ON THE IRREDUCIBLE LATTICES OF ORDERS
KLAUS W. ROGGENKAMP

1. Introduction. We shall use the following notation:

R = Dedekind domain;

K = quotient field of R;

R, = ring of p-adic integers in K, p being a prime ideal in R;
A = finite-dimensional separable K-algebra;

G = R-order in 4 (for the definition cf. (3)).

All modules that occur are assumed to be finitely generated unitary left
modules, unless otherwise specified. By a G-lattice we mean a G-module which
is torsion-free as R-module. A G-lattice is called srreducible if it does not
contain a proper G-submodule of smaller R-rank. If p is a prime ideal in R
we shall write G, = R, ®zG; M, = R, @ M for a G-lattice M, and
KM = K @z M. Two G-lattices M and N are said to lie in the same genus
(notation M VvV N) if M, = N, for every prime ideal ¢ in R.

For any 4-module L, let S(L) be the collection of G-lattices M, for which
KM = L. Suppose that S(L) splits into #,(L) genera, and into 7;(L) classes
under G-isomorphism. Maranda (6) has shown: If L is an absolutely irre-
ducible 4-module, then
(1) ri(L) = h - ry(L),
where 7 is the class number of K. Moreover, he listed all G-lattices which are
in the same genus as M € S(L).

Our aim in this paper is to extend the results of Maranda (6). We shall
describe (for a certain type of R-orders) all irreducible G-lattices in terms of
irreducible lattices over maximal orders containing G. In § 2 we show that for
considerations of irreducible G-lattices it suffices to look at orders in simple
separable algebras. In § 3 we show that the irreducible G-lattices are also
lattices over maximal orders in A4, if for all irreducible G-lattices, Endg (M)
is the same maximal order. In §4 we apply the results of § 3 to extend
Maranda’s results; if L is an absolutely irreducible G-lattice, then we describe
S(L) explicitly. However, the applications are not restricted to absolutely
irreducible 4-modules.

Convention. Homomorphisms will be written opposite to the scalars.

2. Reduction to orders in simple algebras. If H is any R-order in 4
containing G, and if M is an H-lattice, we write My and M. to indicate
whether M should be considered as an H-lattice or as a G-lattice, respectively.
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ProposiTION 1. If M and N are H-lattices, then

Homg (My, Ny) = Homg(Mg, Ng).
Proof. We have the inclusion

Homy (M, Ny) C Homg (Mg, N¢).

To show the reverse inclusion, we pick 0 % 7 € R such that rH C G. For
f € Homg(Mg, Ng) we have:

r((em)f) = (rem)f = rx(mf), x€ H,m € M.
Since N is R-torsion-free, f € Homyg (Mg, Ng).

For the remainder of this section we shall denote by Irr(G) the set of
isomorphism classes of irreducible G-lattices.

PROPOSITION 2. We have an injection
F: Irr (H) - Irr (G), F: (Myg) — (M),
where (M) denotes the isomorphism class of M.

Proof. This map is well-defined, and (Ms) € Irr(G) if (My) € Irr(H),
since M is an irreducible G-lattice if and only if KM is an irreducible 4-
module. Using Proposition 1, we conclude that F is injective.

LemMmA 3. Let e;, 1 =1,...,n, be the set of mutually orthogonal central
primitive idempotents in A. Then
n
i=1

is an R-order in A containing G, and F: Irr(H) — Irr(G) s a bijection.

Proof. The e; are integral over R, and > i_je; = 1; therefore H is an
R-order in 4 containing G. Because of Proposition 2, it only remains to show
that F is surjective. Let M be an irreducible G-lattice such that KM corre-
sponds to ¢;. Then

eqm’ = dym’  for every m’ € KM,

84 is the Kronecker symbol. Since 1 ® x M is canonically isomorphic to M,
we may assume that M C KM, so that

em = dym for ever m € M,
i.e., M is an H-lattice, and F is surjective.

Remark 4. By means of Lemma 3, one knows all irreducible G-lattices
once the irreducible H-lattices are known, where

n

H= ) @Ge.

i=1
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However,

Irr(H) = U Irr(Gey)
i=1

is the disjoint union of a finite number of sets. Therefore we may restrict our
attention to orders in simple algebras.

Example 5. Let @ be a finite abelian group of order g, and suppose that K
splits @. If X = © is the character group of ®, then

Irr(R®) = {(Irey): x € X, I are representatives of the different ideal classes
in R, and e, is the primitive idempotent to x}.
Proof.

1 _
6X=_Z X(g l)g: XEX
£ g€®

We use the bijection in Lemma 3:
Irr (H) — Irr (R®),

where H = 3, cx ® R®e,. However, R®e, = Re, is the maximal R-order in

Ke,. Thus
Irr(Re,) = {(L1ey), B = 1, ... (class number of R)},

and by Remark 4 we conclude that
Irr (RO®) = {(lxey): x € X, k =1, ... (class number of R)}.

3. Irreducible lattices of orders in simple algebras. Let G be an R-order
in the simple separable finite-dimensional K-algebra 4 = (D),, D a skew-
field of finite dimension over K. We put C = G M D, viewing D as embedded
in 4. Then C is an R-order in D. Let

{B,} (j € J) = different maximal R-orders in 4 containing G,
M; = a fixed irreducible Bj-lattice, for every j € J.

Then

C; = Endp;(M;) is a maximal R-order in D;
{I;}, k£ € J(C;) = representatives of the different classes of left C;-ideals
in D.

With this notation we can write down a full set of non-isomorphic irreducible
B -lattices for every j € J:

(2) Irr(B;) = {(M; ®c; I+): k € J(Cy};
cf. (1; 8).
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THEOREM 6. Let Irr(G) denote the sel of isomorphism classes of irreducible
G-latiices. Then
(1) card(Irr(G)) = X o5 card(J(Cy));
(i1) We have equality in (1) if C = End¢(M) for every irreducible G-laitice M;
(111) In the latter case, we can give all irreducible G-latiices explicitly: Let
{1}, B € J(C), be representalives of the different classes of left C-ideals in D; then

Irr(G) = {(M; ®@c L): j € J, k€ J(O)}.
Moreover, in this case we have:
card(Irr(G)) = (card(J)) (card (J(C)));

(iv) If we have equality in (i), then there are card(J) gemera of irreducible
G-lattices, and in each genus there are card(J(C)) different isomorphism classes
of irreducible G-laitices. Moreover,

{M ®c Iki k € ](C)}

are the non-isomorphic irreducible G-lattices which lie in the same genus as the
irreducible G-lattice M, and representatives of ihe different genera of irreducible
G-lattices are the G-lattices

{Mj: j € J}.

The proof of Theorem 6 is done in several steps, as follows.

PROPOSITION 7. Let M be an irreducible B ;-lattice, N an trreducible By-lattice,
Jy k€T, j#k, then My and Ng are not isomorphic as G-lattices.

Proof. Assume that Ms =2y Ng, and let f: M ¢ — N¢ be a G-isomorphism
Then we make M into a Bj-lattice, denoted by M, by defining

bimy, = (b (mf))f, by € By, my € My, my = m.

It is easily checked that the action of B; on M and the action of B; on M,
coincide on B; M By D G. From (1, Theorem 3.9) it follows that

C; = Ends, (M),  B; = Endc, (M),
Ce Endg, (My), B, = End¢, (My).

Now we apply Proposition 1 and conclude that

Cj = Endgj(M) = Endg(M) = EndB,,(Mk) = Ck;

thus B; = B;, and we have deduced a contradiction.
Proof of Theorem 6(i). Because of (2) and Proposition 7, the G-lattices
{M; Qc; It, k€ J(Cy),j € J}

are non-isomorphic irreducible G-lattices, whence the inequality (i) in
Theorem 6 follows.
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Proof of Theorem 6(ii). If C = Ende(M) for every irreducible G-lattice M,
then we have equality in Theorem 6(i). The hypothesis implies that C is
maximal: Let M be an irreducible B-lattice for some j € J; then Endp; (M) =
Endg(M) = Cis a maximal R-order in D. To prove Theorem 6(ii) we have
to show that every irreducible G-lattice is a Bj-lattice for some maximal
order By, j € J. Let M be an irreducible G-lattice. Then M is a right C-lattice,
since C = Endg(M), and B = End¢ (M) is a maximal R-order in

K ®z End¢(M) = Endp(KM) = 4;

cf. (1, Theorem 3.9). Since M was a G-lattice to start with, G C B = Endq (M),
and M is a B-lattice in the usual fashion.

Proof of Theorem 6(iii). If Theorem 6(ii) holds, then C; = C for every
j€J (C; = Endp,;(M;), cf. the beginning of §3), and a full set of non-
isomorphic irreducible G-lattices is given by

{M;QcI:j€ J, k€ J()}.

Proof of Theorem 6(iv). We shall prove the following lemma, which is of
interest in itself.

LemMA 8. Let M be an trreducible G-lattice such that M is also a B ;-lattice for
some j € J; let C; = Endp;(M). Then
{M Qo; I k € J(Cy)}
are all the non-isomorphic G-lattices in the same genus as M.
For the notation, compare the beginning of § 3.

Proof. Since C; is a maximal R-order in D, all the G-lattices M ®¢; I are
non-isomorphic, and they lie in the same genus as M. Now let N be a G-
lattice in the same genus as Mg. Then N, is a (B;),-lattice for every prime
ideal p in R. However, this can only be if IV is a Bj-lattice itself. Therefore,
N =M ®g¢, I) for some k& € J(C)).

COROLLARY 9. If M and N are irreducidle G-lattices such that M is a Bj-lattice
for some j € J and N is a By-lattice for some k € J, then Mg is in the same genus
as N if and only if B; = By.

CoroLLARY 10. If L is an twrreducible A-module, then
r,(L) = card(J).
For the definition of 7,(L), compare § 1.

The proof of Theorem 6(iv) follows now easily if one observes that we
have equality in Theorem 6(i), i.e. every irreducible G-lattice is isomorphic
to some Bj-lattice.

This completes the proof of Theorem 6.
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4. Applications of Theorem 6 to some special orders. Let 4 be a
separable finite-dimensional K-algebra.

LemMmA 11. If R is a Dedekind domain such that the class number of R is
finite and such that (R:p) s finite for every prime ideal p in R, then there are

only finitely many different maximal R-orders in A containing a fixed R-order
Gin A.

Proof. There is only a finite number of non-isomorphic irreducible A-
modules, say Ly, ..., L,. Under the hypotheses on R, the Jordan-Zassenhaus
theorem is valid (cf. 10), i.e. for the R-order G, S(L;) (cf. § 1) contains only
a finite number of non-isomorphic irreducible G-lattices. Now the result
follows from Proposition 7 if one observes that every maximal R-order in 4
decomposes into a direct sum of maximal orders in the simple components of 4.
The main applications of Theorem 6 can be gained by using the following result.

LEMMA 12. Let G be an R-order in the simple separable K-algebra A = (K')y,
K’ an extension field of finite dimension over K. If G M K' = C is the maximal
R-order in K', then every irreducible G-lattice is an irreducible lattice for some
maximal R-order in A containing G, i.e. Theorem 6(iii), (iv) can be applied.

Proof. It only remains to show that Endg(M) = C for every irreducible
G-lattice M; then the lemma follows from Theorem 6(ii). Since C is the only
maximal R-order in D, Endg(M) C C for every irreducible G-lattice M.
But since Cis commutative and is contained in the centre of G, End¢(M) = C.

For the remainder of the paper we adopt the following notation:
A is a separable finite-dimensional K-algebra;
L = irreducible 4-module;
.DL = EndA(L);
er, = central primitive idempotent corresponding to L;
Ae;, = Endp(L) = simple component of 4 corresponding to L.
For an R-order G in 4 we let:
CL = GeL N DL,
B/, j € J, = different maximal R-orders in Aez, containing Gey;
M+ = irreducible Bj-lattice, j € Jy;
X, k € J(Cp) = representatives of the classes of left Ci-ideals in D;
S(L) = {M: M = G-lattice, KM = L}.
THEOREM 13. If Dy is commutative and if Cy, is the maximal R-order in D, then
(1) all wrreducible non-isomorphic G-lattices in S(L) are given by
{MIL ®C‘L Ichrj E JL: k E J(CL)}y
(i1) S(L) splits into card(JL) genera:
{MJL ®C’LIk1k EJ(CL)}Y jeJLr

(iii) 74(L) = (card(J(C)))ry(L), ,(L) = card(Ji),
(this is an extension of Maranda’s results (6)).
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Remark 14. In the special case where L is an absolutely irreducible 4-
module, we obtain the well-known formula (1).
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