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In Global Navigation Satellite System (GNSS) positioning, it is standard practice to apply the
Fault Detection and Exclusion (FDE) procedure iteratively, in order to exclude all faulty
measurements and then ensure reliable positioning results. Since it is often only necessary to
consider a single fault in a Receiver Autonomous Integrity Monitoring (RAIM) procedure, it
would be ideal if a fault could be correctly identified. Thus, fault detection does not need to be
applied in an iterative sense. One way of evaluating whether fault detection needs to be re-
applied is to determine the probability of a wrong exclusion. To date, however, limited pro-
gress has been made in evaluating such probabilities. In this paper the relationships between
different parameters are analysed in terms of the probability of correct and incorrect iden-
tification. Using this knowledge, a practical strategy for incorporating the probability of a
wrong exclusion into the FDE procedure is developed. The theoretical findings are then
demonstrated using a GPS single point positioning example.

KEY WORDS

1. Fault Detection. 2. Wrong Exclusion. 3. Missed Detection.

Submitted: 10 July 2012. Accepted: 29 January 2013. First published online: 17 May 2013.

1. INTRODUCTION. When estimating position using the least-squares
estimation technique, it is expected that the calculated position conforms to a normal
distribution centred at the true position. The existence of a faulty pseudorange
measurement causes the estimated position to become biased. For this reason it is vital
that fault detection be applied to detect the presence of a faulty pseudorange.
In circumstances where GNSS is used as a primary means of navigation, however,
detection alone is not sufficient. Upon detection of a fault, measurements from the
“bad” satellite should be excluded before navigation can continue.
Using an outlier test for fault detection actually means making a decision between

the null and alternate hypotheses (Baarda, 1967, 1968; Kelly, 1998; Koch, 1999).
Usually, it is judged that the pseudorange corresponding with the largest outlier
statistic is faulty and is subsequently excluded (Kelly, 1998). During such a procedure
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the probability of drawing wrong conclusions cannot be avoided. These are referred to
as Type I and Type II errors and are denoted α0 and β0 respectively. The Type I and
Type II error values in fault detection are set, based on the probability of a false alert
and the probability of a missed detection.
However, the outlier statistics are prone to masking and swamping and thus the

wrong pseudorange can be identified (Parkinson and Axelrad, 1988; Lee et al., 1996;
Hekimoglu, 1997; Lee and Van Dyke, 2002). Masking means that a pseudorange
contaminated by a fault is identified as a good one. Conversely, swamping is when a
good pseudorange is identified as faulty (Hekimoglu, 1997). This probability of iden-
tifying the wrong pseudorange is the probability of a wrong exclusion (Lee et al.,
1996). In statistics this probability is referred to as a Type III error, where the null
hypothesis is correctly rejected but the wrong pseudorange is identified as being faulty
(Hawkins, 1980). If the probability of a wrong exclusion can be evaluated, then there
is a possibility that the position can be classified as available for navigation without
even having to reapply fault detection (Lee et al., 1996). In the case where the
probability of a wrong exclusion is too high, fault detection would still have to be
reapplied after exclusion or the position would be classified as unavailable. Never-
theless, significant operational benefit could still be gained from an algorithm that
evaluates the probability of a wrong exclusion, such that the confidence level of fault
detection can be assured (Lee et al., 1996).
It is for this reason that Lee (1995) and Kelly (1998) attempt to evaluate the

probability of a wrong exclusion by taking the difference between two outlier statistics.
This is because two outlier statistics that are separated by a small distance have a
higher probability of contributing to a wrong exclusion. Conversely, as the difference
between two outlier statistics grows, there is less probability of making a wrong
exclusion. But, the issue with using the difference between the outlier statistics is that it
does not precisely estimate the probability of a wrong exclusion (Ober, 2003). Another
method of estimating the probability of a wrong exclusion is given by Pervan et al.
(1996; 1998). In this method, it is assumed that the faulty pseudorange conforms to a
uniform distribution. Then, using Bayesian statistics, the probability of a wrong
exclusion is evaluated. The weakness of this method, though, is that the distribution
of the biases is unknown. Consequently, even small changes within the assumed
distribution of the faulty pseudorange can have a significant influence on the
estimated probability of a wrong exclusion. Outside the field of navigation, Förstner
(1983) and Li (1986) have carried out studies on the separability of two outlier
statistics. Using the results of these studies Li (1986) then defined the Minimal
Separable Bias (MSB) as the smallest bias that can be confidently identified for a set
Type III error. Applying the MSB to the field of navigation, the separability of various
satellite constellations has been analysed by Hewitson et al. (2004), and Hewitson and
Wang (2006).
While the basic Fault Detection and Exclusion (FDE) techniques have been well

established, the relation between the FDE algorithm performance and the primary
means integrity requirements has not. Specifically, although the formulae for the
probability of a wrong exclusion and the probability of a missed detection have been
developed, there is not yet a practical method that can evaluate them in application.
Correctly calculating these probabilities is essential in meeting the integrity require-
ments of the primary means of navigation. This paper proposes and analyses new
methods of correctly calculating these two quantities. Initially, the separability of two
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alternative hypotheses is analysed. The relationships between the probabilities of false
alert, missed detection and wrong exclusion; threshold, correlation coefficient and the
non-centrality parameter are discussed in detail. Then it is assumed that each outlier
statistic corresponds with a fault and that there is a non-centrality parameter corres-
ponding to it. Since the non-centrality parameter is a function of Types I, II and III
error; the correlation coefficient, the probabilities of missed detection, successful
identification and wrong exclusion are then estimated using the non-centrality
parameter and the correlation coefficient. Thus, for each outlier statistic, the prob-
abilities of making different types of errors are estimated to aid in deciding whether or
not the faulty pseudorange can be correctly identified.
This paper is organised as follows. First, the outlier detection theory and the models

used in hypothesis testing are introduced. Then their applications to FDE are
examined. Thereafter, the separability of two outlier statistics is analysed, and
extended to the application of FDE. Next an example is given, using real GPS data, to
demonstrate the proposed method. Finally, the conclusions drawn from the study are
presented.

2. MODEL DESCRIPTIONS. The linearized Gauss-Markov model applied
in navigation is defined by (Schaffrin, 1997; Koch, 1999):

l = Ax̂+ v (1)
where:

v is the n by 1 vector of residuals,
A is the n by t design matrix reflecting the geometric strength,
l is the n by 1 measurement vector containing the pseudorange observations and the

distances between satellites to receiver,
x is the vector of t unknown and its estimated value is x̂.

The mean of l and its positive definite covariance matrix are given by:

E(l) = Ax, D(l) = Σ = σ20Q = σ20P
−1 (2)

The least-squares solution x̂ is optimal in the sense that it is unbiased and that it is of
minimal variance in the class of linear unbiased estimators. However, these optimality
properties only hold true when Equations (1) and (2) are correct.

2.1. Local Test for Single Alternative Hypothesis. In the case where there are
faulty pseudorange measurements: E(l)≠Ax. Consequently, the least-squares esti-
mator of the position becomes biased: E(x̂) = x. In order to detect a biased position a
fault detection procedure is applied. When a biased position is detected, it can then be
corrected by excluding the faulty pseudorange. If it is assumed that the ith pseudorange
is faulty, then the correct model is given by:

l = Ax̌+ ci∇̂i + ṽ (3)
where ∇̂i is the fault in the ith pseudorange, and ci=[0, . . ., 0, 1, 0, . . ., 0]T is a unit
vector with the ith element equal to one. Solving this for the fault then leads to:

∇̂i = (cTi PQvPci)−1cTi PQvPl (4)
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which has the variance:

σ2∇̂i
= σ20Q∇̂i

= σ20(cTi PQvPci)−1 (5)

where Qv=Q−A(ATPA)−1AT is the co-factor matrix of the estimated residuals (from
the original Gauss-Markov model).
The outlier test statistic for the ith pseudorange can then be formed as (Baarda,

1968; Kok, 1984):

wi = ∇̂i

σ0
�����
Q∇̂i

√ = cTi PQvPl

σ0
������������
cTi PQvPci

√ (6)

The correlation coefficient between a pair of outlier statistics is given by:

ρij =
cTi PQvPcj�����������

cTi PQvPci
√ ������������

cTj PQvPcj
√ . (7)

Based on Equation (3) the null hypothesis corresponding to the assumption that
there are no faulty pseudorange measurements is:

H0 :
E(l) = Ax
wi � N(0, 1)

{
(8)

Under the null hypothesis, Equations (1) and (3) are equivalent. Otherwise, the
alternative hypothesis Hi means that the ith pseudorange is faulty:

Hi :
E l( ) = Ax+ ci∇i

wi � N(δ, 1)
{

(9)

Taking the expectation of the outlier statistic in Equation (6), the non-centrality
parameter can be obtained as:

δ(∇̂i) = ∇i

σ0
�����
Q∇̂i

√ (10)

2.2. Fault Detection. In the fault detection phase, the overall validity of the null
hypothesis is tested:

H0 : Ω = vTPv
σ20

� χ2(n− t, 0) (11)

If this leads to a rejection of the null hypothesis, then it is concluded that a fault is
present. Ideally, the probability of a false alert in the ith pseudorange is set such that
the probability of any one of the outlier tests failing, when the null hypothesis is true, is
equal to the probability of a false alert, PFA. Due to the difficulty in achieving this
exactly, the Type I error of the outlier test is conservatively set as (Kelly, 1998):

α0 = 1−
����������
1− PFA

n
√

(12)
The outlier test statistic in Equation (6) follows a standard normal distribution

under H0. The evidence on whether the model error as specified by Equation (3) did,
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or did not, occur is based on the test:

|wi| . Nα0
2

(0, 1) (13)

By letting i run from one up to and including n, all of the pseudorange measure-
ments can be screened for the presence of a fault. If one or more of the outlier tests fails
then it is concluded that a fault exists.
Besides the possibility of making a Type I error, there is also a possibility that the

null hypothesis is accepted when in fact it is false. This error, denoted as β0, is a Type II
error. Thus, it can be seen that when the null hypothesis is accepted there will be a
possibility of making a Type II error. When accepting the alternative hypothesis, there
is also a possibility of making a Type I error. Therefore, no matter what decision is
made there is always the possibility of making an error. However, steps may be taken
to control the possibility of making errors and guarantee that the probability of
making a correct decision can be estimated.
By setting the threshold based on the probability of a false alert, the Type I error can

be controlled. To control the Type II error, protection levels are formulated and
compared with the alert limit. If the protection level is contained within the alert limit
then the probability of making a Type II error is acceptable. Otherwise, it is not. When
formulating the protection levels it is desired to set the size of Type II error for each
test such that the probability of a fault going undetected by all of the tests is equal to
the probability of a missed detection, PMD. However, due to the difficulty in achieving
this, Kelly (1998) uses the approximation:

β0 ≤ PMD. (14)
2.3. Fault Exclusion. When the fault detection procedure has detected a fault,

the next step is to attempt to identify and remove the faulty pseudorange. Since the
null hypothesis has been rejected, the pseudorange measurements conform to one of
the alternative hypotheses:

Hi : E(l) = Ax+ ci∇i i = 1, · · · , n (15)
To determine which alternate hypothesis, the largest outlier statistic, in absolute

value, is found. The corresponding pseudorange is then deduced to be faulty.
Mathematically this can be expressed as the jth pseudorange is faulty when:

|wj| . |wi| ∀i and |wj| . Nα0
2

(0, 1) (16)

Once the faulty pseudorange has been identified, corrective action must be taken to
mitigate its influence on the navigation solution. Here, the identified pseudorange
is excluded from the model such that Equation (1) now has one fewer pseudorange
measurements. Since the incorrect pseudorange can at times be identified due to the
correlation, a FDE procedure would normally be reapplied to the updated model,
until the null hypothesis is accepted.

3. SEPARABILITY ANALYSES OF FAULT DETECTION AND
EXCLUSION. During the FDE procedure, wrong decisions can sometimes be
made. According to Förstner (1983) a Type III error occurs when both Type I and
Type II errors are committed, which means making a wrong exclusion. In the
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following sections, the origins of the three types of errors are presented. Then, this
knowledge is applied to the FDE procedure to determine if a fault can be successfully
identified.

3.1. Three Types of Error, Based on Two Alternative Hypotheses. In Förstner’s
pioneering studies, the decisions that can be made with two alternative hypotheses are
described in Table 1 (Förstner, 1983; Li, 1986).
From Table 1, it can be seen that α00=α0i+α0j, and because of the symmetry of wi

and wj, α0i = α0j = 1
2α00. In addition, the following is satisfied:

βii = βi0 + γij (17)
and:

β jj = β j0 + γ ji (18)
The estimation of parameters shown in Table 1 is based on the distribution of test

statistics. It is assumed that there is an outlier in the ith observation, causing the expec-
tation of wi to become δ, which is the non-centrality parameter. The bias also causes
the expectation of wj to become δρ because of the correlation between wi and wj, which
can be computed from Equation (6). Successful identification then actually means
accepting the alternative hypothesisHi rather thanHj. The joint distribution of wi and
wj is:

w = (wiwj)T � N(μ, D) (19)
The expectation of the joint distribution of wi and wj in Equation (13) is then

given by:

μ = (δδρ)T, and D = 1 ρ
ρ 1

( )
(20)

Table 1. Decisions when testing two alternative hypotheses.

Result of the test

H Hi

Hj

U
nknow

n Reality

H
i j

Hi
i ii ij

Hj
j ji jj
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The probability function of the two outlier statistics is given by:

f (wi, wj) = f1 (21)
If the critical value cα and the distribution of w are known, the probability of success-

ful identification, denoted as (1−βii), can be obtained from:

1− βii =
∫
|wi|.cα, |wi |.|wj |

f1dwidwj (22)

The sizes of Type II and Type III errors can be obtained from:

βi0 =
∫
|wi |≤ cα, |wj |≤ cα

f1dwidwj (23)

and:

γij =
∫
|wj |.cα, |wj |.|wi |

f1dwidwj (24)

In Förstner (1983) and Li (1986) if α0, ρ, βi0 and γij are given, then the non-centrality
parameter δ is obtained from:

δ1 = φ1 cα, ρ, βi0
( ) = φ1 α0, ρ, βi0

( ) (25)
or:

δ2 = φ2(cα, ρ, γij) = φ2(α0, ρ, γij) (26)
By setting the values of βi0 and γij with the same preset values of α0 and ρ, the

non-centrality parameters may be different. In this case, the greater value of δ is
chosen to satisfy the requirements that the probability of a Type II error is not greater
than βi0 and that the probability of a Type III error is not greater than γij (Förstner,
1983; Li, 1986). In this paper the non-centrality parameter is calculated from:

δ = φ(cα, ρ, βii) = φ(α0, ρ, βii) (27)
This is because the probability of making errors, βii, remains unchanged with

different correlation coefficients. Nonetheless, correlation coefficients do determine
the ratio between βi0 and γij. Consequently, given preset values for α00 and βii the
non-centrality parameter will change along with the correlation coefficient. For this
non-centrality parameter the probability of making Type II and Type III errors will
not be greater than βii, and in addition their sum will be equal to βii.

3.2. Relationships between Different Parameters. Although there are many
parameter factors that control the probabilities of making different types of error
with two alternative hypotheses, there are only three that are fundamentally
independent. They are α0, ρ and βii. Any other parameters can be obtained as shown
in Table 2.
From Table 2 it can be seen that once α0 and ρ are given, the threshold cα, and the

size of the Type I errors α00, α0i and α0j can be estimated. Also by setting βii as well, δ,
βi0 and γij can be calculated.
The changes within βi0 and γij are shown in Figure 1 when βii is equal to 20% and α0

is set to values of 0·1%, 0·3%, 0·5%, and 1%. This illustrates the fact that the Type II
error βi0 and the Type III error γij have opposite tendencies as the correlation
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coefficient increases. For small correlation coefficients βi0 is large and γij is small,
whereas for large correlation coefficients γij is large and βi0 is small. When ρ is close to
zero, βi0 is around 20% and γij is approximately zero. This is irrespective of the size of
the Type I error. Conversely, βi0 reduces quickly to about zero when ρ approaches 0·98
and γij increases rapidly to 20%.
The above analyses are based on the preset values of α0 and βii in order to determine

the dependence of the other parameters on ρ. In the following analysis, α0 is preset to
1% and changes in δ and ρ are compared to βii, βi0 and γij.
The value of βii, changing with δ and ρ, is shown in Figure 2, which demonstrates

that a larger correlation coefficient leads to higher value of βii when δ is kept constant.
In addition, larger δ results in smaller βii for the same value of ρ. This means that
higher δ and smaller ρ will enhance the probability of correct identification. When δ
becomes larger, the impact of the correlation coefficient on βii becomes much more
significant. When ρ is zero, βii decreases quickly from around one to zero as δ
increases. This means that when the outlier statistics are independent from each other
the probability of committing errors can be controlled to near zero, once δ is large
enough. However, as ρ approaches 1, even increasing the non-centrality parameter to
20 still does not reduce βii below 40%. This indicates that when the correlation
coefficient is approximately 1 the non-centrality parameter only has a small effect in
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Figure 1. Type II and III errors.

Table 2. The relationship among different parameters.

Dependent variables Independent variables

cα φ(α0)
α00, α0i or α0j φ(α0, ρ)
δ φ(α0, ρ, βii)
βi0 or γij φ(α0, ρ, βii)
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decreasing βii. Consequently, to control the probability of making errors, the goal
should be to keep the correlation coefficients, between outlier statistics, to minimum
values.
The values for βi0 and γij are shown in Figure 3 and Figure 4 respectively. Figure 3

shows that βi0 decreases from about one to zero as δ increases. The decrease within the
βi0 curves for different ρ are similar. Thus, the correlation coefficient plays a relatively
minor role in influencing βi0. Figure 4 shows that the correlation coefficient
significantly impacts γij. All of the curves quickly increase to a peak and then decrease
slowly. The larger the correlation coefficient values the higher the peak and the slower
the decrease. For large correlation coefficients, the peak also occurs at larger values of
the non-centrality parameters. When ρ is zero, γij is always close to zero no matter
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0
5

10
15

20

0

0.5

1
0

0.2

0.4

0.6

0.8

1

noncentral parametercorrelation coefficient

th
e 

pr
ob

ab
ili

ty
 o

f 
co

m
m

itt
in

g 
er

ro
rs

Figure 2. The sum probability of making errors βii=βi0+ γij.
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what the value of δ. When the correlation coefficient is close to 1, γij increases drama-
tically from about zero to nearly 50% and then decreases rather slowly. Therefore, the
dominant challenge in successful identification is avoiding making a Type III error,
when the correlation coefficient is high. This is because it is difficult to control the
probability of so doing by increasing δ.
Based on the above analysis, it can be deduced that the probabilities of making

Type I, II and III errors can be accurately estimated based on their correlation
coefficients and their non-centrality parameters. These parameters can also be used to
provide an accurate control for making correct decisions in a FDE procedure. For
instance, a large correlation coefficient implies a greater chance of incorrect
identification. Under these circumstances, a larger non-centrality parameter is
required to control the probability of committing a Type III error.

3.3. Fault Verification. As can be seen, the test statistic is a function of all obser-
vation errors, and the correlation coefficient between each test statistic contributes
to missed detection and wrong exclusion. This section presents a practical procedure
to estimate the probability of a missed detection and the probability of a wrong
exclusion. The calculation is based on the assumption: that if one considers only the
bias error on one of the satellites, at a time, and neglects the range errors on all the
other satellites, then the position estimation error and the test statistic become linearly
proportional, and the slope varies depending on which satellite has the bias error. The
satellite that is the most difficult to detect is the one with the maximum correlation
coefficient and with the highest probability of a wrong exclusion. The probability of a
missed detection is highest for the failure of that satellite (Lee, 1995; 1996).
From Equation (6), when only the bias error on the ith observation is taken into

consideration and the random errors on other satellites are neglected, the test statistic
simplifies to:

w̄i = cTi PQvPciεi
σ0

�����������
cTi PQvPci

√ (28)
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Figure 4. Type III error γij.
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The influence of this bias error on another test statistic is:

w̄j =
cTj PQvPciεi

σ0
������������
cTj PQvPcj

√ = ρ jiw̄i (29)

However, as the real circumstance is never known, the hypothesis test is an inverse
procedure, which actually uses the estimated statistic to deduce the unknown fault.
According to Table 1, the second column of the test result shows that during the
classical FDE procedure, when the greatest absolute value is pointed to the ith test
statistic, there are two types of possibility, either resulting in a successful identification
or a wrong exclusion. A wrong exclusion means that the outlier occurring on the
jth observation impacts on the ith test statistic so that wi becomes greater than the
critical value. Consequently, the expectation shift of wi may originate from:

δi ≈ E(w̄i) (30)
which will lead to a successful identification, or:

δj ≈ E(w̄i)
ρij

(31)

which means a wrong exclusion will be committed after the test.
Based on Equations (30) and (31), the non-centrality parameter corresponding to

the largest test statistic can be obtained. Then, using each non-centrality parameter
and the correlation coefficient, the probability of successful identification and wrong
exclusion can be calculated from the relationship in Table 2. There is:

1− βii = φ(α0, ρ, δi) (32)
or:

γ ji = φ(α0, ρ, δj) (33)
As it is complicated and time consuming to exactly calculate βii and γji via numerical

integration, the approximate solution by interpolation could be obtained via the
grid data illustrated in Figures 2, 3 and 4, once the grid data is accurate enough.
Comparing the estimated values of βii and γji with the corresponding preset thresholds,
decisions about the successful identification and wrong exclusion can be made.

4. QUALITY CONTROL FOR FAULT DETECTION AND
EXCLUSION. In this section a practical procedure for controlling the quality
of the FDE procedure is introduced based on the above analysis. The main proposal is
to estimate the probability of a missed detection and a wrong exclusion based on the
separability analysis of two alternative hypotheses. The probability of a missed detec-
tion and a wrong exclusion depends on the magnitude of the bias, of which the receiver
has no knowledge and which may continuously vary. For this reason the simulation
tests for the probabilities of a missed detection and wrong exclusion verification were
designed as follows:

. Step 1. Form the observation equation v = Ax̂− l.

. Step 2. Calculate the protection level based on the probability of a false alert and
the probability of a missed detection.
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. Step 3. If the protection level is less than the alert limit, then proceed to
Step 4. Otherwise, the system is unavailable for navigation, so proceed to step 1
for next epoch.

. Step 4. Calculate the outlier statistics and compare them with the threshold.

. Step 5. If all of the outlier statistics pass, the position is available for navigation,
proceed to Step 1 for next epoch. Otherwise, proceed to Step 6.

. Step 6. Calculate the probability of correct identification for the largest
outlier statistics. If the probability of correct identification is higher than its
threshold, exclude this observation and proceed to Step 4. Otherwise, proceed to
Step 7.

. Step 7. Calculate the probability of wrong exclusion between the largest and
the second largest outlier statistic. If the probability of wrong exclusion is
higher than its threshold, both of them are excluded and proceed to Step 4.
Otherwise, the position is unavailable for navigation; proceed to Step 1 for the
next epoch.

Based on the above analysis, the traditional FDE procedure is still applied but we
now add new criteria to estimate the probability of a missed detection and a wrong
exclusion to improve the successful identification rate.

5. EXPERIMENTS AND ANALYSIS . The separability analysis theory
described in this paper was applied to some GPS pseudorange data collected
from Minot, North Dakota, USA on the 18th August 2008. The sample interval is
30 seconds, and the duration of the data is 24 hours. To compare classical FDE and
the optimal FDE method proposed in this paper, an outlier of 1·5 times the MDB was
added to the second pseudorange in each epoch. The parameters for the FDE
procedure were α=1%, β=20% and the thresholds for the probability of successful
identification and wrong exclusion were set to 1−βii=80% and γ=3%.
For the classical FDE procedure, there are three types of judgments based on the

global and the local tests. The judgment indicator for each epoch is shown in Figure 5.
Indicator=0 indicates that the global test was passed and that no outlier exists;
indicator=1 indicates that global test failed but the local test was passed, which means
that the existence of an outlier was detected but the location cannot be identified;
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Figure 5. Indicator for data snooping procedure.
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indicator=2 indicates that both global and local tests were rejected, so the outlier can
be identified.
Figure 5 shows that although a fault is always added to each epoch there are still

some epochs when the fault cannot be detected. In such circumstances both indicator
=0 and indicator=1 signify a missed detection, and indicator=2 shows an identific-
ation. As the real location of the fault is known in this test, whether the identification is
correct or not can be evaluated. The location of the assumed fault at each epoch is
shown in Figure 6. This clearly shows that there is a great possibility of identifying the
fault in the wrong satellite. Furthermore, wrong identification (or exclusion) will nega-
tively influence the position accuracy, especially when the satellite geometry is weak or
when there are no redundant measurements.
The judgment indicator for the proposed optimal FDE procedure is shown in

Figure 7. When applying the new method, there are two more criteria that should be
applied for the local test. They are: the probability of successful identification should
be greater than its threshold and the probability of wrong exclusion should be smaller
than its threshold. Consequently, the results are more complex: 0 indicating that the
global test was passed; 1 indicating that the global test was failed and the local test was
passed; 2 indicating that the global test was failed and the local test was rejected with
the two new criteria being satisfied (so it is assumed that the outlier can be identified);
3 indicating that although the global and local test were rejected the confidence level
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Figure 6. Fault location identified by FDE procedure.
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Figure 7. Indicator for the optimal FDE procedure with wrong exclusion estimation.
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for correct identification was not satisfied, therefore the outlier cannot be identified;
4 indicating that although other criteria are satisfied, the probability of wrong
exclusion is higher than its threshold (which implies an unacceptable risk of making a
wrong exclusion).
Comparing Figure 7 with Figure 5 it can be seen that the results for indicator 0 and

indicator 1 are the same for both procedures. However, the results for indicator 2 in
Figure 5 are divided into three parts (indicator=2, 3 and 4) in Figure 7. This means
that the optimal FDE procedure requires more restrictions on the identification so as
to guarantee a successful rate of identification. Figure 8 shows the location of the fault
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Figure 8. Fault location identified by optimal FDE.
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Figure 9. Probability of successful identification.
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Figure 10. Probability of wrong exclusion.
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that is identified by the optimal FDE procedure when the indicator=2. Compared
with Figure 6, it is clear that the possibility of wrong exclusion is smaller, which means
that with the stricter criteria the wrong exclusion can largely be separated from the
identification.
The corresponding probability of successful identification and probability of wrong

exclusion are presented in Figures 9 and 10, respectively. In Figure 9, the red marks
show that for many epochs, although the local test can identify the fault, the evaluated
probability of successful identification is smaller than its threshold (80%). Conse-
quently it is assumed that the identification is untrustworthy.
Figure 10 shows the evaluated probability of a wrong exclusion that is greater than

the threshold (3%) when the indicator equals 4. At many epochs the probability of a
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Figure 11. Position errors (metres, outlier size: 1·5 MDB).
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wrong exclusion is even greater than 20%, which means that the identification is
untrustworthy and the position accuracy may be negatively influenced after exclusion.
The North, East and Vertical position errors for the different methods are shown in

Figure 11. From the figure it can be seen that even the least-squares estimation results
are much better than those of the classical FDE procedure, which means that the
position accuracy is negatively influenced when the FDE procedure is applied. This is
caused by the frequent occurrence of wrong exclusion since there is no criterion to
check if a wrong exclusion has been committed. The red curves show that the optimal
FDE procedure can improve the reliability and stability of the results.
In Figure 12, the corresponding results for an outlier with a magnitude of 4 times

the MDB are shown. Compared with Figure 11, it is clear that, with a larger outlier,
the position accuracies for the different methods are all significantly reduced. The
estimation accuracies from both the proposed and classical FDE procedures are much
higher than those of the least-squares estimation. This shows that least-squares
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Figure 12. Position errors (metres, outlier size: 4 MDB).
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estimation is not optimal any more - in the sense of being unbiased and of minimal
variance. Since the existence (and the magnitude) of a fault cannot be predicted
beforehand, the applied FDE procedure must guarantee the stability and reliability of
the results.

6. CONCLUSIONS. This paper has studied the separability of two alternative
hypotheses, including the relationships between different statistical parameters. The
probabilities of making Type I, II, and III errors were found to be dependent on the
correlation coefficients between the outlier statistics. The larger the correlation
coefficient is, the larger the non-centrality parameter that is required to guarantee
successful identification. This also means that it is much more difficult to successfully
identify a faulty pseudorange that is highly correlated with other pseudorangemeasure-
ments. In addition, a larger correlation coefficient also significantly increases the
probability of making a wrong exclusion. Increasing the non-centrality parameter
does not necessarily increase or decrease the probability of making a wrong exclusion.
However, eventually a very large non-centrality parameter will decrease the prob-
ability of making a wrong exclusion.
In terms of Fault Detection and Exclusion (FDE) procedure, the results presented

here can be used to determine the probability of a wrong exclusion. This entails simply
inspection of a graphical presentation of, or calculating directly, the probability of
a wrong exclusion as a function of the correlation coefficient. The probability of a
wrong exclusion can then be used to determine if exclusion is to be trusted, or FDE is
required to be reapplied after the removal of a pseudorange measurement.
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