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Numerical range theory for linear operators on normed linear spaces and
for elements of normed algebras is now firmly established and the main results
of this study are conveniently presented by Bonsall and Duncan in (1971) and
(1973). An extension of the spatial numerical range for a class of operators on
locally convex spaces was outlined by Moore in (1969) and (1969a), and an
extension of the algebra numerical range for elements of locally m- convex
algebras was presented by Giles and Koehler (1973). It is our aim in this paper
to contribute further to Moore's work by extending the concept of spatial
numerical range to a wider class of operators on locally convex spaces.

1. The spatial numerical range of quotient bounded operators

For a separated locally convex space X there exists a separating family of
semi-norms {pa} which generates the locally convex topology. We follow
Moore in specifying that the numerical range of an operator on a locally convex
space X is dependent on the particular family of seminorms {p«} chosen to
generate the topology. We denote by (X,{pa}) the linear space X with a
particular separating family of semi-norms {pa} which generates the topology
as a base. (Moore calls such a family {pa} a calibration for X.)

Given (X, {pa}) we call a linear operator T on X quotient bounded if for
each a there exists a Ka > 0 such that

pa(Tx) g Kapa(x) for all x G X.

The set of quotient bounded operators Q(X,{pa}) is a subalgebra of L(X) the
algebra of continuous linear operators on X. For any given T £ Q(X,{p«}) and
each a we define

468

https://doi.org/10.1017/S1446788700016189 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016189


[2] Operators on locally convex spaces 459

qa(T) = sup {pATx):pa(x)^ 1 forxGX};

then {q,,} is a separating family of sub-multiplicative semi-norms on Q(X, {p,,})
such that qa(I) = 1 for all a. Q(X,{pa}) with the topology generated by {qn} is a
unital l.m.c. algebra and we denote by ((?,{<?„}) the algebra Q(X,{pn}) with the
particular family {</„} which generates the topology. (In fact this algebra is
given as an example of an l.m.c. algebra by Michael (1952; page 11)).

Given (X,{pa}) we call a linear operator T on X universally bounded if
there exists K > 0 such that, for all a

^Kpa(x) for all x E X.

The set of universally bounded operators B{X,{p,,}) is a subalgebra of
<?(X,{p,,}). For any given 7 G B(X.{p,,}) we define

||r | | = sup{pa(rj0:p«.(jc)^l for* GX and all a};

then || • || is a norm for B(X,{pu}) and || T|| = sup(,qa(T). We denote this unital
normed algebra by (B, ||-||). (This is the particular class of operators to which
Moore confined his attention.)

Given (X, {p,,}), for each a let N,, denote the null space of p,, and Xa the
quotient space X/N,,. For each a, consider the natural mapping JC—>*„ =
x + N,, of X onto X,. It is clear that for each a, X, is a normed linear space
with norm defined by \\x,, \\,, = p,,(x). For each a, consider the algebra
homomorphism T-^T" of C?(X,{p<,}) into B(X.) defined by T"xa = (Tx)a.
Since T(N,,)Q N,, for every a, these operators T" are well defined. But also,
for each a, B(X,) is a unital normed algebra and we have for the operator norm
on B(X.) that

|| T" ||,, = sup {|| r x ||L: || xa \l § 1 for xa 6 X,}

= sup{p,,(Tx): p^(x)Sl for x e X } =

We now proceed to a definition of numerical range for quotient bounded
operators.

For a normed linear space (X. |l • ||) we define the sets,

5 - { x e X : | | x | | = l } ,

for each xES D(x) = {/e X': f(x) = 1 and ||/| |= 1}, and

n = { ( x , / ) G X x X ' : x £ S and f E D(x)}.

For T G B(X) we define the spatial numerical range of T as the set

For each TEB(X) we have that V(X,||||; T) is a bounded subset of the
complex numbers and is contained in the disc with centre 0 and radius || T ||.
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For a separated locally convex space X, given (X, {pn}), for each a
consider the normed linear space (X,,||-||a) the completion of (Xa, ||-||a). For
any given T (E Q(X,{pa}) and a, the operator T° on (X,,||-||,,) has a unique
continuous linear extension T" on (X,,|| •!!„). We define the spatial numerical
range of T as the set

V(X,{pt,}; T)= U V(X,,|H|,,; T-).

Of course, V(X,{pa}; T) is not necessarily bounded for each TG Q(X,{pn}).
But it is clear that this numerical range has the usual numerical range
properties:

for T G Q(X,{pa}) and complex A, \i

V(X,{pa}; XT + ix) = AV(X,{p.,}; T) + /x,

and for T, S G Q(X.{p,,})

p,J; T + S)Q V(X,{p,A; T)+ V(X,{P<1}; S).

Given (X,{p,,}), for each a consider the semi-normed space (X,p,,) and
define the sets

- Sa ={xeX: pa(x)= 1}.

for each x G S,,

Da(x) = {fGX':f(x) = \ and |/(y)| ^pAy) foral lyGX}.

and

n,,={(x,f)eXxX':xE.S,, and /G

For each a and x G S,v, consider the mapping /—»/„ of D,,(x) onto D(x,,)
defined by /„(y,,) = /(y). For every /GD.(jt), since N,,Cker/ the linear
functionals /„ are well defined and we have that /„(*„) = fix) = 1 and |/,,(y,,)| =
|/(y)|SpI t(y) = |jy<( ||<, for all y G X. It follows that for T G Q(X,{p,,}), f(Tx) G
V(X,{p»}; T) for all a and (*,/)£ ft,.

2. The numerical range and the spectrum

In a Banach space, the closure of the spatial numerical range of an
operator contains its spectrum. We now show that this relation holds for all
quotient bounded operators on a complete locally convex space.

LEMMA 1. Let X be a complete separated locally convex space. Given
(X,{pa}) and T<EQ(X,{pa}), T is invertible in Q(X,{po}) if and only if fa is
invertible in B(Xa) for all a.
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[4] Operators on locally convex spaces 471

PROOF. If T has an inverse T ' G Q(X,{p,,}) then f" has an inverse
f~'"<= B(X,,) for each a.

Conversely, suppose that for each a. t" has an inverse in B(Xn). Then for
each a there exists an m,, >0 such that

* mapa(x)^pa(Tx) ioraW x EX.

Since {pa} is a separating family, *implies that T is one-to-one.
T has a closed range. For any net {xs} such that {Txs} is convergent to

y E X, we have from* that {xs} is Cauchy in X. But since X is complete there
exists a n i G X such that {xs} is convergent to x and since T is continuous
y = Tx.

T also has a dense range. Consider y G X and any basic neighbourhood of
y, U = {x G X: pa(y - x) < e} for any given a and e > 0. Since f" is onto and
continuous on Xa there exists a n i £ X such that || ya — Taxa \\a < e; that is,
pa(y -Tx)<e and so Tx E U.

We conclude that T has an inverse T'x and from * that T~' G Q(X,{pa}).

COROLLARY. Let X be a complete separated locally convex space. Given
(X{/>4) and TEQ(X,{pa})

a(Q;T)= U o-(X,;T")= U a(Xa\f
a).

PROOF. It is clear that even when X is not complete,

cr(Q; T)D U o-(X; T")

and for every a

cr{Xa; T")Do-(X; f").

But from the lemma we have directly that

o-(Q; T)= U o-(X; f").

THEOREM 1. Let X be a complete separated locally convex space. Given
(X{/>„}), for any T GQ(X,{pa})

PROOF. From the normed linear space theory see Bonsall and Duncan
(1971; page 88) we have for each a

o-(Xa; T")c

Therefore,
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o-(Q;T)= U <T(X.; f")

Q \JV(Xa;\\-\\,.;T
a)Q {J V(K,; || • ||,,; t") = V(X,{pa}\ T).

3. The relation between the spatial and algebra numerical ranges

For a unital normed algebra the spatial numerical range of an element
acting as an operator on the algebra is the algebra numerical range of the
element. We show that this relation holds for elements of a unital l.m.c. algebra.

For a unital normed algebra G4,j|-||) we define the set

D ( l ) - { / 6 A ' : / ( l ) = l and | |/ | |=1}.

For a £ A we define the algebra numerical range of a as the set

For each a E A we have that V(A, || • ||; a) is a compact convex subset of the
complex numbers and is contained in the disc with centre 0 and radius ||a ||.
Considering the left regular representation a —>Ta of A in B(A) we have that

VC4,||||; a)= VG4,||||; Ta), (Bonsall and Duncan (1971; page 15)),

Let A be a unital l.m.c. algebra and {pa} be a separating family of
sub-multiplicative semi-norms which generates the topology and is such that
p,,(l) = 1 for all a. Given (A,{pa}), we define the algebra numerical range of a
as the set

pa};a)** U V(Aa,\\-\\a;aa).

Considering the left regular representation a —> Ta of A in T(A), since the
semi-norms pa are sub-multiplicative it follows that the image of A is a
subalgebra of Q(A,{pa}). For any given a £ A and a, and all Jt E A, we have

{ax)a =(Tax)a =(Ta)
axa

and since the natural mapping JC —»*„ is here an algebra homomorphism

(ax)a = aaxa = TUcx,x,

and so (Ta)
a = TUa.

Therefore, from the invariance of the normed algebra numerical ranges
under completions (Bonsall and Duncan (1971; page 16)) we have for each a,

V(Aa,\\-\\a;aa)= V(,Aa,\\-\\a\ aa)

= V(A,,|H|a; TaJ= V(Aa,\\-l ;(fj-) ,

and so, as in the normed case, we have
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[6] Operators on locally convex spaces 473

V(A,{p«ha)= V(A,{p«h Ta).

For a normed linear space (X, ||-||), the closed convex hull of the spatial
numerical range of a continuous linear operator on X is the algebra numerical
range of the operator as an element of the unital normed algebra of operators
B(X). We now show that for a separated locally convex space X, given
(X, {pu}) there is a similar relation between the spatial numerical range of a
quotient bounded operator and the algebra numerical range of the operators as
an element of the unital l.m.c. algebra (Q,{qa}).

Given (Q, {qu}), for each a let Ma denote the null space of qa and Qa

denote the quotient algebra QIMa. For each a, consider the natural mapping
T-+Ta = T + Mt, of Q onto Qa. It is clear that for each a, Qa is a unital
normed algebra with norm defined by || Ta \\a = qa(T).

For each a, we need to examine the relation between the unital normed
algebras (?„ and B(Xa).

LEMMA 2. Let Xbe a separated locally convex space. Given (X,{pa}). we
have that for each a, Qa is isometrically isomorphic to a unital subalgebra of
B(Xa).

PROOF. For any given a, consider the mapping Ta —> f" of Qa into B(Xa).
The mapping is well defined and is an isometry. For T,SG Q(X,{pa}),

II Ta - Sa I = \\(T-S)a I =qa(T-S) = \\(T - S)° I = || V - S" ||a.

The mapping is an algebra homomorphism. The mappings T-*TaoiQ onto Qo

and T—>f" of Q into B(Xa) are algebra homomorphisms, so it follows from
the mapping Ta -> t" of Qa into B(Xa) being well defined, that it is also an
algebra homomorphism.

COROLLARY. Let Xbe a separated locally convex space. Given (X, {pa}), for
any T(E(Q,{q<,})

PROOF. We have

V(Q,{q.hT)= U

But from the lemma and the invariance of the normed algebra numerical range
under unital subalgebras (Bonsall and Duncan (1971; page 16)) we have for
each a,

V(Qa,|| • ||a; T J = V(B(Xa),\\-\\a; ta).
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THEOREM 2. Let X be a separated locally convex space. Given (X, {p,,}), for
any TEQ(X,{p,,}) we have

p,,}; D C V(Q.{q,,}: T)CcoV(X,{p,,}; T),

and when {q,,} is a directed family.

coV(X,{p,,}; T)= V(Q,{q,,}- T).

PROOF. We have established the characterisation

V(Q,{q,,};T)= [J V(B(X,). || • ||,.; f").

But from the normed case (Bonsall and Duncan (1971; page 84)) we have, for
each a,

V(B(X, , ) . |H | , , ; f" ) = co V(X... ||-II..; f " ) .
So

V(Q,{q,,}: T)D U V(X,, , |H|, , : f")= V(X.{p,,}; T).

But also

V(Q,{q.,hT)= U ^V(X,,.|!-||,,; f")

| | | | ,{p,,}; T).

When {qa} is a directed family for the l.m.c. algebra (Q,{q,,}) we have that
V(Q.{q«}'• T) is convex and so

coV(X,{p,,}\ T)= V(Q,{q,,}; T).

4. Operators with bounded numerical range

We are now in a position to discuss boundedness of the spatial numerical
ranges of quotient bounded operators and to characterise classes of these
operators by boundedness of their numerical ranges and spectra.

Using Theorem 2 which relates the spatial and algebra numerical ranges
we are able to apply boundedness results previously established for algebra
numerical ranges.

THEOREM 3. Let X be a separated locally convex space. Given (X,{p,,}),

B(X,{p,,}) = {7<E£>(X,{p,,}): V(X.{p,,};T) is bounded}.

PROOF. For T G Q(X.{p,t}), if V(X.{p,,}; T) is bounded then by Theorem
2, V(Q,{qa}; T) is bounded and so by Giles and Koehler (1973; page 83) we
have that sup<ja(D<°o which implies that TGB(X,{Pa}).
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Conversely, it follows from Giles and Koehler (1973; page 85) that if
T&B(X,{pa}) then V(Q,{qa}; T) is bounded and so by Theorem 2,
V(X,{pa}; T) is bounded.

It follows that, if T G Q(X,{p,,})\B(X,{p,,}) then V(X,{p,,}; T) is un-
bounded. Nevertheless, we show that, when X is complete, for any TE
Q(X,{p,,}) with bounded spectrum a(Q; T) it is possible to find a family of
semi-norms {p,',} generating the topology of X such that T e Q(X, {p',}) and the
numerical range V(X,{p',,}; T) is bounded.

For a locally convex space, given (X, {p,,}) we say that a family of
semi-norms {p,',} generating the topology of X is quotient preserving if it has the
same indexing and for each a there exist m,,, M,, > 0 such that

m,,p,, (x) g p !,(x) S M,,p,, (x) for all x e X.

It is clear that (?(X,{p,,}) = Q(X,{p,',}).

THEOREM 4. Lef X be « complete separated locally convex space. Given
(X, {p,,}), // T £ C?(X, {p,,}) «nd cr(Q; T) is bounded then there exists a quotient
preserving family of semi-norms {p!,} generating the topology of X such that

(i) T£B(X.jp,',}), and
(ii) the spectral radius. p(Q; T)

= inf{\\ T\\': all quotient preserving families {p,',}
generating the topology of X}.

PROOF. We have from the Corollary to Lemma 1 that

(T(Q: T)= U O- (X. : t ' ) .

and so

p(Q; T) = supp(X,,; f " ) .

For each a consider (X,, || • ||,,). We have from Holmes (1968; page 164)
that

p(X,; f") = inf {|| f" \\'a: for all equivalent norms || • ||; for Xa}.

Therefore, given e > 0, for each a there exists an equivalent norm || • \\'n on X,,

such that

f p ( X , t ; t") g || T" ||: g p(X, ; f " ) + e .

For each a such a norm || • ||,'r on X, induces a semi-norm p,', on X defined by

and we have that there exist m,r, Ma > 0 such that
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m,,p,, (JC ) S p :,(x) S M«pa (JC ) for all x G X.

It is clear therefore that {p,',} is a quotient preserving family of semi-norms
generating the topology on X. Now since a(Q; T) is bounded it follows from
that {|| fa \\',} is bounded and so

V(X,{pL};T)= U f

It also follows from that

is bounded and TEB(X,{p'a}) which is result (i).

p(Q; T) = sup p(Xa; t")

Ssupp(X; fa) + e =p(Q; T) + e
a

and so we establish (ii).

We can deduce directly the following corollary which is similar to that of
Holmes (1968; page 165).

For a locally convex space X, given (X,{pa}) we say that T G B(X,{pa}) is
a strict contraction if | |T||< 1.

COROLLARY. Let X be a complete separated locally convex space. Given
(X,{pa}), if TGQ(X,{p.,}) then there exists a quotient preserving family of
semi-norms {p'a} generating the topology of Xfor which Tis a strict contraction
if and only if p(Q;T)<l.

It should be observed that
1. there are quotient bounded operators with unbounded spectrum, and
2. there are continuous linear operators with bounded spectrum but which

are not quotient bounded.

EXAMPLES.

1. Consider the linear space X of complex mappings on C, with the
topology generated by the family of semi-norms {pF} where

p>(/) = max{|/(jc) | :xeF a finite subset of C}.

Consider the linear operator T on X defined by

(Tf)(x) = x.f(x) for all x G C.

Now for every x G C,
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)| = |x | I/0OI

and so T £ <?(X,{pF}).

Suppose that A£o-(Q; T); that is, T - A / has an inverse S E

Then

( T - A / ) ( S / ) = / for all / E X

so

( J C - A ) ( 5 / ) ( X ) = / ( J C ) for all / £ X and xGC.

Choose / to be a constant mapping, /(JC) = k^ 0 for all x £ C, then

U-A)(S / )U) = fc for all xEC,

but this gives a contradiction when JC = A. We conclude that cr(Q; T) = C.

2. Consider the linear space of complex sequences with topology gener-
ated by the family of semi-norms {pn} where

|: He £{l,

Consider the operator T on X defined by

r(A,,A2,A3, •••) = (A2,A,,A,, •

Then T is linear and continuous. Clearly T£ Q(X,{pa}).
Now ± 1 are eigenvalues of T.
For a / ± l we can define the operator 5 on X by

i, A 2 , A 3 , '
a — 1 a — 1

It is simply verified that 5 is an inverse of al - T and that SEL(X).
Therefore a(X; T) = {- 1, + 1}.

5. Hermitian operators

Numerical range theory enables an extension of the notion of hermitian
operators to operators on normed linear spaces. We now define and examine
properties of hermitian operators on separated locally convex spaces.

For a separated locally convex space X, given (X,{pa}) we say that
TEQ(X,{pa}) is hermitian if V(X,{pa}; T)CR.

For hermitian operators with bounded spectrum we have the following
rAGiiltresult.
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THEOREM 5. For a separated locally convex space X, given (X,{p»}), if
T <=Q(X,{pa}) is hermitian and a(Q\ T) is bounded then T G B(X,{p,,}).

PROOF. By Theorem 2 we have that

V(Q,{</„}; T)C™V(X,{p,,}; T)

so V(Q,{q,,}; T) C R. But

<!„}; T ) = U V(Q a , | | - | | n ; T J ,

so for each a, V(Qre,||-||,,; L ) C R ; that is, T,, is an hermitian element of
(QQ>||-||a). However, by Sinclair's Theorem (Bonsall and Duncan (1971; page
54))

but <r(Q; T)D Uaa(Qa; Ta) so p(Q; T)^supap(Qa; Ta) = supa<jo(T).
We conclude that sup,,q,,(T)Oc; that is, T G B(X,{pa}).

It should be noted that there are hermitian quotient bounded operators
with unbounded spectrum. Our example uses the following lemma which may
also be deduced from Proposition A4 of Michael (1952; page 70).

LEMMA 3. Let X be a complete separated locally convex space. Given
(X,{pa}), Q(X,{pa}) is also complete.

PROOF. Let {Ts} be a Cauchy net in (Q,{qa}). We deduce that for each
x €E X, {TsJc} is a Cauchy net in (X,{pa}). But since X is complete we can define
the operator T on X by

Tx = lim Tf,x.
ss

Clearly T is linear. But also for each a, {qa(T?,)} is a convergent net of real
numbers. Therefore, for each a and all x G X

p(,(TJt) = pJ li

= limpa(Tlix)S lim qa(Tl,)pn(x).

But this implies that T e £>(X,{p,,}).

For each a, given e >0 there exists a 8a such that

q«(Ts-Tl>)<£ for all 8,8'sg,,.

But then for all x G X where pa{x) S 1 we have

https://doi.org/10.1017/S1446788700016189 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016189


[12] Operators on locally convex spaces 479

p,,(TsX -TS'X)<£ for all 8, S'SS,,

which implies that

lim pATtf - T'sx) = pATax - Tx)

£ e for all 5 g 5,,.

Therefore

q,,(Tt-T)^e for all S g«,,,

and we conclude that (Q,{q,,}) is complete.

EXAMPLE.

Consider the complete l.m.c. algebra X of all complex mappings on R. with
topology generated by the family of semi-norms {pF} where

pF{f) = max {\f(x)\: x EF a finite subset of R}.

Consider the linear operator T on X defined by

(Tf)(x) = x.f(x) for all i6R.

As with Example 1 above it is shown similarly that T E Q(X,{pF}) and
<r(Q; T)CR. Now Tf = j.f where / is the identity mapping on R. Since
Q(X,{pF}) is complete the operator exp T £ Q(X,{pF}). For A £ R we have

(exp/AT)(/) = (exp/A/)./

and for any x G R

plx}((e\pi\T)f) = | exp /Ax |p<,>(/)

so

and from Bonsall and Duncan (1971: page 46) we conclude that T is hermitian.

The following theorem applies our theory to characterise hermitian
quotient bounded operators on unital commutative fo*-algebras.

THEOREM 6. Let A be a unital commutative b*-algebra. Given a charac-
terising (A,{p,,}), T £ Q(A,{p,,}) is hermitian if and only if there exists a
hermitian element y £ A such that

T(.v) = y.x for all x £ A.

PROOF. If T is hermitian on A then for each a. f" is hermitian on Aa. But
since A is a fo*-algebra, Aa is a B*-algebra Giles and Koehler (1973; page 88).
So f" is an hermitian operator on a commutative B*- algebra A,. By the

https://doi.org/10.1017/S1446788700016189 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016189


480 J. R.Giles, G.Joseph, D. O. Koehler and B. Sims [13]

Gelfand-Naimark Representation Theorem for commutative B*- algebras we
may take t" as an hermitian operator on <£(./«„) where Ma is the maximal ideal
space of Aa. Now Lumer has characterised such operators as multiplication by
real continuous mappings (Bonsall and Duncan (1973; page 91)). So for each a
there exists a ya £ Aa such that ya is hermitian and t"xa = yaxa for all xa G Aa.
Now

Ta{\a) = ya.\a = y,, and

Ta(xa) = ya.xa = f°(U)xa = (T(I)JC),,.

So Tx = T(1)JC for all x G A. Since ya is hermitian for each a so is the element
T(])EA.

Conversely, if T(x) = y.x where y is hermitian then T"xa = yn.x,r for every
a, so that T" is multiplication by an hermitian element on a commutative
B*-algebra A,,. By the Lumer characterisation, t" is hermitian on A,, and so T
is hermitian on A.

As a special case we have the following result which can also be proved
simply and independently of Lumer's characterisation.

COROLLARY. Let D, be a locally compact Hausdorff space and ^(O) be the
algebra of complex continuous mappings on ft, with the compact-open
topology. A quotient bounded operator T on ^(ft) is hermitian if and only if
there exists a real continuous mapping h on ft such that

T(f) = h.f for all /G9?(ft).

6. Representation of b *-algebras

The Gelfand-Naimark Representation Theorem for B*-algebras states that
a B*-algebra is isometrically * isomorphic to a closed self-adjoint subalgebra of
operators on a Hilbert space. We now extend this result to give a representation
of b*-algebras.

We firstly establish the character of the algebra of quotient bounded
operators on a product of Hilbert spaces as a b*-algebra.

THEOREM 7. Given a family {(//„, || • ||a)} of Hilbert spaces, the algebra
Q(YlHa, {|| • ||a}) of quotient bounded operators on the product space YlHa is a
b*-algebra.

PROOF. It is clear that I\Ha is complete and so from Lemma 3 we have that
CMnH^fllp) is also complete. Given TG (?(!!//„,{||-||«}), for every a there
exists a Ka > 0 such that || T"xa ||a S KQ||xo \\a. It is clear that the *-operation on
B(Ha) for each a induces a *-operation on Q(nH«,{||-||o}) denned by
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(T*x)a = T"*xa. But for each a, since qa(T) = || T" \\a we have that

We now show that a b*-algebra can be represented as a closed self-adjoint
subalgebra of the quotient bounded operators on a product of Hilbert spaces.

THEOREM 8. Let A be a b * -algebra. Given (A, {qa}), for each a there exists
a Hilbert space (Ha, \\ • \\a) such that A is topologically * isomorphic to a closed
self-adjoint subalgebra of Q(UHn, {|| -||a}).

PROOF. Given (A,{qa}), consider the composition of the topological *
isomorphism a ->(«„) of (A,{qa)) into the product of B*-algebras ri(A,,|| • ||n),
(Giles_and Koehler (1973; page 88)), the topological * isomorphism (aa)^>(Ta

a)
of n(A,,|H|a) into n(B(Ha),\\-\\a) where for each a, (H.,||-||.) is the Hilbert
space given by the Gelfand-Naimark Representation Theorem for the B*-
algebra (A,,||-||a), and the topological * isomorphism (Ta)—>T of
Il(B(Ha)\\-\\a) into Q(UHa,{\\-\U}) defined by (Tx)a = T"xa where the
*-operation is defined on Q(IIHO,{|| •[!„}) as in Theorem 7. It is clear that the
image of A in <?(rT/̂ /«, {|| - Ĥ ,}) under this topological * isomorphism is a
self-adjoint subalgebra and since A is complete this image is closed in
Q(nHa,{\\-l}).

In a Hilbert space H, because of the convexity of the spatial numerical
range we have that the spatial numerical range of an operator T on H and the
algebra numerical range of the operator T in B(H) have the same closure. We
now show that there is a similar relation between the spatial numerical range of
a quotient bounded operator T on a product of Hilbert spaces Yl(Ha, \-\\a) and
the algebra numerical range of the operator T in Q(UHa,{\\ -\\a}).

THEOREM 9. Given a family {(Ha, || • || a)} of Hilbert spaces, for any
reO(nft,,{| |- | |a}) we have

PROOF. Since we are dealing with Hilbert spaces we have for each a.

V(B(Ha),\\-\\a; Ta)= V(Ha,\\-\\a; Ta).
So

V(Q,{qa};T)= \

= U V{Ha,\\-\\a; Ta)C

and the result follows by Theorem 2.
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