow-up with respect to KX + cH if
p : Z → X is a projective birational morphism from Z with only Q-factorial, terminal singularities
such that:

(i) 	(Z/X) = 1;
(ii) the exceptional locus of p is a prime divisor; and
(iii) p is (KX + cH)-crepant, i.e. KZ + cHZ ≡ p∗(KX + cH), where HZ is the proper transform of

H on Z.

A discrete valuation E of C(X) is said to be a (strong) maximal singularity of H if E is the excep-
tional divisor of a suitable maximal divisorial blow-up. A maximal center is the center CenterX(E)
on X of a maximal singularity E.

Remark 2.1. If KX + (1/µ)H is not canonical, then H has a base locus BsH �= ∅ and, furthermore,
a maximal center of H is contained in BsH.

It is known that a maximal divisorial blow-up with respect to KX +cH always exists (cf. [Mat01,
Proposition 13-1-8]). After taking a maximal divisorial blow-up p : Z → X with respect to KX +cH,
we run (KZ + cHZ)-MMP over S. Then we necessarily reach a log Mfs φ1 : X1 → S1. (Note that
the case where we reach a log minimal model over S does not occur.) According to whether the last
birational contraction in the (KZ + cHZ)-MMP over S is divisorial or not, we obtain an elementary
link of type II or type I.

Thus we can construct an elementary link ϕ1 : X/S ����� X1/S1 of type I–IV. It can be verified
that the Sarkisov degree of (X1,H1), say (µ1, c1, e1), decreases strictly compared with that of (X,H).
Therefore we have a new birational map ϕ ◦ ϕ−1

1 : X1/S1
����� X ′/S′ between Mfs with strictly

smaller Sarkisov degree (µ1, c1, e1). We then ask again whether or not KX1 + (1/µ1)H1 is canonical
and nef. If the answer is yes, then ϕ ◦ϕ−1

1 : X1/S1
����� X ′/S′ is an isomorphism by the Noether–

Fano–Iskovskih inequality to see ϕ = ϕ1. On the other hand, if the answer is no, we repeat the
above mentioned process with ϕ replaced by ϕ ◦ ϕ−1

1 . Each time we untwist, the Sarkisov degree
should strictly drop. Finally, it is known that this process has to come to an end after finitely many
repetitions to obtain the expression of ϕ as a composite of elementary links, which we shall call the
Sarkisov factorization of ϕ directed by H.

3. Maximal centers of Cremona transformations on P3 induced by tame
automorphisms on C3

As explained in § 2, the Sarkisov program gives us a useful algorithm to factorize a given birational
map among Mfs into elementary links. The elementary links of types I and II start with suitable
maximal divisorial blow-ups along maximal centers (Definition 2.2). In many applications of the
Sarkisov program to explicit birational geometry, it is essential to investigate maximal centers.
For instance, this plays a substantial role in showing that there exist very few Mori fiber spaces
which are birational to some kinds of Q-Fano 3-folds, e.g. quartic 3-folds admitting a certain kind
of singularity (cf. [Cor00, CPR00, CM04, Mel04]). In this section, we shall consider especially a
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Cremona transformation Φθ on P3, which is induced by a tame automorphism θ on the inside affine
3-space C3, and investigate a maximal center of the first elementary link when applying the Sarkisov
program for Φθ. As seen in Theorem 1.1, for any Sarkisov factorization of Φθ, the maximal center
of the first elementary link is either a point or a line on the hyperplane at infinity provided that θ
is tame. First of all, we shall restrict the possibility of maximal centers of the first elementary link
without the tameness assumption.

Proposition 3.1. Let θ ∈ G3 be an automorphism on the affine 3-space C3 (which is not necessarily
tame), and let Φθ : P3 ����� P3 be the Cremona transformation induced by θ in a natural way.
Then the maximal center of the first elementary link of the Sarkisov factorization of Φθ is either a
point, a line or a smooth conic on the hyperplane at infinity.

Proof. We put f(x, y, z) := θ(x), g(x, y, z) := θ(y) and h(x, y, z) := θ(z), and let F (x, y, z, t),
G(x, y, z, t) and H(x, y, z, t) be the corresponding homogeneous polynomials of f , g and h, respec-
tively. Put d := max{deg(f),deg(g),deg(h)}, and we may assume that d = deg(f). Then, by the
mechanism of the Sarkisov program (see [Cor95]; see also § 2, Remark 2.1), it is easy to see that
the maximal center of the first elementary link χ1, say C0, is contained in the plane curve of degree d:

C := (F (x, y, z, 0) = 0) ⊂ H∞ ∼= P2
[x:y:z],

where H∞ is the hyperplane at infinity with respect to the canonical open immersion C3 ↪→ P3.
Note that since C is a boundary of the affine plane (f = 0) ∼= C2, each irreducible component of C
is rational and C does not contain a circular chain (cf. [Miy01]). Provided that the maximal center
C0 is not a point on H∞, it coincides with a suitable (rational) curve contained in C. Since P3 is
smooth, χ1 starts with just the blow-up along the plane curve C0, say p : Z → P3 (cf. [Mor82]).
If deg C0 � 3, then C0 has a singular point, so that the resulting 3-fold Z has a singular locus of
dimension one. This implies that Z cannot be terminal, which is a contradiction to the mechanism
of the Sarkisov program (see § 2). Hence it follows that C0 is either a line or a (smooth) conic.

In what follows, we assume that θ is a tame automorphism on C3. Since θ is tame, it is written
as in the following fashion:

θ = τN+1 ◦ σN ◦ τN ◦ · · · ◦ σ1 ◦ τ1, (∗)
where τj ∈ A3 (respectively σi ∈ J3\A3) is an affine transformation (possibly an identity) (respec-
tively de Jonquière transformation but is not affine) on C3.

Lemma 3.1. We have

Φθ = ΦτN+1
◦ ΦσN

◦ΦτN
◦ · · · ◦ Φσ1 ◦Φτ1 , (∗∗)

where Φτj (respectively Φσi) is the Cremona transformation on P3 arising from τj (respectively σi)
in a natural way.

Proof. It is clear to see the assertion.

Since the Sarkisov program gives us an algorithm of factorizations up to automorphisms on P3,
we may assume that Φτ1 = ΦτN+1

= id in (∗∗) to obtain our result (Theorem 1.1). We factorize
each Cremona transformation Φσi induced from σi ∈ J3\A3 into elementary links according to the
Sarkisov program directed by a suitable mobile linear system (cf. § 2, and [Cor95]), say

Φσi = χ(i)
ri
◦ · · · ◦ χ

(i)
1 (up to linear transformations on P3), (�)i

where χ
(i)
l is an elementary link for 1 � l � ri. Thus, by substituting, we have the factorization

of Φθ:
Φθ = (χ(N)

rN
◦ · · · ◦ χ

(N)
1 ) ◦ ΦτN

◦ · · · ◦Φτ2 ◦ (χ(1)
r1
◦ · · · ◦ χ

(1)
1 ) (∗∗∗)

into elementary links up to linear transformations on P3.
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Although (∗∗∗) does not necessarily come from Sarkisov factorization, it gives us important
information by combining with the result due to Freudenburg [Fre95, Theorem 1.1.1]. From now
on for the time being, we shall state the result in [Fre95] in the form which is enough for our
purpose. (In fact, Freudenburg [Fre95] has proved more general results concerning automorphisms
on projective 3-folds of the forms Fn, F(m,n) and Fu

(m,n); see Remark 3.2 for the definition of these
3-folds.)

Theorem 3.1 (cf. [Fre95, Theorem 1.1.1]). Let α be an automorphism of de Jonquière type on
the affine 3-space C3. Then there exists an algebraic 3-fold V of the form either V ∼= Fn, F(m,n) or
Fu

(m,n) for suitable non-negative integers m,n, u ∈ Z (see [Fre95] for the definitions of Fn, F(m,n) and

Fu
(m,n); see also Remark 3.2), which contains C3 as a Zariski open subset, such that α is extended

to an automorphism on V .

Remark 3.1. Algebraic 3-folds V ∼= Fn, F(m,n) and Fu
(m,n) as in Theorem 3.1 have the structure of

a P1-bundle over P2, a P2-bundle over P1 and an Fu-bundle over P1, respectively (cf. Remark 3.2).
There exists a birational map χ : P3 ����� V , which does not have any influence on the inside C3,
such that it fits into the following commutative diagram.

V
ϕα∼ �� V

χ−1

���
�
�

P3

χ

���
�
�

Φα ����� P3

C3

inclusion

��

α∼ �� C3

inclusion

��

Here Φα : P3 ����� P3 is, as usual, the Cremona transformation arising from α ∈ J3 in a natural
fashion, and ϕα : V

∼−→ V is an automorphism whose existence is guaranteed by Theorem 3.1.
More precisely, we can describe the procedure χ : P3 ����� V explicitly as a composite of so-called
elementary transformations in terms of [Fre95]. Via these elementary transformations, several Fn′ ,
F(m′,n′) and Fu′

(m′,n′) are connected to each other keeping the inside C3 untouched (cf. Remark 3.2).

Remark 3.2 (Definitions of Fn, F(m,n), Fu
(m,n) and elementary transformations).

(1) By definition, Fn is just a P1-bundle structure over P2: Fn := P(OP2 ⊕OP2(n)). It is easy to
construct a sequence of elementary transformations

χ : P3/{pt.} ← F1/P2 ����� F2/P2 ������� Fn−1/P2 ����� Fn/P2,

in such a way that χ has no influence on the inside affine 3-space C3. In fact, P3 ← F1 is just the
blow-up along the maximal ideal of a point p on the hyperplane at infinity H∞ with the exceptional
divisor E1

∼= P2 corresponding to the natural surjection OP2 ⊕OP2(1) → OP2 . Let H1
∼= F1 be the

proper transform of H∞ on F1. Let elml1 : F1
����� F2 be the elementary transformation along

l1 := H1 ∩ E1, that is, we have elml1 = π1 ◦ ρ−1
1 , where ρ1 : T1 → F1 is the blow-up along l1, and

π1 : T1 → F2 is the contraction of the proper transform of H1 onto a curve. Let H2 and E2 be
the proper transforms on F2 of Exc(ρ1) and E1, respectively, and put l2 := H2 ∩ E2. Note that
P3\H∞ ∼= F1\(H1 ∪E1) ∼= F2\(H2 ∪E2) ∼= C3. In the similar manner, we can construct elementary
transformations elmli : Fi

����� Fi+1 inductively, in such a way that they do not bring any change
on the inside C3.

(2) Before the definition of Fu
(m,n), we need to define F(m,n) with n � m � 0, and birational

maps among them. By definition, F(m,n) is a P2-bundle structure over P1:

F(m,n) := P(OP1 ⊕OP1(m)⊕OP1(n)),
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and let B(m,n)
∼= Fn (respectively C(m,n)

∼= Fm) be a divisor on F(m,n) corresponding to the surjection

OP1 ⊕OP1(m)⊕OP1(n)→ OP1 ⊕OP1(n)

(respectively OP1 ⊕ OP1(m) ⊕ OP1(n) → OP1 ⊕ OP1(m)). Let H(m,n) be a fiber of a P2-bundle
F(m,n)/P1, and let l(m,n) := C(m,n) ∩H(m,n) and l′(m,n) := B(m,n) ∩H(m,n). Then we have elementary
transformations along l(m,n) and l′(m,n), respectively, say

elml(m,n)
: F(m,n)

����� F(m,n+1) and elml′
(m,n)

: F(m,n)
����� F(m+1,n),

namely, we have elml(m,n)
= π(m,n) ◦ ρ−1

(m,n) and elml′
(m,n)

= π′
(m,n) ◦ ρ′−1

(m,n), where ρ(m,n) (respec-
tively ρ′(m,n)) is the blow-up along l(m,n) (respectively l′(m,n)), and π(m,n) (respectively π′

(m,n)) is
the contraction of the proper transform of H(m,n) onto a smooth point. Let B(m,n+1), C(m,n+1) and
H(m,n+1) (respectively B(m+1,n), C(m+1,n) and H(m+1,n)) be proper transforms of B(m,n), C(m,n)

and Exc(ρ−1
(m,n)) (respectively B(m,n), C(m,n) and Exc(ρ′−1

(m,n))) on F(m,n+1) (respectively F(m+1,n)).
Moreover, we put l(m,n+1) := C(m,n+1) ∩H(m,n+1) and l′(m,n+1) := B(m,n+1) ∩H(m,n+1) on F(m,n+1),
and l(m+1,n) := C(m+1,n) ∩H(m+1,n) and l′(m+1,n) := B(m+1,n) ∩H(m+1,n) on F(m+1,n).

(3) Let F0
(m,n) := F(m,n) be as in (2) with n � m � 0. Then the algebraic 3-fold F1

(m,n) is
obtained from F0

(m,n) via just the blow-up along the curve B(m,n) ∩ C(m,n) with the exceptional
divisor D1

(m,n)
∼= Fn−m. Let B1

(m,n) (respectively C1
(m,n)) be the proper transform on F1

(m,n) of
B(m,n) (respectively C(m,n)). Let elmt1

(m,n)
: F1

(m,n)
����� F2

(m,n) be the elementary transformation

along the curve t1(m,n) := C1
(m,n) ∩D1

(m,n), namely, we have

elmt1
(m,n)

= π1
(m,n) ◦ ρ1

(m,n)
−1

,

where ρ1
(m,n) : U1

(m,n) → F1
(m,n) is the blow-up along t1(m,n), and π1

(m,n) : U1
(m,n) → F2

(m,n) is the
contraction of the proper transform on U1

(m,n) of C1
(m,n) onto a curve. Let C2

(m,n) (respectively
D2

(m,n)) be the proper transform on F2
(m,n) of Exc(ρ1

(m,n)) (respectively D1
(m,n)), and put t2(m,n) :=

C2
(m,n)∩D2

(m,n). In similar fashion, we can construct birational maps elmti
(m,n)

: F i
(m,n)

����� F i+1
(m,n)

along a curve ti(m,n) := Ci
(m,n)∩Di

(m,n) inductively, in such a way that they do not bring any change
on the inside affine part C3. It is easy to see that Fu

(m,n) has a structure of an Fu-bundle over P1.

(4) By using elementary transformations in (2) and (3) above, we can construct a sequence of
birational maps:

χ′ : P3/{pt.} ← F(0,1)/P1 ����� F(0,2)/P1 ������� F(0,n)/P1

����� F(1,n)/P1 ������� F(m,n)/P1,

and

χ′′ : F(m,n)/P1 ← F1
(m,n)/P1 ������� Fu−1

(m,n)/P1 ����� Fu
(m,n)/P1

in such a way that the composite χ := χ′′◦χ′ does not have any effect on the inside affine 3-space C3.

Remark 3.3. The 3-folds which we can choose as V in Theorem 3.1 depend on the form of an
automorphism α ∈ J3 of de Jonquière type. If α ∈ J3 is of the form:

α :




x �→ ax + g(y, z),
y �→ by + b′z + b′′,
z �→ cz + c′,

with abc �= 0, then we can choose V ∼= Fn in such a way that deg g(y, z) � n. On the other hand,
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assume that α ∈ J3 is of the form:

α :




x �→ ax + g(y, z),
y �→ by + h(z),
z �→ cz + c′,

with abc �= 0, h(z) ∈ C[z]\C, d1 := deg h(z) > 0, d2 := degy g(y, z). Let δ := wt g(y, z) be the
weighted degree of g with respect to wt (y) = d1 and wt (z) = 1. Then by choosing n and m in such
a way that n � max{d1, d2, δ} and m = n − d1, we can take V ∼= Fn

(m,n) (see [Fre95] for a more
detailed explanation).

In order to prove Theorem 1.1, we prepare the following lemma.

Lemma 3.2. Let α ∈ J3 be an automorphism of de Jonquière type, and let Φα : X = P3 ����� X ′ =
P3 be the Cremona transformation induced by α in a natural way. Let ν be a discrete valuation
whose center CenterX(ν) on X is either a point or a line on the hyperplane at infinity H∞ = X\C3,
or H∞ itself. Then the center CenterX′(ν) of ν on X ′ is either a point or a line on H ′∞ := X ′\α(C3),
or H ′∞ itself.

Proof. In the case where α is linear, the assertion is clear, so we may assume that α ∈ J3\A3 in what
follows. By Theorem 3.1, there exist an algebraic threefold V , and a birational map χ : P3 ����� V ,
which is isomorphic when restricted onto the inside affine 3-space C3, such that an automorphism
α can be extended to an automorphism ϕα : V

∼→ V which fits into the commutative diagram in
Remark 3.1; in particular, we have Φα = χ−1 ◦ϕα ◦χ. More precisely, χ is expressed as a composite
of elementary transformations as mentioned in Remark 3.2(1), (2) and (3). Let h : U → V be a
composite of blow-ups of smooth centers which extracts all the discrete valuations influenced by
the process χ, such that g := χ−1 ◦ h : U → P3 gives rise to a morphism and ϕα is extended to
an automorphism on U , say φα : U

∼→ U . In other words, P3 g← U
g◦φα→ P3 is a minimal common

resolution of Φα. More precisely, let {Ej}rj=1 exhaust the g-exceptional divisors and let E0 be
the proper transform on U of H∞. Then φα also induces a suitable permutation of these divisors
φα : {E0, E1, · · · , Er} ∼→ {E0, E1, · · · , Er} and g ◦ φα contracts {Ej}rj=0 except for exactly one
component distinct from E0, which becomes H ′∞ on X ′. We then note the following.

Claim. CenterX (Ej) = g(Ej) is either a point or a line on H∞ (1 � j � r).

Proof of claim. Since α is of de Jonquière type, it is not difficult to see the assertion. Indeed, let:

α :




x �→ p(x, y, z) = ax + g(y, z)
y �→ q(x, y, z) = by + h(z)
z �→ r(x, y, z) = cz + c′,

where abc �= 0. We consider the case where d := max{deg(p),deg(q),deg(r)} = deg(p). The other
case also can be ascertained by the similar argument. Let P (x, y, z, t), Q(x, y, z, t), R(x, y, z, t) be
the corresponding homogeneous polynomials, where H∞ is defined by t = 0. Then the base locus
of the mobile linear system Φα

−1
∗ |OP3(1)| is contained in the plane curve B := (P (x, y, z, 0) = 0) ⊂

H∞ ∼= P2
[x:y:z]. Note that P (x, y, z, 0) coincides with the highest degree part of p(x, y, z), so that it

coincides with the homogeneous part gd(y, z) of degree d of g(y, z). Hence B is composed of several
lines on H∞ passing through [1 : 0 : 0]. Since the set of points on X where Φα is not indeterminate
is contained in B, the assertion holds true by construction.

We shall prove the assertion of the Lemma. Let ν be a discrete valuation whose center CenterX (ν)
on X is either a point, or a line in H∞, or H∞ itself. We shall divide into the three cases.
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Case 1. If CenterX (ν) coincides with H∞, then its center on U is E0, and it is contracted via
the process g ◦ φα. By the symmetry between g and g ◦ φα (up to φα), it follows that its center
CenterX′(ν) = (g ◦ φα)(E0) on X ′ is either a point or a line in H ′∞ in consideration of the Claim.

Case 2. Let us consider the case where CenterU (ν) coincides with Ej for some 1 � j � r. If Ej

is contracted via g ◦ φα, then the assertion holds true by the same argument as in Case 1. On the
other hand, if Ej is not contracted by g◦φα, this implies that the center CenterX′ (ν) = (g◦φα)(Ej)
coincides with H ′∞.

Case 3. Finally, if ν does not correspond to Case 1 or Case 2, then CenterU (ν) is a point or a curve
in E0. In either case, by noting that E0 is contracted via g ◦ φα, it follows that CenterX′ (ν) =
(g◦φα)(CenterU (ν)) is either a point or a line by virtue of the Claim and by the symmetry between
the process of g and g ◦ φα.

Thus we complete the proof of the Lemma.

Proof of Theorem 1.1
We shall use the same notation as before Theorem 3.1. Our proof consists of three steps.

Step 1. First of all, we write θ as a composite of affine and de Jonquière transformation as in (∗) to
obtain the expression (∗∗∗) after performing Sarkisov factorization to each Φσi as in (�)i. On the
other hand, let

Φθ = χ′
s ◦ · · · ◦ χ′

1 (�)
be a Sarkisov factorization of Φθ. Then we make the following claim.

Claim 1. The (strong) maximal singularity of χ′
1 (cf. Definition 2.2) is extracted in the procedure

χ
(j)
k in (∗∗∗) for some 1 � j � r and 1 � k � rk.

Proof of Claim 1. Assume to the contrary that the strong maximal singularity of χ′
1, say ν, does

not appear in any of the χ
(j)
k . Then, the birational map Φθ is isomorphic along ν. In particular,

this implies that KP3 + (1/µ)H is canonical along ν for any H := Φθ
−1
∗ |OP3(k)|, where µ is a

quasi-effective threshold of the pair (P3,H) (see § 2). This is a contradiction.

Step 2. Let ν be the strong maximal singularity of χ′
1. We need to see that the center CenterP3(ν) of

ν on the starting projective 3-space P3 is either a point or a line on the hyperplane at infinity H∞.
By Claim 1, ν appears in a suitable χ

(j)
k . This elementary link χ

(j)
k itself appears in the Sarkisov

factorization of Φσj :

Φσj = χ(j)
rj
◦ · · · ◦ χ

(j)
1 : X

(j)
0 /S

(j)
0 := P3/{pt.} ����� X

(j)
1 /S

(j)
1

������� X(j)
rj

/S(j)
rj

:= P3/{pt.}. (�)j

Since σj is of de Jonquière type, there exist an algebraic 3-fold V , a birational map χ : P3 ����� V
and an automorphism ϕ : V

∼−→ V such that Φσj = χ−1 ◦ϕ ◦χ by virtue of Theorem 3.1. Moreover,
χ is decomposed into elementary transformations as mentioned in Remark 3.2. Then, as in Claim 1,
we make the following claim.

Claim 2. The singularly ν is extracted in some elementary transformation appearing in χ−1 ◦ϕ◦χ.

Proof of Claim 2. Otherwise, Φσj is isomorphic along ν, in particular, X
(j)
k−1/S

(j)
k−1

����� X
(j)
rj /S

(j)
rj

= P3/{pt.} is isomorphic along ν. This implies that K
X

(j)
k−1

+ (1/µ)H is canonical along ν for any

mobile linear system H, which is a proper transform on X
(j)
k−1 of a very ample complete linear system

on X
(j)
rj , with µ the quasi-effective threshold of (X(j)

k−1,H) (see § 2). This is a contradiction.
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Step 3. By Claim 2, the discrete valuation ν in question appears in a suitable elementary trans-
formation in χ−1 ◦ ϕ ◦ χ = Φσj : X = P3 ����� X ′ = P3. In particular, CenterX(ν) is either a
point or a line, or the hyperplane at infinity itself, in consideration of the procedure of elementary
transformations. Then repeated application of Lemma 3.2 for σ−1

j−1, . . . , σ
−1
1 implies that the center

CenterP3 (ν) on the starting P3 is either a point or a line in the hyperplane at infinity H∞, or H∞
itself. Note that the case where CenterP3 (ν) coincides with H∞ is obviously not possible by the
mechanism of the Sarkisov Program.

Thus we complete the proof of Theorem 1.1 by using Proposition 3.1.

Remark 3.4. Although Theorem 1.1 and the main results due to Shestakov and Umirbaev in [SU04b,
Theorem 2, Corollary 8] give us certain necessary conditions for a given automorphism θ ∈ G3 on C3

to be tame, and are enough to prove the non-tameness of the Nagata automorphism (cf. Theorem 1.2;
see also [SU04b, Corollary 9]) and many other automorphisms (see § 4, Example 4.1), they are not
sufficient conditions. In fact, there exists an example of θ ∈ G3 which is not tame, nevertheless
Theorem 1.1 and [SU04b, Theorem 2, Corollary 8] cannot recognize that θ is not tame (cf. § 4,
Example 4.2).

4. A new proof of the non-tameness of the Nagata automorphism

In this section, we shall give a new proof for the result on the non-tameness of the Nagata automor-
phism σ due to Shestakov and Umirbaev (cf. [SU04a, SU04b]), as an application of Theorem 1.1.
Let Φσ : P3 ����� P3 be the Cremona transformation induced by σ in a natural manner, namely,
it is defined as follows (see § 1):

Φσ :




x �→ F := xt4 − 2y(xz + y2)t2 − z(xz + y2)2,
y �→ G := (yt2 + z(xz + y2))t2,
z �→ H := zt4,

t �→ I := t5,

where t = 0 defines the hyperplane at infinity H∞ with respect to the canonical open immersion
C3

(x,y,z) ↪→ P3
[x:y:z:t].

Remark 4.1. By virtue of Theorem 1.1, once we have succeeded in the explicit Sarkisov factorization
of Φσ as in [Kis05], it is easy to see that σ is not tame. Indeed, we obtain the Sarkisov factorization of
Φσ into eight elementary links, say

Φσ = χ8 ◦ · · · ◦ χ1,

such that the first elementary link χ1 starts with the blow-up along a smooth conic on H∞
(cf. [Kis05]). As a consequence, it follows that the Nagata automorphism σ is not tame by Theo-
rem 1.1. However, for a given automorphism τ ∈ G3 on C3, it is usually difficult to perform the
explicit Sarkisov factorization of the Cremona transformation Φτ induced by τ . For the further
application of Theorem 1.1, it is useful to develop a technique to look into (non-)tameness that does
not depend on the explicit Sarkisov factorizations. Theorem 1.1 indicates that the essential idea
often lies in the maximal center of the first elementary link in a suitable Sarkisov factorization.

We shall, now, give a new proof of the non-tameness of the Nagata automorphism σ, which
relies only on a maximal center of the first elementary link and does not depend on the explicit
Sarkisov factorization itself. In our strategy to determine the maximal center, we make use of the
technique in [Cor00, Corollary 3.4] due to Corti, which is one of the consequences of inversion of
adjunction [Kol92, Chapters 16 and 17].
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Proof of Theorem 1.2

Our proof consists of three steps. Let σ be the Nagata automorphism, and let Φσ : P3 ����� P3 be
the Cremona transformation induced by σ (see the beginning of this section).

Step 1. At first, we shall investigate a factorization of Φσ into elementary links according to the
Sarkisov program. For this purpose, we consider a very ample complete linear system |OP3(d)| on
the target P3 and its proper transform H := Φσ

−1
∗ |OP3(d)| by Φσ. By the equation of Φσ, the linear

system H is described as follows:

H = 〈FαGβHγIδ|α + β + γ + δ = d;α, β, γ, δ � 0〉,
which means thatH is spanned by hypersurfaces in P3 defined by FαGβHγIδ = 0 (α+β+γ+δ = d).
It is easy to see that the base locus BsH coincides set-theoretically with C0 ∪L0, where C0 := (t =
xz + y2 = 0) and L0 := (t = z = 0). By the mechanism of the Sarkisov program (cf. [Cor95] or § 2),
we need to determine the Sarkisov degree (µ, c, e) of the pair (P3,H) (cf. Definition 2.1), and look for
a maximal center and a maximal divisorial blow-up (cf. Definition 2.2) in order to construct the first
elementary link. (Note that a maximal center is contained in BsH.) Since H ⊂ |OP3(5d)|, we have
µ = 5d/4. Let S ∈ H be a general member. Then it follows that multC0 S = 2d and multL0 S = d,
hence we can easily see that the canonical threshold c of (P3,H) is less than or equal to 1/2d, and
the line L0 cannot be a maximal center.

Step 2. In fact, we have the following claim concerning the possibility of a maximal center. This is
the crucial part in our proof.

Claim. The conic C0 is a unique maximal center and c = 1/2d. In other words, any point and any
curve different from C0 cannot be a maximal center.

Proof of Claim. Note that a maximal center is contained in BsH = C0∪L0 (cf. Remark 2.1). Since
we have already excluded L0 as a maximal center, we have to verify that any discrete valuation E of
C(P3) exceptional over P3 with CenterP3(E) = {pt.} is canonical with respect to KP3 +(1/2d + ε)H
for a sufficiently small 0 < ε � 1. Assume to the contrary that a point p contained in C0 ∪ L0

is a maximal center, i.e. KP3 + (1/2d + ε)H is not canonical at p for 0 < ε � 1. Let H0 be a
mobile sublinear system of H spanned by S and 5dH∞, where S is a general member of H. Then
KP3 + (1/2d + ε)H0 is not canonical at p. Thus, by virtue of [Cor00, Corollary 3.4], we have the
following inequality concerning multiplicity:

multp S1 · S2 > 4
(

2d
1 + 2dε

)2

,

where S1 ·S2 stands for a scheme-theoretic intersection of two general members S1, S2 of H0. On the
other hand, it is not difficult to see that S1 ·S2 = 5d2(2C0 +L0). Hence we have multp S1 ·S2 � 15d2

(the equality multp S1 ·S2 = 15d2 is attained only when p = C0∩L0). Thus we have a contradiction
by choosing ε sufficiently small. Thus we see that C0 is a unique maximal center. The remaining
assertion c = 1/2d is then easy to see.

Step 3. By the previous claim, we know that, for a Sarkisov factorization of Φσ, the first elementary
link is unique and it starts with the blow-up along the conic C0. On the other hand, provided that
the Nagata automorphism σ is tame, the maximal center of the first elementary link appearing in
any Sarkisov factorization of Φσ is either a point or a line (Theorem 1.1). This is a contradiction.
Thus it follows that σ is not tame as desired.

This completes the proof of Theorem 1.2.
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Example 4.1 (cf. Bass [Bas84]). Let ∆ be the locally nilpotent derivation on C[x, y, z] of the form
∆ = z∂y−2y∂x, and let F := xz +y2. It is easy to see that D := F∆ is also locally nilpotent, hence
it yields an algebraic C+-action on C3, in other words, a C-algebra homomorphism (cf. [Miy78]):

ϕD : C[x, y, z]→ C[x, y, z][t], h �→
∑
k�0

Dk(h)
k!

tk,

where t is a coordinate on C+. For each t ∈ C+ fixed, ϕD gives rise to an exponential automorphism:

σt := exp(tD) : (x, y, z) �→ (x− 2tyF− t2zF 2, y + tzF, z).

(Note that, in the case of t = 1, σ1 is just the Nagata automorphism.) We can show that σt is not
tame by the same argument as in the proof of Theorem 1.2 for t �= 0.

Example 4.2. Both Theorem 1.1 and the main results [SU04b, Theorem 2, Corollary 8] do not give
us sufficient conditions for the tameness. For example, let σ be the Nagata automorphism as usual,
and let τ ∈ J3 be defined as follows:

τ :




x �→ x + y2 + z,

y �→ y + z2,

z �→ z.

Then the composite θ := τ ◦ σ is defined as:

θ :




x �→ −z9 + (lower degree terms),
y �→ z5 + y2z2 + 2yz3 + xz2 + y2z + z3 + z2 + y,

z �→ z.

Note that since σ is not tame, θ is also obviously not tame. However, we have the following.

(a) Composite θ admits an elementary reduction in the sense of [SU04b, p. 204]. Therefore, we
cannot conclude that θ is not tame from [SU04b, Theorem 2, Corollary 8].

(b) The first elementary link appearing in the Sarkisov factorization of Φθ starts with a divisorial
blow-up with a maximal center contained in the line (t = z = 0) on the hyperplane at infinity
H∞ = (t = 0). Hence, we cannot deduce that θ is not tame from Theorem 1.1.

As the above mentioned example indicates, for a non-tame automorphism on C3 which is ob-
tained as a composite of non-tame and tame automorphisms, Theorem 1.1 is not effective.

Remark 4.2. In consideration of Example 4.2, it is helpful to define a certain class of non-tame
automorphisms on C3. For θ ∈ G3, we put deg θ := deg θ(x)+deg θ(y)+deg θ(z). An automorphism
θ is said to be non-essential if at least one of deg(τ ◦θ) and deg(θ◦τ) is strictly smaller than deg θ by
using a suitable tame automorphism τ ∈ T3. Note that any automorphism in T3\A3 is non-essential.
If θ is not non-essential, then we call it essential. Furthermore, if θ is non-tame and essential, then
θ is said to be essentially non-tame. It is important to classify essentially non-tame automorphisms
in order to investigate the structure of G3. We can construct some essentially non-tame ones on
C3 with reference to the explicit factorization of Φσ as in [Kis05]. Although we can construct them
geometrically, the weak point of our approach lies in the difficulty to write down the equations of
such geometrically constructed automorphisms concretely.

For the further investigation of essentially non-tame automorphisms on C3 and the group G3, it
is important to consider the following problem.

Problem 1. Is there an essentially non-tame automorphism θ on the affine 3-space C3 such that
the Sarkisov factorization of the Cremona transformation Φθ on P3 induced by θ starts with a
(weighted) blow-up at a point on the hyperplane at infinity?
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To our knowledge, we do not know such an example θ ∈ G3 satisfying the property in Problem 1.
Once we know that the first elementary link appearing in the Sarkisov factorization of Φθ has a
point, say p, as a maximal center, it starts with a weighted blow-up of weights wt (u, v,w) = (1, a, b),
where (u, v,w) are suitable local coordinates at p, and a, b are co-prime positive integers by virtue of
the result due to Kawakita [Ka01]. However, as mentioned in [KSC04, pp. 133], the main practical
difficulty lies in the fact that (u, v,w) are not necessarily linear with respect to the global coordinates.
In consideration of this fact, it is also important to investigate the following problem.

Problem 2. Classify the elementary links χ1 : P3 ����� X1/B1 which start with a weighted blow-up
at a point on the hyperplane at infinity.
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