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Abstract. Each finite dimensional irreducible rational representation V' of the symplectic group
Sp,, (Q) determines a generically defined local system v over the moduli space M, of genus g
smooth projective curves. We study H?(M,; v) and the mixed Hodge structure on it. Specifically,
we prove that if g > 6, then the natural map TH?(M,; V) — H2(M,;V) is an isomorphism where

M, is the Satake compactification of M. Using the work of Saito we conclude that the mixed
Hodge structure on H2(M,; V) ispure of weight 2 + r if v underlies avariation of Hodge structure
of weight . We al'so obtain estimates on the weight of the mixed Hodge structure on H?(M,; v) for
3 < g < 6. Results of thisarticle can be applied in the study of relationsin the Torelli group Tj,.
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I ntroduction

The moduli space M, of smooth projective curves of genus g is a quasi-projective
variety over C. Its points correspond to isomorphism classes of smooth projective
complex curves of genus g. It has only finite quotient singularities, and therefore
behaves like a smooth variety.

This space has several natural compactifications. In this article we will be
interested in the so called Satake compactification M, of M,. The period map
determines an inclusion of M, into A,, the moduli space of principally polarized
abelian varieties. The Satake compactification M, is the closure of M, inside
A, the Satake compactification of .A,. It has quite complicated singularities at its
boundary M, — M,.

Each representation of the algebraic group Sp,,, gives rise to an orbifold local
system over M,. To explain this we introduce the mapping class group I',. It
is the group of connected components of the group of the orientation preserving
diffeomorphisms of acompact orientable surface S of genusg. Thegroup I'y isthe
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orbifold fundamental group of M, and representations of I, give rise to orbifold
local systems over M. Thereisanatural surjective map

I'y = Aut(H1(S;Z),N),

where N is determined by the intersection pairing. The right-hand group is iso-
morphic to Sp,,(Z). So each finite dimensional rational representation V' of an
algebraic group Sp,, givesrise to asymplectic orbifold local system V over M.

Since V is generically defined over /\79, one can consider the intersection
cohomology groups I H*(M,; V). Thereis anatural restriction map

TH*(My;V) = H*(M,; V).

The main result of thisarticleis

THEOREM (cf. Th.4.1). The natural restriction map
TH*(M,; V) = H¥(M,; )

isanisomorphismwhen k = 1for all ¢ > 3, andwhen k = 2for all g > 6.

The group HY(M,; V) is easily computed when g > 3 for all symplectic local
systems V using Johnson’s fundamental work [23]) (cf. [14]).

Let X be an agebraic variety. From Saito’s work [37], [38] we know that
H*(X;V) has natural mixed Hodge structure (MHS) if V— X is an admissible
polarized variation of Hodge structure, and I H*(X; V) has natural mixed Hodge
structure if V is a generically defined admissible polarized variation of Hodge
structureover X . Further if X iscompact andVispureof weightr, then I H*(X; V)
ispure of weight & + r.

THEOREM (cf. Cor. 5.1, Cor. 5.3). If g > 6 and V — M, isa variation of Hodge
structure of weight » whose underlying local systemis symplectic, then the natural
mixed Hodge structure on H?(M,; V) ispure of weight 2 + r. If 3 < g < 6, then
the weights of the mixed Hodge structureon H2(M,; V) liein {2+ r, 3+ r}.

Each symplectic local system V associated to an irreducible representation V' of
Sp,, underlies a variation of Hodge structure over M, which is unique up to Tate
twist. It is convenient to fix the weight of the variation of Hodge structure V()
associated to adominant integral weight A. Fix fundamental weightsAq, Ao, ..., Ay
of Spy,. If A = a1 +axda+ - - +ag Ay, define |A| = a1+ 2a2 + - - - + gay. This
is the smallest integer r such that V' (\) C H1(S)®". (A good reference is [11].)
Then V() can berealized uniquely asavariation of Hodge structure of weight |A|.

Harer proved in [17] that the cohomology H’f(Mg;Z) stabilizes when g >
3k, and Ivanov later improved the range of stability [21,22]. He showed that
H*(M,;7) stabilizes when g > 2k + 2. In [22] Ivanov also proved that
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H*(Mg.1;V(\)) isindependent of g when g > 2k + 2 + |A|. (The space M1
is the moduli space of curves with a marked non-zero tangent vector.) In [28]
L ooijenga calculated the stable cohomology groups of M, with symplectic coef-
ficients as a module over stable cohomology groups of M, with trivial coeffi-
cients. In particular, this implies that H*(M,; V())) is independent of g when
g >2k+ 242\

Looijenga’s result also provides very specific information about the MHS on
H*(M,; v()\)). Combined with computations of H*(M,; Q) in low dimensions
due to Harer [16, 19, 20], it implies that H*(M,; V())) is pure of weight & + |A|
when k& < 4 and g isin the stability range. In particular, HZ(Mg, V(X)) is pure
of We|ght 2+ |\ when g > 6 + 2|)\|. Recently, Pikaart proved in [34] that the
stable cohomology H ’“(Mg, Q) is pure of weight k. Combined with Looijenga’s
computations, this showsthat H*(M,; V())) is pure of weight k& + |A| whenever
g >2k+ 242\

Unlike the stability range, our purity range isindependent of |\|. Thisisimpor-
tant for the following application which was the motivation for this article.

TheTorelli group T;, isthekernel of the surjectivehomomorphism T’y — Sp, (Z).
One can consider the Malcev Lie algebra t, associated to 7). (For definitions see
[13]). This Lie agebra is an analogue of the Lie algebra associated to the pure
braid group on m strings, which is important in the study of Vassiliev invariants
and conformal field theory. By a result of Johnson [23], T}, is finitely generated
wheng > 3. Thus, t, isalsofinitely generated when g > 3. It isnot known for any

> 3 whether T}, isfinitely presented or not.

In [15] Hain gives an explicit presentation of t, for g > 3. More specifically, he
proves that for each choice of o € M, there is a canonical MHS on t, which is
compatible with the bracket. Thus,

ec=J[6! , ®cC,
m

where Gr!V" are the graded quotients of the MHS associated to a choice of zq. Hain
provesthat for al g > 3

Grlty, = L(Hi(ty))/(Ry),

where L stands for the free Lie algebra, and R, is a set of relations. According to
aresult of Johnson [23] H(t,) isisomorphic as an Sp,,-module to V' (As).

Using the above theorem about the MHS on H?(M,; V) Hain proves that the
relations R, are quadratic when g > 6, and quadratic and possibly cubic when
g=3,4,5. Moreover he explicitly calculates all quadratic relations. Thisimplies
that t, isfinitely presented for all g > 3.

We shall outline the proof of the first theorem above. There are three main steps
in the proof. Thefirst step isto notice that if g > 3, then the boundary Mg M,
of the Satake compactification has oneirreducible component of codimension two,
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and al other irreducible components have codimension three. This immediately
impliesthat HY(M,; V) = THY(M,; V).

The codimension two irreducible component of M, — M, has a Zariski open
subset isomorphic to M x M,_1. Wedenoteit by X . (In the paper we work with
asmooth Zariski open subset of X. However thisisjust atechnical detail, and we
do not want to draw an attention to it here.) Let N* bethelink bundleof X in M,
We denote by 7 the corresponding projection. Then there is an exact sequence

0— TH*(Mg; V) = H3(M; V) = H(X; R?m,V),
and the last morphism factors through the edge homomorphism
¢: H3(N*; V) — H%(X; R*,V)

of the Leray—Serre spectral sequence of 7. Therefore it suffices to show that 1) is
the trivial homomorphism.

The second step is to understand the link bundle N*. Let L be the pull-back
under prp: X — M,_1 of the unit relative tangent bundle over M,_,, and 7 be
the corresponding projection L — X . We show that L is a two-to-one unramified
coveringof N*. (Thisisdonein Sect. 3.) Hereweneedto assumethat g > 4. Denote
by V the pull-back of the local system V to L, and by ¢ the edge homomorphism
H?(L;V) — H°(X; R?%,V) of the Leray—Serre spectral sequence of 7. Thereisa
commutative diagram

HY(L;V) —+ HO(X; R?7,V)

HA(N*;v) Y+ HO(X; R?%n,V),

where both vertical mapsareinclusions. Thisimpliesthat ) istrivial, if ¢ istrivial.

The third step is to show that ¢ is trivial. The local system V extends to the
stratum X = M1 x M,_4, and splits over it according to the branching rule for
the standard inclusion of Sl x Sp,,_, into Sp,,. The bundie map 7 respects this

splitting. Thus, it suffices to show that J istrivial for each irreducible symplectic
local system V over X. We complete the computation using Schur’s lemma and
the fact, due to Harer [20], that H?(T', 1; HY(S)) istrivial when g > 4. (One can
also use aresult from [19, Sect. 7] that H2(T',1; H*(S)) istrivial wheng > 9.)

1. Basicfactsabout the moduli space of curves

In this section we recall the definitions and basic properties of the moduli spaces
of curves, and the corresponding mapping class groups.
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Themoduli space M ,. parameterizesthe isomorphism classes of smooth com-
plex projective curves of genus g with s marked points and » marked nonzero
holomorphic tangent vectors. The existence of such moduli spaces follows from
geometric invariant theory. These moduli spaces are known to be norma quasi-
projective varieties [30, Th.5.11, Th. 7.13].

One can al'so construct M . using Teichmuiller theory. This approach allowsus
to establish therelation between the moduli spacesand the corresponding mapping
class groups.

Let S denote asmooth compact orientable surface of genusg. Fix s + r distinct
points p1,...,pr+s ON S, and r non-zero tangent vectors vy, ...,v, a points
p1,-- -, pr respectively. One can consider triples

(Ca (q].a sy Qrds, W1, - - - awr)? [f])a

where C' is a smooth projective genus g curve, qa, . . ., gr+s are distinct points on
C,ws, ..., w, arenon-zero holomorphic tangent vectorsat ¢, . . . , ¢, respectively,
and f:C' — S is an orientation preserving diffeomorphism such that f(g;) = p;
and f,(w;) = v; (we use the canonical identification of the holomorphic tangent
space with the underlying real tangent space). We denote by [f] the isotopy class
of f relativeto {q1,...,qr+s, w1,...,w,}. TWotriples

(Cja((ﬂ_a"'aq1jn+sawia"'aw1]"‘)a[fj])? j:1,2,

arecalled equival entif thereexistsabiholomorphism h: C; — C> suchthat h(q}) =
@2, h«(w}) = w2, and [f2 o h] = [f1] where the isotopy is required to preserve
the marked poi nts and tangent vectors. The space of equivalence classes 7, is
called the Teichmiller space[18], [19, p. 26]. It isknown that 7, |sacontract|ble
complex manifold of dimension 3g — 3 + s + 2r when 29 — 2 + s+2r>0.

The mapping class group T'; . is defined to be Diff* (S )/Diff§ (S), where
Diff*(S) isthe group of orientation preserving diffeomorphismsof .S, which leave
the marked points py, . . ., pr1s and marked tangent vectors v, . . . , v, fixed, and
Diff§ (S) isthe connected component of the identity. If g > O, then the group Lo,
istorsion free when either » > 0, or s > 2¢g + 2.

ThegroupI'; , actson 7/, asfollows. If g € T'; ., then

g(C, (qla' .- 7w7‘)7 [f]) = (Cv (qla' .- 7w1“)7 [g ° f])

The quotient space I'; . \ 7., is the moduli space Mj ;. of curves with s marked
points and » marked tangent vectors The group I'; . acts on 7, by biholomor-
phisms, and this action is properly discontinuous and virtually free It follows that
Mg, is a complex analytic variety with only finite quotient singularities. This
analytlc structure agrees with the one coming from geometric invariant theory. If
I'; , istorsion free, then the action is free, and Mg ,. is smooth.
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Notation. We shall omit indices » and s from 7;57” g, and Ms when they
are equal to zero. We shall use both M% and M to denote the moduli space of

eliptic curves.

Remark. One can also consider ME,S], the moduli space of genus g curves with
amarked set of cardinality s. It is the quotient of M7 by the natural action of the
symmetric group on s letters. This action permutes the marked points.

The singular locus of M, is contained in the locus of curves with non-trivial
automorphisms. When g > 3, wedenoteby ‘M, thelocusof curveswithonly trivial
automorphisms. This is a smooth Zariski open subset of M, whose complement
has codimension g — 2.

There are natural surjective morphisms between different moduli spaceswhich
correspond to forgetting marked points and marked tangent vectors [25]. We
will consider the morphisms M} — M, and M, 1 — M}. The first morphism
M;—>Mg is called the ‘universal curve’ [10, p.218]. Its fiber over a point
[Cle M, isC/AutC. On the level of the mapping class groups there is a corre-
sponding short exact sequence [4]

1-m(S)—=T; =Ty —1.

The morphism M, — M}, ‘forgets the tangent vector, but remembers its
base point. When ¢g > 2 it is the frame bundle of the relative holomorphic tangent
bundle to the universal curve. On the level of the mapping class groups there is a
corresponding short exact sequence [4]

15Z—-Tg1—T) =1

The composition of the two morphisms discussed above is the morphism
M,y1— M, obtained by forgetting the tangent vector. If C' is a curve without
non-trivial automorphisms, then thefiber over [C] € M isisomorphicto 7" C, the
frame bundle of the holomorphic tangent bundle of the curve C'. The corresponding
homomorphism of the mapping class groupsisT'y 1 —I'.

Onecan al'so consider finiteindex level subgroupsT'; . [/] of '} . for eachinteger
[. Thelevel I subgroup is defined to be the subgroup of I'; . which actstrivialy on
H1(S;7/iZ). Consequently, one has a short exact sequence

105, 1= Ty, — Spy(2/1Z) — 1.

The quotient T'; ,[I]\ 7,7, is isomorphic to Mg .[I], the moduli space of smooth
projective curves with alevel [ structure which is defined in Section 2.
Itiswell-knownthat forall g > 1andl > 3,thegroupI'; , [/] actsfreely on 7;3.
Thusfor each ! > 3 the moduli space M [ I] isasmooth finite cover of M ,
When MS |sd|fferent from M and M2 each representation of Iy determl nes
an orbifold Iocal system over M - When M, is either M or M2 We consider
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only such representations of I', that for each [C] € M, represented by a curve
with only two automorphisms, the stabilizer of (C, [f]) € 7, acts trivialy on the
representation space. These representations give rise to orbifold local systemsover
Ml and Mz.

Let V be arepresentation of I'; . on arational vector space, and let V be the
associated orbifold local system over Mg .. The contractibility of the Teichmuller
spaceimpliesthat forall g > 1

H* (T35 V) 22 H* (M5 V) 2 H* (M (1] V) P2 512,

2. Compactifications of the moduli space of curves

In this section we recall some basic properties of the Satake compactification
and the Deligne-Mumford compactification of the moduli spaces of curves.

We start with the Deligne-Mumford compactification of Mg. A stable curve
is a reduced connected curve which has only nodes as singularities, and a finite
automorphism group [8]. The Deligne-Mumford compactification ﬂf] of Mj is
the moduli space of stable projective curves. It is a normal projective variety in
which M3 is a Zariski open subset [8], [31, Th.5.1]. The singularities of M, are
contained in thelocus of stable curveswith non-trivial automorphisms[10, p. 218].

Wewill describethe boundaryﬂf] —Mj inthecasewhen s = 0. The boundary
M, — M, isthe union of irreducible divisors

l9/2]

U Aia
=0

where each divisor A; has the following property. When < = 0 there is birational
morphism ﬂ[f_l — Ag; when1 < i < g — i thereiis birational morphism A, x
ﬂ;,z- — A;; andwhen i = g — i there is a birational morphism from the 7 / 27-
quotient of A} x M; to A;.

DEFINITION 2.1 (cf. [36, Def. 10.5]). A level [ structure on a stable curve C' is
a symplectic monomorphism H(C; 7z /17) — (7. /17)%9, where (7 /17.)?9 has the
standard symplectic structure.

Notethat alevel [ structure on asmooth curve C isjust achoice of asymplectic
basis for H(C;Z/iZ), or, equivaently, for H;(C;7/1Z) because the symplectic
form determines the canonical identification between homology and cohomology.
The sameistrue for asingular stable curve C' whose dual graphis atree.

Fromnow onweassumethat/ > 3. Denoteby M /] themoduli space of smooth
curves with alevel [ structure. It is isomorphic to the quotient of 7, by the action
of T'y[{] (cf. Sect. 1). The moduli space M, [{] isasmooth quasi-projective variety,
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and the forgetful morphism M, [l] — M, isaGalois covering [8, Prop. 5.8], [33,
Thm. 1.8].

Wheng > 2andi > 3thereexiststhe moduli space of stable curveswith alevel
[ structure M, [{], which is a compactification of M,|[l] [8, p. 106], [29, Bem. 1],
[35, Rem. 2.3.7]. Thisis a projective variety according to [32, Thm. 4, 111.8], and
thereisafinite morphism M[l] — M, determined by forgetting alevel [ structure.

In[29] Mostafa provesthat M, [{] is not smooth, at least when g > 3. However,
in this article we are interested in particular strata of the boundary of M[l]. The
irreducible component A; of the boundary of M, contains a Zariski open subset
isomorphic to M} x M2 . Consider the inverse image of this subset under the
finite morphism above. It is a finite disjoint union of locally closed subvarieties
of codimension one each of which is isomorphic to M[l] x M} _4[i]. According
to [29, Lem. 1], [27, p. 240] al points of this inverse image are smooth points of
Mll]. N

To introduce the Satake compactification M, of M, we use the space A, the
moduli space of principally polarized abelian varieties of dimension g. It is the
quotient of the Siegel upper-half space by the action of Sp, (Z). The space A, is
aquasi-projective variety [30, Th. 7.10]. Among other compactifications, it admits
the Satake compactification A, which is a projective variety [39].

The moduli space M, isisomorphic to the image of the period map M, — A,
whichisalocally closed subvariety of A, [33, Cor. 3.2]. Theclosure Mvg of M, in
the Satake compactification A, of A, is called the Satake compactification of M,
(cf. [2]). There exists a birational morphism «: M, — /\79 which is the identity
on M, and sendsthe point [C] corresponding to a stable curve C' to the polarized
Jacobian of its normalization [26, p. 211].

The image of the boundary M, — M, under « is the boundary M, — M,
of the Satake compactification. It follows that when g > 3 the boundary /\79 —
M, has [g/2] irreducible components each of which except one has codimension
three in M,,. The irreducible component ®; which is the image of A; € M,
has codimension two. It contains a Zariski open subset isomorphic to M1 x
Mg_1.

One can also construct the Satake compactification Mvg [l] of M,[l]. Denote
by A,[l] the moduli space of principally polarized abelian varieties with a level
[ structure. A point in A/[l] is represented by an abelian variety A of dimen-
sion g and a symplectic basis of Hi(A;Z/IZ). It is a quasi-projective vari-
ety [30, Th.7.9], [33, Th.1.8] which is smooth when ! > 3. The space A,[l]
has the Satake compactification 4,[{] which is a normal projective variety [36,
p.124], [39].

If g = 1,2, then M,[I] isisomorphic to a Zariski open subset of A,[/], and we
define the Satake compactification A, [1] of A, [/] to be the Satake compactification
of M,[l]. If g > 3, then the morphism M,[i] — A, [l] is not injective. In this case

we define Mg [1] to be the normalization of M, with respect to M y[1].
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It follows from this definition that ﬂg [l] isaprojectivevariety [32, 111.8, Th. 4],
and that the morphism M ,[I] — M, extends to afinite morphism M, [I] — M,.
One can also show that there is a birational morphism ot: M, [I] — /\79 (1] with
connected fibers which is the identity on M,[l], and fits into the commutative
diagram

The boundary /\79 [1] — M,[l] is the union of irreducible components each of
which has codimension either two, or threein M, [I]. Theimage of each component
<I>/f of codimension two under the morphism M, [I] — M, isthe codimension two

component ®; of M, — M,,. One can show that each <I>f contains a Zariski open
subset Zg such that these subsets do not intersect each other, and each of them is
isomorphic to a smooth Zariski open subset of M1[l] x M _1]l].

3. Codimension two stratum of the Satake compactification

In this section we analyze the link of the codimension two boundary stratum &4
inside the Satake compactification of the moduli space /\79. More precisely, we
study the local links of the points in a smooth Zariski open subset of ¢4, and we
show that ﬂg is equi-singular along this Zariski open subset. We will need thisin
Section 4. For the rest of this section we assumethat g > 4.

Recall that ®; contains a Zariski open subset X isomorphic to M1 x M,_;.
We identify it with My x M _4. Then apoint in X is represented by a pair of
isomorphism classes of curves ([C4], [C>]). Let X° be a Zariski open subset of
X defined as follows. Recall that in Section1 we defined °M, to be the locus of
curves with only trivial automorphisms when g > 3. We define M to be the
locus of eliptic curves with exactly two automorphisms. Then X° is the subset
of X corresponding to M1 x °M,_1. In this section we study the link of X° in
MgyUX° C M,.

Let V be aregular neighborhood of X° in M, U X°. The complement N* =
N — X° isadeleted regular neighborhood of X°.

Recall that M, _1 1 — M,_1 isasurjective morphism defined by forgetting the
holomorphic tangent vector. Let L, betheinverseimage of °M,_1in M,_1 1, and
mo: Ly — M1 be the corresponding map. The fiber of 7, over [Co] € M _1
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is T“C5, the punctured holomorphic tangent bundle. Denote by L the product
°M1 x L, and by 7 the pull-back of 7, to X°

L="M1x Ly e L

%\ )

pr2
X° = My x M1 22 M, g,

LEMMA 3.1. Thebundle7: L = °M1 x Lo — X° isatwo-to-one unramified cover
of the punctured regular neighborhood N *. The corresponding fix point free action
of Z /27 on L sends a vector v to —v.

Proof. The morphism M1, — M, factorsas

1
Mg—l,l — Mg,]_ — Mg_l.

Denote by Y> the inverse image of °M,_; under the second morphism. Then the
commutative diagram above factors as

L="M1x Ly P L

Y = W]_ X Yz bz Yz

Y

pr2
X° = OM]_ X ?/\/lg,l _— ?/\/lgfl,

where 5 (resp. 72) is the restriction of My_11— M7 4 (resp. M; 1 — Mg_1)
to Ly (resp. Y2), and «¢ (resp. 7) isits pull-back along pro.

AtthesametimeY = M x Y5 isisomorphic to a smooth Zariski open subset
of the boundary component A; in the Deligne-Mumford compactification. We
identify Y with this Zariski open subset. Then the morphism 7: Y — X° is the
restriction of the morphism oz M, — M, to Y.

The morphism « is the identity when restricted to M,. Therefore a deleted
regular neighborhood N* of X°in M, U X° and a deleted regular neighborhood
of thedivisor Y in M, UY C M, can be chosen to be the same.

The deleted neighborhood of Y is homeomorphic to the punctured normal
bundle of Y in M, U Y. Note that the only non-trivial automorphism of a pair
(C1,71), (C2,x2) representing a point in Y is induced by the elliptic involution
of (C1,z1). It follows that Z /27 acts on the space of versal deformations of the
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stable curve (C1, z1), (C2, z2), and this action fixes the divisor that is the locus
of the singular curves [1, Chap. 13, Lem. (1.6)]. Therefore the fiber of the normal
bundle of Y C A; at the point [(C1, 1), (C2,z2)] is isomorphic to the Z /27
quotient of T, C1 ® Ty,C2, where the generator of Z /2 acts as —id. Thus N* is
the 7 /27 quotient of the C*-bundle L’ over Y whosefiber at [(C1, 1), (C2, 22)] is
Ty, C1® Ty, Co — {0}.

It is well-known that the moduli space of eliptic curves M1 isisomorphic to
C. It contains two distinguished points that correspond to the two elliptic curves
with exceptional automorphisms. It follows that the space M is isomorphic to
C — {2 points}. All line bundles over this space are trivial. Therefore the bundle
L’ is the pull-back of the punctured relative tangent bundle of the morphism
Y, — O./\/lg_l.

The punctured relative tangent bundle of the morphism Y> — M, _1 is n§:
Ly — Y>. Hence, one has a commutative diagram

LI

L,

C
2

Y =My x Yy 224 Y,

where L’ is the pull-back of L,. We conclude that the bundles L' and L are
isomorphic, and N* isthe Z /27 quotient of L, where Z /27 action sends a vector
in afiber of 7¢ to its opposite. O

It follows from the lemma above that /Wg isequi-singular along X °. We expressed
N* as abundle X° whose fiber over the point ([C1,C5]) is equal to T“C>, the
frame bundle of the holomorphic tangent bundle of Cs.

4. Main theorem

In this section we prove the main theorem of this article. The proof consists of a
sequence of lemmas and propositions. We assume that the reader is familiar with
intersection cohomology, and suggest the references[3, 5, 12].

Notation. For the rest of the paper we omit R*® from the notation for the derived
functors. For example, if f: X —Y is a continuous map between topological
spaces, then f, = R®f,.

As we mentioned before each representation of the mapping classgroup I, at
least when g > 3, determines an orbifold local system over M,. In this section
we consider only the symplectic local systems, that is local systems arising from
finite dimensional rational representations of the algebraic group Sp,,. We fix a
symplectic representation V' of I'y, and denote the corresponding orbifold local
systemby V.
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THEOREM 4.1. The natural map IH*(M,; V) — H*(M,;V) induced by the
inclusion is an isomor phism, when

k=0, ¢g>1,
k=1 ¢g>3
k=2 g>6.

Thefirst statement istrivial and included only for the sake of completeness. The
statement concerning thefirst cohomology isalsorather ssmple. Indeed, in Section2
we saw that if g > 3, then the boundary M, — M, of the Satake compactification
has codimension two in M ¢- This, and the properties of intersection cohomology
immediately imply the statement of the theorem for £ = 1. The non-trivial part of
this theorem concerns the second cohomology.

Remark. If g > 3, thenthemap THY(M; V) — HY(M,; V) isanisomorphism
for an arbitrary orbifold local system V determined by a representation of I', on a
rational vector space. This can be easily seen from the above argument.

Combining this with the computations of H1(M,; V) in [14, 23] one gets the
following corollary.

COROLLARY 4.2.1f g > 3and V()) isa generically defined local system corre-
sponding to the representation of Sp,, with the highest weight A, then

Q when X = \sg;

THY M, V()\)) =
(Mg V(V) {O otherwise.

|

The rest of this section is devoted to the proof of the isomorphism in second
cohomology. We assumethat g > 4. Recall that we denote by @, the codimension
two irreducible component of the boundary of M, and by X° its Zariski open
subset isomorphic to M3y x M.

Notation. We denote by S* the intersection cohomology sheaf ZC*(V) on Mg

corresponding to the local system V. The following diagram defines the notation
for the inclusions

M, e MU X° Lo X°,
First, we use again that the boundary of M 4 has only one irreducible compo-
nent of codimension two, namely ®,, and al other irreducible components have
codimension three. This and the properties of intersection conomology imply that

the restriction

TH?(M,; V) — TH3 (M, U X°;V)
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is an isomorphism, and there is an exact sequence
0— TH2(M, U X°; V) — H2(M,; V) —2 H3(X°;5'S*)
~ HO(XO; ’H3j!8°).

Therefore to prove the theorem it suffices to show that ¢ from the exact sequence
aboveisthe zero morphism.

The distinguished triangle
j!So N ]*S.
R /
Y

implies that H3j'S*® = 72;*i,V. Then the morphism ¢ composed with this iso-
morphism can be factored as

H2(My;V) = HX(X®; i, V) —2v HO(X°; H2*i, V).

The sheaf j%1,V is called the local link cohomology functor [9, p. 57]. It expresses
the cohomology of N*, the link of X° in M, U X°. We denote by = the corre-
sponding projection N* — X°. Then the morphism ) from the sequence above
can be written as

¢: HA(N*; V) — Ho(X°; H?m, V).

One can easily check that v is the edge homomorphism associated to the Leray—
Serre spectral sequence determined by .

In order to prove the theorem it is enough to show that +) is the trivial homo-
morphism when g > 6, and the rest of this section deals with the proof of this
fact.

First we want to understand the behavior of the local system V over N*. We
start with the following lemma.

LEMMA 4.3. The orbifold local systemV over N* splitsinto a direct sum of sym-
plectic orbifold local systems determined by rational representations of S, x
S

I%roof. Recall that a symplectic orbifold local system is determined by a repre-
sentation of Iy which is the pull-back of an algebraic representation V' of Sp,, .
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Choose a level | > 3. The inverse image of X°C M, in M,|[(] has several

connected components. Let NV} be adeleted regular neighborhood of one of them.
Then one has a commutative diagram

N ——— M[l] —— A,[l]

L

N M, A,.

(Recall that A, stands for the moduli space of principally polarized abelian vari-
eties.) Denote by V; the pull-back of V to M,[l], and by V; the local system over
A,[l] determined by V. Both V; and V; are genuine local systems, and V; is the
pull-back of V; under M,,[1] — A,[l].

The product A; x A, is canonically embedded in A,. Its inverse image
under A,[l] - A, consists of several connected component, each of which is
isomorphic to A4[l] x A,_1[l]. Theimage of N;* in A,[l] is contained in a tubular
neighborhood of one of these connected components. Thelocal system V), restricted
to this connected component, splits according to the branching law of theinclusion
Sl2 x Sp,_p < Spy,. It follows that the local system V; splits over N} according
to the same branching law. In addition, V; is constant on the fibers of the composite

™

N/ — N* — X°.
Thusthe splitting of V; over N;* descendsto the splitting of V over N*. O

Our aim is to show that the morphism +/ is trivial. Therefore without loss of
generality we can assume that V is a local system over N* determined by an
ireducible algebraic representation of Sl x Sp,,_, with highest weight (u, v).
Note that 1 is just a non-negative integer.

We consider two cases. First, assumethat y is odd. The morphism N;* — N* is
a Galois covering with the Galois group Sl2(Z /IZ) x Sp,,_,(Z/1Z). The element
(—1d,id) of this group leaves the fibers of N — N* — X° fixed because it
corresponds to the involution of the éliptic curve, and acts as —id on the local
system V;. It follows that £,V is the trivial local system, and we have nothing
more to prove.

Next, assumethat 1 iseven. Then (—id, id) actstrivialy onthelocal system v;,
and therefore the local system V extendsto X °. Thismeansthat V isthe restriction
to N* of aloca system defined on the whole regular neighborhood NV of X°.
Denote the restriction of this local system to X° by V. Then V is isomorphic to
W1 (1) RW3 (), the symplectic local system over M x °M ,_1 determined by the
highest weight (1, ). Thelocal systemV isthe pull-back of V under =: N* — X°.
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Lemma3.1 saysthat N* is the Z /27 quotient of the bundle L defined in Sec-
tion3, and = is induced by the projection 7: L — X°. We denote by V be the
pull-back of V to L. Then

V=7V 2 75 (W (1) R Wo (v)).

Let B, be the Leray—Serre spectral sequence determined by =, and A, be the
L eray—Serre spectral sequence determined by 7. Let ¢ be the edge homomorphism
H?(L;V) — H°(X°; H?#%,V) associated A,. The two-fold covering map L — N*
induces the map of the spectral sequences B, — A,. One hasfor each ¢ [6, p. 85]

Him,V = (HI1%,V)%/%,

It follows that the induced map B3 — A7 isan inclusion of global 7 /27 invari-
ants. The homomorphism H?(N*;V) — H?(L;V) is also an inclusion of 7 /27
invariants, and one has a commutative diagram

H2(L; V) —2 HO(X°; H%7,V)

H2(N*; V) -2 HO(X®: H2r, V),

where both vertical maps are inclusions. It follows that if ¢ is trivial, then ¢ is
trivial. We shall show that + istrivial.

Notethat 7,V is quasi-isomorphic to 7.Q® V. It follows that 1?7,V isisomor-
phicto H?7.Q® V.

LEMMA 4.4. Thelocal system 27, Q over X° isisomorphic to Wy (0) X W (1),
Proof. The bundle 7 is the pull-back of the bundle 75: Ly — °M,_1 to X° (see
Lemma 3.1). It follows that the local system #27..Q is the exterior tensor product
of the constant local system W (0) over °M 7 and H %72, Q.
Recall that 7, factors as

s 7
2 2
Ly —= Y, — Mgy_1,

where 77 is the restriction of the universal curve to Y>, and 75 is a punctured
relative tangent bundle to 7,. Therefore we have a Gysin long exact sequence of
local systems

v 2 HOT2,Q =5 M7, Q = HP72.Q — HM0,Q — 0, (4.1)

where e isthemultiplication by the Euler class. The Euler classisnon-zero, because
the genus of C is greater than one. It follows that e is an isomorphism on rational
cohomology. Thus we conclude that 7?75, Q isisomorphic to 17, Q.
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The local system #17,.Q is isomorphic to Wo (1), the local system corre-
sponding to the standard representation of Sp,,_». It follows that

H21*Q = Wy (0) B Wa (1) -

The lemma above shows that the edge homomorphism ¢ is of the form
H?(L; 7 (W (1) R Wa(v)))
— HO(X°; Wy (1) B (W2 (11) ® Wa(v))).

LEMMA 4.5. The space HO(X°; W1 (1) R (W (v1) ® Wa(v))) isisomorphicto Q
if » = 0and v = vy, and zero otherwise.
Proof. Applying the Kiinneth formula one gets

HO(X°; Wi (i) B (Wa (1) @ Wa(v)))
2 HO(My; Wi (p)) © HO(My—1; Wa (v1) © Wa(v)).
The zero cohomology of a space with coefficients in a local system is equal
to the space of global invariants of the local system. An irreducible symplec-
tic local system has no global invariants unless it is constant. This implies that
HO(°M1; W1 (0)) =2 @, and H°(M1; Wy (1)) = 0if pn # 0.

Similarly, H%(°M ,_1; W2 (1) ® W (v)) isequal to zero, unlessthelocal system
W (1) ® W (v) containsaconstant local system asadirect summand. Thisoccurs
if and only if the tensor product W;(v1) ® Wa(v) of irreducible representations
of Sp,,_,(Q) contains a copy of the trivial representation. It is known that all

irreducible representations of the symplectic group are self-dual. Therefore the
trivial part of that representation is equal to

(Wa(r1) ® Wz(y))szg—z(@)
= Wa(v1) @sp,, () Wa(v) = HoMsy, o) (W2 (v1); Wa(v)).

By Schur's lemma the latter term is isomorphic to Q, if v = v, and O other-
wise. O

It follows that ¢) istrivial unlessV =2 Wy (0) ® W2 (1). In the remaining part of this
section we study this case. To simplify the notation we denote Wy (0) X Wy (1) by
Wo (I/]_).

LEMMA 4.6. If g > 6, then the homomorphism
P H?(L; Wo (11)) = HO(X°; Wo (1) ®?)

isthezeromap.
Proof. Note that +> factors through the A%2 term of the spectral sequence

ADT = HP(X°, HI7,Q @ Wa(11)) = HPFU(L; 75Wa(1y)).
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Therefore, it sufficesto provethat A%? = 0.
Themorphism7p: Ly — °M,_1 givesriseto thefollowing L eray—Serre spectral
sequence

C3? = HP (Mg 1, H'72.Q ® Wa(11)) = HPI(Lag; T3 Wa (11)).

The bundle 7: L — X° is the pull-back of L, and the local system W, (»1) over
X° is aso the pull-back from the second factor. It follows that the morphism of
spectral sequences C, — A, induced by the projection pro: X° — °M,_1 isan
inclusion of adirect summand. (Here we mean that for each (r, p, ¢) the term CP»¢
isadirect summand of AP»9, and all differentials d, respect this splitting.)

Note that A? = C9?. Indeed,

43% = HO(X"; W (v1)?)
H°(°M1;Q) ® HO(OMg—l; Wa (1) %2)
HO(My_1; Wa (11)®?) = C37,

It

12

because H?72,Q = W,(r1) according to exact sequence (4.1). It follows that
A%2 = 092,
Thefinal step isto show that C%? = 0. There is a surjective homomorphism

H?(Lg; ®3Wa (1)) = C7,
associated to the spectral sequence C,. Thereforeit sufficesto show that
HZ(LZ; %;Wz(l/l)) =0.

The complement of the Zariski open subset °M,_; of M,_1 has complex
codimension g — 3 (cf. Sect. 1). It follows that L, also has complex codimension
g—3inMgy_11.Thus

H?(Lg; ®3Wa (1)) = HA(Mg_11; Wa(11))

when g — 3 > 3. The mapping class group of M,_11isT'y_1 1, and their rational
cohomology are the same. In particular,

HA(My_11;Wa (1)) = H?(Ty_1.1; Wa(1n))
= H?(Ty_11; HY(S;Q)),

where S is a reference surface of genus g — 1. In Lemma4.7 below (based on a
result of Harer) we show that H2(T', 1; H(S;Q)) when g > 5. Thisimplies that

C%2 = 0, and therefore both homomorphisms ¢ and 1 are zero homomorphisms
wheng > 6. O
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LEMMA 4.7.1f g > 5, then H?(T',1; H(S;Q)) = 0.

Proof. All cohomology groups are considered with rational coefficients. The
homomorphism I‘;l —I'y 1 is defined by forgetting a fixed point, and therefore is
surjective. We can choose a fixed point in a neighborhood of the base point of a
fixed tangent vector. This determines a splitting of the homomorphism above. As
the associated spectral sequence has two rows, the existence of splitting implies
that the spectral sequence degenerates at F,. Hence, H2(T,1; H(S)) isadirect
summand of H3(T; ;) [19, Sect. 7]. Thusit sufficesto provethat H3(I'; ;) = 0.

There is a short exact sequence of groups

1—>Z—>Fg72—>F;,1—>1.
It determines a Gysin long exact sequence
> HY(TG ) = HYTG 1) = H3(Ty2) = -

We know that the last term is trivial according to Theorem 3.1 from [20]. The first
term is trivial by [14, Prop.5.2]. It follows that the middle term H3(T; ) is also
zero. O

Remark. In Theorem 3.1 from [20] Harer gives an explicit description of a basis
of H3(T's2) = Q. Using this one can deduce that Hg(ril) istrivial, and therefore
that H2(T'4,1; HY(S;Q)) istrivial.

Recall that each irreducible symplectic local system over M, is determined by
its highest weight A. If Aq, ..., A, isaset of fundamental weights of Sp,/, then A
isuniquely expressedas Y-7_; a;\; for some non-negative integers a;. We defined
|\ tobe>>Y_, ia;.

DEFINITION 4.8. We say that an irreducible symplectic local system over M,
determined by the highest weight X isevenif |\| iseven, anditisodd if |A| isodd.

Thefollowing corollary is a consequence of the proof of the main theorem.
COROLLARY 4.9.1f Visan even local system, then the natural map
TH?(My;V) = H*(M,; V)

isan isomorphismwhen g > 4.

Proof. Theestimateg > 6, rather than g > 4, appearsin the proof of Lemma4.6.
This lemma deals with the case when a symplectic local system V restricted to
N* has adirect summand isomorphic to the irreducible local system 7* (W1 (0) X
Wo (1)). Notethat V containssuch direct summand if and only if the corresponding
algebraic representation V' of Sp,, restricted to the subgroup Sl x Sp,,_, contains
acopy of W1(0) ® W2(r1). The branching rule of Sp,, over Sl x Sp,,_, respects
even and odd components. Thereforeif 1 iseven, then itsrestriction cannot contain
W1(0) X W>(v1). Thisimpliesthat in this case ¢ istrivia for al g > 4. |
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5. Mixed Hodgetheory

In this section we consider the mixed Hodge structure on H?(M,; V) where V is
an irreducible symplectic local system. We prove that the mixed Hodge structure
on Hz(Mg;V) is pure when g > 6. We also prove that if ¢ = 3,4. 5, then the
mixed Hodge structure on H?(M,; V) has at most two weights. In this section we
assumethat g > 3.

We use results of the theory of mixed Hodge modules developed by M. Saito.
For definitions and results we refer the reader to [37, 38]. In this paper we use only
the formal properties of mixed Hodge modules.

Notation. Let H = (Hg, Hc, W,, F'*) bearational mixed Hodge structurewhere
W, denotes the weight filtration, and F* denotes the Hodge filtration. Denote the
graded quotient W, Hy /W, _1Hg by Gr}¥ H. We shall say that an integer m isa
weight of a mixed Hodge structure H if Gr’¥ H # 0. We use abbreviations: MHS
for mixed Hodge structure, and MHM for mixed Hodge module.

In [7] Deligne proved that the rational cohomology of every quasi-projective
variety possesses a natural MHS. In [38] Saito proved that the cohomology and
intersection cohomology of an algebraic variety with coefficientsin an admissible
variation of MHS carry MHSs. The definition of an admissible variation of MHS
is given for curvesin [40], and in general in [24] (also see [37, 2.1]). Thereisa
strong belief that when both MHSs of Deligne and Saito exist they are the same.

Let V bean irreducible symplecticlocal system over M, determined by highest
weight . Thisisclear that the restriction of the local system V to °M,, underliesa
polarized variation of Hodge structure of geometric origin. Thereforetherestriction
of V to °M, is an admissible variation of Hodge structure. The local system V is
irreducible, therefore the corresponding variation of Hodge structure is unique up
to Tatetwist [14, Prop. 8.1]. Wefix V asavariation of Hodge structure by decreeing
itsweight to be |A|.

According to the theory of MHMs both IHq(Mg;V) and H7(M,; V) carry
natural MHSs [37, pp. 146-147]. The MHS on H%(M,; V) can be defined using
either the smooth covers M,[l] for I > 3, or the isomorphism H9(M,; V) =
IH9(M,; V) where in the second term we consider the restriction of V to °M,.
Thisis easy to check that al these ways lead to the same MHS.

THEOREM 5.1.1f g > 6, or if g > 4and V isan even local system, then the mixed
Hodge structure on H2(M,; V())) is pure of weight 2 + ||
Proof. The theory of MHM implies that the restriction

TH?(M,; V) = H3(M,; V)

is a morphism of MHSs, and according to Theorem4.1 and Corollary 4.9 this is
an isomorphism. The space /\79 is a projective variety. It follows that the MHS
on TH?(M,; V) is pure of weight 2 + |A| [38, pp. 221-222]. Thus the MHS on
H?(M,; V) isalso pure of weight 2 + || O
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In the rest of this section we dea with the MHS on H2(M,/[l]; V) where M,[l]
is the moduli space of curves with alevel [ structure, and V is a symplectic local
system V(A) which underlies a variation of Hodge structure of weight |A\|. We
assume that [ > 3, and therefore M,[l] is smooth and V is a genuine (not only
orbifold) local system. There exists a natural MHS on HY(M,[l]; V) for each
q=>0.

THEOREM 5.2.1f [ > 3and g > 3, then Gr) H2(M,[I];V) = Ofor k > 3+ |)|
andk < 2+ |\l

Proof. In the beginning we recall some facts from Section 2. The moduli space
M,[l] has the Satake compactification /\79 [1] which is a projective variety. The
boundary M,[i] — M,][I] has codimension two in M ,[l], and each codimension

two irreducible component tI)f has a Zariski open subset Z3 such that the subsets
Z g do not intersect each other, and each of them isisomorphic to asmooth Zariski
open subset of M1[l] x M,_1]l].

Notation. We denoteby S* theintersection cohomology sheaf ZC* (V) on M,,|i].
The following diagrams defines the notation for the inclusions

Mll] = Myll) U (UpZs) ~2= Ug Zg,
and we denote by jg the restriction of j to Zg. This notation is similar to that in

Section 4.
It follows that one has an exact sequence

0— TH?(M[I]; V) = HA(M,[I]; V) — H3(UpZ3;5'S*),

in the category of MHSs. Taking graded quotients with respect to weight filtration
isan exact functor. Therefore for every k there is an exact sequence

0 — Gr)Y TH2(M,[1]; V)
— GrY H3(M,[1); V) — Gry H3(UsZs;5'S®).

Since the space /\79[1] is a projective variety, and V is a polarized variation of
Hodge structure of geometric origin of weight ||, the intersection cohomology
IHZ(Mg [1]; V) has a pure MHS of weight 2 + |\|. To prove the theorem we will
show that Gr}¥ H3(UgZs; j'S*) = O unlessk = 3+ ||

Asthe sets Z aredisjoint it sufficesto show that each H3(Z; j;,S*) hasapure
MHS of weight 3+ |A|. From now on we fix an arbitrary index (3, and omit 3 from
the notation for Zg and j3.

The sheaf j'S* is constructible, and Mg [l] isequi-singular along Z. Therefore
135'S* isalocal system over Z. The standard argument implies that there is an
isomorphism of MHSs

HS(Z,]'S.) ~ HO(Z,HSJIS.)
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and there is an isomorphism of MHMs
H35' S = H?j*i, V. (5.1)

We will show that these MHMs are pure of weight 3 + |A|.

Recall that j*i,V expresses cohomology of the link of Z in M[l]U Z. The
inverseimage of Z under the birational morphism a: M,[i] — M,|[l] isasmooth
locally closed divisor. We denoteit by Y. Then the link of Z in M,[i] U Z isthe
same asthelink of Y in M, [I] U Y. We use this to find the weights on 72 *3,.V.

The following commutative diagram introduces the notation

M) = M [[fuY L — Y
l al T
Mll] = MU Z L Z.

The local link cohomology functor of Y is y*k,.V. Therefore one expects that
%1,V ~ T, " k. V. (The sigh ~ denotes an isomorphism in the derived category of
MHMSs.) Indeed, both o/ and 7 are proper maps, therefore o, = of and 7, = 7. It
followsthat for an arbitrary sheaf 7* on M, [l]UY onehasthat j*al F* ~ 7,.pu* F*
[5, Prop. 10.7]. Therefore

G5V ~ ¥l k,V ~ Tk, V. (5.2

Thus #2j*i,V = H?7,pu* k. V is an isomorphism of MHMs.

The variation of Hodge structure V on M, [I] extends to a variation of Hodge
structureon M, [1]UY because Vispulled back from A, [7]. We denoteitsrestriction
toY by V. Then "k, V ~ 1*k,Q ® V where Q denotes the constant variation of
Hodge structure of weight zero with the fiber isomorphic to Q.

Denote by DF*® the dual of F* in the derived category of MHMs. The spaces
M, llJUY and Y are smooth, therefore we have DQ ~ Q[2n](n) and DQy ~
Qv [2n — 2](n — 1). It follows that there is a string of isomorphismsin the derived
category of MHMs

#'Q =~ Dy (u*DQ) =~ Dy (u*Q[2n](n)) ~ Dy (Qy [2n](n))
~ (DyQy)[=2n](-n) ~ Qr[-2](-1).
Using this and the distinguished triangle

©'Q - Q

» /

1 kL Q,
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one can deduce that
HOu* ke, Q = HOQ, HYy v Q = H2W'Q and HIu*k,Q=0

for ¢ > 2. It follows that H%u*k.V is a pure Hodge module of weight ||, and
HY1* K,V is a pure Hodge module of weight 2 + |A|.

According to [37, 1.20], there is a (perverse) spectral sequence in the category
of MHMs

EYY = HPr (HIp Kk, V) = HP 97, 1" K, V.

As all spacesinvolved are smooth the perverse spectral sequence coincides with
the ordinary one. It has only two non-zero rows. Thus there is an exact sequence
of MHMs

H27, (HOu K V) = H2Tu i 5,V — HIT, (H K, V).

The map 7 is proper. Therefore H?x, (H°u* k., V) is pure of weight 2 + |)|, and
H7, (Hp* K, V) is pure of weight 3 + | \|. Consequently, we have that

GrY H:m ¥k, V = 0,

fork >3+ |\ andk < 2+ ||

Since V is a variation of Hodge structure of geometric origin of weight |A|,
the intersection cohomology sheaf S* underlies a pure Hodge module of weight
|\|. Therefore 5'S® is a MHM of weight > |A| [37, Prop.1.7]. It follows that
Gry #3j'S® = 0for k < 3+ |\|. Combining the last two paragraphs, and isomor-
phisms (5.1), (5.2) one getsthat #35'S* is pure of weight 3 + |)|. O

COROLLARY 5.3. Let V() be a symplectic local system over M, underlying a
variation of Hodge structure of weight |A|. If g > 3, then Gr} H?(M,; V) = Ofor
E>3+|MNandk <24 ).

Proof. Choose! > 3. One has asisomorphism

H2(My; V) 2 H2 (M [l V)P /12

in the category of MHSs. The weights of the right-hand side are 2 + |\| and
3+ |A| according to the theorem above. Therefore the sameistrue for the left-hand
side. O
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