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This study explores the Faraday instability as a mechanism to enhance heat transfer in
two-phase systems by exciting interfacial waves through resonance. The approach is par-
ticularly applicable to reduced-gravity environments where buoyancy-driven convection is
ineffective. A reduced-order model, based on a weighted residual integral boundary layer
method, is used to predict interfacial dynamics and heat flux under vertical oscillations
with a stabilising thermal gradient. The model employs long-wave and one-way coupling
approximations to simplify the governing equations. Linear stability theory informs the
oscillation parameters for subsequent nonlinear simulations, which are then qualitatively
compared against experiments conducted under Earth’s gravity. Experimental results
show up to a 4.5-fold enhancement in heat transfer over pure conduction. Key findings
include: (i) reduced gravity lowers interfacial stability, promoting mixing and heat transfer;
and (ii) oscillation-induced instability significantly improves heat transport under Earth’s
gravity. Theoretical predictions qualitatively validate experimental trends in wavelength-
dependent enhancement of heat transfer. Quantitative discrepancies between model and
experiment are rationalised by model assumptions, such as neglecting higher-order inertial
terms, idealised boundary conditions, and simplified interface dynamics. These limitations
lead to underprediction of interface deflection and heat flux. Nevertheless, the study
underscores the value of Faraday instability as a means to boost heat transfer in reduced
gravity, with implications for thermal management in space applications.
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1. Introduction

Faraday instability occurs when a horizontal liquid layer with a free surface is oscillated
in a direction normal to the interface with an amplitude that exceeds a critical value.
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Figure 1. Qualitative pool boiling curve in Earth’s gravity, where F is the heat flux and AT is the superheat,
or the difference between the surface temperature and the boiling point of the liquid above; cf. Lienhard & Dhir
(1973).

The instability manifests itself as interfacial waveforms of predictable wavelength that
will either saturate or collapse, depending on the frequency of oscillation. The name
of the instability derives from the experimental observations of Michael Faraday, who
first described the ‘beautiful crispations’ formed in various fluid—air interfaces when a
container housing a fluid is struck with a violin bow at different frequencies (Faraday
1831). These interfacial waveforms occur as a result of a resonance between the frequency
at which the system is being excited and one or more natural frequencies of the system,
which are governed by both fluid and geometric properties (Batson, Zoueshtiagh &
Narayanan 2013a).

In the presence of gravity, buoyancy plays a central role in many convective heat
transfer processes. Prior studies have shown that time-periodic modulation of gravity
can suppress buoyancy-driven convective instabilities through resonance, or conversely
destabilise otherwise buoyantly stable configurations (Gresho & Sani 1970; Gershuni &
Lyubimov 1998; Shukla & Narayanan 2002). However, in reduced-gravity environments,
where buoyancy-driven convection is negligible or absent, Faraday instability presents a
promising alternative mechanism for enhancing heat transport. As an example, in the case
of pool boiling, the shape of a characteristic boiling curve that depicts heat flux versus
the temperature difference between a hot surface and the saturation temperature depends
greatly on buoyancy (cf. figure 1). As the surface temperature increases, the dominant
mechanism of heat transfer transitions from natural convection (region A) to nucleate
boiling (region B) — characterised by steady bubble formation and detachment from the
surface. The bubble flow increases until a critical heat flux is reached. This point, denoted
CHF, was noted by Zuber (1958) to represent the vapour outflow from the plate obstructing
the returning liquid flow. Transition to lower heat flux occurs (region C) with increasing
surface temperature until a vapour blanket covers the surface and significantly inhibits
conductive heat transfer since the vapour’s thermal conductivity is much lower than that of
the liquid. This point is known as the minimum heat flux, or MHF. Conduction continues
through the vapour blanket and steadily rises as temperature increases, often until a
burnout of the heater is observed (region D). In reduced-gravity conditions, there is no
buoyancy forcing, thus there is no natural convection nor a mechanism by which bubbles
can readily dislodge from the heating surface and commute to the liquid—vapour interface.
Consequently, bubbles produce a film at lower temperatures than on Earth, causing a
vapour lock and significant reduction in the efficiency of a boiling heat exchange system
in space operations. The boiling curves for variable gravity systems were compared by
Kim, Benton & Wisniewski (2002) and exhibit this gravity dependence, where the critical
heat flux is lowered and shifted to lower temperatures under low gravity. In response to this
issue, several methods have been suggested to improve pool boiling in space environments.
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A clear step to overcoming the challenge of early onset film formation during
microgravity is to replace gravity’s role in the system. The use of electric fields is one such
method (Patel et al. 2013), wherein a body force is applied to bubbles with ensuing flow
that resembles natural convection. However, this can only be used with fluids with specific
electrical properties such as R-123, a refrigerant. The use of forced flow boiling would be
another way in which heat transfer could be improved, as in NASA’s Flow Boiling and
Condensation Experiment, delivered to the International Space Station in 2021 (Mudawar
et al. 2023). Finally, multiple promising investigations concern the use of acoustic forcing
(Park & Bergles 1988; Chung 1994; Hao, Oguz & Prosperetti 2001) to provide body forces
that can also drive bubbles from the surface.

While the above methods provide an opportunity to use two-phase heat transfer in
microgravity operations, the main goal is to replace gravity-induced buoyancy with
alternative means of flow generation and bubble removal. By contrast, the resonance effect
of Faraday instability on enhanced heat transfer could lead to a method in which the unique
fluid physics in reduced gravity can be utilised, rather than eliminated, thereby motivating
the current study. In our work, we consider a layer of fluid with a free surface subject to
a temperature gradient and oscillatory acceleration so as to induce resonance. We seek to
determine how the enhancement of heat transfer changes as a function of gravity level
and the interface deformation shape (waveform or mode). We will show by way of a
reduced-order model that reduced gravity will substantially increase heat transfer when
resonance-induced instability is employed. In addition, experiments done under Earth’s
gravity reveal qualitative agreement with the theoretical predictions.

The paper is arranged as follows. In § 2, we present a mathematical model upon using
a separation of length scales, and reveal the key dimensionless groups of interest. In § 3,
the mathematical model is used to determine the effect of gravity on heat transfer using
nonlinear simulations, which are preceded by a linear stability analysis that provides the
necessary input parameters to incite the instability. We conclude the study with detailed
experiments that show a significant increase in heat transfer resulting from the Faraday
instability, and also show qualitative agreement with the observations made from nonlinear
simulations. These findings and their importance are summarised in the last section of the

paper.

2. The mathematical model

In the present study, the heat transfer and fluid instability are modelled in contexts where
the depth of the fluid is less than the characteristic wavelength of instability and thus in the
realm of the so-called ‘long-wave approximation’ (Kalliadasis ez al. 2011). The theoretical
basis is parallel to much of the early work on falling liquid films, which incorporates
a weighted residual method to the integral boundary layer model (cf. Ruyer-Quil &
Manneville 1998; Rojas et al. 2010; Bestehorn 2013; Dietze & Ruyer-Quil 2015).

The schematic representation of the model is shown in figure 2. The theoretical
development of the model involves the following key assumptions.

(i) The upper fluid is hydrodynamically passive but thermally conductive.

(i) The model is solved only in the xz-plane, i.e. it is two-dimensional.

(iii) The height of the bottom fluid H is much less than its width W, leading to the long-
wave approximation.

(iv) Heat transfer is modelled using Newton’s law of cooling, and an infinite Biot number
is assumed to simplify the final model. This implies negligible thermal resistance
in the air layer, allowing the resonant flow to achieve the maximum possible heat
transfer predicted by the model.
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Figure 2. The heat transfer system. A viscous fluid in contact with a passive fluid above is subject to a
time-varying gravitational field while subjected to heating from above.

(v) All thermophysical properties are assumed independent of temperature, therefore the
velocity fields are independent of the temperature field, while the latter is governed
by both conduction and the velocity field (i.e. assuming one-way coupling).

We note that a long-wave approximation assumes that the wavelength of interfacial
disturbances is larger than the fluid depth, not merely that the container has a large
horizontal extent W. If the system is forced at frequencies that excite short-wavelength
modes, then the model may no longer be valid. Therefore, a linear stability analysis should
be performed first to confirm that the resulting wavelengths fall within the model’s range
of applicability before proceeding with nonlinear simulations.

We further note that the final two assumptions both independently eliminate the
consideration of Marangoni convection. Marangoni convection occurs when there is a
gradient of interfacial tension along the interface, which is driven by a temperature
gradient and the temperature dependence of interfacial tension. The former is eliminated
by effectively assuming an isothermal interface, and the latter is eliminated by assuming
that all thermophysical properties are not functions of temperature.

The objective of the model is to forecast long-term heat flux and interface behaviour
under specific fluid and geometric conditions, oscillation parameters and gravity levels.
These predictions are then given physical interpretation in addition to being qualitatively
compared with experimental data.

2.1. The governing equations and boundary conditions

The domain equations in the moving frame governing the fluid dynamics include the
Navier—Stokes equations and the continuity equation, i.e.

3
0 (8—;’+v-w) =—Vp+uViv—p(g+ Aw’ cos(wt))k 2.1

and
V.v=0, 2.2)

where the velocity field is denoted by v, the pressure field by p, the dynamic viscosity
by w, and density by p. The acceleration in the z-direction (indicated by unit vector k)
consists of gravity g, and the acceleration due to oscillation Aw? cos(wt), where A denotes
the shaking amplitude, and w denotes the oscillation frequency expressed in radians per
unit time.
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Table 1. Characteristic scales for relevant variables used in the model.

Added to the momentum and continuity equations is the energy conservation equation,

which describes the temperature field 7', given by

oT 2

E‘f’U'VT:KV T, (2.3)
where the thermal diffusivity of the liquid is denoted by «, defined as k = k./(pc)), with
k. and c,, the thermal conductivity and specific heat of the fluid, respectively.

The fluid is subject to no-slip and no-penetration at the flat bottom surface, thus we have
w =0=u at z =0, where w and u are the vertical and horizontal components of velocity,
respectively. The bottom surface is at a constant temperature, i.e. T = T4, SO indicated
as the fluid system is heated from above.

The interfacial boundary conditions are comprised of a normal stress balance, a
tangential stress balance, the no-mass transfer condition and Newton’s law of cooling.
Thus we have the following.

The normal stress balance at z = h(x, t) is

n.(T-n):—]/VH'n, (24)

where n is the unit normal vector on the interface, in the positive z-direction, T is the total
stress tensor, y is the interfacial tension, and V g is the horizontal gradient.
The tangential stress balance at z = h(x, t) is

t-(T-n)=0, (2.5)

where ¢ is the unit tangent vector on the interface, in the positive x-direction.
There is no flow across the interface at z = h(x, 1), i.e.

v-n=U, (2.6)
where U is the speed of the interface, given by
oh
U=— 0 _ @2.7)

A
we (2
Newton’s law of cooling at z = h(x, t) is
o —1/2
K VT n=—k (—81% + a—T) (1 + (%> ) — T~ Tyor).  28)
dx dx = 0z 0x
where « represents the heat transfer coefficient at the interface.

2.2. Summary of scaled equations

Scaling is performed on the system using the characteristic scales shown in table 1, and
the long-wave approximation is used to scale out small viscous terms in the governing
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8 Pr Ca G 2
H v [73Y gH? Aw?H?
w K yH v2 v2

Table 2. Relevant dimensionless groups appearing in the model.

equations using a small term 6 = H/ W (more detail is provided in Appendix A). A
summary of the system of equations that remains after scaling according to the long-wave
approximation is given below. Note that the variables p, u, w, t, x, Z, @ now represent
scaled quantities. The important dimensionless groups that appear in the system of
equations are given in table 2. Of note is the dimensionless acceleration §2, dimensionless
gravity G, capillary number Ca, and Prandtl number Pr.

The x-momentum equation is

5 du n ou n ou 88p n 0%u 2.9)

[R— u— w— = —0— - .
ot 0x 0z ox 072

and the z-momentum equation is

op

88— = —0(£2 cos(wt) + G), (2.10)
z
where the velocity and pressure fields satisfy the continuity equation
ou Jw
— = (2.11)
ax 9z
The temperature field is governed by the energy equation
30 9O 90\ 9’0
5P — = . 2.12
r<8t +uax+waz) 92 (2.12)
These domain equations are subject to the following boundary conditions:
u=w=0=0 atz =0, (2.13a)
au
8_:0 atz=nh(x, 1), (2.13b)
Z
oh + oh t h(x,t) (2.13¢)
—Uu—+w=— atz=h(x, 1), 13¢
ox o1 ¢
8 0% 8 t h(x,t) (2.13d)
5 — a = ) 5 .
Ca dx? P ¢ *
and
®=1 atz=nh(x,1). (2.13¢)

The long-wave model is reduced to three dependent variables using the weighted
residual integral boundary layer (WRIBL) method, as detailed in Appendix B. The
WRIBL process involves integrating over the fluid depth, z, with respect to suitable weight
functions. This results in the system of equations below, with the following dependent
variables: interface height A (x, t) (distance from z = 0 to the interface), mean horizontal

flow g(x, t) = f(? u dz, and the bottom-wall heat flux F(x, t) = (0T /9z2)|;=0-
1016 A35-6
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The momentum balance, serving as the evolution equation for mean horizontal flow
q(x, t), is given by

dq 17qdq 9q° dh 5¢ 58h (8% 3°h ah
s — =+ ——=—( Hn+G6)— ).
( + 2 T 6 \Capes ~ S eos@N+ G

at  Th ox  Th? dx
(2.14)

The evolution equation for the interface height i (x, t) is derived by integrating the
continuity equation over the fluid depth and using the kinematic and no-penetration
conditions to obtain

aq oh

ax ot

Finally, the evolution equation for the bottom-wall heat flux F(x, t) (and thereby the
temperature field) is similarly created using a weighted residual method, to yield

5 p <8F 15g0F 15Fqdh 5 dq 27F8q> 10
- _

(2.15)

F
Or 240 DRaoh | 0 94 210 T 10l o, (216
8t+14h8x+l4h28x+7h28x 28 h dx h3+ h? (2.16)

We refer to § 3.2 for details on how solutions are obtained to (2.14), (2.15) and (2.16).

3. The effect of gravity on heat transfer using nonlinear simulations

Gravity plays a significant role in the motion of a free fluid interface and therefore in the
Faraday instability. A simple demonstration of its role can be observed in the equation for
the natural frequency of an inviscid fluid with a free surface, explicitly defined in Benjamin

& Ursell (1954):
k3
Onat =\/tanh kH (—y +kg>, 3.1
P

where k represents the wavenumber of a disturbance, H is the height of the fluid, y is the
surface tension, p is the density, and g is the acceleration due to gravity. One can observe
that, holding k constant, the natural frequency of a given waveform will decrease as gravity
g is reduced or eliminated. This was observed experimentally by Diwakar et al. (2018),
where a significantly higher wavenumber k was obtained in microgravity when compared
to the same oscillation frequency and fluid geometry in ground-based experiments.

The forecast difference in behaviour across gravity levels is primarily due to the fact that
as gravity is reduced, interfacial tension becomes the only restoring force countering the
forced oscillations imposed in exciting the Faraday instability. In this section, simulations
are performed to gauge the effect of varying gravitational fields on the interface stability,
the interface evolution and dynamics, and ultimately heat transfer improvement from the
Faraday instability.

The system characterised in table 3 is subjected to gravitational and oscillation
conditions specified in table 4 so that comparisons can be made across scenarios. That
is, for the same fluid system subjected to some interfacial waveform (in this case one
where there is one full wave spanning the interface), and the same relative amplitude and
frequency of shaking, the flow and temperature dynamics are simulated and analysed.

3.1. Linear stability

Linear stability analysis gives theoretical predictions of the critical shaking amplitude
§2., which is used as an input in the nonlinear simulations. Defining A(x, ) =1+
' (x,t),q(x,t)=q (x, t), and collecting prime terms, the governing WRIBL momentum
equations (2.14) and (2.15) become
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y(Nm™) vm?2s) «k@m?s™) pkgm3) H@m) Wm) 4 k  Pr Ca

0.02 1073 1.2 x 1077 864 0.0025 0.031 0.08 27 83.3 0.00173
Table 3. Physical properties of the system used in comparing the Faraday instability in different gravitational
environments.

g (ms™2) f (Hz) A (mm) G Q ®
Microgravity 0 2.90 4.03 0 270000 141
Moon 1.62 4.8 23 250 430000 240
Mars 32 6.2 1.8 500 560000 301
Earth 9.8 10.0 1.2 1500 950000 490

Table 4. Characteristic values for the simulation in comparing the Faraday instability in different gravitational
environments.

dq’' 5, 1593 5 oan 50K

s — Dy s 200 522G 5200 o y 32
or = 29 T0Cae s 960 ax 06 gy e cosln) (3-2)
and
3 on
9 __ (3.3)
ox 81‘

Taking the derivative d/dx of (3.2) and replacing dq’/dx with —dh’/dt via (3.3), we
obtain

3%n'  59n 58w 5 _9%n

W'FEE-FEEW—E ox 2(9 cos(wt) + G) = (3.4)
We then take the end conditions to be stress-free (9h'/9x = 0 at the vertical walls), and
use a Floquet expansion to express i’ as h’ = cos(kx) Z,]l\/:_N h exp(in(w/2)t), using
the identity cos(wt) = 1/2(exp(iwt) + exp(—iwt)) to find a relationship between different
frequency components hy, ie.

2 2

5 5 56 5
Zinwhy, + =8k*h, + = k2Gh - —5k2.(2 c(hpir + hy2) =0. (3.5)
4 6 6 Ca

This is a problem with eigenvalue 2. and eigenvector Fin,s noting that the accuracy
increases with increasing ‘cut-off” N. The problem takes the form

Ah = Q2.Bh. (3.6)

The eigenvalue £2. is calculated for a range of frequencies and parameters (fluid and
geometric properties) that define the system to generate a stability threshold with a specific
waveform denoted by its wavenumber k.

As an aside, one can determine the natural frequency of a given waveform by using
(3.4) upon removing the forcing term, assuming 4’ (x, t) = W exp(ot +ikx), and solving
for w,,; =Im(o) (noting that o is complex) to find the expression

1 /5 k2582 25
Onat = 27 fnar = _\/ 8k? < + G) - — 3.7

s\ o Ca 16°
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Figure 3. The critical acceleration needed to destabilise the system with a waveform of k = 27 (one full wave)
described in table 3 in different gravitational environments as a function of the ratio f/ fsu», Where fy,p is
the subharmonic resonant frequency. At a given oscillation frequency, one is able to determine the threshold
acceleration of shaking to produce a full wave at the interface using this linear stability analysis.

i
Q2

where the factor 5/6 inside the radical arises from the low-order approximation made in
the WRIBL method, and approaches unity with increasing order in §. It can be observed
from (3.7) that the natural frequency is dependent on G. Shown in figure 3 is the stability
threshold, expressed as dimensionless acceleration (the ratio of oscillation acceleration
to Earth gravity g, =9.8 m s~2) required to excite a waveform with wavelength of
the container’s width (k =2m) across the four gravity levels considered. The stability
threshold is shown as a function of f/(fsup»), where fiup =2 frar 18 the subharmonic
resonant frequency, characterised by the interface oscillating one cycle for every two
cycles of external oscillation. Plotting the threshold in this fashion allows one to better
conceptualise the difference in stability across gravity levels around the subharmonic
resonant frequency.

To give a broader picture of the impact of gravity using linear stability, one can also
plot the threshold of instability in terms of the threshold power (units W kg~!) needed
to destabilise the interface, as shown in figure 4. This method of framing the system’s
stability characteristics across gravity levels may give a more practical interpretation, since
one may prefer to find the best heat transfer enhancement for an allotted power budget.

3.2. Nonlinear simulation results

Nonlinear simulations are conducted for the four gravitational scenarios that produce
wave height, flow and flux behaviour as functions of space and time. A snapshot of the
waveforms at max deflection amplitude in varying g environments is shown in figure 5.

The nonlinear simulations are performed by solving (2.14), (2.15) and (2.16) via a
Chebyshev spectral method (Guo, Labrosse & Narayanan 2013) to resolve x-dependency,
and Mathematica’s NDSolve routine to solve coupled evolution equations at each nodal
point. The x-domain is re-scaled from [0, 1] to [—1, 1], and each of the dependent
variables (heat flux F,(t), flow rate g, (¢), and interface height /,(¢)) has nodal values
at each point x,, which are related to each other using x-derivative Chebyshev differential
operators. Thus the system is defined by 3(N + 1) total evolution equations, minus the
equations used to implement the appropriate boundary conditions, that depend solely on
the 3(NV + 1) nodal points.
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Figure 4. A comparison in linear stability framed in terms of specific power required to destabilise the system
in different gravity levels. The parabolic sections represent different waveform responses on the interface at the
point of instability. At a given oscillation frequency, one is able to determine the threshold power of shaking
and the expected waveform response using this linear stability analysis.

— g=0ms?

—  g=162ms™?

— g=32ms?
g=9.8ms™?

Interface height 4 (x)

-1.0 -0.5 0 0.5 1.0

Figure 5. A snapshot of the wave k =2m at the same relative oscillation amplitude and frequency across
gravitational levels at the point of peak deflection (microgravity g =0ms~2, Moon g = 1.62ms~2, Mars
¢=3.2ms"2, and Earth g =9.8 ms~2).

The x-boundary conditions can depend upon the problem at hand, but for this system,
we implement (i) free-slip (d4/dx =0), (ii) no-flow (¢ =0), and (iii) insulated walls
(0T /ox =0) at the vertical walls. The initial conditions are accordingly defined for
t =0 and include a no-flow state g(x, 0) =0, small waveform disturbance h(x, 0) =1+
0.01 cos kx, and a flux governed by conduction in the base no-deflection state F (x, 0) = 1.

The simulations are run until steady state is reached as shown by heat flux F(x, ¢), flow
rate g(x, t), and interface height A (x, t) behaviour. In this case, 100 spatial x-nodes are
used, and the simulations are run for 200 forced oscillation cycles.

In the results that follow, there are three primary methods in which the flow and flux
behaviour characteristics are quantified, as listed below.

(i) The height of the so-called ‘anti-nodal’ point on the interface. The anti-node is the
point that oscillates the greatest when the function is a pure cosine wave and gives a
good one-dimensional interpretation of how strongly the interface is oscillating as a
function of time. In this case with one full interfacial wave, the point x = 0 behaves
as the anti-node.
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Gravity environment Long-term Nusselt number
Microgravity 1.1

Lunar gravity 1.04

Martian gravity 1.02

Earth gravity 1.01

Table 5. The long-term Nusselt number at the bottom surface integrated over width for varying gravitational
levels at equal relative magnitudes beyond the critical threshold (§2 =1.3£2.) and beyond the natural
subharmonic frequency (f = 1.05 fs,p) for mode k =27 in a 10 ¢St silicone oil (Pr=83.3, § = 0.08) system
in contact with a passive upper layer.

(i) The mean squared flow of the system. The mean squared flow is defined as the
variable g (x, t) squared and integrated over x, resulting in a time-dependent function
that characterises how vigorously the system is flowing. That is,

o 1
q2:/ g% (x, 1) dx. (3.8)
-1

(iii) The Nusselt number as a function of time. The variable F(x, t) is integrated over
the bottom surface z =0 and divided by 2 (the integral value when the system is
quiescent). The average long-term Nusselt number is shown for the different gravity
levels in table 5.

Each metric can be used to gather information about the system. One notices from each
of the graphs that they seem to generally share the same trend. The anti-node height gener-
ally correlates with the system’s flow magnitude, which correlates with an increase in flux.

The dynamics of the interface and the resulting flow are clearly distinguished across
different gravitational levels. As was noted in the calculation of this system’s linear
stability, the threshold amplitude and the threshold power needed to destabilise the
interface generally increases with gravity. One may note in figure 10 that the amplitude
of variation in heat transfer at the bottom wall as well as its time-averaged long-term value
(table 5) increases as the stability of the interface decreases.

It is evident in figures 6, 7, 8 and 9 that the Nusselt number Nu develops into a steady
state well after the flow profile g*(x, t) and the interface deflection A (x, r). This result
indicates that there is a lag time between the interface deflecting at its maximum amplitude
and the flow adequately developing at the bottom wall, where the heat flux is calculated.
This start-up condition of the instability could explain the temporary drop in heat transfer
at the wall most strongly exhibited by the system in microgravity, shown in figure 6. This
lag is also reduced by decreasing the Prandtl number Pr of the fluid as shown in figure 11.
The 10 cSt silicone oil that was used in this work has a particularly high Pr of 83.3.
As thermal diffusivity increases (and Pr decreases), the fluid effectively becomes more
conductive, and the heat transfer at the bottom wall is increasingly governed by distance
to the interface (interface shape and deflection magnitude) rather than flow dynamics.
In other words, the flux begins to synchronise more readily with the development of the
interface and flow profile as the fluid becomes more conductive.

The analysis shows that gravitational levels significantly influence the interface
dynamics and flow behaviour. The observed lag between maximum interface deflection
and steady-state flow underscores an important characteristic of the heat transfer process
during start-up, and demonstrates a complex interaction between the interface and the

1016 A35-11


https://doi.org/10.1017/jfm.2025.10415

https://doi.org/10.1017/jfm.2025.10415 Published online by Cambridge University Press

N. Brosius, F. Zoueshtiagh and R. Narayanan

@ 1.5
0.5

®)

<l
o
)

() 12
1.1
1.0

0.9 ‘ ‘
0 0.1 0.2 0.3 0.4 0.5

Time (cycles/200)

Figure 6. Simulated dynamics of a 10 cSt silicone oil (Pr=83.3, § =0.08) system subject to microgravity
(g=0ms~2) in contact with a passive upper layer that is oscillated at an amplitude beyond the critical
threshold (£2 = 1.3§2.) and beyond the natural subharmonic frequency (f = 1.05 f5,5) such that the excited
mode is k =2m. The dynamics is expressed using (a) the anti-node of the interface h(x/W =0.5, 1),
(b) the x-integrated flow rate q2, and (¢) Nu.
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Figure 7. Simulated dynamics of a 10 cSt silicone oil (Pr=83.3, § =0.08) system subject to lunar gravity
(g =1.62ms~2) in contact with a passive upper layer that is oscillated at an amplitude beyond the critical
threshold (£2 = 1.3§2.) and beyond the natural subharmonic frequency (f = 1.05 f5,5) such that the excited
mode is k = 2. The dynamics is expressed using (a) the anti-node of the interface h(x/W = 0.5, 1), (b) the
x-integrated flow rate g2, and (c) Nu.
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Figure 8. Simulated dynamics of a 10 cSt silicone oil (Pr=83.3, § = 0.08) system subject to Martian gravity
(g =3.2ms~2) in contact with a passive upper layer that is oscillated at an amplitude beyond the critical
threshold (£2 = 1.32.) and beyond the natural subharmonic frequency (f = 1.05 fi,p) such that the excited
mode is k = 2m. The dynamics is expressed using (a) the anti-node of the interface h(x/W = 0.5, 1), (b) the
x-integrated flow rate g2, and (¢) Nu.
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Figure 9. Simulated dynamics of a 10 ¢St silicone oil (Pr=83.3, § = 0.08) system subject to Earth’s gravity
(g =9.8ms~2) in contact with a passive upper layer that is oscillated at an amplitude beyond the critical
threshold (£2 = 1.3£2.) and beyond the natural subharmonic frequency (f = 1.05 f,5) such that the excited
mode is k = 2m. The dynamics is expressed using (a) the anti-node of the interface h(x/W = 0.5, 1), (b) the
x-integrated flow rate qz, and (¢) Nu.
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Figure 10. The Nusselt number at the bottom surface integrated over width as a function of time for varying
gravitational levels: (a) microgravity, (b) lunar gravity, (c) Martian gravity, and (d) Earth gravity, at equal
relative magnitudes beyond the critical threshold (£2 = 1.3£2.) and beyond the natural subharmonic frequency
(f =1.05 fyup) for mode k =27 in a 10 cSt silicone oil (Pr=83.3, § = 0.08) system in contact with a passive
upper layer.
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Figure 11. The Nusselt number at the bottom surface integrated over width as a function of time with increasing
thermal diffusivity (holding all other properties constant) at equal relative magnitudes beyond the critical
threshold (£2 =1.3£2.) and beyond the natural subharmonic frequency (f = 1.05 f,p) for mode k =2x in
a 10 cSt silicone oil system of § = 0.08 in contact with a passive upper layer, in microgravity (g = 0). For the
purposes of data comparison, a moving cycle-based average was used.

bottom wall. Simulation results also support the finding from linear stability analysis that
shows, in general, that decreasing the gravity level destabilises the interface and leads to
greater heat transfer.
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Figure 12. The experimental set-up consisting of an oscillator used to excite and monitor the Faraday instability
in a fluid-containing cell hooked up to two temperature-controlled fluid loops. See the supplementary movie
available at https://doi.org/10.1017/jfm.2025.10415 for the depiction of the experiment in action.

4. The experimental study and discussion
4.1. Experimental set-up

Experiments in this work were completed using an oscillator where a fluid-containing
cell is allowed to shake at a prescribed amplitude and frequency. The set-up is shown in
figure 12. The figure depicts a water circuit whereby the temperature gradient was set. The
cell was subjected to a gravitationally stable temperature gradient (heated from above)
to minimise any natural convection that could affect heat flux measurements. The cell’s
horizontal walls were held at constant temperature using the water circuits.

Figure 12 shows a diagram of the heat transfer cell used to monitor the heat transfer
performance during the Faraday instability. Two heat flux sensors (FLUXTEQ PHFS-
01) were used on the top and bottom surfaces for redundancy purposes and to ensure
minimisation of heat losses in the lateral direction. Four T-type thermocouples were used
to monitor the temperature of the upper and lower surfaces. The set-up was fastened to the
oscillator and visualised with a camera in a fixed frame (i.e. not oscillating with the fluid
cell). The cell and heat baths were constructed using 3-D-printed SLA transparent resin
from FormLabs and a small acrylic window for fluid visualisation, with a 5 mm copper
plate on the top and bottom serving as the conductive interface between flow loop and cell.
The cell was illuminated with an LED back-light.

4.2. Experimental methods

Fluid (10 ¢St silicone oil) was injected into a cell port with a volume calculated from
the desired liquid height. An amplitude threshold generated by linear stability analysis
as described in § 3.1 was used to assist in the experimental determination of threshold
amplitude and frequency to excite the desired interfacial waveform.

The experiments measured the long-term heat flux and interfacial behaviour of two
different waveforms, which can be selectively activated by changing the frequency of
oscillation as determined by theoretical predictions. One frequency was selected for
each waveform in this work, and the threshold oscillation amplitude was determined by
iterating between amplitudes of instability and stability (cf. Batson et al. (2013b) for a
comprehensive process description of experimental threshold determination for a given
oscillation frequency).

Upon identifying the threshold oscillation amplitude, the system is allowed to return
to rest (no oscillations) until a steady-state thermal profile is observed. The steady-state
heat flux and temperature delta between top and bottom walls is used as the base-state
reference for purposes of Nusselt number calculation. The system is then oscillated at an
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Figure 13. Determination of shaking amplitude through image analysis relies on scaling the image to a known
length — in this case, the thickness of the cell, which is 9 mm.

Space (pixels)

Time (frames)

Figure 14. Determination of frequency through image analysis is done via a space—time diagram depicting
movement in the shaking direction, where each pixel across the x-axis represents a video frame, and the
y-direction is a specific line of pixels that spans the fluid interface. The frame rate fps of the video and
the number of frames per cycle N are needed to measure the oscillation frequency f using the formula

f=(fps)/N.

amplitude beyond the threshold amplitude until steady state is reached, which typically
took 5-10 min. The system is allowed to come to rest after oscillating, reach steady state
again while at rest, and subsequently oscillated at a yet higher amplitude, following the
same procedure. This was repeated in a step-wise fashion until approximately 60 % above
the observed critical threshold amplitude.

The interface was visualised in a fixed frame via high-speed imaging throughout the
course of the oscillations. In other words, the camera was not oscillating along with the
cell. The recording of the set-up in the fixed frame allows one to measure the amplitude
and frequency of shaking through image analysis. By using a scale of known length
(the thickness of the cell in this case), one can verify the amplitude of shaking used in
the experiment, as illustrated in figure 13. The oscillation frequency is also verified by
generating a space—time diagram extracted from an oscillation video and measuring the
period of oscillation based on the frame rate of the camera, as visualised in figure 14.
Experiments were operated at a single frequency while varying the amplitude between
trials of oscillation. This allows for the motor to be run at a constant voltage throughout
the experiment, and the frequency measurement is thus less sensitive to user error.

4.3. The effect of instability wavelength

In the absence of an experimental environment where the gravity can be varied, the
legitimacy of the model in predicting the heat transfer improvement from the Faraday
instability was supported with a set of experiments in a fluid system described by table 6
to compare the predictions of the model for different interface shapes, or modes. This
was a practical parameter to test and compare, as the engineering applications of such a

1016 A35-16


https://doi.org/10.1017/jfm.2025.10415

https://doi.org/10.1017/jfm.2025.10415 Published online by Cambridge University Press

Journal of Fluid Mechanics

y Nm™!)
0.02

v (m2 s7h

1073

K (m2 s7h

1.2 x 1077

p (kgm™)
864

H (m)
0.0045

W (m)
0.1

8
0.045
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0.001

Table 6. Physical properties of the system used in experiments and associated simulations. Note that these are
not the same cell dimensions as used in the gravitational simulations.
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Figure 15. The linear stability of the experimental system in the frequency range where k =27 and k =37
are the instability waveforms at onset. It is plotted as threshold amplitude in this case to provide a helpful guide
for setting the experimental oscillation amplitude in searching for the point of instability.

Waveform k=2m k=3m
Oscillation frequency (Hz) 4.2 Hz 6.2 Hz
Instability threshold amplitude (theory) 6.4 mm 2.2 mm
Instability threshold amplitude (experiment) 10.1 mm 3.0 mm

Table 7. Experimental oscillation parameters used in Faraday heat transfer experiments and analogous
simulations with different interface waveforms.

technology would centre around the question: what is the optimal interface shape, and
consequently, how should the system be oscillated to achieve the maximum possible
increase in heat transfer?

4.3.1. Experimental results

As discussed in § 4.2, the threshold of instability was determined for both two and three
half-wave disturbances, respectively. In both cases, the threshold of instability was noted to
be significantly different in experiment than what was predicted using the linear stability
model, as shown in table 7. This observation has been made in Ward, Zoueshtiagh &
Narayanan (2019) and has contributed to the non-idealities of boundary condition physics
in finite rectangular geometries. This is accentuated in this case because, in addition to
having relatively small horizontal extent, the fluid height was of the order of the interface
deflection.
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Figure 16. The two waveforms (k =27 and k = 37, referred to as modes (2, 0) and (3, 0), respectively) in a
rectangular geometry in their theoretical form (cos(kx)) compared to what was observed in experiment.
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Figure 17. A comparison of experimental long-term Nusselt numbers for two different waveforms in a 10 ¢St
silicone oil system as a function of the relative amplitude above the critical threshold.

The experiments conducted in this work observed long-term behaviour of two
waveforms in a rectangular geometry (figure 16) and compared their respective long-term
Nusselt numbers. The heat transfer coefficient § was used to derive the Nusselt number,
which was calculated from experimental data using the equation

F
Thot — Teold '
The heat flux F was determined by heat flux sensors, while the temperature difference
was determined by the redundant temperature sensors on the top and bottom walls of the

cell. The Nusselt number was then determined with reference to the steady state when the
cell was not oscillating, using (4.2):

4.1)

Nu = ﬂss,oscillating ‘ (4.2)
,Bss,ﬁxed

The results are shown in figure 17. The heat transfer improvement for the one full wave
disturbance (k =2m) was observed to be superior to the heat transfer improvement for
the three half-wave disturbance (k =3m) as a function of relative amplitude above the
instability threshold.

4.3.2. Simulation results
A total of 240 nodes in the x-direction are used to approximate the shape of the interface,
and the numerical model used in § 3.2 is run until steady state is reached. This steady state
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Figure 18. A comparison of simulation Nusselt numbers for two different waveforms in a 10 cSt silicone oil
system as a function of the relative amplitude above the critical threshold.

typically takes approximately 200 oscillation cycles, but decreases as oscillation amplitude
is increased. Therefore the simulation is run for fewer total cycles as amplitude is increased
to minimise total computation time.

As seen in figure 18, the simulation results show qualitative agreement with the
experiment with regard to the waveforms k =2 and k = 3w (one full wave and three
half-wave disturbances, respectively), in that the longer wavelength disturbance displays
better overall heat transfer improvement as a function of relative oscillation amplitude
above the critical amplitude threshold. This is supported by the small discrepancy in wave
amplitudes at 10 % above the critical threshold, as shown in figure 19.

It is important to note that in practical terms, the comparison between the two waveforms
can be analysed in various ways depending on the system constraints. If instead of plotting
the data in terms of relative amplitude, one considers the long-term Nusselt number as a
function of specific power (as seen in figure 20), one may arrive at the conclusion that the
three half-wave disturbance may be the most optimal if the system is power-limited.

A significant difference between experimental observations and simulation predictions
is noted in the Nusselt number. Experimentally determined Nusselt numbers in terrestrial
gravity conditions are as high as 4.5, while simulations yield a maximum value of
approximately 1.01. High-speed video analysis of the experiments reveals that the interface
impinged upon the upper and lower walls, which is believed to be a primary cause of
discrepancy between model and experiment.

4.4. Comparisons between simulation and experiment

The first source of discrepancy between model and experiment is the magnitude and
complexity of the interface dynamics, resulting from the omission of key inertial
terms in the momentum equations, and assumption of a two-dimensional, continuously
differentiable interface shape. As a result, the model predicts relatively small (= 0.5 mm)
interface deflections, while high-speed imaging reveals experimental interface amplitudes
approaching the full fluid depth (= 4.5 mm), leading in some cases to impingement on the
upper and lower walls. To estimate the heat transfer impact of this underprediction at first
order, assuming conduction-only improvement as a result of the increased interface height,
a simple model is developed herein.

We consider two fluids of equal height H, of width W =1, where the fluid interface
height % is oscillating as h(x,t) = H 4+ a cos(2mwx) cos(2mt). Assuming a well-mixed
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Figure 19. A comparison of the long-term interface deflection observed in simulation for (a) one full wave
and (b) three half-wave disturbances in a 10 cSt silicone oil system at 10 % above the critical threshold, at the
beginning of the cycle (+ =nT) and halfway through a cycle (t = (n + 1/2)T), where n is any integer, and T
is the period of oscillation.

bottom fluid such that it is isothermal everywhere including the interface, the cycle-
averaged heat transfer (per unit depth into the page) between the interface and the upper
wall would be given as

1 pl
1
Q=k. AT / / dx dr. 4.3)
o Jo H—acos2mx)cos(2rt)

With the base state heat transfer defined as Qg = (kcAT)/H, the Nusselt number would
therefore be given as

Q 1 1 1

Nu=—= / / dx

Qo o Jo (1 —(a/H)cos(2mx)cos(2mt))
One can see by inspecting the integral that the time-averaged Nusselt number is
dependent on the relative amplitude of the wave. (In fact, it can be shown via Taylor series
expansion of the integrand to increase monotonically as a function of wave amplitude.)
This behaviour is shown in figure 21. In the case of simulation, a/H ~ 0.1, predicting
a Nusselt number of approximately 1.0025. For experiment, however, a/H ~ 1, which
therefore is predicted to lead to a Nusselt number of approximately 1.56. As intuition would
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Figure 20. A comparison of the heat transfer performance for two waveforms (k =2m and k =37) when
looked at in terms of specific power of oscillation, defined as P = A%w?, for experimental and simulation
results. The inset highlights the relationship between simulation results, which had much lower Nusselt number
than observed in experiment.
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Figure 21. A quantitative estimate of the relationship between the relative wave height a/H and the resultant
Nusselt number using a simple conduction-only model of the upper fluid and an isothermal lower fluid.

suggest, this calculation is more appropriate for a gently deflecting interface and therefore
would underpredict heat transfer from mixing in the upper fluid and impingement on the
wall for a highly deflecting interface, but this calculation demonstrates that the nonlinear
evolution of the interface is a significant contributor to the discrepancy between simulation
and experiment.
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The second key contributor to discrepancies between theory and experiment is the
difference in threshold instability between the two scenarios. The experimental onset of
Faraday instability occurs at significantly higher oscillation amplitudes than predicted by
the model, largely due to additional dissipation mechanisms (e.g. meniscus waves, sidewall
drag) not captured due to the assumed stress-free boundary conditions of the simulation
domain (Ward et al. 2019). This discrepancy leads to a striking difference in specific power
input: as shown in figure 20, the experiment requires up to an order of magnitude greater
specific power (e.g. 3.5 versus 0.5 Wkg™!) to reach the instability threshold for a given
waveform. More power available to the system permits a more vigorous flow state and
therefore better mixing upon reaching instability, and better heat transfer performance.

To demonstrate this argument quantitatively, we present a scaling argument as follows.
Recall that specific power is defined here as P = A%w>. For the purposes of this
calculation, the velocity scale is assumed to be v = wH. The Reynolds number Re can
therefore be defined as

=

5H Aw H [P
Re:v—:—w:—(—z) . (4.5)
% V v w

The ratio of Re between experiment and simulation can then be inferred, taking example
notional points from figure 20 as P,y =3.5W kg_l, Py =05W kg_l, to obtain

1 1
Reeyxp - (Pexp>2 _ 3.5Wkg_1 2 ~2.65 4.6)
Regim Psim 0.5W kgfl o .

The connection between the Nusselt number and the Reynolds number can be estimated
as following a relationship akin to Nu ~ Re”", where n is an experimentally determined
factor. Taking the work of Chen, Chen & Chen (1997) and Chen & Chen (1998) as a
conservative analogue case reporting n = 0.5, the inferred Nusselt number ratio between
experiment and simulation would be 2.65%3 ~ 1.6, indicating that the nearly order of
magnitude difference in specific power would be expected to drive a significant difference
in heat transfer from mixing.

In addition to the above, the Biot number was assumed to be infinite in the mathematical
model. This was done to provide an ‘upper bound’ performance and also eliminate any
consideration of any Marangoni impacts. In reality, the Biot number of the experiment
would likely be of the order of the ratio kg, /koi; ~ 0.1, considering equal fluid heights.
This is, of course, not infinite, and would reduce our ability to compare results between
simulation and experiment. However, considering (i) infinite Biot number would be
an optimistic, high-performance case, and (ii) the fact that experimental measurements
yielded much higher heat transfer than simulation, this Biot number assumption was not
deemed to have a significant impact on the agreement between theory and experiment.

As outlined here, the discrepancies observed between simulation and experiment
highlight the utility of future models to include higher-order approximations to better
capture the dynamics of interface motion, thereby reducing the divergence between
predictions and experimental results. Specifically, the large values of the dimensionless
groups for gravitational and oscillatory acceleration in this system (G and £2) suggest
that the inertial effects are too strong to permit a simple parabolic velocity profile. A
more comprehensive model with additional parameters would serve to better capture the
nonlinear evolution of the system. For instance, the incorporation of partial slip conditions
at the boundaries could improve the model’s representation of the system dynamics and
linear stability prediction.
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5. Summary

This study uses a model based on a weighted residual integral boundary layer method
to predict heat transfer enhancement in a container exposed to forced oscillations in
different gravitational environments, with the amplitude of oscillation exceeding the
critical threshold for Faraday instability. Through linear stability analysis and nonlinear
simulations across different gravity conditions, the model shows that the Nusselt number
generally increases as the gravitational field decreases for a given waveform above the
instability threshold.

Experimental results under Earth’s gravity confirm that the Faraday instability
significantly boosts heat transfer across fluid interfaces. Moreover, the time-averaged
Nusselt number is proportional to wavelength for the same relative oscillation amplitude
above the critical threshold. Although there are quantitative differences between the model
and experiments, the sources of these discrepancies are identified, and the observed
qualitative alignment supports the model’s validity. These results indicate that reducing
the gravitational environment enhances the Faraday instability’s potential to significantly
improve heat transfer in vertically oscillating fluid layers with a free interface.

The study provides insights into the mechanics of the Faraday instability, revealing that
the power required to destabilise the interface drops significantly as the gravitational field
weakens. This has practical implications for designing optimised heat transfer systems in
space. Future research should aim to further explore the Faraday instability’s role in heat
transfer in reduced gravity settings, potentially employing alternative forcing methods such
as electromagnetic, hydrodynamic or other resonant techniques to better understand and
control the interface dynamics.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jtm.2025.10415.
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Appendix A. Scaling and the long-wave approximation

The ‘long-wave approximation’ is applied so as to retain important inertial terms and
essential viscous terms via a separation of length scales. This allows for the generation
of evolution equations by reducing the overall dimensionality of the model. The primary
assumption is that the width of the fluid is much greater than its depth, or H/W =§ « 1
(Kalliadasis et al. 2011). It follows that the characteristic scales in the z- and x-directions
would be H and W = H /§, respectively. From the continuity equation, it is seen that

u w

w o H
thus w = §u, where the overbars refer to the velocity scales. Denoting the scale for pressure
by p and performing some algebraic manipulations, the x-momentum equation becomes
in dimensionless form

du  u du dp  ,0%u  du
SRe| — +u—+w— | =—8—+8>"— +—, A2
e(8t+u8x+w8z> ox O T2 (A2)

(Al)

where it is assumed that Re =i H /v, p = pii/H, t = H/i8. The 8 term is dropped to
obtain
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ou au au ap  %u
S Re | — — — )| =—56—+ —. A3
e<8t+u8x+w82> 8x+8zz (A3

Performing a similar scaling on the z-momentum equation, doing some algebraic
manipulations and multiplying by 8, one obtains the dimensionless equation

3 Jw ow Jw ap 482w 282w
8° Re —t—i-u——i—w— :—(Sa—i-é W—HS Q—S(Qcos(wt)—i—G), (Ad)

where 2 = pAw? H?/(uit) and G = pg H? /(wir). All terms 8% and higher are dropped to
obtain

0
58—” = —8(82 cos(wt) + G). (AS5)
Z
Scaling does not impact the continuity equation, which is still given as
ou Jw
—_—=—— (A6)
ax 0z

Scaling the energy equation, where the temperature scale is assumed to be expressed by
O = (T — Teotd)/(Thot — Teold), yields

JIH (36 06 96 iRIC) 932@
— \—tu—+w— | =—— -—s.
ot dx 9z dz2 dx2

K

The velocity scale u is defined here as v/ H, followed by dropping small terms, to obtain
3O 3O 3O\ 3’0

SPr| — — — | =—, A8

r(az+”ax+ﬂﬂn) 672 (A%)

where Pr is the Prandtl number.

(A7)

A.l. Boundary conditions

The boundary conditions are scaled in a manner similar to the domain equations. The flow
conditions at the bottom wall remain the same in scaled form (w = u = 0).

The tangential stress condition stipulates that the net stress in the tangential direction is
zero. The full (scaled) condition is given by

2823h3u+8u+823w+2823h8w 52 8u+88w _0 (A9)
dx dx 0z dx dx 9z 0z ax )
Dropping all small-order terms, one finds
au
—| =o0. (A10)
0z h

The normal stress condition stipulates that the viscous and pressure stresses in the
normal direction to the interface balance the normal surface force, which is proportional
to the curvature and the surface tension. Scaling this condition, one obtains

ah\? 3 3 ) 3 §2H 92h
(Tm%n:f(—) (¢+a&ﬁ>—%(lww%¥>—p+mile——
X

ax dx 9z 9z Wy 9x2

82 92%h
_S o All
Ca 0x2 (ALD
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where Ca = pv/(y H). The normal stress equation is multiplied by §, and after dropping

small-order terms, one obtains

8 0% = —68p| (A12)

Caox2 °Pm

The no-mass transfer condition stipulates that there is no fluid flow across the interface,

i.e. the velocity of the fluid normal to the interface equals the speed of the interface, which
along with the kinematic condition yields

1 1
an2\ 2 ah an2\ 2 dh
a=[1+Z —u= —[1+= . Al3
v <+8x) (”ax+w) <+8x) ot (AL3)

which in scaled form reduces to

on + on (Al14)
—u—tw=—.
ax at
When scaled, the constant temperature at the bottom surface reduces to
©(0)=0. (A15)
Finally, the temperature condition at the interface is scaled to give
k 00 dh 00
A =a(®Hh)—-1). (A16)
H dox oax 9z ) |,
Dropping the small term and defining Bi = « H /k,, one obtains
00 )
—| =Bi(©Hh)-1). (A17)
a9z h

Here, Bi is assumed to go to infinity, and the resulting heat transfer condition at the
interface is given by

o) = 1. (A18)

A.2. Summary of scaled equations

In summary, the system of equations that remains after scaling according to the long-wave
approximation is given below.
The x-momentum equation is

5 (au ou Bu) ap  %u

— — — | ===+ —. A19
8t+u8x+w82 8x+8z2 ( )

The z-momentum equation is

a
58—” = —5(52 cos(wt) + G). (A20)
z
The continuity equation is
0 0
ol (A21)
0x 0z
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The energy equation is

5P 0O N 00 o 0O 320 A22)
r u —_— .
ot dx az ) 972

The boundary conditions are

u=w=0=0 atz=0, (A23a)
u
— = atz=nh(x,1), (A23b)
a9z
oh oh
—U—+w=— atz=nh(x,1), (A23¢)
0x at
8 %h ) t h(x,t) (A23d)
-~ 5 = al - X, )
Ca 9x? P ¢
and
=1 atz="h(x,1). (A23e)

Appendix B. The WRIBL method

Now that the system of governing equations and boundary conditions has been scaled,
and small terms have been dropped, steps can be taken to reduce the system further to
evolution equations (Kalliadasis et al. 2011; Dietze & Ruyer-Quil 2015; Dietze, Picardo &
Narayanan 2018). The z-momentum equation is first integrated from a point in the domain,
z, to the interface h(x, t):

3(pln — p(z)) = —8(82 cos(wt) + G)(h — 7). (B1)

Taking the x-derivative of this equation and replacing dp/dx at the interface with the
normal stress equation, one obtains
sp_ 8 0% —8(82 cos(wn) + G) oh. (B2)
- cos(w —
dx  Ca dx3

The term (dp/0x) is subsequently replaced in the x-momentum equation to obtain

s (0 0m 0 82u+5383h 50 na oyt B3
(at “ox waz) Cages W cosent+ g (B
The x-momentum, z-momentum and normal stress conditions have now been combined.
The kinematic condition, tangential stress and the no-slip/no-penetration conditions must
be incorporated into this system. To do this, the horizontal velocity component is assumed
to be u = it + i1, where ii and i are the O (1) and O(8) components, respectively. The form
of i is assumed to be
37
=K(x, 1), (B4)
922
where K (x, t) is a constant with respect to z. That is, the O (1) component of velocity is
parabolic in z. The hats are dropped from this point on. Equation (B3) is then multiplied
by a weight function A(x, z, t) that has the same functional form in z as the horizontal
velocity component. Thus A(x, z, t) is defined via

92 A

— =1 B5
52 (BS)
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After multiplication by A(x, z, t), (B3) is then integrated from z =0 to z =h(x, t) to
obtain an averaged momentum equation. That is,

S/hA 8u+ 8u+ du q /hAaZMd
_ _ w— — —_—
0 ot u8x 0z ¢ 0o 072 ¢

+ § 2k 6(82 cos( t)—|—G)8h /hAd
_—— w — .
Ca 9x3 ox ) Jo ¢

(B6)

Up to this point, the constants of integration for # and A have not been mentioned. For
u, one determines that u#(0) =0 and (du/0z) | =0 from the no-slip and tangential stress
conditions. For A, these choices are not immediately apparent. However, the term in the
weighted integration given by

h 32u
0

can be integrated by parts to obtain

b 0%u du A
A—dz={A——u—
0 972 0z 0z

Thus the boundary conditions on A can be adjusted to cancel out terms that involve terms

of O($) or higher. These conditions are A(0) =0and (0. A/9dz) |h =0. The flow rate g (x, 1)
is also convenient to define as

h h
+/ udz. (BY)
0 0

h
q(x,t):/ udz. (B9)
0

The explicit forms for z and A in terms of g (x, ¢) and i (x, t) following the application
of these conditions are

. q 3 72 Z
o, H)==|—=—= +3-— B10
U 2, 1) h(2h2+h> (B10)
and
2
Ax, z, t)=5—zh. (B11)

The final averaged momentum equation is then

ath CLOPLLOR L W (il i 5(2 cos(wn) + G) /hAd

—tu—+w— = —_—— = cos(w — )

0 ot 0x 9z ) <71 Ca dx3 ox ) Jo ¢
(B12)

After performing the integration to obtain the first evolution equation for ¢, one obtains

<8q 17 dq 9q28h>_ 5¢  56h

Thox Tox) T T2 T 6

0k _ @ coston + )
— (£2 cos(w — ).
at  Th ox  Th? dx 9x

Ca 0x3
(B13)
An evolution equation for /2 can be derived by integrating the continuity equation over
the fluid depth and using the kinematic and no-penetration conditions to obtain
dg  oh

=——. B14
0x dt ( )
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Thus the two equations needed for the determination of A(x, ¢) and g(x, t) are (B13)
and (B14) (when the system is one-way coupled).

An evolution equation for the temperature field is similarly created using a weighted
residual method. Recall that the resultant energy equation after scaling is

5P 0O N 0O N 0O ERIC) B15)
r{—-+u w— | = —5.
ot dx 9z 072

The temperature profile is similarly treated as max quadratic in its O (1) component e,
just like the horizontal velocity in the momentum equation. That is,

326
7 = Kr(x, 1). (B16)

A weight function @ (x, z,t) is defined that is most convenient for the governing
equation. The boundary conditions that are most appropriate in this case are given by

@ (0) =P (h) =0. (B17)

As an additional condition to define the temperature profile F (x, ¢) is defined as the flux
at the bottom surface:

A
G

F(x,t)= (BI8)

9z z=0

Note that it was defined in this fashion (as opposed to defining an ‘average temperature’
like that done in the momentum equation) because the ultimate end product of the
calculation is the flux. .

The explicit forms of the temperature profile ® and weight function @ in terms of
F(x,1),q(x,t)and h(x, t) following the application of these conditions are

2
@(x,z,t):%(l—Fh)+zF (B19)

and
1
D(x,z,1) = 5(z2 — hz), (B20)

thereby showing a quadratic dependence on the vertical coordinate z.
The energy equation is multiplied by the weight function @ and integrated over the
depth of the fluid to obtain

5Pr(8F 15g0F 15 Fq oh 5 dq 27F8q>_£+10£=0' B21)
h3 h2

One uses (B13), (B14) and (B21) to solve for A(x,¢) and g(x,t), and F(x,¢). In
this work, this is accomplished using a Chebyshev spectral method to resolve functional
dependence on x, and Mathematica’s NDSolve to solve the differential equations in ¢.
One has the freedom to change the boundary conditions as appropriate, but in this work
we employed no-slip, no-flow, and insulated conditions at the vertical walls for h(x, 1),
q(x,t) and F(x,t), respectively. For initial conditions, we employed a small waveform
disturbance to A (x).
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Appendix C. Linear stability derivation

This appendix presents the process to obtain the linear stability of the system used in
this paper. Note that for linear stability analysis of the system without the long-wave
assumption and WRIBL simplifications, the reader should refer to the work of Kumar
& Tuckerman (1994) and Batson et al. (2013a) for the theoretical development and
experimental validation of the model, respectively. Also note that because of the
assumption of one-way coupling between temperature and velocity fields, the linear
stability of the system depends solely on the equations governing the flow field (i.e. the
momentum and mass balances), and not the energy equation.

C.1. Derivation of the eigenvalue problem
We refer to the equations

9 17g 3 992 dh 5 58h [ 8% 93h
5<8_‘t1+_q_q_i_>:__q+_<_——(Qcos(wt)+G)—) (C1)

7h 9x  Th? dox 242 6 Ca 3x3
and
0 Bh
_q (C2)
0x 81‘

These coupled equations are solved for the dynamic behaviour of ¢ (x, t) and h(x, 1),
and are highly nonlinear. That is, the determination of threshold instability can be done by
‘brute force’ solving of the system and iterating between points of stability and instability,
evaluating where the system decays or grows, respectively, when subject to given forcing
parameters. However, linear stability analysis is a tool that can bypass the need to fully
resolve the long-term behaviour of the system, and can directly find the point of ‘threshold
instability’ by considering only short-term dynamics and eliminating nonlinear terms.

Linear stability analysis considers a base reference state where the system is stable for a
given set of parameters (Ca, G, k, w, §), and determines the minimum threshold shaking
amplitude £2, beyond which the system will grow over time. To this end, the dependent
variables g (x, t) and h(x, t) are perturbed with small amplitudes denoted by a prime, i.e.

h(x,t)=ho+h'(x,t)=1+h"(x,1) (C3)
and
gx,)=qo+q'(x,1)=0+4"(x,1). (C4)

That is, the base state is defined by a flat interface that has zero flow. The linear,
perturbed, state is re-introduced into the governing equations, and all terms that are
products of ‘primed’ variables are dropped because of their small amplitude in the limit
of infinitesimal time. The governing equations thus become

dq’ 5 s 1 5030 85Gah/ 858h’9 () ©5)
-t __Z ——— —4-G— — §—— 82, cos(w
ar 27 7°%Ca6ax® 6 ax ‘6 ox
and
aq’ oh'
99 __or (C6)
0x at

Taking the derivative 9/dx of (C5), and replacing dg’/dx with —ah’/dt via (C6), we
obtain
3’ L3 50n N 58% o%n 5, 3’ M o cosw) + G) = €
- — = cos
92 T2 Tecaat 60 ax ©
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Figure 22. Demonstration of the generation of stability tongues for the system oscillated at 4.2 Hz. Stability
tongues represent the stability for a continuum of wavenumbers. The instability that manifests at the interface
depends on the discrete wavenumbers that satisfy the sidewall conditions, shown as red dots.

We then take the end conditions to be stress-free (0h'/9x =0 at the vertical walls) and
use a Floquet expansion to express i’ as h’' = cos(kx) Z,I,v:_ ~ hnexp(in(w/2)t) using
the identity cos(wt) = 1/2(exp(iwt) + exp(—iwt)) to find a relationship between different
frequency components 4,,:

2,2 3
wn A 5. - 5 N 56 N 5 N N

o+ Jinohy + gak“hn + gaszhn - E<31<2.(zc(hn+z +h,2)=0. (C8)

For ease of visualisation, we collect coefficients of 4, as well as the ‘coupling’ terms
hnt2 and hpyo:

2.2 3
5 5 ., 538 . /5 .
(—w4" + Zinw+ 2ok + EEkZG) B — (Eakz) 2elhnsa + hn2) =0. (C9)

Rearranging and dividing by the coefficient 58k /12 gives
12 ( w’n® 5 5 58

56k2 ;- tainet 55k4 T 6@"2G> hn = Anhy = Q2c(hny2 + ha2). (C10)

This is a problem with eigenvalue £2. and eigenvector h, which can be framed in the
simplified form

Ah = 2.Bh, (C11)
where B is a coupling matrix. The ‘full form’ of the matrices is given by
0 0 1 0 0 ... 07
o 0o o0 1 o0 ... 0
Ag O ... ho 1 o 0 0 1 ... 01T h
0O Ay O P A
1 0 1
0 | =% :
Ay | Lin 0 1 0 0 0 1]|Lhw
0 0O 1 0 00
| 0 0 1 00
(C12)
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Figure 23. A reproduction of figure 15 with expanded range to demonstrate the different threshold stability
and determination of onset wavenumber k as a function of oscillation frequency.
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Figure 24. The effect of frequency cut-off N on the accuracy of the linear stability calculation for the system
as defined in table 7.

This system can be easily solved as an eigenvalue problem, where the inputs are the
oscillation and system parameters, and the output is the eigensystem consisting of the
eigenvalues 2. and eigenvectors h. For a given oscillation frequency, this calculation is
carried out for a range of wavenumbers &, and the lowest eigenvalue and its eigenvector
are recorded. The smallest eigenvalue 2. represents the amplitude of shaking beyond
which the system becomes unstable, the highest amplitude component of its eigenvector
represents its dynamic response (as a half-integer multiple of the forcing frequency), and
the wavenumber k defines the shape of the interface at the point of instability.

C.2. Example stability calculation

To illustrate the process of generating the linear stability threshold used for guiding
experiments in this work, we will walk through a specific example. In the work, waveforms
of two and three half-wave shapes were excited in the system defined in table 6 by
oscillating the system at 4.2 Hz and 6.2 Hz, respectively.

Looking specifically at 4.2 Hz, the stability of the system is determined by evaluating
each of the possible wavenumbers k. Performing the calculation for a continuum of
wavenumbers (a situation equivalent to a system of infinite horizontal extent), one obtains
what is known as stability ‘tongues’, as shown in figure 22.
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The wavenumbers k evaluated for stability are determined by the sidewall conditions of
the system. In this system, the sidewalls are considered ‘stress-free’, therefore k behaves
as nm, where n is an integer.

Evaluating each of the wavenumbers over a range of frequencies results in the stability
threshold that guides the operation of the experiment. See figure 23 for a demonstration
of how the relative stability of each wavenumber determines which shape is manifested at
the interface and the critical amplitude of oscillation. To demonstrate the convergence of
this calculation, figure 24 shows the error as a function of cut-off N, as reference to the
value obtained at N = 100.
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