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PAC STRUCTURES AS INVARIANTS OF FINITE GROUP ACTIONS

DANIEL MAX HOFFMANN , AND PIOTR KOWALSKI

Abstract. We study model theory of actions of finite groups on substructures of a stable structure.
We give an abstract description of existentially closed actions as above in terms of invariants and PAC
structures. We show that if the corresponding PAC property is first order, then the theory of such actions
has a model companion. Then, we analyze some particular theories of interest (mostly various theories of
fields of positive characteristic) and show that in all the cases considered the PAC property is first order.

§1. Introduction. In this paper, we consider the notion of a pseudo algebraically
closed (PAC) substructure of a stable structure. This notion originates from the
theory of pseudo algebraically closed fields, which were first considered by Ax in
1960s while he worked on pseudofinite fields [2]. Studying PAC structures beyond
the case of fields was initiated by Hrushovski [26] in the strongly minimal context.
Pillay and Polkowska considered the PAC property in the stable case [41], there are
slight differences with the approach we take here. PAC structures also appeared in
Afshordel’s thesis [1]. Recently, PAC structures were analyzed by the first author
[21, 22] and also by Dobrowolski, the first author, and Lee [15].

Here, we are working with a (complete) stable theory T which admits quantifier
elimination and then focus on its universal partT∀. In other words, a typical situation
looks as follows. We have a universal theory T∀ with a stable model completion T,
so T has quantifier elimination and T axiomatizes existentially closed models of
T∀. Then, intuitively, the class of PAC structures in T lies in between the class
of existentially closed structures (models of T) and the class of all the structures
considered (models of T∀). There are several possible definitions of the notion
of PAC, we adopt here the definition from [21] (expressed in terms involving
stationary types), which is a slight modification of the definition from [41], and
which is equivalent to Afshordel’s definition from [1] in the case of stable theories.
To define the notion of a PAC structure, one needs to use an appropriate notion
of irreducibility. In the classical case of PAC fields, a topological notion is used
coming from the Zariski topology. Hrushovski used in [26] “Morley irreducibility”,
that is he considered definable sets of Morely degree one. Pillay and Polkowska
used [41] stationary types and we proceed similarly here (however, we avoid any
saturation requirements as given in [41]). We say that a structure F |= T∀ is PAC

Received April 23, 2023.
2020 Mathematics Subject Classification. Primary 03C60, 03C45, Secondary 12H10.
Key words and phrases. finite group action, model companion, PAC structure.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/00/0000-0000
DOI:10.1017/jsl.2023.76

1

https://doi.org/10.1017/jsl.2023.76 Published online by Cambridge University Press

https://orcid.org/0000-0002-4514-269X
https://orcid.org/0000-0001-9343-7137
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2023.76
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2023.76&domain=pdf
https://doi.org/10.1017/jsl.2023.76


2 DANIEL MAX HOFFMANN AND PIOTR KOWALSKI

in T (see Definition 2.3) if all stationary types (in the sense of the theory T)
over F are finitely satisfiable in F. Let us point out that in the case of the theory
of algebraically closed fields, all the irreducibility notions mentioned above are
essentially the same. However, this is not the case for other theories of interest as
the theory of differentially closed fields of characteristic 0 or the theory of compact
complex manifolds (see Section 4.1.2). Nevertheless, we show in Section 4.1 that all
these irreducibility notions lead to the same notion of a PAC structure.

For an extension F ⊆ K of models of T∀, we obtain relative notions of K-strongly
PAC and algebraically K-strongly PAC (see Definition 2.4). They are meaningful
and can be though of as measuring the distance between being PAC and being a
model of T (K-strongly PAC) or between being definably closed and algebraically
closed (algebraically K-strongly PAC) (see Remark 2.5).

Our main motivation for considering PAC structures comes from model theory
of group actions. In the set-up above, we consider actions of a fixed group G on
models of T∀ by automorphisms. Clearly, such actions are first-order expressible
in an appropriate language and we aim to describe existentially closed actions and
check whether a model companion of the theory of such actions exists. The result
below may be considered as an abstract generalization of our theorem about finite
group actions on fields (see [23, Theorem 3.29]) and as a continuation of studies
from [21].

Theorem 3.13. Let G be a finite group and T be a stable theory coding finite
sets, which has quantifier elimination and eliminates strong types (that is, types
over algebraically closed sets are stationary). Assume that G acts faithfully on
K = dcl(K) |= T∀. Then, the following are equivalent.

(1) The action of G on K is existentially closed.
(2) The structure of invariants KG is K-strongly PAC.
(3) The structure of invariants KG is PAC and algebraically K-strongly PAC.

The above theorem gives a description of existentially closed finite group actions,
but it is not clear whether this description is first-order, so this theorem does not
settle the question of the existence of a model companion of the theory of finite
actions. We can show the following implication.

Theorem 3.23. Let G be a finite group and T be as in the statement of Theorem 3.13.
If the class of T-PAC structures is elementary, then the model companion of the theory
of G-actions on models of T∀ exists.

After the abstract description of existentially closed actions (Theorem 3.13)
and giving a criterion for existence of a model companion of the theory of finite
actions (Theorem 3.23), we focus on particular examples of theories. We discuss the
following three stable theories of fields of positive characteristic (p is a prime and e
is a positive integer):

(1) The theory SCFp,e of separably closed fields of characteristic p and
inseparability degree e.

(2) The theory SCFp,∞ of separably closed fields of characteristic p and infinite
inseparability degree.

(3) The theory DCFp of differentially closed fields of characteristic p.
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PAC STRUCTURES AS INVARIANTS OF FINITE GROUP ACTIONS 3

In the most interesting cases of the theories SCFp,∞ and DCFp, we do not have
elimination of imaginaries, however we still have its weaker versions (coding finite
sets and eliminating strong types), which are enough for the set-up from Theorems
3.13 and 3.23. For these theories, we describe PAC structures in a first-order
way using a result of Tamagawa (see Theorem 4.21) about positive characteristic
PAC fields. We finish with some general questions regarding the PAC property
and existence of a model companion of the theory of finite actions. It should be
mentioned that after replacing a finite group G with the infinite cyclic group (Z,+),
then the model theory of actions of (Z,+) has been thoroughly studied (see, e.g.,
[12] and [14]). We compare these two situation in Section 4.4.

This paper is organized as follows: In Section 2, we introduce several versions of
the notion of a PAC structure and show the basic results about them. In Section 3,
we put the group action to the picture and prove the main two abstract results
stated above (Theorems 3.13 and 3.23). In Section 4, we consider some particular
theories (mostly theories of fields of positive characteristic) and give a first-order
characterization of PAC structures with respect to these theories.

§2. Preliminaries.

2.1. Set-up. Let T be a complete first-order theory with a monster model C |= T
(i.e., a strongly κ̄-homogeneous and κ̄-saturated model of T for a very big cardinal
κ̄). Throughout the paper, acl and dcl mean the algebraic closure and the definable
closure in C. Usually, x stands for a (finite) tuple of variables. Moreover, for the rest
of this paper, let G be a group such that |G | < κ̄.

Bearing in mind any future applications, we try in this paper to formulate each
result with a minimal list of assumptions. Therefore, we organize our general model-
theoretic assumptions in the following list (we are aware that there are some overlaps,
but we preferred more transparent exposition):

(QE) T has quantifier elimination.
(FS) T codes finite tuples (i.e., eliminates finite imaginaries).

(FS+) T has (FS) and for every k < �, for every variable x corresponding to a
real sort and the 0-definable equivalence relation E on Skx given by

E(x̄, x̄′) ⇐⇒ {x1, ... , xk} = {x′1, ... , x′k},

there exists a 0-definable in L function f : Skx → Sw such that E is a
fibration of f.

(ST+) T is stable and types over algebraically closed sets are stationary
(elimination of strong types).

Convention: If a statement starts with any combination of the above properties,
it means that we assume the properties given in this particular combination. For
example, the following remark assumes property (FS):

Remark 2.1. (FS) The condition (FS+) is equivalent to:
• on each sort there is at least one 0-definable element, and
• there is a sort with at least two 0-definable elements.

Proof. Similarly as in the proof of Lemma 8.4.7 from [48], but, here, we allow
many sorted structures. �
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4 DANIEL MAX HOFFMANN AND PIOTR KOWALSKI

Remark 2.2. Let us discuss what one can do to meet the above requirements
if starting from arbitrary stable L0-theory T0. As we would like to work under
assumptions of quantifier elimination and elimination of imaginaries, we pass to the
language L := (Leq

0 )m and L-theory T := (T eq
0 )m (we add imaginary sorts and then

do the Morleysation). This new theory T is stable, has quantifier elimination and
elimination of imaginaries. On top of that, every 0-definable equivalence relation E
on C

n is the fibration of the canonical projection �E : Cn → C
n /E which is build-in

in the language (Leq
0 )m, thus a 0-definable function. Strong types in any stable theory

are stationary, and b |�A
A for any b and A. Therefore T enjoys all the properties:

(QE), (FS), (FS+), and (ST+).

2.2. Notion of PAC structure and auxiliary facts. In this subsection, we recall
several definitions and useful facts from [21] and [22]. We also provide a few new
notions closely related to the old definitions. The reader may also consult [41] and
[43] for more on PAC structures in general model theoretic framework. Also [1]
provides a nice of exposition of the notion of a PAC structure and related topics. A
well-written survey on different variants of the notion of elimination of imaginaries
and related concepts from the Galois theory in [10].

Definition 2.3. (Let T be stable.) A substructure F of C is pseudo-algebraically
closed (PAC) if every stationary type over F (in the sense of the L(F )-theory of C)
is finitely satisfiable in F.

The above definition appears in [21] (see also Definition 5.29 in [1]). In subsection
3.1 of [21], there is a discussion on possible choices of the definition of a PAC
substructure and a comparison of Definition 2.3 to definitions of PAC structures
given in [26] and [41]. In short, Definition 2.3 coincides with the definition of a
PAC substructure in the strongly minimal context of [26] and relaxes the saturation
assumption from the definition of a PAC substructure from [41]. Note that every
PAC substructure is automatically definably closed. Thus PAC substructures for
T = ACF coincide with perfect pseudo-algebraically closed fields (as defined in,
e.g., [18]).

Definition 2.4. Let F = dcl(F ) ⊆ K ⊆ C.

(1) We say that F is K-strongly PAC if each type p(x) ∈ S(F ), which has a unique
non-forking extension over K, is finitely satisfiable in F.

(2) We say that F is algebraically K-strongly PAC if each algebraic type p(x) ∈
S(F ), which has a unique non-forking extension over K, is finitely satisfiable
(thus realized) in F.

Note that being K-strongly PAC forF ⊆ K implies being algebraically K-strongly
PAC for F. Moreover, being K-strongly PAC for F implies being a PAC substructure
for F.

Remark 2.5. It should help to understand the relative notions of (algebraically)
K-strongly PAC by considering the ultimate cases of K = F and K |= T . It is quite
easy to see the following.
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PAC STRUCTURES AS INVARIANTS OF FINITE GROUP ACTIONS 5

(1) A structure F is F-strongly PAC if and only if F |= T .
(2) (T is stable) A structure F is K-strongly PAC for K |= T if and only if F is

PAC.
(3) A structure F is algebraically F-strongly PAC if and only if F = acl(F ).
(4) A structure F is algebraically K-strongly PAC for K |= T if and only if
F = dcl(F ).

Definition 2.6. (1) Let F ⊆ K be small subsets of C. We say that F ⊆ K is
primary if

dcl(K) ∩ acl(F ) = dcl(F ).

(2) Let F ⊆ K be small subsets of C. We say that F ⊆ K is regular if F ⊆ K is
primary and F = dcl(F ).

(3) Let F be a small definably closed substructure of C. We say that F is regularly
closed if for every small substructure F ′ of C, which is a regular extension of
F, it follows F 	1 F

′ (i.e., F is existentially closed in F ′).

The above notion of a primary extension was previously (e.g., [21, 22]) called
“regular”. It corresponds to regular extensions in T =ACF provided the smaller
field is perfect (equivalently, definably closed). Here, we decided to follow closer
the terminology from the theory of fields and distinguish between “primary” and
“regular” extensions. We plan to refine even more the notion of the model-theoretic
“regular” extension after studying a possible notion of the model-theoretic separable
extension in the future.

Now, we will sharpen facts from earlier articles that lead to the main results in
this manuscript. The majority of [2 1] was written under the assumption of (full)
elimination of imaginaries, elimination of quantifiers and stability. This is fine if we
are interested in an abstract approach to the subject. However, as we are interested
in applications of our results to particular theories, which do not enjoy elimination
of imaginaries (see Section 4), we need to relax this assumption. Moreover, the
assumption on stability was not crucial in several useful facts from [21], making
them applicable in a broader context. Therefore we take the opportunity to provide
the following results with minimal assumptions. The proofs of the following facts
remain almost the same as the proofs of their counterparts from [21]. Recall that
“regular” extensions from [21] are now “primary” extensions.

All the proper subsets, substructures and tuples of the monster model C are, if
not stated otherwise, small in comparison to the saturation of C. Here, upper case
letters, like E or A, are denoting proper subsets, and lower case letters, like a, stand
for tuples.

Fact 2.7 (Fact 3.32 in [21]). (FS) If E ⊆ A is primary then for every a ∈ acl(E)
there exists a unique extension of tp(a/E) over A.

Fact 2.8 (Fact 3.33 in [21]). (FS) If E ⊆ A is primary, f1, f2 ∈ Aut(C) and
f1|E = f2|E , then there exists h ∈ Aut(C) such that h|A = f1|A and h|acl(E) =
f2|acl(E).

Fact 2.9 (Corollary 3.34 in [21]). (FS) If E ⊆ A is primary and A0 ⊆ A then
tp(A0/E) has a unique extension over acl(E).
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6 DANIEL MAX HOFFMANN AND PIOTR KOWALSKI

The following definition is taken from page 21 of [1].

Definition 2.10. We say that a type p(x) ∈ S(A) is acl-stationary if it has a
unique extension over acl(A).

Lemma 2.11. (FS) Consider p ∈ S(E). The following are equivalent:

(1) p is acl-stationary,
(2) E ⊆ dcl(Ea) is primary for some a |= p,
(3) E ⊆ dcl(Ea) is primary for every a |= p.

Proof. The proof is similar to the proof of Lemma 3.35 in [21], but a few steps
require sharper reasoning, thus we include it here.

The equivalence (2) ⇐⇒ (3) follows by definition. First, we argue for (1)⇒(2):
assume (1) and suppose that (2) does not hold. As p is acl-stationary, there exists a
unique extension p|acl(E) of p over E. Let a |= p|acl(E), then a |= p and E ⊆ Ea is
not primary. Take

c ∈ dcl(Ea) ∩ acl(E) \ dcl(E).

Since c 
∈ dcl(E), there exists f ∈ Aut(C /E) such that f(c) 
= c. We see that
f(a) |= p|acl(E), so there exists h ∈ Aut(C / acl(E)) such that h(a) = f(a). Note
that h–1f ∈ Aut(C /Ea) and, because c ∈ dcl(Ea) and c ∈ acl(E),

c = h–1f(c) = f(c) 
= c,

so a contradiction. The implication (2)⇒(1) is contained in Fact 2.9. �

Fact 2.12 (Lemma 3.35 in [21]). (FS, ST+) Consider p ∈ S(E). The following
are equivalent:

(1) p is stationary,
(2) p is acl-stationary,
(3) E ⊆ Ea is primary for some a |= p,
(4) E ⊆ Ea is primary for every a |= p.

Fact 2.13 (Corollary 3.36 in [21]). (QE, FS, ST+) For any small substructure N
there exists a non-algebraic stationary type over N in any finitely many variables.

Fact 2.14 (Corollary 3.38 in [21]). (FS, ST+) Assume that A,B ⊆ C, E ⊆ A
is primary, f1, f2 ∈ Aut(C) and f1|E = f2|E . If A |�E

B and f1(A) |�f1(E)
f2(B)

then there exists h ∈ Aut(C) such that h|A = f1|A and h|B = f2|B .

Fact 2.15 (Lemma 3.39 in [21]). (FS, ST+) IfE ⊆ A ∩ B ,E ⊆ A is primary and
B |�E

A then B ⊆ BA is primary.

Fact 2.16 (Corollary 3.40 in [21]). (FS, ST+) If E ⊆ A and E ⊆ B are primary,
and B |�E

A then also E ⊆ BA is primary.

Remark 2.17. (1) (FS, ST+) F ⊆ K is primary if and only if for every tuple
b from dcl(K), the type tp(b/F ) is stationary (Fact 2.12).

(2) (QE, FS, ST+) Using the item (1), a substructure F is PAC if and only if it is
definably closed and regularly closed.
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Definition 2.18. (1) Assume that F ⊆ K are substructures of C. We say that
K is normal over F (or we say that F ⊆ K is a normal extension) if �(K) ⊆ K
for every � ∈ Aut(C /K). (Note that if K is small and F ⊆ K is normal, then
it must be K ⊆ acl(F ).)

(2) Assume that F ⊆ K ⊆ acl(F ) are small substructures of C such that F =
dcl(F ), K = dcl(K) and K is normal over F. In this situation we say that
F ⊆ K is a Galois extension.

Definition 2.19. Assume that F ⊆ K is an extension of substructures in C. We
define the Galois group of the extension F ⊆ K as

G(K/F ) := Aut(K/F ) = {f|K | f ∈ Aut(C /F ), f(K) = K}.
Moreover B is any subset of C, then the extension dcl(B) ⊆ acl(B) is Galois and we
speak about the absolute Galois group of B which is the following profinite group:

G(B) := G(acl(B)/ dcl(B)).

Note that the above definition of G(K/F ) is often expressed in terms of the
automorphisms of K as an L-structure on its own, but as we will work under the
assumption of the quantifier elimination, both variants of the definition coincide
and it just the matter of taste.

The following useful fact is standard and its proof is straightforward.

Lemma 2.20. Assume that F ⊆ K is a Galois extension and p(x) ∈ S(F ). Then
the Galois group G(K/F ) acts transitively on the set of extensions of p over K.

The following definition and example are taken from [15] and [41]. A more detailed
discussion of examples of PAC structures and the property from Definition 2.21 will
be given in Section 4.

Definition 2.21 (Let T be stable). We say that PAC is a first-order property in T
(= Th(C)) if there exists a set Σ of L-sentences such that for any P ⊆ C,

P |= Σ ⇐⇒ P is PAC.

Example 2.22. (1) PAC is a first-order property in ACFp for p = 0 and for p
being a prime number, see Proposition 11.3.2 in [18].

(2) The axioms given in Proposition 5.6 from [41] show that PAC is a first-order
property (in the above sense) in DCF0 which is formulated in a different way
than the condition “PAC is a first-order property” appearing in [41].

§3. Finite group actions. The main goal of this section is to describe existentially
closed substructures with a finite group action in first-order terms. The general
strategy is as follows. First, characterize their structure by the structure of the
invariants of the group action, then answer which properties of the invariants
correspond to the existential closedness of the whole substructure with group action.
Finally, express these properties as first-order statements.

3.1. Basic facts. We introduce the language LG being the language L extended
by a unary function symbol �g for each g ∈ G , i.e.,LG = L ∪ {�g | g ∈ G}. Often,
“�g” will denote also the interpretation of the symbol �g in a given LG -structure.
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8 DANIEL MAX HOFFMANN AND PIOTR KOWALSKI

Moreover, we set �̄ := (�g)g∈G . We consider the collection of sentences in the
language LG , say AG , which precisely expresses the following:

• �g is an automorphism of the L-structure for every g ∈ G ,
• �g ◦ �h = �g·h for all g, h ∈ G .

In other words, if K is an L-structure, and there exists an LG -structure (K, �̄)
living on K, we have that (K, �̄) |= AG if and only if for each g ∈ G we have that
�g ∈ Aut(K) and the map

G 
 g �→ �g ∈ Aut(K)

is a group homomorphism.

Definition 3.1. (1) Let (K, �̄) be anLG -structure. We say that �̄ is a G-action
on K if (K, �̄) |= AG .

(2) If T ′ is an L-theory, then by (T ′)G we denote the set of consequences of
T ′ ∪ AG .

(3) If (K, �̄) |= (T∀)G , where K is of cardinality smaller than the saturation of
C, then we call it a substructure with G-action. Note that, without loss of
generality, K ⊆ C, thus the name “substructure”.

(4) We say that a substructure with G-action (K, �̄) is existentially closed if (K, �̄)
is an existentially closed model of the theory (T∀)G .

(5) If the existentially closed models of the theory (T∀)G form an elementary
class, we denote the theory of this class by G – T .

Definition 3.2. Assume that (K, �̄) is a substructure with G-action. Then we
denote

KG := {a ∈ K | (∀g ∈ G) (�g(a) = a) }

and call it the substructure of invariants.

Remark 3.3. (QE) Let (K, �̄) be a substructure with G-action. If (K, �̄) is
existentially closed then K = dcl(K). If K = dcl(K) then KG = dcl(KG). For the
standard proofs, the reader may consult Remarks 3.24 and 3.26 in [21].

Lemma 3.4. (QE ) Let (K, �̄) be a substructure with G-action and let p(x) ∈ S(K)
be a G-invariant type (i.e., �g(p) = p for every g ∈ G). Then for any a |= p the set
dcl(K, a) might be equipped with a G-action extending (K, �̄) and acting trivially on a.

Proof. Let a |= p and let k̄ be some enumeration of K. Then k̄a ≡ �g(k̄)a for
any g ∈ G . This implies that, for each g ∈ G , there exists �′g ∈ Aut(C) such that
�′g |K = �g and �′g(a) = a. Naturally, (K, (�g)g∈G) ⊆ (dcl(K, a), (�′g)g∈G). �

Fact 3.5 (Lemma 2.10 from [22]). (QE, FS) If G is finite and (K, �̄) is a
substructure with G-action such that dcl(K) = K and the action of G on K is faithful
(i.e., if g 
= h then there is a ∈ K such that �g(a) 
= �h(a)), then:

• K ⊆ acl(KG ),
• KG ⊆ K is a Galois extension,
• G(K/KG ) ∼= G .
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Proof. By Lemma 2.10 from [22], Fact 3.7 and Proposition 4.7 from [10]. Being
more precise, we obtain the two first bullets as in Lemma 3.23 from [21] and then
we repeat the proof of Lemma 2.10(4) from [21] using a variant of the finite Galois
correspondence stated in Proposition 4.7 in [10]. �

Lemma 3.6. (QE, FS, ST+) If (K, �̄) is an existentially closed substructure with
G-action, then the group action if faithful.

Proof. Consider any enumeration of G, say (gi)i∈I where (I,<) is a linear order.
Let p(x) ∈ S(KG) be a non-algebraic stationary type (existing by Fact 2.13), and
let b̄ = (bi)i∈I |= p⊗I |KG be such that K |�KG

b̄. Let F denote dcl(KG, b̄), and let

F ′ denote dcl(K, b̄).
As the type p⊗I |K is also stationary, the extension KG ⊆ F is regular. For each

g ∈ G , let �g be a bijection of I such that g · gi = g�g (i) holds for each i ∈ I . As the
set {bi | i ∈ I } is KG -indiscernible, for each g ∈ G there exists �g ∈ Aut(C /KG)
such that �g(bi) = b�g (i).

Now, Corollary 3.38 from [21], allows us to simultaneously extend each �g
(over K) and �g (over F) to an automorphism �′g ∈ Aut(C), for each g ∈ G . We
have that (K, (�g)g∈G) ⊆ (F ′, (�′g)g∈G), thus (K, (�g)g∈G) is existentially closed in
(F ′, (�′g)g∈G). If g 
= h, then �′g(b) 
= �′h(b) for some b ∈ F ′, and so there will be
a ∈ K such that �g(a) 
= �h(a). �

Lemma 3.7. (QE ) If G is finitely generated and (K, �̄) is an existentially closed
substructure with G-action, then KG is K-strongly PAC.

Proof. Consider p(x) ∈ S(KG) which has a unique non-forking extension over
K, say p̃(x) ∈ S(K). As p(x) is invariant under action of automorphisms �g |KG ,
where g ∈ G , we have that p̃(x) is invariant under action of automorphisms �g ,
where g ∈ G (otherwise, we would get distinct non-forking extensions of p over K).

Let b |= p̃, by Lemma 3.4 there exists an extension of substructures with G-action,

(K, (�g)g∈G) ⊆ (K ′, (�′g)g∈G)

such that b ∈ (K ′)G . By our assumption, we have that (K, (�g)g∈G) is existentially
closed in (K ′, (�′g)g∈G).

Now, let ϕ(a, x) ∈ p(x). As T has quantifier elimination, we may assume that
ϕ(y, x) is quantifier-free, what we do. Of course |= ϕ(a, b) and so

(K ′, (�′g)g∈G) |= (∃x) (ϕ(a, x) ∧
∧
g∈X
�g(x) = x),

where X denotes the finite set of generators of G. Hence

(K, (�g)g∈G) |= (∃x) (ϕ(a, x) ∧
∧
g∈X
�g(x) = x)

and for some b0 ∈ KG we have that |= ϕ(a, b0). �
Therefore we see that an existentially closed substructure with G-action has a quite

tame substructure of invariants. The next subsection is dedicated to the converse of
this implication, so we would like to show that “if the substructure of invariants is
tame then the whole substructure with G-action is existentially closed”.
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Remark 3.8. In Proposition 3.56 from [21], it was shown that if (K, �̄) is
an existentially closed substructure with G-action, then K is PAC. However,
the aforementioned proposition assumes quantifier elimination, elimination of
imaginaries and stability (but G there can be arbitrary).

3.2. Invariants of existentially closed actions.

Lemma 3.9. (QE, FS) Assume that G is finite, (K, (�g)g∈G) ⊆ (K ′, (�′g)g∈G) is an
extension of substructures with G-action, the group action of G on K is faithful and
dcl(K) = K . If KG is algebraically K-strongly PAC, then KG ⊆ (K ′)G is regular.

Proof. If dcl(K) = K then also dcl(KG) = KG . Moreover, KG ⊆ (K ′)G is
regular if and only if KG ⊆ dcl((K ′)G) is regular and there is a unique way of
extending G-action from K ′ over dcl(K ′). Therefore, without loss of generality,
we assume that K ′ = dcl(K ′) and so dcl((K ′)G) = (K ′)G . We need to show that
(K ′)G ∩ acl(KG) = KG .

Let a ∈ (K ′)G ∩ acl(KG) \KG . Because for every g ∈ G , we have that
�g

(
tp(a/K)

)
= tp

(
�g(a)/K

)
and a ∈ (K ′)G , we see that tp(a/K) is a G-invariant

type. By Fact 3.5 and Lemma 2.20, we see that tp(a/K) is a unique extension of
tp(a/KG) over K.

As a ∈ acl(KG) and acl(KG) |�KG
K (e.g., Remark 5.3 in [9]), tp(a/KG) ⊆

tp(a/K) is a non-forking extension. Because KG is algebraically K-strongly PAC,
tp(a/KG) is finitely satisfiable in KG . As a ∈ acl(KG), this means that it must be
a ∈ KG . �

Definition 3.10. Assume that C ⊆ K ⊆ C and that G is finite. We call the pair
(C,K) G-closed if C ⊆ K is a Galois extension, G(K/C ) ∼= G and there is no
K ′ ⊆ acl(K), K � K ′, such that the action of G(K/C ) extends over K ′.

Lemma 3.11. (QE, FS) Assume that G is finite, (K, �̄) is a substructure with
G-action such that action of G on K is faithful and dcl(K) = K . Then (KG,K) is
G-closed if and only if KG is algebraically K-strongly PAC.

Proof. By Fact 3.5, K ⊆ acl(KG), KG ⊆ K is Galois and G(K/KG) ∼= G .
Assume that (KG,K) is G-closed and let p(x) ∈ S(KG) be algebraic with a

unique extension p̃(x) over K (being a non-forking extension follows naturally
from acl(KG) |�KG

K , e.g., Remark 5.3 in [9]). We have that p̃ is G-invariant and
so, by Lemma 3.4, if b |= p̃ then there exists an extension of substructures with a
G-action,

(K, (�g)g∈G) ⊆ (K ′, (�′g)g∈G)

such that K ′ = dcl(K, b) and b ∈ (K ′)G . As K ′ = dcl(K, b) ⊆ acl(KG) = acl(K),
it must be that K = K ′, so b ∈ K and finally b ∈ KG .

Now, we show the right-to-left implication. Assume that K ′ ⊆ acl(K) and there
is an extension of substructures with G-action:

(K, (�g)g∈G) ⊆ (K ′, (�′g)g∈G).

By Lemma 3.9,KG ⊆ (K ′)G is regular. As (K ′)G ⊆ K ′ ⊆ acl(K) = acl(KG) it must
be (K ′)G ⊆ dcl(KG) = KG , so KG = (K ′)G . By the proof of Proposition 4.1 from
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[15] and the Galois correspondence for finite extensions (e.g., Theorem 12 in [32]),
there exists a finite tuple b from K such thatK = dcl(KG, b). Moreover, by the same
proof of Proposition 4.1 from [15], we also have that K ′ = dcl((K ′)G, b). Because
KG = (K ′)G , we have that K = dcl(KG, b) = dcl((K ′)G, b) = K ′. �

The following remark is not important for the main results of this paper and
its purpose is mainly to generalize Theorem 3.25 from [23]. As we use in its
proof the Elementary Equivalence for PAC structures ([15]), we need to add more
assumptions.

Remark 3.12. Let T be stable with elimination of quantifiers and elimination
of imaginaries. Assume that PAC is a first-order property. Suppose that (C,K) ⊆
(C ′, K ′) is an extension of G-closed substructures such that C and C ′ are PAC.
Then C 	 C ′.

Proof. It is enough to reproduce the proof of Theorem 3.25 from [23], but
in this more general context. By the proof of Theorem 3.22 from [23] or more
similar Lemma 3.54 from [21], we have that C and C ′ are bounded PAC structures.
Thus, by Corollary 3.11 from [15], it is enough to show that the restriction map
r : G(C ′) → G(C ) is an isomorphism. After combining Lemmas 3.11 and 3.9, we
obtain that C ⊆ C ′ is regular, so r is an epimorphism.

By Theorem 4.4 from [22], G(C ) is projective, which means that there exists
embedding h as in the following diagram.

G(C ) = ��

h ���
�

�
�

� G(C )

G(C ′)

r

��

But then G0 := h[G(C )] � G(C ′) is a closed subgroup such that r|G0 : G0 → G(C )
is an isomorphism.

Because K ⊆ acl(C ) and K ′ ⊆ acl(C ′), the restriction maps G(C ) → G and
G(C ′) → G lead to the following commutative diagram:

G(C ′)

���
��

��
��

��
r �� G(C )

����
��
��
��

G

and so G0N = G(C ′) for N := ker
(
G(C ′) → G

)
. By Lemma 3.31 from [21], this

implies that G0 = G(C ′) as expected. �

Theorem 3.13. (QE, FS, ST+) Assume that G is finite, say |G | = l . Let (K, �̄) be
a substructure with G-action such that G acts faithfully on K and dcl(K) = K . The
following are equivalent:

(1) (K, �̄) is existentially closed,
(2) KG is K-strongly PAC,
(3) KG is PAC and algebraically K-strongly PAC,
(4) KG is PAC and (KG,K) is G-closed.
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Proof. By Lemma 3.11, (3) ⇐⇒ (4). (1)⇒(2) follows by Lemma 3.7. The
implication (2)⇒(3) follows by definitions. To get the theorem, we will show that
(3)⇒(1).

Assume that dcl(K) = K , the group action is faithful and that KG is PAC and
algebraically K-strongly PAC. Using Fact 3.5, we obtain the following:

• K ⊆ acl(KG ),
• KG ⊆ K is a Galois extension,
• G(K/KG ) ∼= G .

The proof of Proposition 4.1 from [15] gives us existence of a finite tuple b̄ =
(b0, ... , bl–1) from K such that K = dcl(KG, b̄).

Consider (K, (�g)g∈G) ⊆ (K ′, (�′g)g∈G). Without loss of generality, we may
assume that (K ′, (�′g)g∈G) is existentially closed, in particular dcl(K ′) = K ′. We
have that the group action of G on K ′ is faithful, thus by Fact 3.5, we have
that K ′ ⊆ acl((K ′)G), (K ′)G ⊆ K ′ is Galois, and G(K ′/(K ′)G) ∼= G . Lemma
3.9 gives us that KG ⊆ (K ′)G is regular, which means that the restriction map
G(K ′/(K ′)G) → G(K/KG) is onto, and so it is an isomorphism of finite groups.
The last thing implies

K ′ = dcl((K ′)G, b̄).

Let B̄ be some enumeration of {�g(bi) | g ∈ G, i < l}. We have that K ′ =
dcl((K ′)G, b̄) = dcl((K ′)G, B̄). Assume that

(K ′, (�′g)g∈G) |= φ(a)

for some tuple a from K ′ and some quantifier-free formula φ(x) ∈ LG(K).
First, we may present φ(a) as ϕ0(�′g0

(a), ... , �′gl–1
(a)), where ϕ0(x0, ... , xl–1) ∈

L(K) is quantifier-free. Second, since K = dcl(KG, B̄), we may present
ϕ0(�′g0

(a), ... , �′gl–1
(a)) as ϕ(�′g0

(a), ... , �′gl–1
(a), B̄), where ϕ(x0, ... , xl–1, ȳ) ∈

L(KG) is quantifier-free.
Let�′g0

= idL, so�′g0
(a) = a. Becausea ∈ K ′ = dcl((K ′)G, B̄), there exists a finite

tuple c̄ ⊆ (K ′)G and a quantifier-free formula �0(z̄, ȳ, x) ∈ L such that:

• �0(c̄, B̄ ,C) = {a},
• |= (∀z̄, ȳ, x, x′)

(
�0(z̄, ȳ, x) ∧ �0(z̄, ȳ, x′) −→ x = x′

)
.

Because �gi permutes B̄ , there exists a permutation si such that �gi (B̄) = si(B̄). We
define �i(z̄, ȳ, x) as �0(z̄, si(ȳ), x). Note that �i(c̄, B̄ ,C) = {�′gi (a)} and

(K ′, (�′g)g∈G) |=

(∀z̄, x, x′)
( ∧
g∈G
�g(z̄) = z̄ ∧ �0(z̄, B̄ , x) ∧ �i(z̄, B̄ , x′) → �gi (x) = x′

)
.

To see the last line, let d̄ ⊆ (K ′)G , m,m′ ∈ K ′ be such that

|= �0(d̄ , B̄ , m) ∧ �i(d̄ , B̄ , m′).
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We do know that�0(d̄ , B̄ ,C) = {m}, which after applying an extension �̃gi ∈ Aut(C)
of �′gi changes it into �0(d̄ , si(B̄),C) = {�′gi (m)}. We have that

m′ ∈ �i(d̄ , B̄ ,C) = {�′gi (m)}.

Since the whole formula is universal and has only parameters from K, it follows
that

(K, (�g)g∈G ) |= (∀z̄, x, x′)
( ∧
g∈G
�g(z̄) = z̄ ∧ �0(z̄, B̄ , x) ∧ �i (z̄, B̄ , x′) → �gi (x) = x′

)
,

where i < l .
Consider p(z̄) := tp(c̄/KG). BecauseKG ⊆ (K ′)G is regular (thus also primary)

and c̄ ⊆ (K ′)G , Fact 2.12 implies that p(z̄) is stationary. As KG is PAC, the type
p(z̄) is finitely satisfiable inKG . The tuple B̄ ⊆ K is algebraic overKG , hence there
exists a quantifier-free �(ȳ) ∈ L(KG) such that �(ȳ) � tp(B̄/KG). The following
formula:

(∃ ȳ, x0, ... , xl–1)
( ∧
i<l

�i(z̄, ȳ, xi) ∧ ϕ(x0, ... , xl–1, ȳ) ∧ �(ȳ)
)

belongs to p(z̄), thus there exists d̄ ⊆ KG such that

|= (∃ ȳ, x0, ... , xl–1)
( ∧
l<e

�i(d̄ , ȳ, xi) ∧ ϕ(x0, ... , xl–1, ȳ) ∧ �(ȳ)
)
.

It means that there are B̄ ′ ⊆ C and a′0, ... , a
′
l–1 ∈ C such that

|=
∧
i<l

�i(d̄ , B̄ ′, a′i ) ∧ ϕ(a′0, ... , a
′
l–1, B̄

′) ∧ �(B̄ ′).

Since |= �(B̄) ∧ �(B̄ ′), there exists f ∈ Aut(C /KG) such that f(B̄ ′) = B̄ . By
applying f, we obtain

|=
∧
i<l

�i(d̄ , B̄ , f(a′i )) ∧ ϕ(f(a′0), ... , f(a′l–1), B̄).

We have that �0(d̄ , B̄ ,C) = {f(a′0)}. Since, for each i < l , the subset �i(d̄ , B̄ ,C) =
�0(d̄ , si(B̄),C) is an automorphic image of �0(d̄ , B̄ ,C), it must be that
|�i(d̄ , B̄ ,C)| = 1 and so f(a′i ) ∈ dcl(KG, B̄) = K for each i < l . Moreover, we
have that �gi (f(a′0)) = f(a′i ) for each i < l . Therefore |= ϕ(f(a′0), ... , f(a′l–1), B̄)
leads to

(K, (�g)g∈G) |= ϕ
(
�g0(f(a′0)), ... , �gl–1(f(a′0)), B̄

)
,

as expected. �

Corollary 3.14. (QE, FS, ST+) Let G be finite and let (K, �̄) be a substructure
with G-action. Then (K, �̄) is existentially closed if and only if:

(1) dcl(K) = K ,
(2) the group action of G on K is faithful, and
(3) KG is K-strongly PAC.
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Proof. If the conditions (1)–(3) hold then (K, �̄) is existentially closed by
Theorem 3.13.

If (K, �̄) is existentially closed, then Remark 3.3 gives us that dcl(K) = K , Lemma
3.6 gives that the group action is faithful, and the fact that KG is K-strongly PAC
follows from Lemma 3.7. �

In a very similar way, we conclude the following.

Corollary 3.15. (QE, FS, ST+) Let G be finite and let (K, �̄) be a substructure
with G-action. Then (K, �̄) is existentially closed if and only if:

(1) dcl(K) = K ,
(2) the group action of G on K is faithful, and
(3) KG is PAC and algebraically K-strongly PAC.

3.3. Existence of model companion.

Remark 3.16. Assume that A ⊆ C is a Galois extension (e.g., if QE, FS, G is
finite and G acts faithfully on K = dcl(K), we can take A = KG and C = K). Let
p(x) ∈ S(A). The following are equivalent:

(1) There exists unique extension of p over C.
(2) There exists a G(C/A)-invariant extension of p over C.

Proof. If there is only one extension of p(x) over C it is automaticallyG(C/A)-
invariant. Assume that p(x) has a G(C/A)-invariant extension over C, say p1(x) ∈
S(C ) and led p2(x) ∈ S(C ) be also an extension of p(x). As p1|A = p2|A, there
exists f ∈ Aut(C /A) such that f(p1) = p2. Since A ⊆ C is Galois, we know that
f|C = � for some � ∈ G(C/A). Then, p2 = f(p1) = f|C (p1) = �(p1) = p1. �

Definition 3.17. Let �(x) be a partial type over A. We say that � is A-irreducible
if there exists p(x) ∈ S(A) such that � � p.

Remark 3.18. Let ϕ(x) ∈ L(A) be a consistent formula. Then, ϕ(x) is A-
irreducible if and only if {ϕ(x)} is A-irreducible, which is equivalent to saying
that there are no formulae ϕ1(x), ϕ2(x) ∈ L(A) such that ϕ(C) ∩ ϕ1(C) 
= ∅,
ϕ(C) ∩ ϕ2(C) 
= ∅ and ϕ(C) ∩ ϕ1(C) ∩ ϕ2(C) = ∅. We use this characterization
in the crucial Remark 3.20.

Lemma 3.19. (QE, FS) Assume that G is finite and G acts faithfully onK = dcl(K).
The following are equivalent:

(1) KG is algebraically K-strongly PAC.
(2) Each algebraic type p(x) ∈ S(KG), which has a G-invariant extension over K,

is satisfiable in KG .
(3) Each G-invariant algebraic type p̃(x) ∈ S(K) is satisfiable in K.
(4) For each �(x) ∈ L(KG), if 0 < |�(C)| < � and �(C) is K-irreducible then
�(KG) 
= ∅.

Proof. The proof is easy, so we only sketch it. By Remark 3.16, we immediately
obtain (1) ⇐⇒ (2). For the (2) ⇐⇒ (3), it is enough to observe that a G-invariant
algebraic type is isolated by a L(KG)-formula, so its restriction to KG is also
algebraic. We argue similarly on (3) ⇐⇒ (4): a G-invariant algebraic type over K is
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isolated by an L(KG)-formula, which is consistent, algebraic (i.e., has finitely many
realizations) and K-irreducible. �

Remark 3.20. (QE, FS+) In this remark, we investigate in what way being
a K-irreducible formula may be expressed as a first-order statement. Assume that
K = dcl(K) and consider a quantifier-free formula ϕ(y, x) ∈ L and a tuple a ∈ Ky .
Moreover assume that 0 < |ϕ(a,C)| = n < �. Recall that we can use the technical
condition (FS+), listed at the very beginning of the paper. Let Sx be the sort related
to the variable x and let E(x̄, x̄′) be a ∅-definable equivalence relation given by a
formula expressing that “{x1, ... , xn–1} = {x′1, ... , x′n–1}”, where x̄ = (x1, ... , xn–1)
and x̄′ = (x′1, ... , x

′
n–1) are tuples of variables from Sx . As we assume, E is the

fibration of a 0-definable function f : (Sx)n–1 → Sw . Note that the elements of the
image of f correspond to nonempty subsets of Sx(C) of the size at most n – 1.

One more thing before coming to the point. Assume that the element d belongs
to the sort Sw(C), then the formula

(∃x1, ... , xn–1 ∈ Sx)
(
f(x1, ... , xn–1) = d ∧

n–1∧
i=1

ϕ(a, xi)
)

is modulo T equivalent to a quantifier-free formula, say �ϕ,n(a, d ).
Now, ϕ(a, x) is K-irreducible if and only if there is no proper subset ∅ 
= X �

ϕ(a,C), such that X is K-definable. In other words, for each proper subset ∅ 
= X �

ϕ(a,C), we have that the code �X� does not belong to dcl(K) = K . We can express
this last sentence, in the structure K, as follows:

K |= ¬(∃w ∈ Sw) (�ϕ,n(a,w)).

We will use the above in the proof of Theorem 3.23.

Now, we want to show that being a definably closed (in L) subset of C is a
first-order statement.

Remark 3.21. (QE) Consider any �(y, x) ∈ L. The formula

�(y, x) ∧ (∀x1, x2)
(
�(y, x1) ∧ �(y, x2) → x1 = x2

)
is equivalent modulo T to some quantifier-free ��(y, x) ∈ L. Moreover, also the
formula (∃x) (��(y, x)) is equivalent modulo T to a quantifier-free formula�0

�(y) ∈
L. Consider

Σ := {�0
�(y) → (∃x) (��(y, x)

)
| �(y, x) ∈ L}.

Lemma 3.22 (QE, in the notation of Remark 3.21). For a substructure B ⊆ C,
B |= Σ if and only if dcl(B) = B .

Proof. Assume that B |= Σ and let b ∈ dcl(B). There exists a formula �(y, x) ∈
L and a ∈ B such that �(a,C) = {b}. Then |= ��(a, b) and |= �0

�(a). As �0
� is

quantifier-free, alsoB |= �0
�(a), thusB |= (∃x) (��(a, x)). It means that there exists

b′ ∈ B such that |= ��(a, b′). We see that b′ = b and so b ∈ B .
Now, let B = dcl(B). Assume that B |= �0

�(a) for some a ∈ B and �(y, x) ∈ L.
We have |= �0

�(a), so there exists some b ∈ C such that |= ��(a, b). This implies that
b ∈ dcl(a) ⊆ dcl(B) = B . Therefore there exists b ∈ B such that B |= ��(a, b). �
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The following theorem is an answer towards Question 2.9 (also Question 5.1) and
Conjecture 5.2 from [21].

Theorem 3.23. (QE, FS+, ST+) Let G be finite. The model companion of the
theory of substructures with G-action exists provided PAC is a first-order property.

Proof. By Corollary 3.15 and Lemma 3.19, we need to write down as first-order
statements the following conditions:

(0) (K, (�g)g∈G) is a substructure with G-action,
(1) dcl(K) = K ,
(2) the group action of G on K is faithful,
(3) KG is PAC,
(4) for each �(x) ∈ L(KG), if 0 < |�(C)| < � and �(C) is K-irreducible then
�(KG) 
= ∅.

We are working in the language LG . The condition (0) is naturally a first-order
statement, similarly the condition (2). Lemma 3.22 shows that also the condition
(1) is a first-order statement. By the assumptions, condition (3) is a first-order
statement. To finish the proof of the theorem, we need to show that the condition
(4) is also a first-order statement.

There is no harm in assuming that the formula �(x) is ϕ(a, x) for some tuple a
from KG and some quantifier-free formula ϕ(y, x) ∈ L. The condition (4) will be
expressed as an axiom scheme running over all quantifier-free formulae ϕ(y, x) ∈ L
and all 0 < n < �.

Fix a quantifier-free formula ϕ(y, x) ∈ L and a natural number n > 0. There
exists a quantifier-free L-formula �ϕ(y) equivalent modulo T to the formula
(∃=n x) (ϕ(y, x)). We are in situation of Remark 3.20, so we can involve the formula
�ϕ,n(y,w). Our axiom scheme may be written as

(∀ y)
( ∧
g∈G
�g(y) = y ∧ �ϕ(y) ∧ ¬(∃w ∈ (Sx)n–1/E) (�ϕ,n(y,w))

→ (∃x)
( ∧
g∈G
�g(x) = x ∧ ϕ(y, x)

))
. �

Question 3.24. (QE, FS+, ST+) Can we obtain a converse of Theorem 3.23? More
precisely, does the following equivalence hold: the model companion of the theory of
substructures with G-action exists for every finite group G if and only if PAC is a
first-order property?

Remark 3.25. After writing the proofs of Theorems 3.13 and 3.23, we have
noticed (but we have not checked all the details) that this result holds in a much
greater generality, that is, if in the definition of PAC we replace “stationary” with
“acl-stationary” (a unique extension over algebraic closure of the parameters), then
the assumptions of stability, coding finite sets, and eliminating strong types may be
skipped in Theorem 3.23. However, in this case it is unclear how useful such a result
would be in terms of axiomatizing existentially closed finite group actions in this
case, since there is no guarantee that faithful actions of a finite groups exist at all in
general (consider, for example, the theory of linear orders) and the faithfulness in
the stable was guaranteed by Lemma 3.6.
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§4. PAC structures in particular theories. In this section, we discuss the PAC
property in some specific cases as well as some general methods for understanding
PAC structures with respect to a given theory. As we are going to consider the notions
of a regular extension and of a PAC structure in different theories, we plan to write
“T-regular” and “T-PAC” instead of “regular in T” and “PAC in T”, respectively.

We will often refer to several particular stable theories as: the theory of compact
complex manifolds CCM (for background, the reader is referred to [35]) and the
theories of differentially closed fields of characteristic 0 denoted DCF0 (see, e.g.,
[29]) and its positive characteristic version DCFp (see, e.g., [49] and [50]), and the
theories of separably closed fields of positive characteristic SCFp,e and SCFp,∞ (see,
e.g., [33]).

4.1. General methods. In this subsection, we focus on two general contexts in
which the PAC property is well understood. However, in both these cases showing
that PAC is a first-order property requires some extra work.

4.1.1. Totally transcendental theories. In this part, we assume that the theory
T is �-stable. As before, let us fix for convenience a monster model C of T and
an arbitrary small substructure K ⊂ C. It is well-known that stationary types in
�-stable theories are determined by the formulas of Morley degree one belonging
to them. In particular, we have the following result, which actually coincides with
Hrushovski’s definition of the PAC property in the strongly minimal case (see [26,
Definition 1.2] and [21, Proposition 3.10]).

Proposition 4.1. If T is a �-stable theory, then K is T-PAC if and only if for any
formula ϕ ∈ L(K) of multiplicity (Morley degree) one, we have that ϕ(K) 
= ∅.

We recall that “DMP” stands for “Definable Multiplicity Property” and it says
that for any formula φ(x; a) ∈ L(K), there is a formula �(y) ∈ tp(a) such that
whenever C |= �(a′) then we have:

RM
(
φ(x; a′)) = RM

(
φ(x; a)) , degM

(
φ(x; a′)) = degM

(
φ(x; a))

(see, e.g., [27, Definition 1.1]). Some �-stable theories have DMP and some do not
(see Remark 4.3). We get the following obvious conclusion, which was also stated
in [1] under the assumption of finiteness of the Morley rank.

Proposition 4.2. If T is �-stable with quantifier elimination and has DMP, then
being T-PAC is first-order.

Proof. Since T has DMP, for each φ(x; y) ∈ L, there is �φ(y) such that for all
c ∈ C|y|, we have:

C |= �φ(c) if and only if degM
(
φ(x; c)) = 1.

Therefore, it is easy to write down a first-order axiom scheme expressing the T-PAC
property. �

Remark 4.3. We comment here on several particular �-stable theories.

(1) Proposition 4.2 applies to the case ofT = ACFp, that is to the classical notion
of PAC.
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(2) It is known that Morley degree is not definable in the theory DCF0 (see [16,
Question 1.2] and [17]). However, DCF0-PAC is still first-order as it was
shown in [41].

(3) It is open whether the theory of compact complex manifolds has DMP,
however another approach towards the PAC property works here, which
will be discussed in the next part. Partial results towards DMP for the theory
CCM were obtained in [45].

4.1.2. Noetherian theories. In this part, we assume that models of T are naturally
equipped with an extra topological structure. This assumptions is modelled on the
case of T = ACFp and the Zariski topology. Such issues were thoroughly discussed
in [52]. We diverge here a bit from the set-up of [52] to cover the case of the theory
DCF0 as well.

We start from a purely topological context. Assume that S is a Noetherian
topological space and let B be the Boolean algebra of constructible sets in S. In
this part, “irreducible” always refers to the topological irreducibility with respect to
a given Noetherian topology. The following properties are folklore and they can be
easily checked.

• If V is a non-empty closed irreducible subset of S, then

pV := {C ∈ B | intV (C ∩ V ) 
= ∅}

is an ultrafilter on B.
• The map V �→ pV is a bijection between the set of closed irreducible subsets

of S and the set of ultrafilters on B.

We specify now our model-theoretic context.

Definition 4.4. By a Noetherian theory, we mean a pair (T,
∑

), where T is
a complete L-theory and

∑
consists of L-formulas of the form ϕ(x; y), where

the variables x, y vary, such that for any M |= T and any A ⊆M , we have the
following:

• A subset V ⊆M |x| is said to be A-closed if and only if there is a ⊂ A and
ϕ(x; y) ∈

∑
such that V = ϕ(M ; a).

• The family of A-closed sets constitutes the family of closed sets of a Noetherian
topology, which we call the A-topology.

• Constructible sets with respect to the A-topology coincide with A-definable
subsets (in Cartesian powers of M).

Remark 4.5. (1) It should automatically follow (possibly after adding some
light assumptions such as the equality being in

∑
) that models of our

Noetherian theories are topological structures in the sense of [4, Definition
5.1] and [52, Section 2].

(2) The referee has pointed out to us that a very similar notion of a Noetherian
theory was recently introduced by Martin-Pizarro and Ziegler (see [30,
Definition 2.18]).
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Example 4.6. We discuss several examples and non-examples of the above
situation.

(1) The theory of algebraically closed fields (of a given characteristic) is
Noetherian by considering the Zariski topology.

(2) The theory of compact complex manifolds (CCM) is also Noetherian, where
the (Zariski) Noetherian topology is given by closed analytic subsets (see [52,
Section 3.4.2]).

(3) In the case of differential fields, we have the Kolchin topology.
• The theory DCF0 is Noetherian by [29, Theorem 2.4].
• More generally, the theory DCF0,m is Noetherian by [31, Theorem 3.1.7].
• The theory DCFp is not an example, since there is no quantifier elimination

down to Kolchin constructible sets (see [49, Section 3]).
(4) The theory SCFp,e with the 
-topology is not an example, since the 
-topology

is not Noetherian (see [33, Section 4.6]).

For a fixed A |= T∀ and n > 0, it is clear that the map V �→ pV is a bijection
between the set of appropriate A-closed A-irreducible sets and the Stone space
Sn(A) of n-types over A. In particular, any Noetherian theory is �-stable. We still
need to have a connection between the topology and forking, which is given by the
following.

Proposition 4.7. Assume that A ⊆M |= T and pV ∈ Sn(M ). Then, the type pV
does not fork over A if and only if V is definable over acl(A).

Proof. Since pV does not fork over A if and only if it does not fork over acl(A),
we can and will assume that A = acl(A).

(⇒) Let V = Vb and assume that Vb is not definable over A. Let us define

V0 :=
⋂

tp(c/A)=tp(b/A)

Vc.

SinceVb is not definable over A, we get thatV0 � V . By Noetherianity, V is definable
and closed. Since V0 is A-invariant, we get that V0 is A-definable. In particular, the
formula “x ∈ V \ V0” belongs to pV . Since the formula “x ∈ V \ V0” forks over A
(see, e.g., the characterization of forking from [40, Lemma 2.16(c)]), the type pV
forks over A.

(⇐) We assume that V is A-definable. It is enough to show that for any proper
M-closedW =Wb ⊂ V , we have that the formula “x ∈ V \W ” does not fork over
A. If this formula forks over A, then by (the logical) compactness, there is a finite
set of A-conjugates b = b1, ... , bn such that(

V \Wb1
)
∩ ... ∩ (V \Wbn ) = ∅.

But thenV =Wb1 ∪ ··· ∪Wbn and eachWbi is a proper M-closed subset of V, which
contradicts the M-irreducibility of V. �

We obtain the expected description of stationary types.

Corollary 4.8. LetA |= T∀, and pW ∈ Sn(A). Then, pW is stationary if and only
if W is absolutely irreducible, that is for anyM |= T containing A as a substructure,
W is irreducible in the M-topology.
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Proof. Let W =W1 ∪ ··· ∪Wn be the decomposition of W into the M-
irreducible M-closed components. By uniqueness, each Wi is defined over acl(A).
By Proposition 4.7, each type pWi does not fork over A. Since for each i, we have
clA(Wi) =W , we get that each pWi extends pW . It is easy to see now that Wi ’s
correspond exactly to non-forking extensions of pW , which concludes the proof. �

Similarly as in the case of Proposition 4.1, we get the following result.

Proposition 4.9. For any K |= T∀, we have that K is T-PAC if and only if for any
absolutely irreducible K-closed set V and any non-empty relatively K-openU ⊆ V , we
have that U (K) 
= ∅.

Remark 4.10. (1) In the cases of T = ACFp and T = DCF0,m, we can just
consider the condition “V (K) 
= ∅” in Proposition 4.9, since these topologies
have basis of open sets being definably isomorphic to affine closed sets. It
looks like there is no similar simplification for the theory CCM, since (at
least in the category of complex manifolds) being isomorphic to a compact
complex manifold would imply being closed.

(2) Proposition 4.9 together with item (1) above directly generalizes the classical
case of T = ACFp.

(3) For T = DCF0,m the description from Proposition 4.9 (together with item
(1) above) coincides with the definition taken in [46, Section 5.16] (see also
[25, Remark 4.7(1)]).

(4) For T = CCM, we believe that this notion has not been considered before.

Similarly as in the previous part, we get the following result.

Proposition 4.11. Assume that T is a Noetherian theory. If the topological
irreducibility is definable in T, then T-PAC is first-order.

We would like to single out one important case below.

Corollary 4.12. CCM-PAC is first-order.

Proof. By Proposition 4.11, it is enough to show that the topological irreducibil-
ity is definable in the theory CCM, which was shown in [44]. �

Remark 4.13. We would like to mention that Rahim Moosa pointed out to us
that an argument for the definability of the topological irreducibility in the case of
compact complex spaces can be also found in an earlier work of Campana. The
reader is advised to consult Section 3.B of Premiere Partie of [8].

For the terminology used in the next theorem, we advise the reader to recall
Definition 3.1(5).

Theorem 4.14. If G is finite, then the theory G-CCM, exists and it is supersimple
with geometric elimination of imaginaries, codes finite sets and has “semi” quantifier
elimination (in the same way as the theory ACFA).

Proof. The existence of G-CCM follows by Theorem 3.23 and Corollary 4.12.
The properties of G-CCM, listed in the statement, follow by Corollary 4.28, Theorem
4.36, Lemma 4.37, and Remark 4.13 from [21] after noticing that CCM is superstable
with elimination of quantifiers and elimination of imaginaries. �
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Remark 4.15. All the properties stated in Theorem 4.14 hold also in the case of
the theory CCMA [5]. One difference between G-CCM, for finite G, and CCMA
are the values of the SU-rank. As ACFA is stably embedded in CCMA, there is a
sort in CCMA on which the SU-rank is not finite. On the other hand, one can show
that the SU-rank of G-CCM is finite (sort-by-sort).

Remark 4.16. We finish this part with some comments on the theories of
differential fields.

(1) Let us recall here that for the theory DCF0,m the definability of Kolchin
topological irreducibility is equivalent to the (generalized) Ritt problem (see
[17]). However, the PAC property for DCF0,m is still first-order, which was
shown in [46].

(2) It may be a good moment to point out that the methods of this paper cover
that DCF0-PAC is first-order, but fail to generalize it to the case of DCF0,m

for m > 1. In [46], the general case is shown in the following way.
• First the authors of [46] show that “differential largeness” is a first-order

property (see [46, Proposition 4.7]).
• Then they show that DCF0,m-PAC is equivalent with the classical field PAC

together with the “differential largeness” (see [46, Section 5.16]).
The above scheme of a proof looks like a possible another general approach
(at least for the theories of fields with operators). We will discuss it further at
the end of this paper (see Remark 4.45).

4.1.3. Equational theories. In [42], the notion of an equational theory is
introduced. Briefly, a theory T is equational if any formula is equivalent (modulo
T) to a Boolean combination of instances of equations, where a formula ϕ(x, y) is
an equation (modulo T) if the family of definable sets given by finite intersections
of its instances (in any model of T) has the DCC (Descending Chain Condition).

The set-up of equation theories generalizes, in some sense, the set-up of
Noetherian theories from Section 4.1.2, since Noetherian theories are equational
“in a strong sense” that is the DCC condition holds not only in the case of instances
of one formula but for all closed sets with respect to the given Noetherian topology.
Not all the equational theories are Noetherian, since any Noetherian theory is
�-stable and, for example, Th(Z,+) is equational and not �-stable (see remark at
the end of Section 2 in [42]).

There is a natural notion of irreducibility in the case of equational theories and it
is possible that for an equation theory T, if this notion of irreducibility is definable,
then T-PAC is first order.

4.2. Fields of positive characteristic.. In this subsection, we focus on three
stable theories of fields of positive characteristic: SCFp,e (e finite), SCFp,∞, and
DCFp. There are several possible languages to consider for these fields of positive
characteristic and we will actually use three different options here.

4.2.1. Separably closed fields of finite imperfection degree. We consider the theory
SCFp,e (e finite) in the language L
,b , where b stands for an e-tuple of constant
symbols corresponding to a fixed p-basis and we also have symbols for unary
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-functions defined with respect to b (see [11, Section 1.8]). Then, the theory SCFp,e
has quantifier elimination and elimination of imaginaries (cf. [11, Section 1.8]).

Let us fix as usual a monster model C |= SCFp,e . We make the following
identification b = bC. A subfield K ⊆ C is an L
,b-substructure of C if and only if
b ⊂ K and b is a p-basis of K (in such a case the field extensionK ⊆ C is separable and
even étale). Each L
,b-substructure is definably closed and for L
,b-substructures,
the model-theoretic algebraic closure coincides with the field theoretic separable
closure (see [13, Section 1.6]) and similarly with forking (see [13, Section 1.8]).
Using the above, we immediately get the following description of regular extensions.

Fact 4.17. Let K0 ⊆ K1 be an extension of L
,b-substructures of C. Then, the
extension K0 ⊆ K1 is SCFp,e-regular if and only if K0 ⊆ K1 is a regular extension of
pure fields.

We describe now PAC structures in the theory SCFp,e . This description appeared
in [1], but the proof is only sketched there.

Theorem 4.18. Let K be a L
,b-substructure of C. Then, K is SCFp,e-PAC if and
only if K is a PAC field.

Proof. In this proof, K is a SCFp,e-substructure of C.
(⇒) Let us assume that K is SCFp,e-PAC and let K ⊆ N be a regular field

extension. Then, there is a field extension N ⊂ N ′ such that b is a p-basis of N ′ (we
recall that now b is a fixed p-basis of C). Therefore, we can assume that K ⊂ N ′

is an extension of L
,b-substructures of C. By Fact 4.17, K ⊆ N ′ is also a SCFp,e-
regular extension and K is L
,b-existentially closed in N ′. Therefore, K is also is
L
,b-existentially closed in N and K is existentially closed in N in the field sense,
hence K is a PAC field.

(⇐) Let us assume that K is a PAC field. Let b = (b1, ... , be) be a p-basis of K,
which is also a p-basis of C. We will consider the unary 
-functions


1,e , ... , 
pe ,e : C → C

(see [11, Section 1.8]) with respect to this p-basis (they preserve K). We also take a ∈
Cn such that p(x) := tp(a/K) is stationary and a quantifier-free L
,b(K)-formula
φ(x) ∈ p(x). We need to show that φ has a realization in K. We inductively unravel
all the terms appearing in the formula φ. For example, if we have

φ(x) : 
i,n
(

j,m(x) + x2) + x = 0,

then we set

ā :=
(
a, 
j,m(a), 
i,n

(

j,m(a) + a2)) .

Then, for any

(b1, b2, b3) ∈ locusK (ā),

we obtain that

b2 = 
j,m(b1), b3 = 
i,n
(

j,m(b1) + b2

2

)
.

As usual when we deal with fields, we can assume that there are only equalities
in the formula φ (by replacing negations of equalities with equalities in “higher
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dimensions”). Using the above procedure, we obtain a tuple ā = (a1, ... , at) such
that a = a1 and if we define

V := locusK (ā),

then for any b̄ ∈ V (C), we get that C |= φ(b̄). Since the type p is stationary, V is
absolutely irreducible. Therefore, we obtain b̄ ∈ V (K) such that C |= φ(b̄). �

There are three possible languages such that the theory SCFp,e (e finite) considered
in each of these languages has quantifier elimination: L
,b , L
, and the Hasse–
Schmidt language (see [51]). One could wonder whether such a choice of the
language affects the corresponding notion of a PAC-substructure. We address these
issues in general below.

Remark 4.19. Assume that T is a stable L-theory and T ′ is an L′-theory being
an extension by definitions of T. Consider a model M of T and its counterpartM ′

as an L′-structure (i.e., M equipped with the natural L′-structure), and a subset K
of M.

(1) If K is a PAC substructure in the sense of M, then K is an L′-substructure of
M ′ which is also a PAC substructure in the sense ofM ′.

(2) If K is a PAC substructure in the sense ofM ′, then K is a PAC substructure
in the sense of M.

For a finite group G, by Theorem 3.23 we get existence of the theory G – SCFp,e ,
which is the model companion of the theory of actions of G on characteristic p fields
of inseparability degree e. This theory was already analyzed in [24] using different
methods.

4.2.2. Separably closed fields of infinite imperfection degree. We consider the
theory SCFp,∞ in the languageL
, where the 
-functions are multi-variable (see [13,
Section 1.4]), this definition is recalled below (we follow [11, Section 1.8] here). For
each e > 0, we fix an enumeration (mi,e)1�i�pe of the monomials X i11 ... X

ie
e where

0 � i1, ... , ie � p – 1, and define the functions 
i,e : Ke ×K → K by considering
the following three cases. Let b1, ... , be, c ∈ K and 1 � i � pn.

Case 1 b1, ... , be are p-dependent.
We set 
i,e(b1, ... , be ; c) = 0.
Case 2 b1, ... , be, c are p-independent.
We set 
i,e(b1, ... , be ; c) = 0.
Case 3 b1, ... , be are p-independent and b1, ... , be, c are p-dependent.
We use the following defining formula:

c =
pe∑
j=1


j,e(b1, ... , be ; c)pmj,e(b1, ... , be).

Then, the theory SCFp,∞ has quantifier elimination in the language L
, but it does
not have elimination of imaginaries (see [11, Section 1.8]). As for any theory of fields,
SCFp,∞ eliminates finite imaginaries. Each L
-substructure is definably closed and
for L
-substructures, the model-theoretic algebraic closure coincides with the field
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theoretic separable closure (see [13, Section 1.6]) and similarly with forking (see [13,
Section 1.8]).

As in the previous part, we get the following description.

Fact 4.20. Let M |= SCFp,∞ and K0 ⊆ K1 be an extension of L
-substructures
of M. Then,K0 ⊆ K1 is SCFp,∞-regular if and only ifK0 ⊆ K1 is a regular extension
of pure fields.

We also need the following result of Tamagawa, which we phrase in geometric
terms.

Theorem 4.21 (Tamagawa, Proposition 11.4.1 in [18]). Let V be an absolutely
irreducible affine variety over a PAC field K of characteristic p > 0. Suppose
that f1, ... , fm ∈ K [V ] are p-independent in K(V ) and m is not greater than the
imperfection degree of K. Then, there is a ∈ V (K) such that f1(a), ... , fm(a) are
p-independent in K.

We need a slight enhancement of Tamagawa’s Theorem, which we state and show
below.

Corollary 4.22. Let V be an absolutely irreducible affine variety over a PAC field
K of characteristic p > 0 and infinite imperfection degree. Suppose that we have a
finite matrix (fi,j)i,j of elements of K(V ) whose rows are p-independent in K(V ).
Then, there is a ∈ V (K) such that each fi,j is defined at a and the rows of the matrix
(fi,j(a))i,j are p-independent in K.

Proof. We will often use the fact that the p-independence satisfies the Steinitz
Exchange Principle and yields a pregeometry (see [48, Remark C.1.1.3]), hence we
have the corresponding dimension notions, which we denote by dimKp and dimK(V )

p .
We deal first with the case when fi,j ∈ K [V ]. For simplicity, let us assume that

there are only three rows in our matrix and that each row has the same length m.
Let us denote these rows by (fi)i , (gi)i , (hi)i . After permutation, there are k, l � m
such that:

(1) f1, ... , fm, g1, ... , gk, h1, ... , hl are p-independent in K(V );
(2) f1, g1, ... , fm, gm ∈ clK(V )

p (f1, ... , fm, g1, ... , gk);

(3) f1, g1, h1, ... , fm, gm, hm ∈ clK(V )
p (f1, ... , fm, g1, ... , gk, h1, ... , hl ).

In particular, we obtain that

dimK(V )
p (f1, g1, h1, ... , fm, gm, hm) = m + k + l. (i)

By Theorem 4.21 and item (1) above, there is a ∈ V (K) such that

f1(a), ... , fm(a), g1(a), ... , gk(a), h1(a), ... , hl (a) are p-independent in K. (ii)

Using (ii) and Item (3) above, we obtain that

dimKp (f1(a), g1(a), h1(a), ... , fm(a), gm(a), hm(a)) = m + k + l. (iii)

We will show that this choice of a works. We focus on the most complicated
case, that is we will prove that h1(a), ... , hm(a) are p-independent in K (the
p-independence of g1(a), ... , gm(a) is indeed easier by item (2) above). Since
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h1, ... , hm are p-independent inK(V ), there are (after a permutation) v � m,w � k
such that f1, ... , fv, g1, ... , gw, h1, ... , hm are p-independent in K(V ) and

f1, g1, h1, ... , fm, gm, hm ∈ clK(V )
p (f1, ... , fv, g1, ... , gw, h1, ... , hm). (iv)

Using (i), (iii), and (iv), we obtain that

v + w +m = dimKp (f1(a), g1(a), h1(a), ... , fm(a), gm(a), hm(a)).

If h1(a), ... , hm(a) were p-dependent in K, we would obtain by (iv) that

dimKp (f1(a), g1(a), h1(a), ... , fm(a), gm(a), hm(a)) < v + w +m,

a contradiction.
We consider now that case when fi,j ∈ K(V ). Let U ⊆ V be an open

K-subvariety which is K-isomorphic to an affine variety such that is contained
in the intersection of all dom(fi,j). Then U is absolutely irreducible as well, and it
is enough to apply the previously shown case of fi,j ∈ K [V ]. �

Theorem 4.23. K be an L
-substructure of a monster model C |= SCF∞,e . Then,
K is SCFp,∞-PAC if and only if K is PAC and [K : Kp] = ∞.

Proof. For the left-to-right implication, we take K which is SCFp,∞-PAC. By
[13, Section 1.7], the properties of the generic 1-type in the theory SCFp,∞ imply that
[K : Kp] = ∞. As in the previous part, we notice that extensions ofL
-substructures
of models of SCFp,∞ are SCFp,∞-regular if and only if they are a regular extension of
pure fields. Now, the proof is identical to the proof of the corresponding implication
in Theorem 4.18.

For the right-to-left implication, assume that K is PAC and [K : Kp] = ∞. Let
us take a ∈ Cm such that p(x) := tp(b/K) is stationary and a quantifier-free L
-
formula φ(x) ∈ p(x) with parameters from K. We need to show that φ has a
realization in K.

Claim. There is b̄ = (b, b′) ∈ CN such that V := locusK (b̄) is absolutely irre-
ducible, and there is a finite matrix of rational functions (fi,j ∈ K(V ))i,j such
that for each i, fi,1, ... , fi,mi are p-independent in K(V ) and such that for all
c̄ = (c, c′) ∈ V (C), we have:

IF for each i, fi,1(c̄), ... , fi,mi (c̄) are p-independent in C, THEN C |= φ(c).

Proof of Claim. By [11, Lemma 2.9], the formula φ(x) is equivalent in C to an
L(K)-formula of the form:

∃y α(x, y) ∧ �(x, y),

where α is quantifier-free in the language of fields and � is a finite conjunction of
universal formulas expressing that some subtuples of xy are p-independent. Since
φ(x) ∈ tp(b/K), there is b′ ⊂ C such that

C |= α(b, b′) ∧ �(b, b′).

This is our choice of b′ as in the statement of this claim and the matrix of rational
functions is given just by the coordinate functions expressing that � is a “conjunction
of universal formulas expressing that some subtuples ofxy are p-independent” (each
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row in this matrix corresponds to one formula from the finite conjunction giving the
formula �). �

By Corollary 4.22, there is ā = (a, a′) ∈ V (K) such that for each i,
fi,1(ā), ... , fi,mi (ā) are p-independent in K. Since the field extension K ⊆ C is
separable, each fi,1(ā), ... , fi,mi (ā) is also p-independent in C. By Claim, we get
that C |= φ(a), which we needed to show. �

Theorem 4.24. If G is finite, then the model companion of the theory(
(SCFp,∞)∀

)
G

, denoted by G – SCFp,∞, exists.

Proof. We want to use Theorem 3.23, so we need that SCFp,∞ has QE, FS+,
ST+ and that PAC is a first-order property in SCFp,∞. After Theorem 4.23, the only
thing which needs to be checked is ST+, which might be a well-known fact, but as
we could not find a proof of it, we noticed that one can adapt the proof of Lemma
4.16 from [6]. �

4.2.3. Differentially closed fields. We consider the theory DCFp in the language
L
0,D , where 
0 is the inverse of Frobenius on pth powers and identically 0 elsewhere.
Then, DCFp has quantifier elimination [49, Theorem 11], but it does not have
elimination of imaginaries [34, Remark 4.3]. It was shown in [47] that the theory
DCFp is stable.

Remark 4.25. The above “
0-notation” was introduced by the second author in
[28] and perhaps it was not a very good choice, since:

• it does not follow the original “r-notation” of Wood (see [50, Section 2]);
• 
∅ is defined as the identity function in [33, Section 4].

However, for the empty tuple b̄ the most natural interpretation of 
0(=
0,0) is the
one given above. Since this 
0-notation was already used in several other papers, we
stick with it in this paper as well.

We think that the result below is a folklore, but we could not find a reference, so
we give a proof instead.

Fact 4.26. Let (C, D) |= DCFp be a monster model and K be an L
0,D-
substructure of (C, D). Then we have the following:

(1) The model-theoretic algebraic closure of K coincides with its field theoretic
separable closure.

(2) K = dcl(K).

Proof. Since K is an L
0,D-substructure of (C, D) |= DCFp, the field extension
K ⊆ C is separable (see, e.g., the beginning of the proof of [6, Proposition 4.10],
where this separability appears in a much more general context). Therefore, K is a
also aL
,D-substructure of (C, D), whereL
,D is the language with function symbols
for all 
-functions.

For item (1), we note that the separable closure of K is still a L
,D-substructure
of (C, D). By (a more general) [6, Lemma 4.14], we get our description of the
model-theoretic algebraic closure.

For item (2), if a ∈ dcl(K), then by item (1), we get that a is separably algebraic
over K. Since D on K extends uniquely to K sep, by quantifier elimination of DCFp
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in L
0,D (or L
,D), we get that the type tpDCFp (a/K) is isolated by fa : the minimal
polynomial of a over K. Since a ∈ dcl(K), we get that deg(fa) = 1, so a ∈ K , which
we needed to show. �

Again, we need the following description of regular extensions with respect to the
theory we consider. It follows immediately from Fact 4.26.

Fact 4.27. Let (C, D) |= DCFp be a monster model and (K0, D) ⊆ (K1, D) be an
extension of L
0,D-substructures of C. Then, K0 ⊆ K1 is DCFp-regular if and only if
K0 ⊆ K1 is a regular extension of pure fields.

We specify now an L
0,D-theory of some differential fields in positive characteris-
tic. We need the following working definition first.

Definition 4.28. Let K be a field of characteristicp > 0. A tuple (V ;f1, ... , fn) is
admissible, if V is a K-irreducible affine K-variety and f1, ... , fn ∈ K(V ) \K(V )p.

We note the following obvious property.

Remark 4.29. Let K ⊆M be a field extension. For any f ∈ K(V ) and any a ∈
V (M ) generic of V over K, we have that f ∈ K(V )p if and only if f(a) ∈ K(a)p.

Lemma 4.30. Assume that K is PAC of infinite imperfection degree (actually, non-
perfect would be enough). Then, the above notion of an admissible tuple is first-order
in parameters of this tuple.

Proof. Let us take f ∈ K(V ). By Corollary 4.22, we obtain that f ∈ K(V )p

if and only if f(V (K)) ⊆ Kp. Since the second condition is clearly first-order, the
result follows. �

The next question is not related to our results and we find it a bit amusing. The
answer may be simple, but we were unable to find it.

Question 4.31. Is the property “f ∈ K(V )p” first-order in parameters of f and V
for an algebraically closed K (that is: modulo the theory ACFp)?

To state our axioms for PAC-DCFp differential fields, we need to recall some
notions. We decided to work here with the case of differential fields for the clarity
of presentation, however, as we will see in Section 4.3, these results hold in a much
greater generality. Still, our references here come from this more general context,
since we do not know any source where they are stated exactly for the differential
case.

Let (K,D) be a differential field (for a while the characteristic of K does not
matter) and V be a K-variety. Then, �D(V ) denotes the prolongation of V with
respect to D, which in this case can be described as a torsor of the tangent bundle
of V (see [39, Definition 1.4] and [36, Definition 4.1]). We have a natural map (see,
e.g., [6, Remark 2.13]):

DV : V (K) −→ �D(V )(K).

Let K ⊆ Ω be a field extension and a, a′ ⊂ Ω be such that

V = locusK (a), W = locusK (a, a′).

For reader’s convenience, we recall now two results from [6] which we will use.
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Lemma 4.32 (Lemma 3.5 in [6]). The following are equivalent:
(1) There is a derivation D′ : K [a] ⊆ K [a, a′] extending D such that D′(a) = a′.
(2) W ⊆ �D(V ).

Assume that V,W are K-varieties as in the statement of Lemma 4.32, that is,
W ⊆ �D(V ). Let � :W → �D(V ) denote the inclusion morphism and

α := �VD ◦ � :W → V.
Consider the following (not necessarily commutative!) diagram:

�D(W )
�WD

�����
���

���
���

�
�D (α)

����
���

���
���

��

W
� �� �D(V ).

Using this diagram, we define the following K-subvariety of �D(W ):

E := Equalizer
(
�D(α), � ◦ �WD

)
=

{
a ∈ �D(W ) | �D(α)(a) = � ◦ �WD (a)

}
.

The following result is crucial.

Theorem 4.33 (Proposition 3.6 in [6] specialized to the case of derivations). The
following are equivalent:

(1) The morphism �E : E →W is dominant.
(2) There is a derivation on K(a,D(a)) extending D : K [a] → K [a,D(a)].

We state our axioms below.
Axioms for D – PAC
Let (K,D) be a differential field of characteristic p > 0 and for each pair of affine

K-varieties (V,W ) and each tuple f1, ... , fn ∈ K(V ) such that:

• W is absolutely irreducible,
• W ⊆ �D(V ),
• the projection � :W → V is dominant,
• E projects dominantly on W,
• the tuple (W ;f1 ◦ �, ... , fn ◦ �) is admissible;

there is x ∈ V (K) such that f1(x), ... , fk(x) are not pth powers in K andDV (x) ∈
W (K).

By standard arguments (see, e.g., [23, Remark 2.7(1)]) and Lemma 4.30, the above
axiom scheme is first-order. An essential argument using Theorem 4.33 in the proof
of the result below follows the ideas of the proof of [41, Proposition 5.6].

Theorem 4.34. Let (K,D) be a differential field of characteristic p > 0 considered
as an L
0,D-structure. Then, (K,D) is DCFp-PAC if and only if (K,D) is D-PAC (as
defined above).

Proof. For the left-to-right implication, we assume that (K,D) is DCFp-
PAC and ((V ;f1, ... , fn),W ) is as in the assumptions of the axioms of D-
PAC. By Lemma 4.32, there is a derivation D′ : K(V ) → K(W ) of the inclusion
K(V ) ⊆ K(W ) (given by the dominant morphism � :W → V ). By Theorem 4.33,
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D′ extends to a derivationD′′ : K(W ) → K(W ). Since W is absolutely irreducible,
the extensionK ⊆ K(W ) is regular and (K,D) ⊆ (K(W ), D′′) is also a differential
field extension. By Fact 4.27, (K,D) ⊆ (K(W ), D′′) is a DCFp-regular extension.
Since (K,D) is DCFp-PAC, we get that (K,D) is existentially closed in (K(W ), D′′)
(in the language L
0,D).

Let us choose:

a = idK [V ] ∈ V (K(V )) ⊆ V (K(W )).

Then, as usual, we have D′′
V (a) ∈W (K(W )). Since a is a generic point of V over

K, by Remark 4.29, we get that f1(a), ... , fk(a) are not pth powers in K(W ).
Since (K,D) is existentially closed in (K(W ), D′′) (in the language L
0,D), there is
α ∈ V (K) such thatf1(α), ... , fk(α) are not pth powers in K andDV (α) ∈W (K).

For the right-to-left implication, we assume that (K,D) is D-PAC. Let us take
a ∈Mn such that p(x) := tp(a/K) is stationary and a quantifier-free L
0,D(K)-
formula φ(x) ∈ p(x). We need to show that φ has a realization in K. As usual, we
can assume that φ does not contain negations of equalities. We will “correct” now
the formula φ(x) (at the cost of adding extra variables, some fixed terms, and a new
tuple of elements of M including a) into a new formula ϕ(x̄) ∈ LD over K such that
x̄ = (x1, ... , xl ) and x1 = x.

We illustrate this “correction” using an example first. Assume that the formula
φ(x) has the following form:

D
[

0

(
D

(

0(x)) +D(x)

)]
+ x = 0.

We consider two cases, where each of them has two subcases. For the new variables,
we will use y, z rather than x2, x3.
Case I : 
0(a) = 0.
Subcase I.1: 
0(D(a)) = 0 (so: a = 0).
The “correction” is ϕ(x) : x = 0 and there are no extra variables and no fixed terms.
Subcase I.2: 
0(D(a)) 
= 0.
The “correction” is

ϕ(x, y) : yp = D(x) ∧D(y) + x = 0,

the fixed term is t1(x̄) = x, and ā = (a,D(a)1/p).
Case II : 
0(a) 
= 0 (so: D(a) = 0).
Subcase II.1: 
0

(
D

(

0(a))

)
= 0.

It cannot happen, since then a = 0 and 
0(a) 
= 0.
Subcase II.2: 
0

(
D

(

0(a))

)

= 0.

The “correction” is

ϕ(x, y, z) : yp = x ∧ zp = D(y) +D(x) ∧D(z) + x = 0,

there are no fixed terms, and

ā =
(
a, a1/p,

(
D

(
a1/p

))1/p
)
.

The general procedure can be explained using induction on the complexity ofL
0,D-
terms over K. We obtain a quantifier-free LD formula ϕ(x̄) over K, LD-terms
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t1(x̄), ... , tk(x̄) over K such that

(∗) if (K,D) |= ϕ(ᾱ) and t1(ᾱ) /∈ Kp, ... , tk(ᾱ) /∈ Kp, then K |= φ(α),

and ā such that (M,D) |= ϕ(ā) and t1(ā) /∈Mp, ... , tk(ā) /∈Mp.
Let us take now a quantifier-free L formula �(x̃) over K such that

ϕ(x̄) : �
(
x̄, D(x̄), ... , Dm(x̄))

for some m ∈ N. Let us define:

ã :=
(
ā, D(ā), ... , Dm(ā)) , V := locusK (ã) , W := locusK

(
ã, D(ã)) .

Let � :W → V denote the dominant projection on the “ã-coordinates”. There are
rational function symbols f1(x̃), ... , fk(x̃) over K such that for each i, we have

ti(x̄) = fi
(
x̄, D(x̄), ... , Dm(x̄)) .

Therefore, we obtain that for each i,

fi (ã) = ti (ā) /∈Mp ⊇ K
(
ã, D(ã))

p
= K(W )p,

so (W ;f1 ◦ �, ... , fn ◦ �) is an admissible tuple.
Let us take α̃ ∈ V (K) such that f1(α̃), ... , fk(α̃) are not pth powers in K and

DV (x) ∈W (K). By the construction we get that

α̃ =
(
ᾱ, D(ᾱ), ... , Dm(ᾱ)) .

Therefore, we obtain (K,D) |= ϕ(ᾱ) and t1(ᾱ), ... , tk(ᾱ) are not pth powers in K.
By (∗) above, we obtain that K |= φ(α). �

Remark 4.35. It was shown in [19] that the “equalizer condition” on the
dominant map E →W can be replaced with the easier condition of separability
of the mapW → V and then we still get geometric axioms of DCFp (it also applies
to the case of derivations of the Frobenius map). However, we do not know whether
such a replacement would also work for the PAC-axioms, since we will not have
Theorem 4.33 after such a replacement.

Theorem 4.36. If G is finite, then the model companion of
(
(DCFp)∀

)
G

, denoted
by G – DCFp, exists.

Proof. Once again, we would like to use Theorem 3.23. We have that DCFp
satisfies FS+ and it will be shown in a greater generality (see again Section 4.3) that
types over algebraically closed sets are stationary (so ST+ follows). Theorem 4.34
assures us that the PAC property is first order in DCFp. �

We would like to include here the following general result which will be
immediately useful.

Remark 4.37. Let T be a L-theory with quantifier elimination and G be an
arbitrary group.

(1) If the theory G – T exists, then the theory G – (T eq)m exists as well, where
the superscript “m” denotes the Morleyization.

(2) If G is finite, T is stable, and the theory G – T exists, then the theory
G – (T eq)m is simple.
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Proof. The proof of item (1) is straightforward and we leave it to the reader.
Item (2) follows from [21, Corollary 4.28]. �

Using Remark 4.37, we obtain the following.

Corollary 4.38. Let G be a finite group and p be a prime number.

(1) The theory G – SCFp,∞ is strictly simple, that is simple, not stable, and not
supersimple.

(2) The theory G – DCFp is strictly simple as well.

4.3. Fields with operators. In this subsection, we briefly explain how to generalize
Theorem 4.34 beyond the case of differential fields. We recall below some of the set-
up from [6].

Let k be a field and B be a finite local k-algebra of dimension e. Assume that we
have a k-algebra map �B : B → k. Let {b0, ... , be–1} be a fixed k-basis of B such that
b0 = 1 and �B(bi) = 0 for i > 0. For convenience, we also set d := e – 1.

Definition 4.39. Assume that R and T are k-algebras and let ∂ = (∂0, ... , ∂d )
where ∂0, ... , ∂d : R→ T are k-algebra homomorphisms.

(1) If R = T and ∂0 = id, then we say that ∂ is a B-operator on R if the
corresponding map

R 
 r �→ ∂0(r) ⊗ b0 + ··· + ∂d (r) ⊗ bd ∈ R ⊗k B

is a k-algebra homomorphism. We will also denote the map above by the
same symbol ∂ .

(2) More generally, if the corresponding map

R 
 r �→ ∂0(r) ⊗ b0 + ··· + ∂d (r) ⊗ bd ∈ T ⊗k B

is a k-algebra homomorphism, then we say that ∂ is a B-operator from R to
T. Note that if ∂ is a B-operator from R to T, then ∂0 : R→ T is a k-algebra
homomorphism.

Assume that (K, ∂) is a field with a B-operator and V is an affine K-variety. The
notion of a prolongation �∂(V ) was defined in this generality (see [37]). Under the
additional assumption of FrB(ker(�B)) = 0 (see [6, Remark 3.3]), we get the versions
of Lemma 4.32 and Theorem 4.33 (actually, the references from Section 4.2.3 are
coming exactly from the B-operator context). We get the corresponding Axioms for
∂-PAC (with the identical formulation) and a generalization of Theorem 4.34. The
proof of this generalization is conceptually the same, but would be more cumbersome
to write comparing to the proof of Theorem 4.34. Therefore we decided to include
the general case of B-operators as this comment only.

Remark 4.40. The argument above works in the even more general case of
B-operators (replacing B-operators from Definition 4.39) as considered in [20]. The
main example of a B-operator which is not a B-operator is a derivation of the
Frobenius map.

Remark 4.41. Using Theorem 3.23, we obtain that for a finite group G, the
theory of G-actions on fields with B-operators (and also on fields with B-operators)
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has a model companion. It may be shown more directly and without going through

-functions. The axiomatization is as follows.

Axioms for G-B-DCF
The structure (K, ∂, �) is a G-B-field such that for each pair (V,W ) of KG -

varieties, IF:

• the action of G on K is faithful,
• V and W are K-irreducible,
• W ⊆ �∂(V ),
• W projects generically on V,
• E projects generically on W ;

THEN there is x ∈ V (KG) such that ∂V (x) ∈W (KG).

4.4. Other examples and questions. We discuss now some other examples and ask
some questions. In [41], an example of a stable theory T is given such that the class
of T-PAC structures is not elementary. However, the theory T in this example does
not have quantifier elimination, so from our perspective it is not a good theory to
test whether the PAC property is first-order.

More precisely, in [41, Example 5.1] the theory of an equivalence relation with
exactly one finite class of n elements for eachn > 0 appears. This theory is (implicitly)
considered in the natural language with one unary relation symbol. Then, this theory
is not even model complete, since finite classes in a model may become infinite in
its extension. Similarly, one can see that this theory is not inductive. Therefore,
to have any hopes for quantifier elimination, one needs to add to the language
the unary predicates (Rn)n>0 naming all finite equivalence classes (see also [41,
Example 5.2], where each element of each finite equivalence class is named). Using
Robinson’s Test, it is not difficult to check that with such a choice of the language this
theory becomes model complete and also substructure complete, so it has quantifier
elimination. Then, taking algebraic closure is the same as adding “missing points”
in all named finite classes. Therefore, ifM ⊆M ′ andM ′ is a subset of a model, then
acl(M ) ∩M ′ =M if and only if for all n, we have Rn(M ) = Rn(M ′). Thus, M is
PAC if and only ifM = dcl(M ) and M is infinite, so PAC is a first-order property
in this case (note that definably closed substructures are such ones that each finite
class does not have “co-size one”).

As a conclusion, we do not know any stable theory T with quantifier elimination
such that the class of T-PAC structures is not elementary. We formulate the relevant
question below.

Question 4.42. Assume that T is stable and has quantifier elimination. Is the class
of T-PAC structures elementary?

Positive answer to the question above implies (using Theorem 3.23) that for a
finite group G and for T as above eliminating strong types and coding finite sets, the
theory of actions of G on models of T∀ has a model companion.

Remark 4.43. This is related to a general conjecture of the first author (see [21,
Conjecture 5.2]):

“Assume that T0 is theory with a model companion and G is a finite group. Does
the theory of G-actions on models of T0 have a model companion?”
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This conjecture was meanwhile refuted in [7, Remark 3.9(2)], where T0 is the
theory of difference fields. In this example, the model companion of T0 (the theory
ACFA) is neither stable nor it has quantifier elimination.

To pursue the answer for the above question one can start with somehow stronger
assumption:

Question 4.44. Assume that T has nfcp (no finite cover property) and has quantifier
elimination. Is the class of T-PAC structures elementary?

The above assumption on not having the finite cover property is related to the
PAC property a little bit in Remark 3.6 in [41], but the main point here is that it
was shown in general that a stronger variant of the notion of nfcp (i.e., T does not
admit obstructions) implies the model companion of the theory of models of T with
a group action of Z exists [3].

Let T be a stable theory with quantifier elimination. If we replace a finite group G
with the cyclic infinite group Z, then the model theory of actions of Z on models of
T (we do not have distinguish between T∀ and T in this case) has been thoroughly
studied (see, e.g., [12] and [14]). An analogue of our Question 3.24 was asked in
before Lemma 4.2 in [41], that is it is asked there whether the existence of the theory
TA (which is called Z – T in this paper) implies that T-PAC is first order. The main
result of this paper, Theorem 3.23, gives the opposite implication in the case of finite
groups. Such an implication is not true in the case of the actions of Z (see [41,
Example 5.2]).

Remark 4.45. To keep this paper reasonably sized, we have not checked all the
known stable theories. However, there is one theory which we would not mind to
analyze but the methods of this paper do not suffice to do that. This is the theory
DCFp,m for m > 1, that is the theory of differentially closed fields of characteristic
p > 0 with m commuting derivations, see [38] where the theory of differentially
closed fields with m commuting derivations is considered in arbitrary characteristic
(it is called m-DCF in [38]). Similarly as in the case of DCF0,m form > 1, we can not
repeat our argument from the proof of Theorem 4.34, since we do not have a version
of Theorem 4.33 in the case of several commuting derivations. It looks natural here
to apply the approach of [46] described briefly in Remark 4.16(3) that is:

• develop the appropriate notion of largeness for differential fields of positive
characteristic;

• show that the above notion is first-order;
• show that DCFp,m-PAC is the same as the largeness above together with the

PAC in the sense of fields.

We plan to pick it up in a further research.
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