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THE INVARIANTS OF ORTHOGONAL GROUP ACTIONS

Li CHIANG AND YU-CHING HUNG

Let Fq be the finite field of order q, an odd number, Q a non-degenerate quadratic
form on F£, 0(n, Q) the orthogonal group defined by Q. Regard O(n, Q) as
a linear group of F4-automorphisms acting linearly on the rational function field
Fq(xi, . . . , xn). We shall prove that the invariant subfield Fq{xx, ..., xn)o(n'Q)

is a purely transcendental extension over Fq for n = 5 by giving a set of generators
for it.

1. INTRODUCTION

Let Fq be the finite field of odd prime power order q, Q(zi, ...,xn) a nonde-
generate quadratic form on V :— F™. The orthogonal group O(n, Q) determined by
Q(x!,...,xn) is defined as {a £ GL(n, Fq): Q(crv) = Q(v) for all v € F,"}. Because
a quadratic form is diagonalisable, Q(xi, . . . , xn) can be represented in one of the
following forms:

, ..., xn) = x\ - x\ + x\ - ... - x2
n_x - ex\ for odd n,

or <5(zi, . . . , xn) = x\ - x\ + x\ - ... + z^_! - ex* for even n,

where e = 1 or e = S, a nonsquare in Fq. Since O(n, 6Q) = O(n, Q), Q(xi, ..., xn)
can be specified uniquely when n is odd [4, Section 6.3, 6.10]. The orthogonal group
O(n, Q), a subgroup of GL(n, Fq), acts as a linear group of F,-automorphisms on the
polynomial ring i^fxi, . . . , xn] and on the rational function field Fq(x\, . . . , xn) in a
natural way.

For convenience, we introduce some notations defined as in [3, p.217, 218]: Rn '•=
Fq[xlt...,xn], Kn := Fq(xu . . . , * „ ) , K+ := K?n<Q), R+ := R^n'Q\ Qn(i) :=

Q(x[q'+1)/2, . . . , x{9'+l)/2} and K* := Fq(Qn(0), . . . , Qn(n - 1)). It is noted in [2]

that Qn(i) is invariant under O(n, Q) for each i ^ 0. Thus, the invariant subfield K+
contains K*.
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In 1988, Chu [2] conjectured that K+ is exactly K* for all n , and that K+ is
purely transcendental over Fq. Chu [2] has proved his conjecture for n = 2, 3. In
1989, Cohen [3] proved the case n = 4. They also obtained the invariant subring R*
for n = 2, 3. But they could not prove the conjecture for higher values of n. A full
solution of this problem has been given in [l] by Carlisle and Kropholler, making use
of Dickson's invariant theorem. In this note, we provide a proof for n = 5 (Section
3) without using Dickson's invariant theorem. We also give a set of generators of the
invariant subring Rf (Section 2, Theorem 3). Our main theorem is following:

THEOREM 1 . For n ^ 5, K+ = if*, which is purely transcendental over Fg.

2. THE INVARIANT SUBRING OF O(4, Q) ACTING ON Fq[x, y, z, t]

Through this section, 6 denotes a fixed nonsquare in Fq. We let

(1) QA{X, y, z, t) = x2 + y2 — 8z2 — t2 (a form in four variables).

For Q2(x, y) = x2 - 6y2, Q2(2) and C?2(3) are in R% = Fq[Q2{0), Q2(1)] [2, Theorem
1]. Thus there exist two 2-variable polynomials f(u, v) and g(u, v) such that

(2) Q2(2) = /(Q2(0), Q2(l)) and Q2(3) = g(Q2(0), <?2(1)).

For Qa(x, y, z) = x2 + y2 — Sz2 or Qs{x, y, z) = —x2 + y2 + Sz2 we have the following
theorem. The proof is similar to that of [3, Theorem 1.2].

THEOREM 2 . Let Q3(x, y, z) = x2 + y2 - Sz2 or Q3(x, y, z) = - x 2 + y2 + Sz2 .
Then

Rt = Fq[Q3(0), Q5(1), Ql),

where

m o* = Qs(2) - Q3

In fact, by [4, Section 6.3], the invariant ring R£ is the same as that in [3, Theorem

1.2].

Our main theorem in this section is following:

THEOREM 3 . Let Q4 be defined by (1). Then R+ = F,[<54(0), Q4(l), Qi("2), Ql]
with

Q._ Q4(3)-g(Q4(Q),Q4(i))
V 4 Q4(2)-/(Q4(0),Q4(l))

where / and g are as in (2).

The following lemma is an important key to the proof of Theorem 3.

https://doi.org/10.1017/S0004972700015720 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015720


[3] Invariants of orthogonal group actions 315

LEMMA 4 . Let a(u, v, w, a) be a polynomial in the polynomial ring Fq[u, v, w, a].
If a(Q2(0), <?2(l), <?2(2), (?2(3)) = 0, then a(u, v, w, a) is in the ideal generated
by A(v,,v,w) and B(u,v, a), where A{u, v, w) = w — f(u,v) £ Fq[u,v,w,a],
B(u, v, a) = s — g(u, v) € Fq[u, v, w, s] and f, g are as in (2).

PROOF: A(U, V, W) and B{u, v, s) are monic polynomials with respect to w and
a. Applying the division algorithm, we get

a(u, v, w, s) — B(u, v, a)p(u, v, w, a) + A(u, v, w)q(v., v, w) + r(u, v)

where p(u, v, w, a), q(u,v,w) and r(u, v) are in Fg[u, v, w, a}. Because
a(Q2(0), Q2(1), Q2(2), Q2(3)) - 0, B(Q2(0), Q,(1), Q3(3)) = 0 and
A(Q2(0), Q2(l), Q2(2)) = 0, we have r{Q2(0), Q2{1)) = 0. But Q2{0) and Q2{1)
are algebraically independent over Fq, whence r(u, v) = 0. D

We now prove Theorem 3. Let $3(2, y, z) — x2 + y2 — Sz2 G Fq[x, y, z\. Because
^3(3) G R%, by Theorem 2, there exists a three-variable polynomial hi such that
Qs(3) = /ii(<?3(0), <?s(3), Q3), where Q*3 is defined by (3), and the degree in the third
variable of h\ does not exceed q + 1 [3, (4.5)]. Therefore, there are another three-
variable polynomial h and some positive integer d ^ q + 1 such that

(4) Q4(3)[Q3(1) + Q3(0)iq+1)/2}d + h(Q3(0), Q3(1), Q3(2)) = 0.

By [1] we can deduce that d can be taken to be q, but we shall prove this ourselves.

Substituting Q3(i) = x2 + y2 - Sz2 = Q4(i) + t2 into (3), we have

(Q4(3) + *«•+*) [(Q4(l) + *'+>) + (Q4(0) + t

+ h(Qt(0) + t2, Q4(l) + t"+\ Q4(2) + <»3+1) = 0.

Hence there is a polynomial

(5) G(u, v, w, 3, t) = {3 + <?3+1)[(V + f+1) + (u

+ h(u + t2, v + 1«+1, w + t

such that

(6) G(Qt(0), g4(l) , Q4(2), Q4(3), t) = 0.

We write G as
M

(7) G(u, v, w, s, t) = ^2 ak(u, v, w, a)tk, aM(u, v, w, 3) ^ 0.
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Let Q2 = y2 - Sz2. There is no difference between Q2 + t2 = y2 — Sz2 + t2 and
Qi + t2 = x2 + y2 — Sz2 other than interchanging t and x, thus

Af

G(Q2(0), <?2(l), £2(2), g 2 (3 ) , t) = ^ o j t ( Q 2 ( 0 ) , Q2(1), £2(2), <?2(3))ifc = 0.
k=0

Because Q2 = y2 - Sz2 is independent of t, then at(g2(0),g2(l),<?2(2),Q2(3)) = 0
for all & = 0, 1, . . . , Af. By Lemma 4, all a*(u, v, w, s) must be in the ideal generated
by A{u, v, w) and B(u, v, s). If the coefficient a* contains no s, then A{u, v, w) is a
factor of a.jt(u, w, w). Combining this with (5), we have

(u

+ [w — f(u, v)]h2(u, v, w, t)

for some polynomial h2(u, v, w, i) G ^[ i t , v, w, t]. Now by (6),

[Q4(3) - g{Qt{0), Qt(l))] [(Q4(1) + *'+ 1) + (Q4(0) + t2)iq+1)/2]

= ~[QA(2) - / (Q 4 (0) , Qt(l))]ha{Qt[0), Qt(l), Q4(2), *).

Then

Q4(2) -

(Notation: a | 6 means a is a factor of 6.) Applying the same method and replacing
Q = a;2 + y2 - tfz2 with <5 = -x2 + i2 + Sz2, we get that

Q 4 ( 2 ) - / ( Q 4 ( 0 ) , Q4( l ) ) | [Q*(3)-g{Q*{0),

By symmetry, we also get

Q4(2) - /(<?4(0), Q4(l)) | [g4(3) -

Since there is no common non-unit factor of [(-<24(1) + yq+1) + (-Qi(0) + j / 2 ) ( * + 1 ) / 2 ] ' ' >

[(-Q4(l) + x'+O + C-^CO) + x2)( '+ 1 ) / 2]" and
we have

(8) g4(2) - /(g4(o), g4(i)) | [Q4(3) -
Hence, we conclude that
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Q< = Q 4 ( 2 ) - / ( Q 4 ( o ) , g 4 ( i ) ) G ' [ ' y ' ' l

and also that

Q4(2) - / ( g 4 ( 0 ) , <?4(1)) I afc(<?4(0), Q 4 ( l ) , Q4(2), Q4(3))

for all A; = 0, . . . , M. Moreover, if we set t = 0 or y = 0 in (8) we get

Q3(2) - f(Q3(0), g , ( l ) ) | Q3(3) - g(Q3(0),

for the quadratic form Q3 = x2 + y2 - Sz2 or Q3 = —x2 +12 + Sz2. By [3, Lemma
2.4], we have

w - f(u, v) = (w- u("2+1V2) (mod v + u

But, by Theorem 2, we have

Q3(l) + g3(0) ( '+ 1 ) / 2 | Q3(2) - Q3

Then
| Qs(2) - /(Q3(0),

and therefore Q3{1) + Q3(0)(9+1)/2 is a factor of Q3(3) - g{Q3{0), Q3(1)). So,

Then

(9) Q3(3)

where the polynomial h3 is in Fg[Q3(0), Q3(l), Ql] and the degree in Q$ of h3 does not
exceed q+1. This can be proved by counting the homogeneous degrees. Comparing (4)
and (9), we conclude that d Sj q if we minimise d. By [3, Theorem 1.1] and [4, Theorem
6.17], t has [K+(t) : K+] = [iT4 : Kt\l[KA : ^3

+(0] = |O(4, Q4)|/ |O(3, Q3)| =
q3 + q conjugates in K* over K± . Thus the highest power of t in the polynomial
G(u, v, w, s, t) is not less than q3 + q.

Now if we take d = q, the leading coefficient CLM of t in (7) is a homogeneous
polynomial for variables x, y, z, t with degree not greater than q3 + 1 + q(q + 1) —
(9 3 +<?)=9 2 + l -

On the other hand, all coefficients ak in (7) are divisible by g4(2)- /(g4(0) , g4(l)) ,
a homogeneous polynomial with degree q2 + 1, and hence aAf(u, v, w, a) =
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7(10 — f(u, v)) for some unit 7 G Fq. Dividing G(u, v, w, s, t) by 7(10 — f(u, v)),
we get a monk polynomial of t in Fq[u, v, w, (3 — g(u, v))/(w — f(u, v)), i\. This
implies that t is integral over

By the same process x and y are integral over R and, hence, so is z.

Now i l l = Fq[xi Vi zi t] is integral over R and R C R^ C RA , so i2^" is also
integral over i j . Since R, a unique factorisation domain, is integrally closed in its field
of quotients Q(R) = KI = A"+ and R C R$ C Q{R), R is also integrally closed in
R% . Thus R% = R. This completes the proof of Theorem 3. D

3. T H E PROOF OF THEOREM 1

We now prove Theorem 1. Consider $4(4) £ R± , where Qt(x, y, z, t) is defined
by (1). By Theorem 3 we have a four-variable polynomial /14 such that

(10) Q4(4) - M Q 4 ( 0 ) , $4(1), <?4(2), Ql) = 0.

Q% is a homogeneous polynomial in Fq[x, y, z, t] of degree q3 + 1 — (g2 + l ) = q3 — q2

and ^4(4) has degree qA + 1. Thus, the degree in Ql does not exceed

£ 4 t +
93 - 9

for g ̂  3 . Hence, multiplying (10) by [Q4(2) - / (Q4(0) , Q4(l))]«+ 1, we get
(11) g4(4)[g4(2) - /(Q4(o), Q4(i))] '+1 - As(g4(o), g4(i) , g4(2), g4(3)) = o.

By [3, Section 6.3], we may assume that our five-variable quadratic form is

Qs=x2+y2-6z2-t2-e2,

where 8 is a non-square in Fq. Substituting <?4(i) = Qs(i) + O9'+1, i = 0, 1, 2, 3, 4

into (11), we obtain

(gs(4) + e'4+1)[(Q5(2) + fl«J+1) - /(g,(o) + e\ g5(i)
(12) V y V

- /is (gs(o) + «2, g s ( i ) + «9+1, gB(2) + «'a+1, gs(3) + o93+1) - o.

Let L := -F,(Q4(0), Q 4 ( l ) , <?4(2), <?4(3), 5) = Kt{0). Then it is clear that

Fq(x, y, z,t,0) = K5DL = K+(6) D K's = Fq(Qs(0), Q5(l), gB(2), g , (3 ) , g
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Let m:=[L: K*}. Then, by (12), m < g4 + 1 + (q + l)(q2 + l ) < 2q2(q2 - l ) for

q>2.

Because the Galois group of K$ over L is isomorphic to 0(4 , Q4) and the Galois
group of Ks over K£ is isomorphic to 0 (5 , Qs), we have [K$ : L] = |0(4, Q^)\ and
[K5 : K+] = \0(5, Qs)\. Hence

[Ks : K*5] - m |O(4, Q4) | < 2q2(q2 - l) |0(4, Q4)| - 4 9
4 ( 9

2 - l ) 2 (g 2 + l ) .

Since Jfs D K+ D K•, [tfs : if+] = |0(5, Qs) | = 2g4(9
2 - l ) 2 ( 9

2 + l ) is a divisor of

[K5 : K*\. Thus [if5 : ^5+] = 2g
4(g2 - l ) 2 ( 9

2 + l ) = [Ks : if,*]. So we get K+ = Kt.

This completes the proof of Theorem 1. D
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