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THE INVARIANTS OF ORTHOGONAL GROUP ACTIONS

L1 CHIANG AND YU-CHING HUNG

Let Fy be the finite field of order ¢, an odd number, @ a non-degenerate quadratic
form on Fg, O(n, Q) the orthogonal group defined by Q. Regard O(n, Q) as
a linear group of F,-automorphisms acting linearly on the rational function field

Fy(=1, ..., #n). We shall prove that the invariant subfield F; (=i, ..., z,.)o("' Q)
is a purely transcendental extension over F, for n = 5 by giving a set of generators
for it.

1. INTRODUCTION

Let F, be the finite field of odd prime power order ¢, Q(zi1, ..., Z») a nonde-
generate quadratic form on V := F*. The orthogonal group O(n, Q) determined by
Q(z1, .-, zn) is defined as {o € GL(n, F,): Q(ov) = Q(v) for all v € F'}. Because
a quadratic form is diagonalisable, Q(z1, ..., ») can be represented in one of the
following forms:

Qz1,...,zn) =2t —22+22 —...—22_, —ez? for odd n,
or Qz1,...,2zn) =2t —22 422 —...+z2_| —ez? forevenn,

where € =1 or € = §, a nonsquare in F,. Since O(n, §Q) = O(n, @), Q(=1, ..., Zn)
can be specified uniquely when n is odd [4, Section 6.3, 6.10]. The orthogonal group
O(n, Q), a subgroup of GL(n, Fy), acts as a linear group of Fy-automorphisms on the
polynomial ring Fylz,, ..., z,] and on the rational function field Fy(z1,...,z,) in a
natural way.

For convenience, we introduce some notations defined as in [3, p.217, 218]: R,:
Fy(z1, ..., zn), Kn := Fy(z1,...,2a), K = K,?("'Q), R} = R,?("'Q), Qn(3) ==

Q(zgqi"'l)/z, e, 21(:".,.1)/2) and K} := Fy(Qn(0), ..., @u(n —1)). It is noted in [2]

that Qn(4) is invariant under O(n, Q) for each i > 0. Thus, the invariant subfield K;
contains K.
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In 1988, Chu [2] conjectured that K is exactly K for all n, and that K is
purely transcendental over F;. Chu [2] has proved his conjecture for n = 2,3. In
1989, Cohen (3] proved the case n = 4. They also obtained the invariant subring R}
for n = 2, 3. But they could not prove the conjecture for higher values of n. A full
solution of this problem has been given in [1] by Carlisle and Kropholler, making use
of Dickson’s invariant theorem. In this note, we provide a proof for n = 5 (Section
3) without using Dickson’s invariant theorem. We also give a set of generators of the
invariant subring R} (Section 2, Theorem 3). Qur main theorem is following:

THEOREM 1. For n <5, K;} = K, which is purely transcendental over F,.

2. THE INVARIANT SUBRING OF O(4, Q) ACTING ON Fy[z, y, z, t]
Through this section, § denotes a fixed nonsquare in Fy. We let
(1) Qa(z, y, 2, t) =2? + y* — 622 —t? (a form in four variables).

For Qa(z, y) = 22 — 6y?, Q2(2) and Q2(3) are in Rf = F;[@2(0), @2(1)] [2, Theorem
1]. Thus there exist two 2-variable polynomials f(u, v) and g(u, v) such that
(2) Q2(2) = f(Q2(0), @2(1)) and Q2(3) = g(Q:2(0), Q2(1)).

For Qs(z, y, 2) = 22 +y* — 622 or Qs(z, y, z) = —z% + y% + 622 we have the following
theorem. The proof is similar to that of [3, Theorem 1.2].

THEOREM 2. Let Qi(z,y, z) = z° +y% — 622 or Qs(z, y, 2) = —z% + y% + 622.

Then
R = F,[Qs(0), Qs(1), @3],
where
® 0t - G- Q@
T Q)+ @0
In fact, by [4, Section 6.3], the invariant ring R7 is the same as that in [3, Theorem
1.2).
Our main theorem in this section is following:
THEOREM 3. Let Q4 be defined by (1). Then R} = Fy4[Q4(0), Q4(1), Q4(2), Q%)
with

. _ Q4(3) — 9(Q4(0), Qs(1))

Ui = 0u(2) = 7(0a(0), @a(1))

where f and g are as in (2).

The following lemma is an important key to the proof of Theorem 3.
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LEMMA 4. Let a(u, v, w, s) be a polynomial in the polynomial ring Fy[u, v, w, 8].
If a(Q2(0), Q2(1), @2(2), @2(3)) = 0, then a(u, v, w, s) is in the ideal generated
by A(u,v,w) and B(u,v,s), where A(u,v,w) = w — f(u,v) € Fylu,v, w,s],
B(u, v, s) = s — g(u, v) € Fy[u, v, w, s] and f, g are as in (2).

Proor: A(u, v, w) and B(u, v, 8) are monic polynomials with respect to w and
s. Applying the division algorithm, we get

a(u, v, w, s) = B(u, v, 8)p(u, v, w, s) + A(u, v, w)q(s, v, w) + r(u, v)

where p(u,v,w,s), ¢(u,v,w) and r(u,v) are in Fylu,v, w,s]. Because
a(Q2(0), Q2(1), @2(2), @2(3)) = 0, B(Q2(0), Q2(1), @2(3)) = 0 and
A(Q2(0), Q2(1), @2(2)) = 0, we have r(Q2(0), @2(1)) = 0. But @,(0) and Qz(l)

are algebraically independent over Fy, whence r(u, v) = 0.

We now prove Theorem 3. Let Qs(z, y, z) = 22 + y2 — 62° € Fy[z, y, z]. Because
@s(3) € R, by Theorem 2, there exists a three-variable polynomial h; such that
Qs(3) = h1(Qs(0), Qs(3), Q3), where Q3 is defined by (3), and the degree in the third
variable of h; does not exceed g + 1 (3, (4.5)]. Therefore, there are another three-
variable polynomial h and some positive integer d € ¢ + 1 such that

(4) Q4(3)[@s(1) + @s(0) T2 1 h(Qs(0), @s(1), @s(2)) = 0.

By [1] we can deduce that d can be taken to be g, but we shall prove this ourselves.
Substituting Qs(z) = z? + y? — §2? = Q4(i) + t2 into (3), we have

(Q4(3)+tq3+1)[(Q4(1) +tq+l) + (Q4(0)+t2)(q+1)/2]d

+R(Qu(0) + 2, Qu(1) + 177, Qu(2) + 18+ =0,

Hence there is a polynomial

(5) G(U, v, w, 8, t) = (3 + tq3+1)[(v + tq+l) + (u 4+ tz)(q+1)/2]d
+ h(u F2, 0419t w4 t93+1)

such that

(6) G(Q4(0), Qs(1), Qa(2), Qa(3),t) =0.

We write G as
M

(7N G(u, v, w, s, t) = Z ak(u, v, w, 8)t*, ap(u, v, w, s) #0.
k=0
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Let Q; = y? — 62z2. There is no difference between Q; + t? = y?> — §2% 4+t and
Qs + t* = 2% + y? — 622 other than interchanging ¢t and z, thus

M
G(QQ(O), Qz(l), Q2(2)’ Q2(3)’ t) = E ak(Qz(O), Qz(l), Q2(2), Q2(3))t’e =0.

k=0

Because Q2 = y% — §z% is independent of ¢, then ax(Q2(0),@Q2(1),@2(2),Q2(3)) =0
forall k=0,1,..., M. By Lemma4, all a;(u, v, w, 8) must be in the ideal generated
by A(u, v, w) and B(u, v, s). If the coefficient a; contains no s, then A(u, v, w) is a
factor of ai(u, v, w). Combining this with (5), we have

G(u, v, w, 8,t) = [s — g(u, v)][(v + 1) + (u + tz)(q+1)/2]d
+ [w — f(u, v)]ha(u, v, v, t)
for some polynomial hs(u, v, w, t) € F,[u, v, w, t]. Now by (6),

[Q(3) — 9(Q4(0), Qe(INI[(Qu(1) +17+1) + (Qu(0) + £2) ™1/}

= —[Q4(2) — £(Q4(0), Qs(1)))h2(Q4(0), Qs(1), Qa(2), 2).
Then

Q4(2) — £(Qa(0), Qa(1)) | [Qa(3) — 9(Q4(0), Qs(1)][(Q4(1) + t71)
+ (Q4(0) + t2)(q+1)/2]d-

(Notation: a | b means a is a factor of b.) Applying the same method and replacing
Q = 2?2 +y? — 622 with Q = —z% + 2 + §22, we get that

Q4(2) — £(Q4(0), Q4(1)) | [Q4(3) — 9(Q4(0), Qa(1)][(-Q4(2) + ***)
+(_Q4(0)+yz)(1+1)/2]d.

By symmetry, we also get

Q4(2) — £(Q4(0), Qa(1)) | [Qa(3) — 9(Q4(0), Qa(1))[(—Qa(1) + =7t?)

T (-Qu(0) + =)V,
Since there is no common non-unit factor of [(—Q4(1) + y‘1+1)+(_Q4(0) + yz)(q+1)/2] d ’
[(~@a(1) + 27)+(~Qu(0) + 22) T and [(Qu(1) + £+ +(Qa(0) +£2) THV/)7,

we have

(8) Q4(2) — £(Q4(0), Q«(1)) | [Q4(3) — 9(Q4(0), Qa(1))]-

Hence, we conclude that
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. _ Q4(3) —9(Q4(0), Qu(1))

1T 2@ - @), @) € Pyt

Q

and also that
Q4(2) — £(Q4(0), Q4(1)) | ak(Q4(0), Qa(1), Qs(2), Q4(3))

forall k=0, ..., M. Moreover, if we set t =0 or y = 0 in (8) we get
Qs(2) — F(Qs(0), Qs(1)) | @s(3) — 9(Qs(0), Qs(1))

for the quadratic form Qs = z2 + 4% — 622 or Qs = —z% + 12 + §22. By [3, Lemma
2.4], we have

w— f(u,v) = (w - u(q2+1)/z) (mod v+ u("“)/z).
But, by Theorem 2, we have

Qs(1) + Qs(0)7/ | Qs(2) - Qs(0)( +1)72.

Then
Qs(1) + Qs (0)9 V% | Qs(2) — £(Qs(0), @s(1))

and therefore Q3(1) + Q;;(O)("""Ll)/2 is a factor of @3(3) — g(@s(0), Q@s(1)). So,

Q3(3) — 9(@s(0), @s(1)) _ o _ .
Qs(l) + Qs(O)(q+l)/2 € Rs = Fq[QS(O): Qa(l), Q3]°

Then
(9 Qs(3) — 9(Qs(0), Qs(1)) = (@s(1) + Qa(0)**V/* ) hs(Qs(0), Qs(1), Q3)

where the polynomial hs isin Fg[Q3(0), @s(1), @3] and the degreein Q3 of hs does not
exceed g+ 1. This can be proved by counting the homogeneous degrees. Comparing (4)
and (9), we conclude that d < g if we minimise d. By [3, Theorem 1.1] and [4, Theorem
6.17), t has (K7 (1) : KF] = [Ka : KF)/[Ka : K (D) = 10(4, Qu)I/10G3, @s)| =
¢ + g conjugates in K4 over K. Thus the highest power of ¢ in the polynomial
G(u, v, w, 8, t) is not less than ¢* +gq.

Now if we take d = g, the leading coefficient aps of t in (7) is a homogeneous
polynomial for variables z, y, z, t with degree not greater than ¢3 + 1 + ¢(g +1) —
(¢ +a)=¢* +1.

On the other hand, all coefficients a; in (7) are divisible by Q4(2)—f(Q4(0), Q4(1)),
a homogeneous polynomial with degree ¢°* + 1, and hence apm(w,v,w,s) =
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v(w — f(u, v)) for some unit v € Fy. Dividing G(u, v, w, s, t) by vy(w — f(u, v)),
we get a monic polynomial of ¢t in Fylu, v, w, (s — g(u, v))/(w — f(u, v)), t]. This
implies that ¢ is integral over

Q4(3) — g(Q4(0), Q4(1))
Q4(2) — f(Q4(0), Q4(1))

By the same process z and y are integral over R and, hence, so is z.

Now Ry = Fy[z,y, 2, t] is integral over R and R C R} C Ry, so Ry is also
integral over R. Since R, a unique factorisation domain, is integrally closed in its field
of quotients Q(R) = K} = K} and R C R} C Q(R), R is also integrally closed in
R}. Thus R} = R. This completes the proof of Theorem 3. 0

R := F,[Q4(0), Qa(1), Q4(2), J-

3. THE PROOF OF THEOREM 1

We now prove Theorem 1. Consider Q4(4) € R}, where Q4(z, ¥, 2, t) is defined
by (1). By Theorem 3 we have a four-variable polynomial h4 such that

(10) Q4(4) — ha(Q4(0), Q4(1), Q4(2), Q) = 0.

Q3 is a homogeneous polynomial in Fy(z,y, z, t] of degree ¢® +1— (g2 +1) = ¢* — ¢*
and Q4(4) has degree ¢* + 1. Thus, the degree in @ does not exceed

gt +1
q3_q2

<q+2

for ¢ > 3. Hence, multiplying (10) by [Q4(2) — f(Q4(0), Q4(1))]9?, we get

(11)  Qa(4)[Qa(2) — £(Qs(0), Qe(1))]** — hs(Q4(0), Qa(1), Qu(2), Q4(3)) = 0.

By [3, Section 6.3], we may assume that our five-variable quadratic form is
QS =:l:2 +y2—6z2—t2—02,

where § is a non-square in Fy. Substituting Q4(i) = @Qs(3) + 09‘.'*’1, 1=0,1,23,4
into (11), we obtain

(@s(4) + 67+ )((@s(2) + 67 1) - (Qs(0) + 62, Qs(1) + 67+ ]+

(12) 2 3
by (Qs(o) + 62, Qs(1) + 671, Qs(2) + 67 1, Qs(3) + 67 “) =0.

Let L := Fg(Q4(0), Qa(1), Q4(2), Q4(3), 8) = K3 (8). Then it is clear that

Fq(zr Y, 2, 1, 0) =KsDL= K:(g) D KE: = Fq(QS(O)) QS(I), Q5(2)’ Q5(3)$ Q5(4))'
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Let m := [L : K3]. Then, by (12), m < ¢* + 1+ (¢ +1)(¢% +1) < 2¢*(g? —1) for
q23.

Because the Galois group of K5 over L is isomorphic to O(4, Q4) and the Galois
group of K5 over K is isomorphic to O(5, Qs), we have [K;s : L] = |0(4, Q4)| and
[Ks : K] =|O(5, Qs)|. Hence

[Ks : K3] = m|0(4, Qa)l < 2¢°(¢* = 1) |0(4, Qu)| = 4¢* (¢ = 1)*(¢* + 1)

Since K5 D K& D K}, [Ks : Kf] =|0(5, Qs)| = 2¢*(¢* — 1)2(q2 +1) is a divisor of
(K5 : K3]. Thus [Ks: K] = 2¢%*(¢® — 1)2(q2 +1) = [Ks : K]. So we get K} = K.
This completes the proof of Theorem 1. 0
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