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Abstract

We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log
structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The
main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de
Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy
equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be
used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold
structures on moduli spaces provides potential applications.

1. Introduction

For two smooth components .1, .2 meeting in a smooth divisor D a folkloristic statement says that
a necessary condition for - = .1 ∪ .2 to have a smoothing is that the two normal bundles are dual
to each other; that is, N�/.1 ⊗ N�/.2 � O� . This statement is actually incorrect. It is true only
with the further requirement that the total space of the smoothing be itself smooth. Conceptually,
N�/.1 ⊗ N�/.2 � EGC1 (Ω- ,O- ) =: T 1

-
and Friedman famously coined the notion of d-semistability,

which is saying T 1
-
� O� [17]. We are going to generalise the situation by only requiring T 1

-
to be

generated by global sections (and beyond). For a choice of B ∈ Γ(�, T 1
-
), the total space of the smoothing

will then be of the local form GH = C 5 where t is the deformation parameter, .1 = + (G), .2 = + (H) and f
represents s in a local trivialisation of T 1

-
. The total space of the smoothing has singularities precisely

along B = 0. The local form GH = C 5 has been found to be abundant in mirror symmetry applications
[9, 19, 20, 21, 6, 18, 1, 43].

We work more generally with a normal crossing space; that is, a connected variety X over C étale
locally of the form I1 · ... · I: = 0 for varying : ≤ dim - + 1. We call a flat map X → D for D a
holomorphic disk a smoothing of X if the central fibre is isomorphic to X and the general fibre is smooth.
If a smoothing exists, then we call X smoothable. We say that a normal crossing space has effective
anticanonical class if the dual of its dualising sheaf l- can be represented by a reduced divisor E that
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meets the strata of X transversely; that is, étale locally along E, X is equivalent to � ×A1. We prove the
following theorem.

Theorem 1.1. Let X be a proper normal crossing space with effective anticanonical class. If T 1
-

is
generated by global sections and -sing is projective, then X is smoothable.

The only purpose of the projectivity condition is to apply Bertini’s theorem to have available a
‘nice’ section of the line bundle T 1

-
on -sing. Both the projectivity assumption as well as the global

generatedness assumption on T 1
-

can thus be removed if there exists a schön section of T 1
-

; that is,
a section whose vanishing locus Z is reduced and -sing is locally along Z equivalent to / × A1. We
also prove a more general theorem for toroidal crossing spaces (Theorem 1.7). Theorem 1.1 provides a
lot more flexibility than existing smoothing results, notably Friedman’s [17] for surfaces, Kawamata–
Namikawa’s [34] for d-semistable Calabi–Yaus and Gross–Siebert’s [21] allowing a singular total space
but with much stronger requirements on X; see also [51, 52, 53, 26, 36].

Example 1.2. The union X of d hyperplanes in general position in P= is smoothable to a degree d
hypersurface, but none of the existing results is able to predict the smoothability of X abstractly. Indeed,
the total space of the smoothing is singular because it requires blowing up the base locus of the smoothing
pencil. On the other hand, T 1

-
is generated by global sections. Theorem 1.1 predicts the smoothability

if 3 ≤ = + 1.

Example 1.3. The simplest type of normal crossing space is one with two smoothly intersect-
ing components: let Y be a smooth Fano manifold with − . very ample, let D be a smooth
section of − . and let X be the normal crossing space obtained by identifying two copies of
Y along D. Then T 1

-
� N ⊗2

�/.
is generated by global sections and X is Calabi–Yau, so Theo-

rem 1.1 provides a smoothing of X. For Fano 3-folds Y that are complete intersections in prod-
ucts of weighted projective spaces the smoothing gives Calabi–Yau threefolds of Euler numbers
−106,−122,−138,−156,−128,−156,−176,−256,−260,−296. Though double intersection situations
can be birationally modified to be tractable by the smoothing result in [34], this is no longer true for
triple (and higher) intersection situations [35], but Theorem 1.1 provides smoothings.

Theorem 1.1 considerably facilitates the construction of Calabi–Yau and Fano manifolds. Our work
generalises the Gross–Siebert program towards allowing nontoric components in the central fibre as
well as more flexibility in the local structure (cf. Example 1.8). We generalise Tziolas’s smoothing
result for Fanos by dropping its cohomological condition [51]. Though we work with toric local models,
nontoric deformations of toric local models have applications for smoothing singular toric Fanos or the
construction of versal deformations of nonisolated Gorenstein singularities; see [11, 10]. For Whitney
umbrella local models, the T 1-sheaf has recently been computed in [14]. If the pushforward of the sheaf
of differentials from the log smooth locus can be verified to commute with base change for other types
of local models, then our smoothing result extends to such situations.

Our results enable the construction of versal Calabi–Yau families and conjecturally a logarithmic
Frobenius manifold structure in a formal neighbourhood of the extended moduli space; see [3], [7,
Theorem 1.3]. Theorem 1.10 can be viewed as the statement that the Hodge bundles extend trivially
over boundary divisors in the moduli space that have toroidal families above them; see also [37]. Because
the smoothing deformations are constructed via the Batalin–Vilkovisky formalism in the Gerstenhaber
algebra of (log) polyvector fields (Subsection 13.1), the connection to homological mirror symmetry
can be made via [3], [33].

1.1. Method of Proof

The first step towards proving Theorem 1.1 is to furnish X with a log structure, an idea already found
in [34, 21]. We build a connection between these two works. A sheaf of sets LS- on X classifying
log smooth structures locally on X over the standard log point S has been defined and studied in [19].
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We show in Section 5 that there is a canonical map LS- → T 1
-

with the property that a section
B ∈ Γ(-sing, T

1
-
) yields a log smooth structure on * := - \ + (B); that is, we obtain a log smooth

morphisms * → (. The complement / := + (B) has codimension 2 in X. Using Bertini’s theorem with
the projectivity of -sing, we can assume that Z is schön as defined above.

In the fashion of Zariski–Steenbrink–Danilov, we consider the differential forms , :
-/(

:= 9∗Ω
:
*/(

for 9 : * ↩→ - the inclusion. In the logarithmic context, these complexes were defined and studied
independently by [38] and [20]. A key ingredient for the smoothing of X is the knowledge that the
Hodge–de Rham spectral sequence for,•

-/(
degenerates at �1, a very hard problem. We use the close

control over, :
-/(

along Z, which we gain by using [20, 41] to obtain a particular type of elementary log
toroidal local model for the log structure near Z. For the proof of the Hodge–de Rham degeneration, we
follow the approach by Deligne–Illusie [13]: spreading out to finite characteristic and using the Cartier
isomorphism. However, the lack of coherence poses serious new challenges. The hardest technical part is
to show that the sheaves,•

-/(
commute with base change because 9∗ and ⊗ do not commute in general.

Base change may fail for low characteristics by Example 7.5. However, if the characteristic of the base
field is sufficiently large, we prove by explicit computation in the elementary log toroidal local models
that the sheaves ,•

-/(
commute with base change. As a second difficulty, underived pushforward 9∗

does not ordinarily pass to the derived category and we find a workaround here. We settle a conjecture
by Danilov [12, 14.8] along the way (Theorem 1.4).

To show the unobstructedness of log deformations of X, we use recent advancements of the
Bogomolov–Tian–Todorov theory motivated by the study of mirror symmetry, starting with [33] and
[3], which was cultivated to work in algebraic geometry by [28]. All of these works, however, produce
equisingular deformations (because they are intended for deforming smooth spaces). The crucial dif-
ference to our setup is that though we prescribe local deformations by the log structure, these are not
locally trivial deformations. Building on [16], recently this difficulty in the theory has been addressed
in [7, 8], which adapts perfectly to our situation to produce a formal deformation in the prescribed local
models; see Section 13. We found the framework of Gerstenhaber algebras to be the most effective to
think about the theory that governs our way of parsing [7] in Subsection 13.1; see also [15]. At this
point, the assumption about effectiveness of l−1

-
enters the proof, so that one obtains an isomorphism of

,•
-/(
(log �) with the Gerstenhaber algebra of log polyvector fields PV• and has the Batalin–Vilkovisky

operator Δ available by transporting the de Rham differential to PV•, which is used in Subsection 13.2.
To improve the resulting formal smoothing to an analytic smoothing, we use the Grauert–Douady

space and Artin approximation as already done in [43].

1.2. Toroidal Pairs and Danilov’s Conjecture

A toroidal pair (-, �) is a variety X over a field k of characteristic zero with Weil divisor � ⊂ - such
that X is étale locally equivalent to an affine toric variety with D identified with a reduced toric divisor
(not necessarily the entire toric boundary). Danilov defined the sheaf of differentials Ω̃?

-
(log�) as the

pushforward of the usual Kähler differentials Ω?

-A46
(log� |-A46 ) with log poles from the locus -A46 ⊂ -

where the space is regular.

Theorem 1.4 (Danilov’s conjecture). Given a proper toroidal pair (-, �), the Hodge–de Rham spectral
sequence

�
?,@

1 = �@ (-, Ω̃
?

-
(log�)) ⇒ H?+@ (-, Ω̃•- (log�))

degenerates at �1.

Special cases of this theorem were known before: when X has at worst orbifold singularities [45],
for � = ∅ [5], and for D locally the entire toric boundary [48, 29]. We believe that our methods can be
extended to prove generalisations of the Akizuki–Nakano–Kodaira vanishing theorem.
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1.3. Toroidal Crossing Spaces, Their Log Structures, and Orbifold Smoothings

If + = Spec k[%] is an affine toric variety given by some toric monoid P, consider the map of
sheaves 0 : % → O+ , ? ↦→ I? , with % denoting the constant sheaf. We obtain a sheaf of monoids
P+ = %/0−1 (O×+ ). Now V is Gorenstein if and only if the toric boundary D in V is a Cartier divisor
and hence given as the zero locus of a monomial 1 ∈ %.

Definition 1.5 (Schröer and Siebert [44]). A toroidal crossing space is an algebraic space X over k
together with a sheaf of monoids P with global section 1 ∈ Γ(-,P) such that for every point G ∈ - ,
étale locally at x, X permits a smooth map to the toric boundary �G in +G = Spec k[PG] so that P is
isomorphic to the pullback of P+G and mapping 1G to the monomial in PG whose divisor is �G .

A toroidal crossing space X is automatically Gorenstein, and we denote its dualising line bundle by
l- . The boundary divisor in a Gorenstein toric variety is naturally a toroidal crossing space. General
hyperplane sections of projective toroidal crossing spaces are again naturally toroidal crossing spaces.

Lemma 1.6. A normal crossing space is naturally a toroidal crossing space by setting PG := N: and
1G = (1, 1, . . . , 1) ∈ N: whenever X is locally at x given by I1 · ... · I: = 0. (Though there are other
possibilities to turn a normal crossing space into a toroidal crossing space, we will always refer to
this one.)

The class of toroidal crossing spaces is closed under forming products (but not so the class of
normal crossing spaces). The sheaf P provides what Gross and Siebert call a ghost structure for X ([19,
Definition 3.16]), an ingredient to define the sheaf LS- ([19, Definition 3.19]) whose sections are in
bijection with log structures on X together with a log smooth map to the standard log point S. By [19],
LS- embeds into the coherent sheaf

⊕
� 9�,∗N�̃ where the sum is over the irreducible components C

of -sing, 9� : �̃ → � → - is the composition of normalisation and closed embedding and N�̃ is a line
bundle on �̃. The sheaf LS- often does not have global sections. It suffices, however, to give a section
s of LS- on a dense open set U that contains the generic points of the minimal strata of X so that each
component B� ∈ Γ(* ∩ �,N� ) of s extends to a section of N� on all of C by acquiring simple zeros.
The zeros define a reduced Cartier divisor /�̃ for each �̃. Set / =

⋃
� 9� (/�̃ ) ⊂ - . The construction of

local models along Z in [20] was generalised in [41]: locally the coherent log structure, given by s on U,
extends to an incoherent log structure on X that is still given by certain toric local models, namely, from
a divisor in an affine toric variety that is not the entire toric boundary; for example, as in the definition
of toroidal pair above. A section s of LS- on a dense open set U will be called simple if it extends to
X by simple zeros and the resulting /�̃ satisfy the simpleness criterion in Section 6. Our most general
smoothing result is the following.

Theorem 1.7. Let X be a proper toroidal crossing space with a simple section s of LS- on a dense open
set U. Assume thatl−1

-
permits a section whose divisor of zeros E meets all strata of X and Z transversely

(e.g., when l−1
-
� O- , � = ∅); then X is smoothable to an orbifold with terminal singularities.

There is a precise derivation of the types of singularities of the orbifold smoothing from knowing P

and Z; for example, for a normal crossing space there will be no singularities in the general fibre of the
smoothing and thus, combined with the Bertini argument and linkingLS- withT 1

-
, we find that Theorem

1.7 implies Theorem 1.1; see Proposition 6.10. A section of LS- is of complete intersection type (c.i.t.)
as defined in [41], roughly speaking, if the log singular set satisfies a transversality assumption. A c.i.t.
section gives rise to a log toroidal morphism. Theorem 6.13 does not hold for the general c.i.t. case but
we obtain the following.

Example 1.8. We follow [19]. Let (�,�, i) be a closed oriented tropical manifold with singular locus
combinatorially c.i.t.; then the associated space -0 (�,P, B) with its vanilla gluing data and log structure
satisfies the assumptions of Theorem 1.7 for � = ∅ if the orbifold nearby fibre models are terminal
(given by elementary simplices). Smoothings for such spaces were constructed in [21] under the stronger
assumption of local rigidity; for example, the quintic 3-fold degeneration in P4 is not locally rigid
but c.i.t.
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1.4. The Hodge–de Rham Spectral Sequence

We refer to [32, 30, 19, 39] for basic notions of log geometry. Let 5 : - → ( be a log toroidal family
as defined in Definition 4.1. A toroidal pair (-, �) yields an example by giving X the divisorial log
structure from D and making S the log trivial point. The families X over the standard log point featured
in Theorem 1.7 give further examples. Also, a saturated relatively log smooth morphism 5 : - → ( in
the sense of [38] is an example. The complex,•

-/(
(see page 3) gives rise to a spectral sequence

� (-/() : � ?@1 = '@ 5∗,
?

-/(
⇒ '?+@ 5∗,

•
-/( .

Let Q be a sharp toric monoid and k be a field of characteristic zero. We prove the following theorems.

Theorem 1.9. Let ( = Spec(& → k) and 5 : - → ( be a proper log toroidal family (with respect to
( → �&). Then � (-/() degenerates at �1.

Theorem 1.9 implies Theorem 1.4 because , ?

-/(
= Ω̃

?

-
(log�) whenever f comes from a toroidal

pair. We conjecture the statement of Theorem 1.9 to hold also for an arbitrary coherent base S over a
field of characteristic zero. To prove Theorem 1.9, we adapt the proof of the degeneration in [13] as
follows: because f is proper, it suffices to verify∑

?+@==

dim '@ 5∗,
?

-/(
= dim '= 5∗,

•
-/( . (*)

In Section 9, we show that 5 : - → ( spreads out to a log toroidal family q : X → S = Spec(& → �)

where Z ⊂ � ⊂ k is a subring such that �/Z is of finite type. Spreading out of log smooth morphisms
over a log trivial base has been done before in [48, Lemma 4.11.1] and we generalise the construction
to more general bases and show that the local model in the log toroidal case can be preserved. Then for
suitable fields : ⊃ F? , with,2 (:) denoting the ring of second Witt vectors, we obtain by base change
a diagram with Cartesian squares

- //

5

��

X

q

��

X,oo

q,

��

X:oo

q:

��
( // S Spec,2 (:)oo Spec :.oo

(SO)

In Section 8 we investigate the behavior of ,• under base change, which leads to equalities like
dimk'@ 5∗,

?

-/(
= dim:'

@ (q: )∗,
?

X:/:
; that is, it suffices to show (*) for q: : X: → Spec : . In Section 10

we construct the Cartier isomorphism for log toroidal families in positive characteristic, which we then
apply in Section 11 to obtain the Frobenius decomposition of �∗,•X:/: where F is the relative Frobenius.
Finally, in Section 12, we put the pieces together and prove Theorem 1.9.

We prove a modest but important generalisation of Theorem 1.9 to the relative case using Katz’s
method that first appeared in [45]. This requires a detailed understanding of the analytification of the
absolute differentials,•,0=

-
with respect to base change as given in Subsections 7.2 and 12.1.

Theorem 1.10. Let ( = (< := Spec(N
1↦→C
→ C[C]/(C<+1)) and let 5 : - → ( be a proper log toroidal

family with respect to ( → �N. Then

1. '@ 5∗,
?

-/(
is a free C[C]/(C<+1)-module whose formation commutes with base change.

2. The spectral sequence '@ 5∗,
?

-/(
⇒ '?+@ 5∗,

•
-/(

degenerates at �1.

There are problems with similar theorems in earlier works: the generalisation from a 1-dimensional
base to higher dimensions in [34, p. 404] is flawed, which then also affects [20, Theorem 4.1]. In addition,
there is a gap in the proof of [20, Theorem 4.1] related to the fact that the de Rham differential of Ω•

-/(
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is not O- -linear. Because our result encompasses the one-parameter base case of [20, Theorem 4.1],
Theorem 1.10 closes the latter gap.

Conventions. We use - to refer to the underlying scheme of a log scheme X. Given a map % → �

from a monoid P into the multiplicative monoid of a ring A, we refer to the associated log scheme by
Spec

(
%→ �

)
.

2. Generically Log Smooth Families

A log toroidal family will be a generalisation of a saturated log smooth morphism. We first introduce
the weaker notion of a generically log smooth family that already enjoys some useful properties. Log
structures in the entire article are assumed to be in the étale (or analytic) topology. If 5 : - → ( is a
finite-type morphism of Noetherian schemes, we say a Zariski open * ⊂ - satisfies the codimension
condition (CC) if the relative codimension of / := - \ * is ≥ 2; that is, for every point B ∈ ( with
-B ,*B the fibres,

codim(-B \*B , -B) ≥ 2. (CC)

A Cohen–Macaulay morphism is a flat morphism with Cohen–Macaulay fibres.

Definition 2.1. A generically log smooth family consists of

◦ a finite-type Cohen–Macaulay morphism 5 : - → ( of Noetherian schemes,
◦ a Zariski open 9 : * ⊂ - satisfying (CC),
◦ a saturated and log smooth morphism 5 : (*,M* ) → ((,M() of fine saturated log schemes.

The complement / := -\* we refer to as the log singular locus even though f might extend log smoothly
to it. We say two generically log smooth families 5 , 5 ′ : - → ( with the same underlying morphism of
schemes are equivalent, if there is some *̃ ⊂ *∩* ′ satisfying (��) with M* |*̃ �M′

* ′ |*̃ compatibly
with all data.

If ) → ( is a morphism of fine saturated log schemes, then the base change -) → ) as a generically
log smooth family is defined in the obvious way, taking fibre products in the category of all log schemes.
Note that we need 5 : * → ( saturated to ensure that *) is again a fine saturated log scheme. The
notion of equivalence is due to the fact that we do not care about the precise U. However, for technical
simplicity we assume some U fixed. The name log singular locus is in analogy with [19].

Definition 2.2. For a generically log smooth family 5 : - → (, the de Rham complex is defined as
,•
-/(

:= 9∗Ω
•
*/(

where Ω•
*/(

denotes the log de Rham complex. We also define the O- -module of

degree m log polyvector fields Θ<
-/(

:= 9∗
∧<D4A*/( (O* ).

Lemma 2.3. Let 5 : - → ( be a Cohen–Macaulay morphism of Noetherian schemes, and let 9 : * ⊂ -
satisfy (CC). Then 9∗O* � O- .

Proof. This is a special case of [27, Proposition 3.5]. Note that our (CC) is a stronger assumption than
the condition on the codimension in [27, Proposition 3.5]. �

Let - → ( be a generically log smooth family. Using the language of [24, Definition 5.9.9], a
sheaf F we call Z-closed if the natural map F → 9∗(F|* ) is an isomorphism. Most notable, two Z-
closed sheaves that agree on U are entirely equal. By their definition, ,<

-/(
and Θ<

-/(
are Z-closed.

Furthermore, every reflexive sheaf is Z-closed.

Lemma 2.4. The O- -modules,<
-/(

and Θ<
-/(

are coherent and reflexive and these depend only on the
equivalence class of 5 : - → (.
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Proof. Let *̃ ⊂ * also satisfy (��). We have by Lemma 2.3 that 9∗Ω•*̃/( = 9∗Ω
•
*/(

because Ω<
*/(

is finite locally free. Thus, ,•
-/(

depends only on the equivalence class of f. It is clear that it is

quasi-coherent. For every sheaf G on U, 9∗G is Z-closed, so in particular ,<
-/(

is Z-closed. Set F∨ :=

HomO- (F,O- ). By Lemma 2.3, F∨ is Z-closed for all F, so in particular (,<
-/(
)∨∨ is a Z-closed sheaf

and it coincides with ,<
-/(

on U; hence, (,<
-/(
)∨∨ = ,<

-/(
and ,<

-/(
is reflexive. By the extension

theorem [22, Corollaire 9.4.8], there is a coherentG that restricts to,<
-/(

on U. NowG∨∨ = ,<
-/(

because
both are Z-closed and agree on U; hence,,<

-/(
is also coherent. The argument for Θ<

-/(
is similar. �

Lemma 2.5. ,<
-/(

= Hom(Θ<
-/(

,O- ) and Θ<
-/(

= Hom(,<
-/(

,O- ).

Proof. The statement is clear on U where all sheaves are locally free and then it follows because all
sheaves are Z-closed. �

Remark 2.6. The pushforward 9∗M* → 9∗O* = O- to X yields a log structure that is compatible
with S, so every generically log smooth family is canonically a log morphism - → (. We do not know
whether this pushforward is compatible with base change (and we do not care).

Remark 2.7. In view of Remark 2.6, neither the so-defined log structure M- nor the associated sheaf
of log differentials Ω-/( will be coherent in general; see Example 2.11. On the the other hand,,<

-/(
and

Θ<
-/(

are coherent and have further good properties in the case of log toroidal families, as we will see.

Let - → ( be a generically log smooth family. One defines for the log smooth morphism * → (

the horizontal divisor �* ⊂ * (see, e.g., [49, Definition 2.4] and Remark 3.2). This is only a Weil
divisor in general. We denote by D its closure in X and by �� the corresponding ideal sheaf. We define
,<
-/(
(−�) := 9∗((��,

<
-/(
) |* ). (This does not need to agree with ��,<

-/(
.)

Proposition 2.8. Let ( = Spec(N → k) for k a field where 1 ↦→ 0. Let 5 : - → ( be a generically
log smooth family of relative dimension d and let l 5 = 5 !O( denote the (globally normalised) relative
dualising sheaf; then

,3
-/(
(−�) = l 5 .

Proof. On U, this is [49, Theorem 2.21, (ii)], and because both sheaves are Z-closed, the statement
follows. �

Example 2.9. Let 5 : - → ( be a log smooth and saturated morphism of Noetherian fine saturated
log schemes. Then f is flat by [32, Corollaire 4.5] and has Cohen–Macaulay fibres by [50, Proposition
II.4.1]. We see that 5 : - → ( gives a generically log smooth family for* = - and,•

-/(
is the ordinary

log de Rham complex.

Not every log smooth morphism is saturated; for example, see [30, Remark 9.1] for a log smooth
morphism that is not even integral.

Example 2.10. Let -/Spec ' be a toric variety over a Noetherian base ring R. The fibres over points
in Spec ' are normal (and Cohen–Macaulay), so there is a regular open* ⊂ - whose complement has
relative codimension ≥ 2 over Spec '. For every divisorial log structure on X coming from a torus-
invariant divisor D on X, the map * → Spec ' is log smooth and saturated when using the trivial log
structure on Spec '. Hence, - → Spec ' is a generically log smooth family. The differentials ,•

-/(

coincide with what is called reflexive or Danilov or Zariski–Steenbrink differentials with log poles in D.
This example extends to toroidal pairs (-, �) over Spec '.

Example 2.11. The Z[C]-algebra � = Z[G, H, C, F]/(GH − CF) defines a map 5 : Spec � → A1 that is
log smooth and saturated away from the origin when using the divisorial log structure given by C = 0
on source and target and hence a generically log smooth family. The log structure on Spec � is not
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coherent at the origin, so f is not log smooth. Even worse, Ω 5 is not a coherent sheaf at the origin; see
[20, Example 1.11].

Another type of generically log smooth family with application to Gromov–Witten theory can be
found in [4].

2.1. Analytification

Given a generically log smooth family 5 : - → ( of finite type over C, we denote the associated
family of complex analytic spaces by 5 0= : -0= → (0=. Induced by f, the open *0= ⊂ -0= carries
an fs log structure so that *0= → (0= is a log smooth and saturated morphism of fs log analytic
spaces. The analogue of Lemma 2.3 holds if -0=, (0= are Cohen–Macaulay by [2, Theorem 3.6]. For
( = Spec(& → �) with A an Artinian ring and

,
•,0=

-/(
:= 90=∗ Ω•*0=/(0= ,

we have,<,0=

-/(
� (,<

-/(
)0= because both are reflexive coherent O-0= -modules that coincide on *0=.

If f is proper, then GAGA gives �@ (-0=,, ?,0=

-/(
) � �@ (-,,

?

-/(
) and also

H?+@ (-0=,,•,0=
-/(
) � H?+@ (-,,•-/();

for example, via the comparison of the Hodge–de Rham spectral sequences.

3. Elementary Log Toroidal Families

For basic notions and constructions of monoids, see [39].

Definition 3.1. An elementary (log) toroidal datum (& ⊂ %,F) (ETD for short) consists of an injection
& ↩→ % of sharp toric monoids that turns P into a free Q-set whose canonical basis is a union of faces
of P. We furthermore record a set F of facets of P with the property that it contains all facets that do
not contain Q. In other words, if we define

Fmin := {� ⊂ % a facet |& ⊄ �}︸                         ︷︷                         ︸
vertical facets

,

then Fmin ⊂ F ⊂ Fmax where Fmax is the set of all facets.

Remark 3.2. The facets in F \ Fmin will give the horizontal divisor that we referred to as D before.

Lemma 3.3. ([39, Corollary I.4.6.11, Theorem I.4.8.14, Corollary I.1.4.3]). The requirement on the
injection & ↩→ % in Definition 3.1 is equivalent to saying that this map is saturated.

See Figure 3.1 for examples. Even the case & = 0 can be interesting because then Fmin = ∅. We
denote the union of faces of P that gives the generating set of the free Q-action by E. A face F of P
contained in E we call an essential face. Every ? ∈ % has a unique decomposition ? = 4 + @ with
4 ∈ �, @ ∈ &; hence,

� ×& → %, (4, @) ↦→ 4 + @, (3.1)

is bijective ([39, Theorem I.4.8.14]; cf. [31, Lemma 1.1]). Furthermore, we see that � = % \ (&+ + %)

where &+ = & \ 0 is the maximal ideal. Moreover, projecting E to %gp/&gp is injective and the set of
essential faces gives a fan in %gp/&gp whose support %̄ is convex in (%gp/&gp) ⊗Z R because it is the
convex hull of the projection of P. Note that %̄gp = %gp/&gp. A choice of splitting %gp

� %̄gp ⊕ &gp
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Figure 3.1. Three examples of a saturated injection & ⊂ % and the projection %̄; the outer two are log
smooth and the middle one gives Example 2.11.

yields a unique map of sets i : %̄ → &gp so that id×i : %̄ → %̄ ⊕ &gp is a section of the projection
%→ %̄ with the property that its image is E, so

% = {( ?̄, @) ∈ %̄ ⊕ &gp | ∃@̃ ∈ & : @ = i( ?̄) + @̃}. (3.2)

Lemma 3.4. The morphism 5 : SpecZ[%] → SpecZ[&] induced by the injection & ⊂ % is a Cohen–
Macaulay morphism of fibre dimension 3 = rk(%gp/&gp).

Proof. Because P is free as a Q-set (generated by E), SpecZ[%] is a flat SpecZ[&]-module. By [24,
Corollary 6.3.5] the total space of a faithfully flat morphism of Noetherian schemes is Cohen–Macaulay
if and only if the base and all fibres are. By Hoechster’s theorem, the fibres of SpecZ[%] → SpecZ are
Cohen–Macaulay; hence, SpecZ[%] and SpecZ[&] are Cohen–Macaulay. Now flatness of 5 implies
that it is Cohen–Macaulay. �

We next want to define an open set U in the domain of 5 that satisfies (CC). We will actually define
its complement and for this we need a good understanding of the faces of P.

Lemma 3.5. Let � ⊂ % be a face. Set �̄ := � ∩ � , & ′ := & ∩ �; then

� = �̄ +& ′ := { 5̄ + @′ | 5̄ ∈ �̄, @′ ∈ & ′}.

Because E is a union of faces of P, so is �̄. Note also that & ′ is a face of Q.

Proof. By the decomposition (3.1), any element in F has the form 5̄ + @ with 5̄ ∈ �, @ ∈ &. Because F
is a face, 5̄ , @ are both in F; hence, � ⊂ �̄ +& ′. The reverse inclusion is clear. �

Consider the set of bad faces of P defined as

B =

{
�̄ +& ′

���� �̄ is a union of essential faces of rank at most 3 − 2

& ′ is a face of &, �̄ +& ′ is a face of %

}
.

Recall that there is a one-to-one correspondence between faces F of P and torus orbits closures
+� := SpecZ[�] in SpecZ[%]. Similarly, for & ′ a face of Q, we have a torus orbit closure +&′ :=
SpecZ[& ′] ⊂ SpecZ[&].

Lemma 3.6. Given �̄ +& ′ ∈ B, we find that +�̄+&′ is flat over +&′ ⊂ SpecZ[&]. Furthermore, if X is a
fibre of 5 , then codim(- ∩+�̄+&′ , -) ≥ 2.

Proof. Because �̄ +& ′ is free as a & ′-set, Z[�̄ +& ′] is a free Z[& ′]-module, so the flatness statement
follows. The origin 0 given by the prime ideal (I@ |@ ∈ &+) is contained in +&′ and let -0 be the
fibre over it. It suffices to check the codimension condition for this particular fibre. But note that
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-0∩+�̄+&′ =
⋃
� ⊂�̄ +� where the union runs over faces F of P contained in �̄ and we have dim+� ≤ 3−2

by the assumption on �̄. �

Set

*% := SpecZ[%] \

(⋃
�∈B

+�

)
. (3.3)

For every face F of P, we have an open subset SpecZ[%� ] of SpecZ[%] where %� is the localisation
of P in F; that is, %� is the submonoid of %gp generated by P and −�.

Lemma 3.7. We find*% =
⋃
� *� where the union is over the essential faces F of rank 3 − 1.

Proof. Because*% is a union of torus orbits, it suffices to check that any torus orbit contained in*% is
contained in some *� for F essential of rank 3 − 1. Every torus orbit is given by $� := SpecZ[�gp]

for G a face of P. Assume $� ⊂ *. We use Lemma 3.5 to write � = �̄ + & ′. If rk �̄ ≤ 3 − 2, then
� ∈ B, so $� ⊄ *. Hence, dim �̄ ≥ 3 − 1 and �̄ contains some essential face F of rank 3 − 1. Then
F is also contained in G and thus $� is contained in*� . Conversely, because $� is not in any +�, the
assertion follows. �

Let �& := Spec(& → Z[&]) denote the log scheme with standard toric log structure and let �%,F
be the log scheme with underlying scheme SpecZ[&] and divisorial log structure given by the divisor⋃
� ∈F SpecZ[�]. The map 5 : �%,F → �& induced by \ is naturally a log morphism by the condition

on F to contain the vertical faces. We work here with Zariski log structures that coincide with the
pushforward of the corresponding étale log structures by [39, Proposition III.1.6.5].

Lemma 3.8 (Theorem 3.5 in [32] or Theorem 4.1 in [30]). If F = Fmax, then f is log smooth.

Proposition 3.9. The map 5 : �%,F → �& is a generically log smooth family with *% serving as the
specified dense open of log smoothness.

Proof. IfF = Fmax, then f is saturated because \ is saturated. More generally, because �%,Fmax → �%,F
is locally given by embedding a face, it is exact. Now by [39, I.4.8.5(2)], f is saturated.

The assertion is clear if 3 = 0 ⇐⇒ % = &, so assume 3 > 0. Given Lemma 3.4, we still need
to verify that U satisfies (CC) and that f is log smooth on *% . Note that Lemma 3.6 implies that *%
satisfies (CC) because the complement of*% is the union of closed sets each of which has codimension
at least 2 in each fibre.

To see that f is log smooth on*% , by Lemma 3.7, it suffices to check that f is log smooth on*� for
F essential of rank 3 − 1. Let F be such a face. Set %̄� := %�/�gp and note that the projection of Q to
%̄� is injective because �gp ∩& = {0}. There is an isomorphism %� � �

gp × %̄� commuting with the
injection of Q that is {0} ×& on the right.

The log structure on *� is a divisorial log structure given by a set of divisors each of which pulls
back from SpecZ[%̄� ], so we may consider the corresponding divisorial log structure on SpecZ[%̄� ]
to upgrade this to a log scheme *̄� . We have a factorisation *� → *̄� → �& with the first map a
smooth projection from a product that is therefore strict and hence log smooth. It thus suffices to show
that *̄� → �& is log smooth. Note that *̄� → �& is the log morphism of an ETD with 3 = 1. The
following lemma finishes the proof. �

Lemma 3.10. Assume that 5 : �%,F → �& has 1-dimensional fibres (i.e., 3 = 1); then f is log smooth.
(The third situation of Figure 3.1 is an example.)

Proof. We are done by Lemma 3.8 if F = Fmax, and this always holds if Q meets the interior of P. So
assume that Q is contained in a proper face of P; then by Lemma 3.5 it is in fact a facet of P and then
%̄ = N and consequently % = N × &. A facet of P that is not Q is in Fmin = {N × � | �is a facet of Q}.
Hence, F ( Fmax implies F = Fmin and thus f is strict. Because 5 is smooth, we find that f is log
smooth. �
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Corollary 3.11. It is possible to find open subsets*1 and*2 so that*% = *1∪*2 and �% |*1 = �%,F |*1

and 5 : *2 ⊂ �%,F → �& is strict and smooth.

Proof. Let E1 be the set of essential faces of rank 3 − 1 such that when applying the proof of Lemma
3.10 to *̄� → �& from the proof of the proposition, we are in the case F = F<0G , and let E2 be the set
of faces where we are in case F = F<8=. Then for � ∈ E1 we have �% |*� = �%,F |*� , and for � ∈ E2 the
morphism*� → �& is strict and smooth. Now we define*1 =

⋃
� ∈E1

*� and*2 =
⋃
� ∈E2

*� . �

Example 3.12. If (& ⊂ %,F) is an ETD and A ≥ 0, then we obtain another ETD (&×{0} ⊂ %×NA ,F′)
where F′ = {� × NA | � ∈ F}.

4. Log Toroidal Families

We define log toroidal families and investigate their basic properties.

Definition 4.1. We say that a generically log smooth family 5 : - → ( is log toroidal if for every
geometric point Ḡ → - , we have a commutative diagram

(+, 6−1(*))
6

tt✐✐✐✐
✐✐

ℎ
**

��
(-,*)

5

��

(!,*!)

tt✐✐✐✐
✐✐
✐✐
✐✐ 2

**❯❯❯
❯❯

❯

(̃

tt❥❥❥❥
❥❥
❥❥
❥❥
❥❥ 0

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯ (�%,F,*%)

tt✐✐✐✐
✐✐
✐✐

( �&

(LM)

where 6 : + → - is an étale neighbourhood of Ḡ, (̃ → ( is a strict étale neighbourhood of 5 (Ḡ) and
a is given by a chart & → M(̃ of (̃. The bottom right diagonal map is required to be given by an
ETD (& ⊂ %,F) and *% ⊂ �%,F denotes the open set from (3.3). The solid arrows are morphisms of
schemes and log morphisms on the specified opens, whereas ℎ : + → ! is an étale morphism only of
underlying schemes. The bottom right diamond is Cartesian, in particular, *! = 2−1 (*%). Moreover,
we have an open *̃ ⊂ + satisfying (CC), such that *̃ ⊂ 6−1(*) ∩ ℎ−1 (*!) and there is an isomorphism
6∗M- � ℎ

∗M! of the two log structures on *̃ compatible with the maps to S.
The diagram (LM) is called a local model for 5 : - → ( at Ḡ. If ( � Spec(& → �), every point has

a local model with (̃ = ( and a is given by the chart & → �, then we say that 5 : - → ( is log toroidal
with respect to 0 : ( → �&.

Log toroidal families are stable under strict base change.

Remark 4.2. Note that Definition 4.1 only requires a covering of X by (LM) but does not say that an
arbitrary geometric point Ḡ ∈ - permits a diagram (LM) that identifies Ḡ with the origin in �% . However,
if k is algebraically closed, one can show that by localising the ETD in (LM) and using Example 3.12,
one can assume that Ḡ ∈ - becomes the origin in �% . We will make use of this fact in the proof of
Theorem 1.10.

Example 4.3. Every elementary log toroidal family 5 : �%,F → �& is log toroidal.

Example 4.4. The generically log smooth families given in Example 2.10 are log toroidal families with
& = 0 in every ETD.

Example 4.5. A saturated log smooth morphism 5 : - → ( is log toroidal with* = - . Indeed, locally
starting from a neat chart of f, set F = Fmax and then apply Example 3.12 to have local models. That
this works is not a trivial consequence of Theorem 3.5 in [32]. Instead, use [39, Theorem VI.3.3.3].

Example 4.6. In the setting and notation of the Gross–Siebert program, [20, Theorem 2.6] shows that if
(�,P) is positive and simple, and s is lifted open gluing data, then -†0 (�,P, B) → Spec(N→ :) is log
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toroidal. More generally, it was shown in [41, Proposition 2.8] that c.i.t. log Calabi–Yau spaces are log
toroidal over Spec(N→ :). The divisorial deformations defined in [20] are also log toroidal families.

5. Log Structures and Infinitesimal Deformations

Let X be a toroidal crossing space over a field k. As mentioned in the Introduction, X can be equipped
with a sheaf of sets LS- , which we recall next. An alternative categorical approach to study log smooth
morphisms for a fixed underlying morphism has been developed in [40], though we follow the sheaf

approach. Let ( = Spec(N
1↦→0
→ k) be the standard log point. The pair (P,1) gives a ghost structure in

the sense of [19, Definition 3.16]. Indeed, the type of the ghost structure is fixed by requiring it to be the
one given by the local chart that comes with the definition of a toroidal crossing space. We will refer to
this type as the given type below. By [19, Definition 3.19 and Proposition 3.20], there is a sheaf LS-
(denoted LS-6 in [19]) with the property that for every étale open* ⊂ - , there is a natural bijection

Γ(*,LS- ) =




M* → O* a log structure of
the given type, 1̃ ∈ Γ(*,M* ),

M*
∼
→ P an isomorphism

������
(*,M* ) → ( via 1 ↦→ 1̃ is a

log smooth morphism and
M* →M* → P sends 1̃ to 1




where the set on the right is to be taken modulo isomorphisms. The support of P/1 agrees with -sing,
so the sheaf LS- is supported on -sing.

Set (Y := Spec(N
1↦→Y
→ k[Y]/(Y2)). If + → ( is a log smooth morphism with V affine, then there is

a unique log smooth lifting +Y → (Y up to isomorphism. For (M, 1̃) ∈ LS- (*) and an affine + ⊂ *,
the deformation 8 : + → +Y yields an extension

0→ O+ → 8∗Ω1
+Y
→ Ω1

+ → 0 (5.1)

where on the left 1 ↦→ 8∗3Y. The classes of such local extensions glue to a well-defined class in
EGC1 (Ω1

*
,O* ) (though neither the extensions nor the deformations need to glue). We have thus defined

a map of sheaves of sets

[ : LS- → EGC1 (Ω1
- ,O- ) = T 1

- . (5.2)

Remark 5.1. In this form, the map [ seems to be new. However, a close relationship between log
structures and T 1

-
has been observed before in [34, Proposition 1.1], [46, Remark (3.11)], [30, Theorem

11.7], [19, Example 3.30], [40, Theorem 3.18], [44, Theorem 7.5].

Both sheaves in (5.2) have a natural action of O×- : indeed, T 1
-

because it is coherent and for LS-
we let a section _ of O×- act by 1̃ ↦→ _−1

1̃.

Proposition 5.2. The map [ is O×- -equivariant.

Proof. At a geometric point Ḡ ∈ - with " = (M, 1̃) ∈ LS-,Ḡ for M defined on some étale * → -

that contains Ḡ, let `" : O-,Ḡ → T 1
-,Ḡ

denote the connecting homomorphism at Ḡ in the long exact
sequence obtained from applying H><(−,O- ) to (5.1). By a general fact for extensions, we have
`" (1) = [("). For _ ∈ O×-,Ḡ , let "_ ∈ LS-,Ḡ denote the element (M, _−1

1̃). The statement of the
lemma comes down to the following claim.

*1

��

81 //

✻
✻
✻
✻
✻

��✻
✻
✻
✻
✻

(*1)Y

��✻
✻
✻
✻
✻
✻
✻
✻
✻
✻

*_

j

OO

~~

8_//

$$■■
■
■
■
■
■
(*_)Y

$$■
■
■
■
■

( (oo // (Yii
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Claim 1. `" (_) = [("_).

To prove the claim, let *1,*_ denote the log smooth schemes over S respectively obtained from the
log scheme U and the map to S given by 1 ↦→ 1 and 1 ↦→ _−1

1 respectively. Let (*1)Y and (*_)Y be the
unique deformations of *1,*_ over (Y , respectively. Let j : *_ → *1 be the canonical isomorphism
over ( = Spec

(
0→ k).

We are now going to use facts about idealised log schemes; see [39, Chapter III.1.3 & IV-Variant
3.1.21] for an introduction. We give (Y the ideal 〈2〉 generated by 2 ∈ N and (*1)Y and (*_)Y the
pullback ideals  1,  _ respectively so that ((*1)Y ,  1) and ((*_)Y ,  _) are ideally log smooth over
((Y , 〈2〉). The map ((Y , 〈2〉) → (�N, ∅) is an étale map of idealised log schemes and �N → ( is
log smooth; hence, the composition c : ((*1)Y ,  1) → ((Y , 〈2〉) → ( is log smooth. We apply the
infinitesimal lifting property to the diagram

(*,  )
81 //

8_��

((*1)Y ,  1)

c��
((*_)Y ,  _) // (

where (*,  ) is the idealised log scheme * = *1
j
= *_ with ideal given by (1̃)2 or, equivalently,

(_−1
1̃)2. The left vertical map 8_ is strict for the log structure and ideal and given by a square-zero

ideal. We obtain a morphism j̃ : (*_)Y → (*1)Y of log schemes that preserves the ideals and is an
isomorphism on ghost sheaves. Consequently, with d_ ∈M(*_)Y , Ḡ and d1 ∈M(*1)Y , Ḡ , the images of
the generator 1 ∈ M(Y respectively, we have j̃∗d1 = _̃ · d_ for some _̃ ∈ O(*_)×Y , Ḡ that restricts to
_ ∈ O×*,Ḡ . This implies that j̃ becomes an isomorphism after shrinking (*_)Y , (*1)Y if needed. Using
81 ◦ j = j̃ ◦ 8_, we obtain the commutative diagram

[("_) : 0 −−−−−−→ O*
1↦→8∗

_
3U(d_)

−−−−−−−−−−→ 8∗
_
Ω1
(*_)Y

−−−−−−→ Ω1
*
−−−−−−→ 0

y_−1 ·




 



[("1) : 0 −−−−−−→ O*

1↦→8∗
_
3 (_̃U(d_))

−−−−−−−−−−−−−→ 8∗
_
Ω1
(*_)Y

−−−−−−→ Ω1
*
−−−−−−→ 0,

and we conclude [("_) = `" (_) via standard homological algebra. �

Lemma 5.3. Let Ḡ ∈ - be a geometric point with k[PḠ] smooth; then

1. for " ∈ LS-,Ḡ , the map `",Ḡ : O-,Ḡ → T -,Ḡ is surjective,
2. O×-,Ḡ acts transitively on LS-,Ḡ ,
3. [ Ḡ : LS-,Ḡ → T -,Ḡ is injective.

Proof. Set % := PḠ . For (1), let * → - be an étale affine neighbourhood of Ḡ where " = (M* ,1* )

is defined and ℎ : (*,M* ) → Spec
(
% → k[%]/(I1 Ḡ )

)
the strict S-morphism whose underlying map

is smooth. Possibly after shrinking U, via Y ↦→ 1Ḡ , we obtain a strict map of extensions over (Y ,

ℎY : (*Y ,M*Y ) → Spec
(
%→ k[%]/(I (1 Ḡ+1 Ḡ ) )

)
whose underlying morphism is also smooth and hence Ω*Y is locally free. This implies that the

corresponding term EGC1 (Ω*Y ,O- )Ḡ in the long exact sequence for (5.1) vanishes and thus `",Ḡ is
surjective.

To show (2), note that it suffices to show that any two elements in LS-,Ḡ are isomorphic over (.
Equivalently, by [19, Definition 3.19 & Corollary 3.12], the composition

LS-,Ḡ ⊂ EGC1 (P
gp
Ḡ /Z1Ḡ ,O

×
-,Ḡ) → EGC1 (P

gp
Ḡ ,O

×
-,Ḡ)
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needs to be the constant map. By assumption, P is free and then (2) follows from the description of
EGC1 (P

gp
Ḡ ,O

×
-,Ḡ) in [19, Proposition 3.14].

For (3), if Ḡ ∉ -sing, both stalks are trivial and there is nothing to show, so assume that Ḡ ∈ -sing.
By [17, Proposition 1.10], we have T 1

-,Ḡ
� O-sing , Ḡ , so the kernel of the action of O×-,Ḡ on T 1

-,Ḡ
is

 := ker
(
O×-,Ḡ → O×-sing , Ḡ

)
. If we show that K is contained in the kernel of the action of O×-,Ḡ on

LS-,Ḡ , then (3) follows from (2) and Proposition 5.2. By assumption, X is normal crossings at Ḡ. Let
-1, . . . , -A be the local components of X at Ḡ, A ≥ 2. Let _ ∈  be given and write _ = 1+

∑A
8=1 58 where

58 |- 9 = 0 for 8 ≠ 9 . We observe that _ =
∏
8 (1+ 58) because 58 5 9 = 0 for 8 ≠ 9 . IfNA → O-,Ḡ , 48 ↦→ ℎ8 is

a chart of X at Ḡ representing an element of LS-,Ḡ with 1 =
∑
8 48 and + (ℎ8) = -8 , then 48 ↦→ (1+ 58)48

defines an automorphism of M-,Ḡ compatible with the map to O-,Ḡ because (1 + 58)ℎ8 = ℎ8 . It takes
1 to _1, so _ acts trivially on LS-,Ḡ . �

Remark 5.4. For ^ ≥ 2, consider the monoid %^ = 〈41, 42,1|41 + 42 = ^1〉 and the toroidal crossing
space - = Spec

(
%^ → k[%^ ]/(I

1)
)
. The map [ : LS- → T 1

-
is the zero map k× → k, so the

smoothness assumption in Lemma 5.3 is necessary.

Theorem 5.5. Let X be a toroidal crossing space with %Ḡ � N2 whenever Ḡ is the generic point of a
component of -sing; then [ : LS- → T 1

-
is injective. On the open set + ⊂ - of points Ḡ with PḠ � N

A

for some r, we have [(LS+ ) = (T 1
+
)× where (T 1

-
)× ⊂ T 1

-
denotes the subsheaf of those elements that

generate T 1
-

as an O- -module.

Proof. The second statement is Lemma 5.3. The first statement also follows from the lemma combined
with the fact that for every open* ⊂ - , the restriction map LS- (*) → LS- (*∩+) is injective, which
is a consequence of Corollary 6.2. Indeed, in view of the diagram on the right, that the composition of the
left vertical and bottom horizontal arrow is injective implies the injectivity of the top horizontal arrow.

LS- (*)

��

[ // T 1
-
(*)

��
LS- (* ∩+)

[ // T 1
-
(* ∩+).

�

6. Toroidal Crossing Spaces as Log Toroidal Families

Let X be a toroidal crossing space. Let Ḡ be geometric point and +Ḡ the étale neighbourhood with a
smooth map+Ḡ → Spec k[PḠ]/I1 that exists by the definition of X. Set # = P

gp
Ḡ and "R = Hom(#,R).

We obtain a lattice polytope fḠ = {< ∈ "R |< |PḠ ≥ 0,1(<) = 1} (we use that X is reduced here). For a
face g ⊂ fḠ , we denote by+g the inverse image of the closed subset Spec k[g⊥∩PḠ] of Spec k[PḠ]/I1

in +Ḡ . Theorem 3.22 in [19] says the following.

Theorem 6.1 (Gross–Siebert). LS- |+Ḡ is isomorphic to a subsheaf of ⊕lO
×
+l

where the sum is over
the edges of fḠ . The sections of the subsheaf on an open + ⊂ +Ḡ are given as the tuples ( 5l)l so that,
for every two-face g of fḠ , we have ∏

l⊂g

3l ⊗ 5
ng (l)
l |+g = 1 (6.1)

as an equality in " ⊗Z Γ(+,O
×
+g
) where 3l is a primitive generator of the tangent space to l and

ng (l) ∈ {−1, +1} is such that (ng (l)3l)l⊂g gives an oriented boundary of g.

Corollary 6.2. Given an étale open * → - , the natural map LS- (*) →
∏
Ḡ LS-,Ḡ , for the product

running over the generic points Ḡ of the components of*sing, is injective.
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The isomorphism in the theorem naturally depends on the morphism +Ḡ → Spec k[PḠ]/I1 in a way
that enables the following result.

Corollary 6.3. For each irreducible component -l of -sing there is an O×
-̃l

-torsor N×l on its normal-

isation -̃l so that

LS- ⊂
⊕
-l

@l,∗N
×
l

for @l : -̃l → -l the normalisation, and the subsheaf is locally characterised by Theorem 6.1 when
using suitable local trivialisations of the torsors.

Let Nl denote the associated line bundle so that N×l is its O×
-̃l

-torsor of generating sections. We

therefore obtain an injection of LS- in the coherent sheaf
⊕

-l
@l,∗Nl .

Lemma 6.4. Under the hypothesis of Theorem 5.5, the injection LS- ↩→
⊕

-l
@l,∗Nl is O×- -

equivariant.

Proof. We borrow the notation %^ from Remark 5.4. From a careful analysis of the proof of [19,
Theorem 3.22] one finds that the action 1 ↦→ _−1

1 becomes 5l ↦→ _^l 5l where ^l is such that
PḠ � %^l at the generic point Ḡ of -l . Indeed, if a local model at Ḡ is given by GH = 5l (I

1)^l , this
is equivalent to GH = _^l 5l (_−1I1)^l , which explains the action. The hypothesis of Theorem 5.5 says
that ^l = 1 for all l, so indeed the action of O×- on LS- is compatible with the ordinary action on the
coherent sheaf

⊕
-l
@l,∗Nl . �

Theorem 6.5. If X is a normal crossing space, then the injection in Lemma 6.4 factors as the composition
of [ : LS- → T 1

-
and a uniquely determined injection of coherent sheaves T 1

-
↩→

⊕
-l
@l,∗Nl .

Proof. Given Lemma 6.4 and Theorem 5.5 and noting that + = - for a normal crossing space and
that the annihilator of T 1

-
is contained in the annihilator of

⊕
-l
@l,∗Nl , the statement becomes an

elementary lemma about a cyclic module whose proof we omit. �

Definition 6.6. For a point Ḡ ∈ - , let -◦Ḡ ⊂ - denote the Zariski locally closed subset where P is
locally constant with stalk PḠ , so that X is the disjoint union of -◦H̄ for suitable points H̄. We call the
closure -Ḡ of -◦Ḡ the stratum of Ḡ, which again decomposes into -◦H̄ . We infer the notion of strata to the
normalisation of X.

A section of B ∈ Γ(*,LS- ) for a Zariski open * ⊂ - is called schön if it extends to a section
(Bl)l ∈ Γ(-,

⊕
-l
@l,∗Nl) so that, for each l, the vanishing locus /̃l of Bl in -̃l is reduced, does

not contain any strata and has regular intersection with each stratum inside -̃l (in particular, /̃l∩-◦l is
smooth). We also assume that / =

⋃
l @l (/̃l) is the complement of U (otherwise, U can be enlarged).

Definition 6.7. A schön section is called simple if for every closed point Ḡ ∈ - with +Ḡ →

Spec k[PḠ]/I1 the smooth map from a neighbourhood, we have the following situation. Let / ∩ +Ḡ =⋃
l∈Ω /l be the local decomposition of Z into irreducible components where we may assume each /l

contains Ḡ.

1. There is a disjoint union Ω = Ω1 ⊔ ... ⊔ Ω@ with @ < rkPḠ such that /8 := /l ∩ -Ḡ = /l′ ∩ -Ḡ
whenever l, l′ are in the same Ω8 .

2. /1, . . . , /@ form a collection of normal crossing divisors in -Ḡ at Ḡ.
3. For each i, the primitive vectors 3l for l ∈ Ω8 are the set of edge vectors of an elementary simplex

Δ 8 ⊂ #R. (A lattice simplex is elementary if its vertices are the only lattice points contained in it.)

We remark that if @l : -̃l → -l is not an embedding, the zero set /̃l of Bl may locally contribute
two or more components of Z at a point Ḡ that may or may not lie in different Ω8 .
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Theorem 6.8 (Gross–Siebert). A toroidal crossing space X over an algebraically closed field k together
with simple section B ∈ Γ(*,LS- ) gives X the structure of a log toroidal family over ( = Spec

(
N→ k

)
with U the locus of log smoothness.

Proof. Using assumptions in Definition 6.7, the proof is the same as the one of [20, Theorem 2.6]. See
also Example 4.6. �

We remark that the Δ 8 give the local structure of the singularities in the nearby fibre (cf. [20,
Proposition 2.2]). We also remark that all ETDs have F = Fmin; that is, there is no horizontal divisor.
Proposition 2.8 implies,dim-

-/(
= l-/( .

Proposition 6.9. A normal crossing space X with -sing projective and T 1
-

generated by global sections
permits a dense open U and a simple section B ∈ Γ(*,LS- ). In view of Definition 6.7, we have @ = 1
at every point in Z and Δ1 in each ETD is a standard simplex, which means that all ETDs have smooth
nearby fibres.

Proof. Applying Bertini’s theorem to the line bundle T 1
-

on -sing, we obtain a section B̂ ∈ Γ(-sing, T
1
-
)

that gives a simple section B ∈ Γ(- \+ ( B̂),LS- ) by Theorem 6.5. �

Proposition 6.10. Theorem 1.1 follows from Theorem 1.7.

Proof. We are given E that is transverse to the strata of X. We apply a slight variant of Proposition
6.9 by making sure that the zero locus Z of the section B̂ generated by Bertini is transverse also to E.
Theorem 1.7 gives an orbifold smoothing, but we know that it is an actual smoothing from the fact that
each Δ1 is standard. �

The next two lemmata reduce Theorem 1.7 to the log Calabi–Yau case; that is, to the case,3
-/(
� O- .

We achieve this by modifying the log structure so that the new family is log Calabi–Yau.

Lemma 6.11. Let 5 : - → ( be a log toroidal family with empty horizontal divisor. Let � ⊂ - be a
Cartier divisor that meets all strata and Z transversely; that is, locally along E the triple (-, /, �) is étale
equivalent to (� ×A1, (� ∩/) ×A1, � ×{0}). There is a new log toroidal family - (log �) → ( that has
E as its horizontal divisor and factors through f (by forgetting E), so, in particular,,dim-

- (log�)/( (−�) =

l-/( .

Proof. On U the result is straightforward and along Z we use the product description to make E the
horizontal divisor in the ETDs by adding a summand N to P and the unique new facet gets included in
F. That these give local models follows the same proof as [20, Theorem 2.6], noting that we may treat
the local equation for E as one of the 58 in the notation of [20]. �

Lemma 6.12. Let 5 : - → ( be a projective log toroidal family with empty horizontal divisor and
assume that l−1

-/(
is generated by global sections; then l−1

-/(
� O- (�) for a divisor E that satisfies the

assumption of Lemma 6.11. In particular,,dim-
- (log�)/( � O- .

Proof. This follows via an application of Bertini’s theorem. �

In general, we do not know whether deformations of log toroidal families are locally unique. The
following theorem shows local uniqueness for the families obtained from toroidal crossing spaces
whenever a simple section gives the log structure.

Theorem 6.13 (Gross–Siebert, Theorem 2.11 in [20]). Let . := - (log �) → ( be a log toroidal
family obtained from a toroidal crossing space - via a simple section B ∈ Γ(*,LS- ) and a divisor
E as in Lemma 6.11. Let .: be a log toroidal deformation over (: = Spec(N → k[C]/(C:+1)). Then
the automorphisms of, isomorphisms of and obstructions to the existence of a lifting .:+1 to (:+1
are controlled by �0(.,Θ1

. /(
⊗k �), �1 (.,Θ1

. /(
⊗k �) and �2 (.,Θ1

. /(
⊗k �), respectively, where

� = (C:+1) ⊂ k[C]/(C:+2). In particular, if + ⊂ . is affine open, then any two infinitesimal deformations
of +/( are isomorphic.
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Proof. The proof works precisely as in [20]. We remark that in Lemma 2.14, the exact sequence in (2)
becomes 0 → Θ. /( → Θ-/k (log �) → B → 0 where Θ-/k (log �) denotes ordinary derivations that
preserve the ideal of E. In other words, for the ordinary deformations, we consider the ones of the pair
(-, �) rather than just - . �

7. Differentials for Elementary Log Toroidal Families

We fix a principal ideal domain R as base ring. The constructions in Section 3 carry through when
replacing Z by R. We will use the following elementary lemma.

Lemma 7.1. Let =, < ≥ 0 and �1, . . . , �A ⊂ '
= be submodules each of which is a direct summand;

then the natural map
∧<
' (

⋂
8 �8) →

⋂
8

∧<
' �8 is an isomorphism.

First consider the absolute case – that is, an ETD (& ⊂ %,F) with& = 0 – and let 5 : �%,F → Spec '
be the associated log morphism. One checks that U from (3.3) is simply the complement of codimension
2 strata. Recall from Example 2.10 that ,< := ,<

�%,F/Spec' are just the Danilov differentials with log

poles in the divisor given by the facets in F. Danilov already computed these in [12, Proposition 15.5]
over a field, and because of Lemma 7.1 the same calculation works over R and we obtain the following.

Proposition 7.2 (absolute case). We have a grading Γ(�% ,,
<) =

⊕
?∈% (,

<)? with

(,<)? =

<∧
'

©­­«
⋂

�∈F<0G \F
?∈�

�6? ⊗Z '
ª®®¬

where the intersection is %6? ⊗Z ' if the index set is empty.

Let us next assume that we have a general ETD (& ⊂ %,F) and let f again denote the associated
log toroidal family and,<

5
:= ,<

�%,F/Spec �&
the differentials. Note that because F contains all vertical

facets, every facet in Fmax \ F contains Q. We obtain the following generalisation.

Proposition 7.3 (general case). We have a grading Γ(�% ,,
<
5
) =

⊕
?∈% (,

<
5
)? with

(,<
5 )? =

<∧
'

©­­«
©­­«

⋂
�∈Fmax\F

?∈�

�6? ⊗Z '
ª®®¬
/
(&6? ⊗Z ')

ª®®¬
where the intersection is %6?⊗Z' if the index set is empty. Because&gp ⊂ %gp splits, we can equivalently
take the quotient before the intersection.

Proof. We can compose f with the projection to Spec ' to relate the current situation to that of
Proposition 7.2. The open set *abs in the absolute case is the complement of /abs, the union of all
codimension 2 strata. Hence, *abs is covered by *� where F runs over the facets of P. On the other
hand, the open set U for f as given in (3.3) has a cover *� where F runs over the essential faces of
rank 3 − 1 by Lemma 3.7. Obviously, *abs ⊂ *. Note that because ,<

5
is locally free on U and O*

is /abs-closed, we find that ,<
5

is not only Z-closed but also /abs-closed. Consider the commutative
diagram of solid arrows

0 // 5 ∗Ω�&/Spec'
] // ,1

�%,F/Spec'
//

��

,1
5

��

// 0

0 // 5 ∗Ω�&/Spec'
// ,1

�%/Spec'
//

ff

,1
�%/�&

// 0

(7.1)
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where the top row is obtained by pushing it forward from *abs. The bottom sequence is obtained from
tensoring the sequence 0→ &gp → %gp → %gp/&gp → 0 with O�% ; in particular, it is exact and splits.
Hence, the dotted diagonal arrow exists and commutes with the other maps. Therefore, coker(]) is a direct
summand of ,1

�%,F/Spec'; in particular, /abs-closed. Moreover, coker(]) → ,1
5

is an isomorphism on

*abs and because both sheaves are /abs-closed, we have coker(]) = ,1
5

and thus the top row is exact
and splits.

Let 〈 5 ∗Ω�&/Spec'〉 denote the homogeneous ideal in the sheaf of exterior algebras ,•
�%,F/Spec'

generated by 5 ∗Ω�&/Spec'. The split exactness above gives the split exactness of the following sequence:

0→ 〈 5 ∗Ω�&/Spec'〉< → ,<
�%,F/Spec' → ,<

5 → 0.

Because �% is affine and 〈 5 ∗Ω�&/Spec'〉 coherent, applying Γ(�% , ·) to this sequence yields another
exact sequence that already gives that Γ(�% ,,<

5
) is P-graded. We have Γ(�% , 5 ∗Ω�&/Spec') = &

gp ⊗Z

'[%]. Set F? :=
(⋂

�∈F<0G \F
?∈�

�6? ⊗Z '
)

and let 〈&gp ⊗ '〉 ⊂
∧•
' F? be the homogeneous ideal

generated by &gp ⊗ '. One computes Γ(�% , 〈 5 ∗Ω�&/Spec'〉<)? = 〈&gp ⊗ '〉<. Using Proposition 7.2,
in degree ? ∈ %, we obtain the exact sequence

0→ 〈&gp ⊗ '〉< →

<∧
'

F? → (,
<
5 )? → 0.

Using a splitting of the injection (&gp ⊗ ') ⊂ F? and comparing leads to the assertion. �

Corollary 7.4. For all m,,<
5

is flat over �&.

Proof. Inspecting the result in Proposition 7.3, we find that Γ(�% ,,<
5
) is a free '[&]-module. �

7.1. Change of Base

Let (& ⊂ %,F) be an ETD, T be a Noetherian ring and ) = Spec T → Spec '[&] be any morphism.
Denote by f the composition & → '[&] → T , which turns T into a coherent log scheme. Define Y by
the fibre diagram

.
2 //

��

�%,F

5

��
) // �&

(7.2)

of log toroidal families. We want to study when the natural map 2∗,<
5
→ ,<

. /)
is an isomorphism.

This holds if f is log smooth because then ,<
5

= Ω<
5

are the ordinary log differentials that satisfy
this isomorphism property by their universal property. In particular, 2∗,<

5
→ ,<

. /)
is always an

isomorphism on the open set + := 2−1 (*). The following example shows that it is not an isomorphism
in general. For a subset � ⊂ %, let 〈�〉 be the smallest face of P containing I.

Example 7.5. Let P be the submonoid of Z2 generated by (1, 0), (1, 1), (1, 2) and let & = 0. The
monoid P has two facets �1 = 〈(1, 0)〉 and �2 = 〈(1, 2)〉, and setting F = ∅ yields an ETD. Let
5 : �%,F → �& = SpecZ be the corresponding map. Now set T = Z/2Z inducing the natural map
) = Spec T → SpecZ and a fibre diagram as above. One checks that 2∗,1

5
→ ,1

. /)
is not an

isomorphism by computing both terms via Proposition 7.2. It suffices to check the degree ? = 0 –
indeed, (,1

5
)0 = �

gp
1 ∩ �

gp
2 = 0 – but

(,1
. /) )0 = (�

gp
1 ⊗ Z/2Z) ∩ (�

gp
2 ⊗ Z/2Z) = Z/2Z · (1, 0) ⊂ (Z/2Z)

2.

Hence, ((,1
5
) ⊗Z Z/2Z)0 = 0 but (,1

. /)
)0 ≠ 0.
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The example teaches that base change is related to the (non)commuting of intersection and tensor
product. The following lemma (which is an elementary exercise in Tor groups) will help us. We say
that a ring T is of characteristic ≥ ?0 if for the residue field ^p of every point p holds char ^p ≥ ?0 or
char ^p = 0.

Lemma 7.6. Let G be a finitely generated Z-module and �, � ′ ⊂ � be two submodules. Then there is
?0 such that for every ring T of characteristic ≥ ?0 we have

(� ∩ � ′) ⊗ T = (� ⊗ T ) ∩ (� ′ ⊗ T )

and each term here is a submodule of � ⊗ T .

In the general situation, observe that we have Γ(.,O. ) =
⊕

4∈� I
4 · T with multiplication

I41 · I42 = I4 · f(@) whenever 41 + 42 = 4 + @

with 4 ∈ �, @ ∈ & under the canonical decomposition from (3.1). Similarly, Proposition 7.3 gives

Γ(., 2∗,<
5 ) =

⊕
4∈�

I4 · ((,<
5 )4 ⊗' T ). (7.3)

Lemma 7.7. Recall + = 2−1 (*). Equivalent are

1. the map 2∗,<
5
→ ,<

. /)
is an isomorphism,

2. 2∗,<
5

is reflexive,
3. the restriction map d : Γ(., 2∗,<

5
) → Γ(+, 2∗,<

5
) is surjective.

Proof. (1)⇒(2): ,<
. /)

is reflexive; (2)⇒(3): 2∗,<
5

is (. \ +)-closed; (3)⇒(1): Consider the com-
mutative square

Γ(., 2∗,<
5
)

d

��

// Γ(.,,<
. /)
)

��
Γ(+, 2∗,<

5
) // Γ(+,,<

. /)
)

where the right vertical map is an isomorphism because ,<
. /)

is reflexive by Lemma 2.4. The bottom
horizontal map is an isomorphism by what we said just before Example 7.5. Now (1) holds if the top
horizontal map is an isomorphism, which follows from (3) if d is additionally injective. This injectivity
is a general fact that we prove next. Recall that �%,Fmax = �% and we have a map �% → �%,F that gives
us another commutative square

Γ(., 2∗,<
5
)

d

��

// Γ(., 2∗,<
�%/�&

)

��
Γ(+, 2∗,<

5
) // Γ(+, 2∗,<

�%/�&
).

(7.4)

Because �% → �& is log smooth and ,<
�%/�&

= Ω<
�%/�&

a free sheaf, the right vertical map is

an isomorphism. We get that d is injective if the top horizontal map is injective. The latter can be
computed from Proposition 7.3. Indeed, this follows from (7.3) because for every 4 ∈ � , the cokernel
of (,<

5
)4 → (,

<
�%/�&

)4 is a free R-module. �
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We next provide a useful criterion for the surjectivity of d. Let E be the set of essential faces of P of
rank 3 − 1. By Lemma 3.7, U is covered by {*� |� ∈ E}. Set +� = 2−1(*� ) so these cover V. For each
� ∈ E, choose 4� ∈ � in the relative interior; that is, 〈4� 〉 = �.

Theorem 7.8. Write "? := (,<
5
)? for short and assume that for every subset E′ ⊂ E and every 4 ∈ �

the natural map ( ⋂
� ∈E′

"4+4�

)
⊗' T →

⋂
� ∈E′

("4+4� ⊗' T )

is an isomorphism. Then d is surjective.

Proof. We write " = Γ(�% ,,
<
5
), # = Γ(�% ,,

<
�%/�&

) and #? for the degree p part of N. By

proposition 7.3, "? and #? only depend on 〈?〉. We are going to use that for ?1, ?2 ∈ % holds

〈?1 + ?2〉 = 〈〈?1〉 ∪ 〈?2〉〉. (7.5)

We have a natural injection " ⊂ # by Proposition 7.3. Given ` ∈ Γ(+, 2∗,<
5
), we want to show that

it has a preimage under d. We do have a unique preimage a under the right vertical map of (7.4), so in
# ⊗' [&] T , and we are going to show that this preimage lies in " ⊗' [&] T . Say a =

∑
4 I
4 · =4 with

=4 ∈ #4 ⊗ T is such that a |+ = `. In particular, a |+� = ` |+� for all � ∈ E. There is some large 0 ≥ 1
so that for each � ∈ E there are <�,4 ∈ "4 ⊗ T such that

` |+� = I−04�
∑
4

I4 · <�,4

and therefore a |+� = ` |+� implies

I04�
∑
4

I4 · =4 ∈
⊕
4∈�

I4 · ("4 ⊗' T ) ⊂
⊕
4∈�

I4 · (#4 ⊗' T ).

If 4 + 04� = 4̃ + @ is the decomposition % = � ×&, then =4 · f(@) ∈ "4̃ ⊗' T . By (7.5),

4 + 04� ∈ � ⇐⇒ 〈4 + 4� 〉 ⊂ � ⇐⇒ 4 + 4� ∈ �,

and if this holds, then f(@) = 1, so setting

E4 := {� ∈ E | 4 + 4� ∈ �},

we obtain =4 ∈
⋂
� ∈E4 ("4+04� ⊗' T ) and "4+04� = "4+4� . Note that E4 does not depend on the

chosen 4� . Using the assumption, we get

=4 ∈
⋂
� ∈E4

("4+4� ⊗' T ) =

( ⋂
� ∈E4

"4+4�

)
⊗' T .

For the next step, define F4 = {� ∈ F<0G \F | ∃� ∈ E4 : 4 + 4� ∈ �}. We use Lemma 7.1 to compute

⋂
� ∈E4

"4+4� =

<∧
'

( ⋂
� ∈F4

�6? ⊗Z '

&6? ⊗Z '

)
.

We finally claim that F4 = {� ∈ F<0G \ F | 4 ∈ �}; indeed, given an H in the latter, we just need to
exhibit an � ∈ E that is also contained in H with 〈4, �〉 ⊂ � , which can be done because � ∩ � is a
union of faces in E. Thus, =4 ∈ "4 ⊗' T , so indeed a ∈ " ⊗' [&] T and we are done. �
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Corollary 7.9. Let (& ⊂ %,F) be an ETD, T a Noetherian ring and ) = Spec T → �& a strict
morphism of log schemes. Then 2∗,<

5
is reflexive and 2∗,<

5
→ ,<

. /)
is an isomorphism provided that

the composition

' → '[&] → T

is flat; for example, when R is a field.

As Example 7.5 shows, the conditions of Theorem 7.8 are not always satisfied in case ' = Z.
However, we do get close.

Corollary 7.10. Let (& ⊂ %,F) be an ETD, and assume 5 : �%,F → �& to be defined over ' = Z. Then
there is a ?0 = ?0 (& ⊂ %,F) such that for every m and every ) = Spec T → �& with a Noetherian
ring T of characteristic ≥ ?0, the sheaf 2∗,<

5
is reflexive, and 2∗,<

5
→ ,<

. /)
is an isomorphism.

Proof. Applying Lemma 7.6 repeatedly, we find for every triple (<, 4, E′) as in Theorem 7.8 a
?0 (<, 4, E

′) such that the isomorphism in the theorem holds if T is of characteristic ≥ ?0 (<, 4, E
′).

Because there are only finitely many different sets of modules {"4+4� | � ∈ E′}, we obtain one
?0 (& ⊂ %,F) that works for all triples. �

For a field k, consider a monoid ideal  ⊂ &, let ( ) ⊂ k[&] denote the corresponding monomial
ideal of k[&] and set T = k[&]/( ). The map ) = Spec T → k[&] is the natural one and . → ) is
defined by (7.2) as before. We set � := % \ (% +  ) and note this generalises the union of essential
faces E from Section 3; indeed, � = �&\{0}. Combining Proposition 7.3 with Corollary 7.9 (for ' = k)
gives the following, which also generalises [20, Corollary 1.13].

Corollary 7.11. Γ(.,,<
. /)
) �

⊕
4∈� 

I4 ·
∧<

(⋂
� ∈Fmax\F:4∈� (�

6? ⊗ k)/(&6? ⊗ k)
)

with differen-

tial 3 (I4 · =) = I4 · [4] ∧ =.

With 2 : . → �%,F the notation from before, we apply 2∗ to the split exact sequence given by the
top row of (7.1) and obtain another split exact sequence. The left term is free and 2∗,<

5
is reflexive

by Corollary 7.9. Hence, 2∗,<
�%,F/k

is also reflexive. With + = 2−1(*), we find the natural surjection

2∗Ω•
*/k
։ Ω•

+ /k
to be an isomorphism (e.g., by local freeness of both). For 9 : + ↩→ . the inclusion and

,•
.

:= 9∗Ω
•
+ /k

we thus have 2∗,<
�%,F/k

� ,<
.

. Plugging this into Proposition 7.2 yields the following.

Corollary 7.12. Γ(.,,<
.
) �

⊕
4∈� 

I4 ·
∧<

(⋂
� ∈Fmax\F:4∈� �

6? ⊗ k
)

with differential 3 (I4 · =) =
I4 · 4 ∧ =.

7.2. Local Analytic Theory

We keep the setup and notation from before (with k = C), so (& ⊂ %,F) is an ETD and  ⊂ & a
monoid ideal. We additionally assume that & \  is finite, so T = C[&]/( ) is an Artinian local ring.
For %+ = % \ {0}, let C[[%]] be the completion of C[%] in (%+).

Lemma 7.13. ([39, Proposition V.1.1.3]). For every local homomorphism ℎ : %→ N; that is, ℎ−1 (0) =
{0} and we may view h as a grading; thus, it holds that

O�0=
%
,0 =

{ ∑
?∈%

U?I
?

����� U? ∈ C, sup?∈%+

{
log |U? |

ℎ(?)

}
< ∞

}
⊂ C[[%]] .

We have Γ(.,O. ) � C[� ] :=
⊕

4∈� 
C · I4 with I4 · I4

′
= I4+4

′
if 4 + 4′ ∈ � and I4 · I4

′
= 0

otherwise. By [23, Corollary 3.2] and Lemma 7.13, the complete local ring at the origin in . 0= is

Ô. ,0 � (C[&]/( )) ⊗C[[&]] C[[%]] �

{ ∑
4∈� 

U4I
4

}
=: C[[� ]] .
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Lemma 7.13 together with the surjectivity of O�0=
%
,0 → O. 0= ,0 and Krull’s intersection theorem yields

O. 0= ,0 =

{ ∑
4∈� 

U4I
4 ∈ C[[� ]]

����� sup4∈� \0

{
log|U4 |

ℎ(4)

}
< ∞

}
. (7.6)

Lemma 7.14. Let (+, 〈·, ·〉) be a finite-dimensional C-vector space with a Hermitian inner product. For
every 4 ∈ � , let +4 ⊂ + be vector subspaces so that

+̃ :=
⊕
4∈� 

I4 · +4 ⊂ + [� ]

is aC[� ]-module. Assume moreover that+4 ⊂ + depends only on the set � (4) := {� ⊂ % a facet |& ⊂
�, 4 ∈ �}. Set+ [[� ]] :=

∏
4∈� I

4 ·+4 and V0= := +̃ ⊗C[� ]O. 0= . We find its stalk at the origin to be

V0=0 �

{ ∑
4∈� 

I4 · E4 ∈ + [[� ]]

����� sup4∈� \0

{
log ‖E4‖

ℎ(4)

}
< ∞

}
.

Proof. The set of possible � (4) is finite, so there is only a finite set of different+4. Choosing orthonormal
bases for all +4 allows reducing the assertion to (7.6). We leave the technical details to the reader. �

Remark 7.15. We can use Lemma 7.14 to compute the stalk at 0 of the analytification of,<
. /)

and,<
.

by using Corollary 7.11 and Corollary 7.12, respectively.

8. Base Change of Differentials for Log Toroidal Families

Definition 8.1 (BC). We say that a generically log smooth morphism 5 : - → ( satisfies the base
change property if for every strict morphism ) → ( of Noetherian fs log schemes, < ∈ Z and c the map
given by the Cartesian diagram

.
2

−−−−−−→ -

6
y 5

y
)

1
−−−−−−→ (,

(BC)

the sheaf 2∗,<
-/(

is reflexive or, equivalently, the natural map 2∗,<
-/(
→ ,<

. /)
is an isomorphism.

Theorem 8.2 (Base Change over Fields). Let 5 : - → ( be a log toroidal family over a field k; then f
satisfies (BC).

Proof. This follows directly from the local statement Corollary 7.9. �

Theorem 8.3 (Generic Base Change). Let 5 : - → ( be a log toroidal family. Then there is a finite set
of prime numbers ?1, . . . , ?# ∈ Z so that if 5 ◦ : -◦ → (◦ is obtained from f by inverting ?1, . . . , ?#
(i.e., base change to SpecZ?1...?# ), then 5 ◦ satisfies (BC).

Proof. Again, this follows directly from the local statement Corollary 7.10 combined with the fact that
we can use a finite cover by local models. �

An application of the above theorems is the following lemma, which is crucial for the degeneration
of the Hodge–de Rham spectral sequence.
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Lemma 8.4. (cf. [29, Proposition 6.6]). Let 5 : - → ( be a proper log toroidal family with S affine, and
let 1 : ) → ( with T affine. Assume that 2∗,<

-/(
= ,<

. /)
holds for all m. Then we have isomorphisms

!1∗' 5∗,
?

-/(
→ '6∗,

?

. /)
(8.1)

!1∗' 5∗,
•
-/( → '6∗,

•
. /) (8.2)

in �1 ()). If, for fixed p, all '@ 5∗,
?

-/(
are locally free of constant rank, then (8.1) induces an isomor-

phism

1∗'@ 5∗,
?

-/(

�

−→ '@6∗,
?

. /)
.

If, for all n, the sheaf '= 5∗,•-/( is locally free of constant rank, then (8.2) induces an isomorphism

1∗'= 5∗,
•
-/(

�

−→ '=6∗,
•
-/( .

Proof. Because ,<
-/(

is flat over S – this is Corollary 7.4 – the proof becomes identical to that in [29,
Proposition 6.6]. �

9. Spreading Out Log Toroidal Families

We fix a sharp toric monoid Q, a field k ⊃ Q and set ( = Spec(& → k) where the map& → k is @ ↦→ 0
except 0 ↦→ 1. We choose distinct subrings �_ ⊂ k for all _ in some index set Λ so that any two �_1, �_2

are both contained in a third �_. We say _1 ≤ _2 if �_1 ⊂ �_2 . Furthermore, we require lim
−−→_

�_ = k

and that each �_ is of finite type over Z. We get log schemes (_ = Spec(& → �_) each with a strict
map ( → (_ and, in fact, ( = lim

←−−_
(_.

Proposition 9.1. Let 5 : - → ( be a log toroidal family of relative dimension 3 = rkΩ1
*/(

. Then there
is _ ∈ Λ and a log toroidal family 5_ : -_ → (_, so that f is obtained by base change from 5_; that is,
there is a Cartesian square

- −−−−−−→ -_

5
y y 5_
( −−−−−−→ (_.

If f is separated and/or proper, we can assume 5_ to be so, too.

Proof. By [25, Theorem 8.8.2 (ii)], [25, Theorem 8.10.5] and [25, Theorem 11.2.6 (ii)] we can find a
_ ∈ Λ and a morphism 5_ : -_ → (_ that is finitely presented and flat and an isomorphism (×(_ -_ � -

over S. If 5 : - → ( is separated respective proper, we can choose 5_ moreover separated respective
proper. Using [25, Corollaire 12.1.7(iii)] and [25, Theorem 8.10.5], we can choose _ such that 5_ is a
Cohen–Macaulay morphism. Because these decompose disjointly over the relative codimension, again
by increasing _ if needed, we may assume that 5_ has relative dimension d.

We next spread out U such that*_ ⊂ -_ satisfies (CC). We do this by spreading out its complement
Z. Indeed, by [47, 05M5, Lemma 31.16.1], we can increase _ so that every fibre of /_ → (_ has
dimension ≤ 3 − 2 and then define*_ := -_ \ /_.

Now a straightforward generalisation of the method of [48, Lemma 4.11.1] yields that, for appropriate
_, we can find a log structure on *_ and upgrade 5_ to a log morphism such that *_ is fs and 5_ is log
smooth and saturated. More precisely, we choose an affine étale cover {*8}8 of U such that *8 → (

admits a local model by a saturated morphism \8 : & → %8 of monoids; the local model remains a local
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Figure 9.1. The diagram constructed in the text.

model for an appropriate spread-out *8,_ → (_ (for appropriate _), which thus carries the structure of
a saturated log smooth morphism to (_. At this point, the*8,_ might not cover*_, the log structures on
*8,_ might not coincide on overlaps, and even if this was the case, we might not have a log morphism
to (_. We achieve all of this by increasing _.

Finally – again by possibly increasing _ – we show that the family 5_ : -_ → (_ is log toroidal. We
fix a finite covering {+8 → -} with local models (& ⊂ %8 ,F8) as in Definition 4.1, and for each of
them we construct a diagram as in Figure 9.1. Namely, we first spread out +8 → ( to +8,_ → (_. Then
!8,_ is defined by base change, and we construct the étale morphisms of schemes 6_ : +8,_ → -_ and
ℎ_ : +8,_ → !8,_ also by spreading out. We can assume that -_ is covered by {+8,_ → -_} and that
*̃8 ⊂ +8 spreads out to an open *̃8,_ ⊂ +8,_ satisfying (CC). We get two log structures (6_)∗;>6M-_

and (ℎ_)∗;>6M!8,_ on *̃8,_, which we identify by [48, Sublemma 4.11.3]. By the same sublemma, the
two morphisms (6 ◦ 5 )∗

;>6
M(_ →M*̃8,_

coming from 5_ ◦ 6_ respectively A_ ◦ ℎ_ coincide. Because
{+8 → -} is a finite covering, we can find _ that admits the above construction for all+8 simultaneously.

�

10. The Cartier Isomorphism

In this section, we define the Cartier homomorphism for a generically log smooth family 5 : - → (

in characteristic ? > 0. We then prove that it is an isomorphism if f is log toroidal. Similar to [5], we
first study the situation on U and then examine its extension to all of X. Let �( : ( → ( be the absolute
log Frobenius on the base; that is, given by taking pth power in M( and O( respectively, we similarly
define �- : - → - . We define 5 ′ : - ′→ ( and the relative Frobenius F by the Cartesian square

-

5   ❆
❆
❆
❆
❆
❆
❆
❆

� //

�-

##
- ′

5 ′

��

B // -

5

��
(

�( // (.

Set* ′ := B−1(*) and / ′ = - ′ \* ′.

Theorem 10.1 ([32]). We have a canonical (Cartier) isomorphism of O* ′-modules

�−1
* : Ω<

* ′/( → H< (�∗Ω
•
*/(),

which is compatible with ∧ and satisfies �−1 (0) = �∗(0) for 0 ∈ O- ′ and �−1(dlog(B∗@)) = dlog(@)
for @ ∈M* .

Proof. This is [32, Theorem 4.12(1)] once we identify * ′′ = * ′: Kato considers the factorisation

*
6
→ * ′′

ℎ
→ (* ′)int 8

→ * ′ of � |* where i is the integralisation of * ′ and 6 ◦ ℎ is the unique
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factorisation of this weakly purely inseparable morphism where h is étale and g purely inseparable, using
[32, Proposition 4.10(2)]. Now i is an isomorphism because f is integral. By [39, Corollary III.2.5.4],
because 5 : * → ( is saturated, � : * → * ′ is exact. The uniqueness of the factorisation 6 ◦ ℎ now
implies that h is an isomorphism. �

Because,<
- ′/(

is / ′-closed, pushing forward the inverse of �−1
*

to - ′, we obtain a homomorphism

� : H<(�∗,
•
-/() → ,<

- ′/( ,

which is an isomorphism on* ′. We obtain the following lemma.

Lemma 10.2. The map C is an isomorphism if and only if H< (�∗,
•
-/(
) is / ′-closed.

Definition 10.3. We say that a generically log smooth family 5 : - → ( in positive characteristic has
the Cartier isomorphism property if C is an isomorphism for all < ≥ 0.

By Theorem 10.1, H<(�∗,
•
-/(
) is locally free on * ′; hence, it is / ′-closed if and only if it is

reflexive. Reflexivity can be checked étale locally.

Lemma 10.4. Let (& ⊂ %,F) be an ETD, let 1 : ) → �& be strict with ) = Spec T and consider the
Cartesian diagram

.
2 //

6

��

�%,F

5

��
)

1 // �& .

Then H<(�∗,
•
. /)
) is reflexive.

Corollary 10.5. Every log toroidal family 5 : - → ( over F? has the Cartier isomorphism property.

Proof of Lemma 10.4. Set+ := 2−1 (*%) and let. ′, + ′ be the base changes by the absolute Frobenius �) .
Let � : . → . ′ be the relative Frobenius. Inspired by the Frobenius decomposition [13, Theorem 2.1],
we construct a homomorphism q• :

⊕
<,

<
. ′/)
[−<] → �∗,

•
. /)

of complexes of O. ′-modules that
induces an isomorphism in cohomology. Because the left-hand side has zero differentials, the assertion
then follows from the reflexivity of,<

. ′/)
given by Lemma 2.4.

Similar to Subsection 7.1, we find explicitly that '′ := Γ(. ′,O. ′) =
⊕

4∈� I
4 · T with

I41 · I42 = I4 · f(@) ? whenever 41 + 42 = 4 + @

with 4 ∈ �, @ ∈ &. We have B∗(I4 · C) = I4 · C ? and �∗ (I4 · C) = I? ·4 · C. After writing,<
4 := (,<

5
)4⊗F? T ,

the module Γ(. ′,,<
. ′/)
) is given by the T -module

⊕
4∈� I

4 ·,<
4 on which '′ acts as

(I41 · C1) · [I
42 · (F ⊗ C2)] = I

4 · (F ⊗ f(@) ?C1C2) whenever 41 + 42 = 4 + @

with 4 ∈ �, @ ∈ &. Similarly, Γ(. ′, �∗,<
. /)
) is given by the same T -module, however now with '′

acting via �∗ as

(I41 · C1) · [I
42 · (F ⊗ C2)] = I

4 · (F ⊗ f(@)C1C2) whenever ? · 41 + 42 = 4 + @.

Note the subtle difference. The differential on �∗,•. /) is given by 3 (I4 · (F ⊗ C)) = I4 · ( [4] ∧ F ⊗ C).
We define

q• :
⊕
<

,<
. ′/) [−<] → �∗,

•
. /) , I4 · (F ⊗ C) ↦→ I? ·4 · (F ⊗ C),
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Figure 11.1. The diagram.

and claim that H<(q•) is an isomorphism. Indeed, first note that q• itself is injective. Then set
�? = {? · 4 |4 ∈ �}. We have im(q<) =

⊕
4∈�?

I4 ·,<
4 because,<

4 = ,<
4/?

for 4 ∈ �? by Proposition

7.3. Denoting the coboundaries of �∗,<
. /)

by �<, we have im(q<) ∩ �< = 0 because 0 = [4] ∈ ,1
4 for

4 ∈ �? because 4 = ?4′ and p is zero in T . This readily gives that H<(q•) is injective. For surjectivity,
if 4 ∉ �? , observe that [4] ≠ 0, so if F ∈ ,<

4 , then [4] ∧ F = 0 if and only if there is some F′ ∈ ,<−1
4

with [4] ∧ F′ = F. �

Remark 10.6. We believe that H<(q•) is the log Cartier isomorphism on + ′.

11. The Decomposition of �∗,
•
-0/(0

We prove a log version of the decomposition theorem [13, Theorem 2.1] in the setting of generically
log smooth families. (We noticed that [13, Corollary 3.7] alias [29] does not generalise well to the
generically log smooth setting.) The assumption for 5 : - → ( to be saturated on the log smooth locus
allows a simpler approach than [32, Theorem 4.12]. Our setting is as follows: let k be a perfect field with
char : = ? (thus,Z/?2Z→ ,2 (:) is flat), and let Q be a sharp toric monoid. Set (0 = Spec(& → :) and
( = Spec(& → ,2 (:)) where in both cases & ∋ @ ↦→ 0 except 0 ↦→ 1. The Frobenius endomorphism
on k becomes an endomorphism �0 of (0 via & ∋ @ ↦→ ?@. Similarly, its lift to ,2 (:) defined via
(01, 02) ↦→ (0

?

1 , 0
?

2 ) becomes1 an endomorphism �( of S that restricts to �0 on (0. Let 5 : - → ( be a
generically log smooth family and let 50 : -0 → (0 be its restriction to (0. We consider the commutative
diagram of generically log smooth families as in Figure 11.1, where - ′0, -

′ are defined by requiring
the front and back square to be Cartesian and F is the relative Frobenius; that is, F is induced by the
back square’s Cartesianness using the Frobenius endomorphisms on -0 and (0. Because X does not
have a Frobenius, we do not easily obtain the dotted arrow G in a similar way and in general it does not
exist globally. We call a locally defined morphism G that fits into the diagram a local Frobenius lifting.
Because the (Zariski or étale) topologies are identified along F and i, we can define Frobenius liftings
simply at the level of sheaves:

Definition 11.1. Let . ′ → - ′ be an étale open. Then a Frobenius lifting � : . → . ′ on . ′ consists of a
ring homomorphism�∗ : O. ′ → �∗O. yielding a morphism of schemes and a monoid homomorphism
�∗ : M. ′ |+ ′ → �∗M. |+ ′ defined on some + ′ ⊂ . ′ satisfying (��), yielding a log morphism. Two
Frobenius liftings are considered equal if they are equal on some smaller (Zariski) open satisfying (��).
The Frobenius liftings form an étale sheaf of sets FA>1(-, - ′).

Remark 11.2. We need the flexibility of + ′ in the definition of FA>1(-, - ′) to construct Frobenius
liftings from local models as they occur for log toroidal families. We will see below that we could have
as well required the log part to be defined on . ′ ∩* ′; see the proof of Proposition 11.4.

1Warning: This is not the pth power map on,2 (:) and thus depends on the chosen chart.
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Let 9 : * ′ ↩→ - ′ denote the pullback of * ⊂ - and / ′ = - ′ \* ′. By Lemma 2.3, FA>1(-, - ′) =
9∗(FA>1(-, -

′) |* ′). Let I ⊂ O- be the ideal sheaf defining -0 ⊂ -; flatness gives I = ? ·O- � O-0 .
Using I2 = 0, one checks that �∗I is an O- ′-module. Considering derivations on * ′ with values in
�∗I, we obtain a sheaf of groups G := 9∗D4A* ′/( (�∗I) = 9∗H><(Ω

1
* ′/(

, �∗I), which agrees with

H><(,1
- ′/(

, �∗I) because �∗I is / ′-closed by Lemma 2.3.

Lemma 11.3. The restriction FA>1(-, - ′) |* ′ is a G|* ′-torsor; hence, FA>1(-, - ′) is a G-pseudo-
torsor.

Proof. Let D be the sheaf of sets on* ′ given by étale local deformations of the diagram

*0
8′◦�
−−−−−−→ * ′

8
y 5 ′

y
*

5
−−−−−−→ (

in the sense of [39, Definition IV.2.2.1]; that is,D is the sheaf of morphisms* → * ′making the diagram
commute. The sheaf D is a G|* ′-pseudo-torsor by [39, Theorem IV.2.2.2] and because 5 ′ : * ′ → ( is
smooth, it is a torsor. Because Ω1

* ′/(
is locally free, D is locally isomorphic to (�∗I)⊕3 . By Lemma

2.3, D is /̃-closed for every /̃ ⊂ - ′ satisfying codim(/̃ , - ′) ≥ 2. By this property, the obvious
homomorphism D→ FA>1(-, - ′) |* ′ is an isomorphism of sheaves of sets making FA>1(-, - ′) |* ′ a
G|* ′-torsor. �

Proposition 11.4. Let . ′ → - ′ be an étale open and � : . → . ′ a local Frobenius lifting. Then there
is a canonical homomorphism of complexes

q� : ,1
. ′0 /(0
[−1] → �∗,

•
.0/(0

inducing the Cartier isomorphism in first cohomology on * ′0 ∩ .
′
0 . If ℎ ∈ G(. ′), then q� and qℎ ·� are

related by

qℎ ·� = q� + (�∗3) ◦ ℎ̃

where ℎ̃ : ,1
. ′0 /(0

→ �∗I � �∗,
0
.0/(0

is the induced homomorphism.

Proof. We choose + ′ = * ′ ∩ . ′ for the representative of G. The straightforward log version of the
construction of [29, Proposition 3.8] yields a homomorphism Ω1

+ ′0 /(0
→ �∗Ω

1
+0/(0

, and this has also

been used implicitly by Kato in [32, Theorem 4.12]. Applying 9∗ yields (q�)1, and we define the other
(q�)

< to be 0. The resulting q� does not depend on + ′ because the involved sheaves are /̃-closed for
every /̃ ⊂ . ′0 satisfying codim(/̃ , . ′0) ≥ 2, so q� is well defined. The construction yields that H1 (q�)

is the Cartier isomorphism of Theorem 10.1 on + ′0 = * ′0 ∩ .
′
0 . The second statement is similar to [29,

Lemma 5.4,(5.4.1)] except that we use the more elegant language of torsors (as already remarked in [13,
Remark 2.2 (iii)]), which renders the analogue of [29, Lemma 5.4,(5.4.2)] trivial. �

Theorem 11.5. Let 5 : - → ( be a generically log smooth family, assume that 50 : -0 → (0 has the
Cartier isomorphism property (Definition 10.3) and assume that FA>1(-, - ′) is a G-torsor. Then we
have a quasi-isomorphism ⊕

<<?

,<
- ′0/(0
[−<] → g<?�∗,

•
-0/(0

in �1 (- ′0) where g<? means the truncation of a complex.
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Proof. Because FA>1(-, - ′) is a torsor, we can find an étale cover Y = {. ′U} of - ′ such that we have a
local Frobenius lifting �U : .U → . ′U. We obtain an induced cover Y0 of - ′0. On the log smooth locus
* ′0 ⊂ -

′
0, we can apply an argument as implicitly used in [32, Theorem 4.12]: using Proposition 11.4,

the gluing method of Step B in the proof of [29, Theorem 5.1] yields a homomorphism

i : Ω1
* ′0/(0

[−1] → Č
•
(Y0 ∩*

′
0, �∗Ω

•
*0/(0
) =: Č

•

*

of complexes of sheaves where Č
•
(U,F•) refers to the total sheaf Čech complex for a cover U and a

complex of sheaves F•. We also have the natural quasi-isomorphism

k : �∗,
•
-0/(0

→ Č
•
(Y0, �∗,

•
-0/(0
).

Using k and that the question is local, Proposition 11.4 gives that i induces the Cartier isomorphism on
* ′0 forH1. Now let 0 ≤ < < ?. With the antisymmetrisation map 0< : Ω<

* ′0/(0
[−<] → (Ω1

* ′0/(0
[−1])⊗<

defined by 0< (l1 ∧ ... ∧ l<) =
1
<!

∑
f∈(< sgn(f)lf (1) ⊗ ... ⊗ lf (<) , we obtain a morphism

i< : Ω<
* ′0/(0

[−<]
0<
−−→ (Ω1

* ′0/(0
[−1])⊗<

i⊗<

−−−→ (Č
•

* )
⊗< → Č

•

*

where the last map is induced by the wedge product on �∗Ω•*0/(0
. Note that the various i< are compatible

with the wedge product of Ω•
* ′0/(0

and of the cohomology of �∗Ω•*0/(0
; hence, i< induces the Cartier

isomorphism in cohomology. Taking the sum, we obtain a quasi-isomorphism

i• :
⊕
<<?

Ω<
* ′0/(0

[−<] → g<?Č
•

* .

Because 9∗Č
•

* = Č
•
(Y0, �∗,

•
-0/(0
), we obtain the desired homomorphism in �1 (- ′0) as k−1 ◦ 9∗i

•. It
is a quasi-isomorphism because 50 : -0 → (0 has the Cartier isomorphism property by assumption. �

We like to apply this theorem to the case of a log toroidal family. It remains only to show that
FA>1(-, - ′) is a torsor.

Proposition 11.6. In the above situation, assume 5 : - → ( log toroidal with respect to ( → �&. Then
FA>1(-, - ′) is a G-torsor; that is, Frobenius liftings exist locally.

Proof. Let (& ⊂ %,F) be an ETD from a local model of 5 : - → (, as given in (LM) with ( = (̃.
Consider the diagram

!

��

� // !

��

2 // �%,F

��
(

�( // (
0 // �& .

We claim that for the local existence of a Frobenius lifting, it suffices to show that there is a scheme
morphism � : ! → ! that is the underlying morphism of a log morphism on 2−1 (*%) such that the
diagram commutes and the induced map � ×( (0 on !0 = ! ×( (0 is the absolute Frobenius. Indeed,
then F plays the role of an absolute Frobenius on L, and its induced relative Frobenius gives rise to a
local Frobenius lifting on - ′ via the local model.

The scheme ! is affine with O(!) =
⊕

4∈� I
4 · ,2 (:), allowing us to define � : ! → ! via

�∗ (I4 · F) := I?4 · �∗
(
(F). It remains to extend F to the log structure on 2−1 (*%). Consider the maps

of log schemes

" := Spec(%→ O(!)) → ! → Spec(& → O(!)) =: #.
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With the notation of Corollary 3.11, we define ,8 := 2−1 (*8). Observe that " |,1 = ! |,1 and ! |,2 =

# |,2 . On N and M, we get morphisms �# : # → # and �" : " → " by mapping @ ↦→ ? · @ on the
monoids and using�∗ on the rings. They are compatible with each other and with the maps to S; moreover,
�# ×( (0 and �" ×( (0 are the absolute Frobenii on #0, "0. We define partially � |,1 := �" |,1 and
� |,2 := �# |,2 . Because # |,1∩,2 = ! |,1∩,2 = " |,1∩,2 , these definitions agree on ,1 ∩,2 and we
obtain a log morphism defined on 2−1(*%) = ,1 ∪,2, which gives the desired map. �

12. The Hodge–de Rham Spectral Sequence

We put the pieces together to prove Theorem 1.9 from the Introduction. Let ( = Spec(& → k) for a
field k ⊃ Q with & ∋ @ ↦→ X@0, and let 5 : - → ( be a proper log toroidal family of relative dimension
d with respect to ( → �&. Setting ℎ?@ = dimk'@ 5∗,

?

-/(
and ℎ= = dimk'= 5∗,•-/( , it suffices to prove∑

?+@== ℎ
?@ = ℎ=.

By Proposition 9.1, we can find an (_ = Spec(& → �_) and a proper log toroidal family with respect
to (_ → �&. Because �_ is integral, by shrinking (_, we can find a spreading out q : X → S such that
'@q∗,

?

X/S
and '=q∗,•X/S are locally free of constant rank A ?@ respectively A= and such that S/Z is

smooth as schemes. By Theorem 8.3 we can furthermore assume that,<
X/S

is compatible with any base

change, and we can assume that char ^(B) > 3 for the residue field ^(B) of every closed point B ∈ S.
Now let Spec : → S be a closed point. Because S/Z is smooth, we can find a factorisation

Spec : → Spec,2 (:) → S

that induces diagram (SO) from the introduction by strict base change. Setting 6?@ :=
dim:'

@ (q: )∗,
?

X:/:
and 6?@ := dim:'

= (q: )∗,
•
X:/:

, Lemma 8.4 yields ℎ?@ = A ?@ = 6?@ and
ℎ= = A= = 6=; hence, it suffices to show

∑
?+@== 6

?@ = 6=. Note that in diagram (SO) on the right, we
are in the situation of Proposition 11.6, so by Theorem 11.5 we have a quasi-isomorphism⊕

<

,<
X′
:
/:
[−<] ≃ (�0)∗,

•
X:/:

.

Now a computation as in [13, Corollary 2.4] yields
∑
?+@== 6

?@ = 6=, concluding the proof of
Theorem 1.9.

12.1. The Relative Spectral Sequence

Proof of Theorem 1.10. It thereby suffices to show the surjectivity of

H: (-,,•-/() → H
: (-0,,

•
-0/(0
).

We prove this with the idea of [45, Section (2.6)] (cf. [34, Lemma 4.1] and [20, Theorem 4.1]). We
define a complex

L• := ,•,0=
-
[D] =

∞⊕
B=0

,
•,0=
-
· DB , 3 (UBD

B) = 3UB · D
B + BX(d) ∧ UB · D

B−1

of analytic sheaves where d = 5 ∗(1) ∈M-0= and X : M-0= → ,
1,0=
-

is the log part of the universal
derivation. Here ,•,0=

-
denotes (the analytification of) absolute differentials as in Corollary 7.12.

Projection to the D0-summand composed with ,•,0=
-

→ ,
•,0=

-/(
yields a map L• → ,

•,0=

-/(
whose

composition with,•,0=
-/(
→ ,

•,0=

-0/(0
fits into an exact sequence

0→ K• → L•
q•

−−→ ,
•,0=

-0/(0
→ 0
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of complexes that defines K•. Because 5 : - → ( has ETD local models, we may use Corollaries 7.11,
7.12 and Remark 7.15 to have a local description of this sequence. Lemma 12.1 shows that K• is acyclic
for all ETDs with 1-dimensional base, so q• is a quasi-isomorphism and Theorem 1.10 follows by the
discussion in Subsection 2.1.

Lemma 12.1. Let (N ⊂ %,F) be an ETD, and let 5 : - → ( = (< be the base change of �%,F → �N
along (< → �N. With 0 ∈ �%,F denoting the origin, we have H: (K•)0 = 0 for all k.

Proof. We choose Hermitian inner products on the vector spaces ! := %6? ⊗ C and , := (%6? ⊗
C)/(N6? ⊗ C). With  = (< + 1) + N ⊂ N, we recall � from Subsection 7.2. For 4 ∈ � , we define

!4 :=
⋂

� ∈Fmax\F:4∈�

�6? ⊗ C and ,4 :=
⋂

� ∈Fmax\F:4∈�

(�6? ⊗ C)/(N6? ⊗ C).

By Remark 7.15 and Lemma 7.14, elements of L:0 are formal sums

(ℓ4,B) :=
#∑
B=0

∑
4∈� 

DBI4ℓ4,B , ℓ4,B ∈

:∧
!4 , sup4∈� \0

1≤B≤#

{
log‖ℓ4,B ‖/ℎ(4)

}
< ∞,

and elements of, :,0=

-0/(0 ,0
are formal sums

(F4) :=
∑
4∈�

I4 · F4, F4 ∈

:∧
,4 , sup4∈�\0 {log‖F4‖/ℎ(4)} < ∞.

Note that (ℓ4,B) is summed over � , whereas (F4) is summed over E. We denote the kernel of
c :

∧: !4 →
∧:,4 by  :4 and observe q((ℓ4,B)) = (c(ℓ4,0)), so (ℓ4,B) ∈ K

:
0 if and only if ℓ4,0 ∈  :4

for all 4 ∈ � . With d̄ := 1 ⊗ 1 ∈ N6? ⊗ C, we have X(d) = I0 · d̄ ∈ ,1
-

, and thus

3 ((ℓ4,B)) = (4 ∧ ℓ4,B + (B + 1) d̄ ∧ ℓ4,B+1). (12.1)

Let (ℓ4,B) ∈ K0
0 and assume 3 ((ℓ4,B)) = 0. Because ℓ4,B ∈ C, for 4 ≠ 0 by descending induction in s

starting from ℓ4,# , we find ℓ4,B = 0. We have ℓ0,0 = 0 and ascending induction yields ℓ0,B = 0. Thus,
H0 (K•)0 = 0.

Next, let (ℓ4,B) ∈ K
:+1
0 for : ≥ 0 with 3 ((ℓ4,B)) = 0. Starting with 4 = 0, we construct (g4,B) ∈ K

:
0

with 3 ((g4,B)) = (ℓ4,B) using the following claim.

Claim 2. Let (!, 〈·, ·〉) be a C-vector space of finite dimension with a Hermitian inner product. Let
0 ≠ ? ∈ ! and : ≥ 0, and assume ℓ ∈

∧:+1 ! with ? ∧ ℓ = 0. Then there is a ℓ̃ ∈
∧: ! with ? ∧ ℓ̃ = ℓ

and ‖?‖ · ‖ℓ̃‖ = ‖ℓ‖.

Proof. Let ℓ1 := ?

‖? ‖
, ℓ2, . . . , ℓ= be an orthonormal basis of L and {ℓ81...8: } the induced basis of

∧: !.

If ℓ =
∑
U81...8:+1ℓ81...8:+1 satisfies the assumption, then ℓ̃ = 1

‖? ‖

∑
U182...8:+1ℓ82...8:+1 is a solution. �

We set g0,0 = 0. Writing out (12.1) for 4 = 0 yields

3
(
ℓ0,0 + ℓ0,1D + ℓ0,2D

2 + ...
)
= d̄ ∧ ℓ0,1 + 2d̄ ∧ ℓ0,2D + 3d̄ ∧ ℓ0,3D

2 + ...

and therefore d̄ ∧ ℓ0,8 = 0 for 8 > 0. Because ℓ0,0 ∈  0
0 , we also have d̄ ∧ ℓ0,0 = 0. By Claim 2, there

is g0,B+1 ∈
∧: !0 with d̄ ∧ g0,B+1 = ℓ0,B and we are done with the case 4 = 0. For 4 ≠ 0 we need

to care about convergence. Without loss of generality, # ≥ 1. Because 4 ∧ ℓ4,# = 0, we can find by
Claim 2 g4,# ∈

∧: !4 with 4 ∧ g4,# = ℓ4,# and ‖g4,# ‖ · ‖4‖ = ‖ℓ4,# ‖. For B ≥ 1, we construct
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g4,B ∈
∧: !4 by descending induction. Because of 4 ∧ (ℓ4,B − (B + 1) d̄ ∧ g4,B+1) = 0, there is g4,B with

4 ∧ g4,B = ℓ4,B − (B + 1) d̄ ∧ g4,B+1 and

‖g4,B ‖ · ‖4‖ = ‖ℓ4,B − (B + 1) d̄ ∧ g4,B+1‖. (12.2)

For 4 ∉ � , we go one step further and construct g4,0 ∈
∧: !4 with the same method, but for 4 ∈ � , the

construction of g4,0 ∈  :4 is more intricate. We need another claim.

Claim 3. Let (!, 〈·, ·〉) be a C-vector space of finite dimension with a Hermitian inner product. Let
0 ≠ +,. ⊂ ! be subspaces with + ∩. = 0. Then there is a constant W > 0 with the following property:
for every subspace H with + ⊂ � ⊂ ! and : ≥ 0, let  :

�
be the kernel of

∧: � →
∧: (�/+). Then

for every 0 ≠ ? ∈ . ∩ � and every ℓ ∈  :+1
�

with ? ∧ ℓ = 0, there is a ℓ̃ ∈  :
�

with ? ∧ ℓ̃ = ℓ and
W · ‖?‖ · ‖ℓ̃‖ ≤ ‖ℓ‖.

Proof. Let ? = (?1, ?2) be the decomposition of p under ! = + ⊕ +⊥, so ‖?‖2 = ‖?1‖
2 + ‖?2‖

2.
Because + ∩ . = 0, we have for W2 := inf0≠?∈. ‖?2‖

2/‖?‖2 that 0 < W ≤ 1. Let ℓ0 := ?2
‖?2 ‖

, ℓ1, ℓ2...

be an orthonormal basis of H and then ℓ̄0 =
?

‖? ‖
, ℓ̄8 := ℓ8 for 8 > 0 is an ordinary basis of H. For

ℓ =
∑
U80...8: ℓ̄80...8: ∈  

:+1
�

with ? ∧ ℓ = 0, we define ℓ̃ := 1
‖? ‖

∑
U081...8: ℓ̄81...8: ∈  

:
�

to have ? ∧ ℓ̃ = ℓ.
We also find

‖ℓ‖2 =





∑U081...8:
?

‖?‖
∧ ℓ81...8:






2

≥





∑U081...8:
?2

‖?‖
∧ ℓ81...8:






2

≥ W2 · ‖?‖2 · ‖ℓ̃‖2.

�

We apply Claim 3 to ! = %6? ⊗ C. Let �4 ⊂ % be the face generated by e and . = �
6?
4 ⊗ C. Let

+ = N6? ⊗ C and � = !4, so  :
�

=  :4 . Then 4 ∧ (ℓ4,0 − d̄ ∧ g4,1) = 0, so we find g4,0 ∈  :4 with
4 ∧ g4,0 = ℓ4,0 − d̄ ∧ g4,1 and

W · ‖g4,0‖ · ‖4‖ ≤ ‖ℓ4,0 − d̄ ∧ g4,1‖. (12.3)

The factor W depends on Y, but there are only finitely many faces generated by elements 4 ∈ � , so
we take for W the minimum over them and furthermore W < 1. Applying the triangle inequality to the
right-hand side of (12.3) and using induction and (12.2) yields

‖g4,B ‖ ≤
1

W
·

1

‖4‖

#∑
:=B

(
‖ d̄‖

‖4‖

) :−B
·
:!

B!
· ‖ℓ4,: ‖

for all 4 ≠ 0. Because inf4≠0{‖4‖} > 0, there is a bound " > 1 independent of e such that ‖g4,B ‖ ≤
" ·max: {‖ℓ4,: ‖}, which proves

sup4∈� \0
{
log‖g4,B ‖/ℎ(4)

}
< ∞

and thus (g4,B) ∈ K
:
0 . By construction, 3 ((g4,B)) = (ℓ4,B), so H: (K•)0 = 0. �

13. Smoothings via Maurer–Cartan Solutions

In the upcoming Subsections 13.1 and 13.2, we adapt the methods of [7] to the setup given in the
statement of Theorem 1.7. We then argue how to obtain an analytic smoothing from a formal one in
Subsection 13.3. The combination of all of these sections gives a proof of Theorem 1.7. The main
ingredients are Theorem 6.13, Theorem 1.9 and Theorem 1.10. A key ingredient is also Lemma 6.11 to
know that,3

-/(
is trivial for 3 = dim - .
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13.1. Constructing a Formal Deformation from a Solution to the Maurer–Cartan Equation

We define :( = Spec(N
1↦→C
−→ C[C]/C:+1) and assume we are given a proper log toroidal family 0- → 0(.

Let {0+U}U be an affine cover of 0- . For fixed U, let {:+U → :(}: be a system of deformations,
compatible with restriction from k to : − 1 as obtained from Theorem 6.13. Note that +UV := 0+U ∩

0+V
is affine because 0- is separated. We give names to the restrictions of thickenings via :+U;UV := :+U |+UV .
Again by Theorem 6.13, we find isomorphisms

:qUV : :+U;UV →
:+V;UV

of generically log smooth families over :( that are compatible with the restrictions to the base changes
via :−1( → :( but do not necessarily satisfy a cocycle condition.

We now analytify :- → :( as well as :+U, :+U;UV . We keep using the same symbols though now
refer to the analytifications respectively.

Let {*8}8∈� be a cover of 0- by Stein open sets that is also a basis for the analytic topology of 0- with
I countable and totally ordered. Set*80...8; :=

⋂;
:=0*8: . We obtain the sheaves of Gerstenhaber algebras

:G
?
U := Θ

−?

(:+U)/:(

concentrated in nonpositive degrees via the negative Schouten–Nijenhuis bracket −[·, ·] and ∧. Set
N; = Spec(C[G0, . . . , G=]/(G0 + · · · + G= − 1)) and A@ (N;) = Ω

@
N;

and let 3 9 ,; : N;−1 → N; be given by
G 9 ↦→ 0. One constructs the Thom–Whitney bicomplex

:),
?,@
U;U0...U; =



(i80...8; )80< · · ·<8;

������
*8 9 ⊂ +U0 ∩ ... ∩+U; for 0 ≤ 9 ≤ ;,
i80...8; ∈ A

@ (N;) ⊗C
:G
?
U (*80...8; ),

3∗
9 ,;
(i80...8; ) = i80...8̂ 9 ...8; |*80 ...8;



. (TW)

The differential for the index p is trivial and the differential m̄U for the index q is induced by the de Rham
differential on A@ (N;). Furthermore, −[·, ·] and ∧ turn ), into a Gerstenhaber algebra. For , ⊂ +U,
let :), ?,@

U;U |, be given by (TW) but with the additional requirement to have *8 9 ⊂ , . The presheaf
, ↦→ :),

?,•
U;U |, gives a resolution of the sheaf :G?U on +U, so :G

?
U (,) = �

0
m̄U
(:),

?,•
U;U |, ).

The isomorphisms :qUV induce isomorphisms :kUV : :G•U |+UV →
:G•V |+UV of sheaves of Gersten-

haber algebras, which can be used ([7, Key Lemma 3.21]) to construct isomorphisms

:6UV : :), ?,@

U;UV →
:),

?,@

V;UV

that satisfy the cocycle condition :6WU
:6VW

:6UV = id and are compatible with restriction from k to
: − 1 and with −[·, ·] and ∧. The cocycle condition allows one to glue {:), ?,@

U }U to a presheaf :PV?,@

on 0- compatible with restricting from k to : − 1. We set :PV= :=
⊕

?+@==
:PV?,@ .

Though :6UV are not necessarily compatible with the differentials m̄U, m̄V , there exist :dU ∈ :),
−1,1
U

such that (m̄U + [:dU, ·])U gives a system of maps compatible with :6UV ([7, Theorem 3.34]). This
system glues to an operator m̄ on :PV?,@ compatible with restriction from k to : − 1. However, m̄ is not
a differential because

m̄2 =
[
: lU, ·

]
for : lU := m̄U (

:dU) +
1

2
[:dU,

:dU] ∈
:),−1,2

U .

The {: lU}U glue to a global element : l ∈ :PV−1,2 that is compatible with restricting from k to : − 1. If
:q ∈ :PV−1,1 solves the Maurer–Cartan equation

m̄ (:q) +
1

2
[:q, :q] + : l = 0, (MC1)
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then (m̄ + [:q, ·])2 = 0. In this case, the cohomology �•
(m̄+[: q, ·])

(:PV•) is a presheaf of Gerstenhaber

algebras on 0- that is locally isomorphic to :G•U. The sheafification of its degree 0 part gives a sheaf
O-: of C[C]/C:+1-algebras on 0- , which we take as the kth-order deformation of 0- . Taking the limit
OX := lim

←−−:
O-: yields a flat and proper morphism X →S with S := Spf(C[[C]]).

13.2. Constructing a Solution to the Maurer–Cartan Equation Using the Batalin–Vilkovisky

Operator

We assume that ,3
0-/0(

� O0- . We fix a global generator 0l ∈ Γ(0-,,3
0-/:(
). Let :lU ∈

Γ(0+U,,
3
:+U/:(

) be a choice of generator that is a lift to k of 0l|0+U . The Batalin–Vilkovisky operator
:ΔU is the transfer of the de Rham differential d to the polyvector fields; that is, :ΔU is the composition

Θ
?

(:+U)/:(

x (:lU)
−→ ,

3−?

(:+U)/:(

d

−→ ,
3−?+1
(:+U)/:(

x (:lU)
−1

−→ Θ
?−1
(:+U)/:(

and thus a differential :G?U →
:G

?+1
U . Choosing :lU compatible with restricting from k to : − 1, the

:ΔU also share this property. For, ⊂ 0+U∩
0+V there is _UV ∈ Γ(,, :G

0
U) with :lU |, = _UV ·

:lV |, .
Setting :wUV := log(_UV) yields

:kVU ◦
:ΔV ◦

:kUV −
:ΔU = [:wUV , · ],

and then {:wUV}UV can be upgraded ([7, Theorem 3.34]) to a Čech cocycle for :),
0,0
U;UV that by

exactness lifts to a collection : fU ∈ ),
0,0
U . The collection is compatible with restricting from k to : − 1

and satisfies

:6VU ◦ (
:ΔV + [

: fV , ·]) ◦
:6UV = (:ΔU + [

: fU, ·]).

Because : fU lives in degree (0, 0), one has (:ΔU + [: fU, ·])2 = 0, so we can glue the collection
{:ΔU + [

: fU, ·]}U to an operator Δ : : PV?,@ → : PV?+1,@ with Δ2 = 0. Now,

Δ m̄ + m̄Δ = [:y, ·] for :yU := :ΔU (
:dU) +

: m̄U (
: fU) + [

:dU,
:fU]

and :y ∈ :PV0,1 is glued from the collection :yU. By construction,

3̆ := m̄ + Δ + (l + y)∧

satisfies 3̆2 = 0 and, furthermore, (l + y) ≡ 0 mod (C).

Theorem 13.1. The natural maps �8
3̆
(:PV•) → �8

3̆
(:−1PV•) are surjective for all i and k.

Proof. As in [7, Proposition 4.8], the elements exp(: fU x)
:lU glue to a global element :l in the Thom–

Whitney de Rham complex (:
‖
A•, 3) (constructed from,•:+U/:(

in our case) compatible with restricting

from k to : −1. Contracting :l gives an isomorphism of complexes :PV• → :
‖
A•, so it suffices to prove

surjectivity of �8
3
(:
‖
A•) → �8

3
(:−1
‖
A•). This follows from Theorem 1.10 (cf. [7, Lemma 4.17]). �

Remark 13.2. For a formal variableD
1
2 , consider on PV• [[D

1
2 ]] the differential 3̆D := m̄+DΔ+D−1 (l+Dy)∧.

A direct computation gives 3̆D = D
1
2 �−1
D ◦ 3̆ ◦ �D where �D is defined by �D (i) = D

?−@−2
2 i for i ∈

PV?,@ [[D
1
2 ]] [D−

1
2 ] (cf. [7, Notation 5.1]). Theorem 13.1 thus implies that

�8
3̆D
(:PV• [[D

1
2 ]] [D−

1
2 ]) → �8

3̆D
(:−1PV• [[D

1
2 ]] [D−

1
2 ]) (13.1)

is surjective for all 8, : .
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Theorem 13.3. For all i, �8
m̄+DΔ
(0PV• [[D]]) is a free C[[D]]-module of finite rank.

Proof. Note that : = 0. With m̄ the Čech differential for the cover {+U}U, the degeneration
of the Hodge–de Rham spectral sequence for (,•0-/0( , 3) at �1 by Theorem 1.9 is equivalent

to �8
m̄+D3
({+U}U,,

•
0-/0(
[[D]]) being a free C[[D]]-module of finite rank. The quasi-isomorphisms

,•0-/0( [[D]] →
0
‖
A• [[D]] and 0PV• [[D]] → 0

‖
A• [[D]] yield the assertion. �

Theorem 13.4. There exist :i ∈ :PV0 [[D]] for all : ≥ 0 with :i ≡ :+1i mod C:+1 and 0i = 0 solving

(m̄ + DΔ) (:i) +
1

2
[:i, :i] + (: l + D :y) = 0. (MC2)

Furthermore, setting :q := (:i mod D) with :q =
∑
9
:q 9 and :q 9 ∈

:PV− 9 , 9 , it holds that :q0 = 0

and thus :q1 ∈
:PV−1,1 solves (MC1).

Proof. The first assertion becomes [7, Theorem 5.5] if we set I = (C) and k = 0 and check that we have
the ingredients for its proof available. The proof goes by induction over k and uses (i) the surjectivity in
Theorem 13.1 for : = 0, (ii) the surjectivity in Equation (13.1) for all k and (iii) Theorem 13.3 in each
step to get rid of negative powers of u in :i. The second statement is [7, Lemma 5.11]. �

13.3. From a Formal Deformation to an Analytic Deformation

LetS be the completion of an analytic variety S in a nonzero divisor C ∈ Γ((,O(). Let (: be the closed
analytic subvariety defined by C: . If - → ( is flat, we denote by -: → (: the base change to (: ,
similarly for a flat map X →S.

Theorem 13.5 ([43], Theorem B.1). Given a proper and flat formal analytic morphism î : X → S,
for every : > 0 there is a proper flat analytic morphism i : - → ( together with an (: -isomorphism
X: → -: of the base changes of î and i to (: .

Theorem 13.6 ([42], Theorem 5.5 (1)). In the situation of Theorem 13.5, given B ∈ (0 and -B = i−1 (B),
there exists an integer  > 0 such that whenever i : - → ( is obtained for : >  , every point G ∈ -B
has a neighbourhood in X whose t-completion is formally isomorphic to a neighbourhood of x in X, in
particular, if X is a smoothing of a fibre -B for C ≠ 0, then so is X.

Theorem 13.7 ([42], Theorem 5.5 (3)). In the situation of Theorem 13.6, for -0 the base change to
(0, the maps of pairs (-, -0) → ((, (0) and (X,X0) → (S, (0) turn î and i into log morphisms via
the divisorial log structures. There is an isomorphism of the log fibres over B ∈ ( whose underlying
morphism is the restriction to the fibre -B of the (: -isomorphism X: → -: .
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