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Counting the Number of Integral Points
in General n-Dimensional Tetrahedra
and Bernoulli Polynomials

Ke-Pao Lin and Stephen S.-T. Yau

Abstract. Recently there has been tremendous interest in counting the number of integral points in
n-dimensional tetrahedra with non-integral vertices due to its applications in primality testing and
factoring in number theory and in singularities theory. The purpose of this note is to formulate a
conjecture on sharp upper estimate of the number of integral points in #-dimensional tetrahedra with
non-integral vertices. We show that this conjecture is true for low dimensional cases as well as in the
case of homogeneous n-dimensional tetrahedra. We also show that the Bernoulli polynomials play a
role in this counting.

1 Introduction

Let A(ay,...,a,) be an n-dimensional tetrahedron with nonintegral vertices de-
scribed by

X X X
(1.1) 224 421 x4 >0,...,%,>0

a  a an

wherea; > a, > --- > a, are positive real numbers. Let

n x
1.2 . a:#{ x) € (Zyu oV —’gl}
(1.2) Qlar,an) (X1, .-, %) € (Z4 U{0}) ;ai
n X
(1.3) Plareway = #{ (1, %) €72 o< 1}

i=1

Letb; = a;(1 — Z;’Zl aij), 1 < i < n. Then

(1.4) Pa,...any = Qoy,...b)-
In number theory, people are interested in sharp estimates of Q(,, . 4,) for applica-

tion in primality testing and factoring. Given a set P of primes p; < p, < -+ <
pn < y, number theorists want to count the number of integers m < x where
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m= pf‘ pﬁz - pln, x = y" forall u > 2. This is equivalent to counting the number

of (U1,...,4,) € (Zy U {0})" such that ¢;1log p; + - - - + £, log p, < logx, which is
also equivalent to counting the number of (¢1,...,¢,) € (Z; U {0})" such that

logx  ulogy

gl 62 n
—+—=+.--+— <1 wherea; = = .
a @ an logpi  logp;

Let f: (C",0) — (C,0) be a complex analytic function with isolated critical point
attheorigin. Let V = {z € C" : f(z) = 0}. The geometric genus p, of the singularity
(V,0) is defined to be dim T'(V — {0}, Q"= 1) /L*(V — {0}, Q" '), where Q" ! is the
sheaf of germs of holomorphic (n — 1)-forms on V — {0}. It is well known that
geometric genus is an important numerical invariant which measures the complexity
of the singularity (V, 0).

Let f(z1,...,20) = Yayz*, where z* = zi\l . -zﬁ", be the power series expansion
of f. The Newton boundary I'(f) is the union of the compact faces of I',.(f) where
[ (f) is the convex hull of the union of the subsets { \+(R. )"} for A such that a) # 0.
The Newton polyhedron I'_(f) of f is the cone over I'( f) with cone point at 0. For
each closed face A C T'(f), we define fa(z) = Yayz*, A € A. f is nondegenerate if
fa has no critical point in (C*)" for any A € I'(f) where C* = C — {0}.

Theorem 1.1 (Merle-Teissier) Let (V,0) be an isolated hypersurface singularity de-
fined by a nondegenerate holomorphic function f: (C*;0) — (C,0). Then the geomet-
ric genus pg = #{P € ZL NT_(f)}.

We say that f(zi,...,z,) is weighted homogeneous of type (wy,...,w,), where
wi, ..., w, are fixed positive rational numbers, if f can be expressed as a linear com-
bination of monomials z}' - - -z for which i, /w; + --- + i,/w, = 1. Therefore
for an isolated singularity defined by a weighted homogeneous polynomial of type
(w1, ..., w,), computing the geometric genus is equivalent to computing the num-
ber Py, ... w,)» i-€., the number of positive integral points in n-dimensional tetrahedra

AAAAA

ematicians. Hardy and Littlewood wrote a series of papers for n = 2 [Ha-Lil]
[Ha-Li2] [Ha-Li3] [Ha-Li4]. D. Spencer [Sp1] [Sp2] followed up the efforts of Hardy
and Littlewood and wrote two papers on this subject. In recent years, there are
tremendous activities in finding the exact formula for Q, . 4,) or P, . 4, for
ai, ..., a, integers, see [Mol], [Mor] [Po],[Ca-Sh], [Br-Ve2], [Di-Ro], [Ka-Kh]. The
exact formula is complicated. It involves the generalized Dedekind sum. It is diffi-
cult to tell how large P(,, ., is from the exact formula. Therefore one would like to
get a sharp upper estimate of P,, _,,) in terms of a polynomial in a,, . .., a,. Such
a sharp upper polynomial estimate of P(,, . 4, is important because it would have
application in the following Durfee Conjecture [Du].
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Durfee Conjecture (1978) Let (V,0) be an isolated hypersurface singularity defined
by a holomorphic function f: (C",0) — (C,0). Let

pw=dimC{z,z2, ..., 20}/ (foys frrs -+ 5 J2,)

be the Milnor number of the singularity. Then n! p, < 11 where p, is the geometric genus
of (V,0).

If f(z) is a weighted homogeneous polynomial of type (w1, . .., w,), then the Mil-
nor number g is given by p = (w; — 1)(w, — 1) --- (w, — 1). Therefore Durfee
Conjecture is a special case of the following conjecture.

Conjecture 1.1 Let ay, ..., a, be positive real numbers greater than or equal to two.
Then
(1.5) nl Pa,,.ay < (a1 —1)(ag —1)---(ay, — 1).

The estimate in the above conjecture is sharper than the following polynomial
estimate (1.7) provided by number theorist. Attach a unit cube to the right and
above each lattice point of A(ay, ..., a,). Then

Q(ay,....a,) = 2 volume of the unit cube attached to each lattice point

n
1
< volumeof{(xl,...,xn) eRﬁ:le < 1}
(1.6) — g
1 /T 1"
= (Ile) (e 32 2)
Toi=l j=1

Hence by (1.4) and (1.6), we have

(1.7) S%(Hk,)(l+;b%)n
1S
= lla

i=1

provide a solution of the following thirty year old problem in singularities theory.
Problem Let f: (C",0) — (C,0) be a complex analytic function with isolated criti-

cal point at the origin. Find an intrinsic characterization for f to be a homogeneous
polynomial.
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In order to solve the above problem, we need a sharp upper polynomial estimate
of P, ....a,) such that equality holds if and only a; = a, = --- = a, = integer. The
intrinsic characterization of homogeneous polynomial problem was solved for n = 3
by Xu and Yau [Xu-Yal] and for n = 4 by Lin and Yau [Li-Yal]. The purpose of this
paper is to formulate a conjectural sharp polynomial upper estimatefor P,
that equality holds if and only ifa; = a, = - - - = a,, = integer. In Section 2, we show
that our conjecture is true for n = 3, 4 and 5. In Section 3, we give an exact formula
for P, .4, for homogeneous n-dimensional tetrahedra (i.e, a; = --- = a,). We
show that our conjecture is also true in this case. In Section 4 we discuss the possible
role of Bernoulli polynomials in this problem.

2 Sharp Polynomial Upper Estimate

Before we formulate our sharp polynomial upper estimate conjecture, it is convenient
to introduce some notations. Let g, a;, .. ., a, be positive real numbers greater than
or equal to n — 1. We shall denote

21) s'= Z iyiy--ig, STl=1, STl=1.2...(n—1)

1<y <iy<--<ip<n—1

where iy, 1,, ..., i are integers. Then

a(a—l)(a—2)~-(a—(n—l))

n—1
:Cln— (Zil)anil +(—1)2 Z 1.11'261”72
i1=1 1<i<i <n—1
(2-2) n—1

DY iliz-.-ika"*M---+(—1)”*1( i)a

1<) << <n—1 i=1

=a"+ (=D)ST T (12T T e ()RS

+o+ (=) a.

We shall denote
. 1
23 io= (ITa) S S
i=1 1<61<ip < <ig<n
n
(2.4) Ar=1]a A5=1
i=1
Observe that A _, is a polynomialin ay, .. ., a, of degree n — k.

The following is our conjecture on sharp polynomial estimate for P, .. 4,)-
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Main Con]ecture Let Py, 0y = #{(x1,...,%,) € 21} : % +t ;‘—n < 1}, where
ay>a>--->a,>n—1,n>3. Then
(2.5)
n Sn_l n n 1
n P..an < [ [ ai (Hai) ( —)
L - L- ag
i=1 i=1 k=1
Sn 1 n—1 n—1 1
gy (o) (2 3)
Sn 1 n—1 l
+ 'y (1) ( )
(= ) Ha’ . Z aj, a;,
1<ii<i <n—1
= 1
+ 'y () ( )
H 1 2 ai, i, ai,

1<i <ir<i3<n—1

bt kﬂ(n‘)( —

Al
1<ij<--<ip<n—1 112 i

Sn 1
(D" L (a ray e tag)

()

Snl Sn—l ?’l 1
=AM+ (— 1)1 Al (=12 + (-1 =2—a""!

ey (z)“

Sn—l Sn 1
+(_1)4 4 :4+ +( 1)k+l k+1 A" 1

()" ()

S
+( l)nlnlAnl

()

and the equality holds if and only ifa; = a, = - - - = a,, = integer.

For n = 3, the Main Conjecture asserts that for a; > a, > a3 > 2,

s? S3
31 Pay 0y.07) < Ag 1A3 : A2

30

1+2 1 1 1 2 1 1
= a10243 — ﬂlazaa(— +—+ —) + —alaZ(— + —)
3 ap  a, 4a; 2 a @

= a1ma3 — (a1a; + aya3 + aas) + (a; + az)

with equality if and only if a; = a, = a3 = integer. This is the main result proved by
Xu and Yau in their paper [Xu-Yal].
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For n = 4, the Main Conjecture asserts that for a; > a, > a3 > a4 > 3,

4 S? 4 2 Sg 3 3 Sg 3
4! P(al,ﬂzﬁaam) < A4 + (_l)zAg, + (—1) TAZ + (—1) TAI
() ()
1+2+3 1 1 1 1
= a,a,a304 — 7a1a2a3a4(— b — 7)
4 ay ap as ay

1-2+1-3+2-3 1 1 1
+—a1a2a3(—+—+—)
a; a) as

1-2-3 1 1 1
— 3 a1a2a3(—+—+—)

3
= a1adasa4 — 5(611612&3 + ayaa4 + ajazas + a2a3a4)
11
+ ?(maz +ayaz + a2a3) — 2(&1 +a; + a3)

with equality if and only if a;, = 4, = a3 = a4 = integer. Xu and Yau [Xu-Ya3]
proved thatif a; > a, > a3 > a4, > 2 and P, 4, 4,.4,) > O, then the above result is
true. Lin and Yau [Li-Yal] proved that the condition P(,, 4, 4,.4,) > 0 can be removed
if we assume a; > a; > a3 > as > 3. Therefore our Main Conjecture is true for
n=4.

For n = 5, the Main Conjecture asserts that fora; > a, > a3 > a4 > a; > 4.

5! P(a1 12,a3,d4,05)

St St St Y

S AT+ (CD AT GRAT — GRAT AT

W Q6

1+2+3+4 1 1 1 1 1

= a1a,a30405 — 7(11(12113(14(15(— +—+—+—+ —)

5 a, 4dp a4z d4 as

(1-241-3+1-4+2-3+2-4+3-4) 1 1 1 1
+ a1a2a3a4(—+—+—+—)
4 a;  a az a

(1-2-3+1-2-441-3-4+2-3-4)
- 4
()

1 1 1 1 1 1
( +—+—+—+—+—)

a1a,0a304

aay adjds  ayasg  dxds  axds 430y

1-2-3-4 1 1 1
+ 7&1161203&4( + + )
4 a1a,das 1404  (rd304

= a1dasasds — 2(&11&1203&4 + ajaxasas + ayaasas + ayasagas + 61203&14615)

35
+ Z(a1a2a3 + ajaza4 + a1aza4 + araszay)

25
— ?(ﬂlaz +ayas +ayas + axas +aas + 613&4) + 6(611 +a;+as+ a4)
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with equality if and only if a; = a, = a3 = a4 = as = integer. This is the main result

proved by Lin and Yau in their paper [Li-Ya3].

3 Number of Positive Integral Points in a Homogeneous n-Dimen-
sional Tetrahedron

In this section we shall prove that our Main Conjecture in Section 2 holds for homo-
geneous n-dimensional tetrahedra A(a, a, ..., a). We first start with an elementary
summation by parts lemma.

Lemma 3.1 Let {u}, {vk}, k = 1,..., nbetwo sequences of numbers. Then

n n n r—1
(3.1) Zum=unZVk—Z[(ur—ur71)Zw}.
k=1 k=1 r=2 k=1

Proof We shall prove (3.1) by induction. (3.1) is obviously true for n = 2. Assume
that (3.1) holds for n — 1. Then

n n—1
E UV = E UrVr + U, vy
k=1 k=1

n—1 n—1 r—1
= Up_1 E Vi — E [(ur—ur_l) E Vk} + UpVy
k=1 r=2 k=1
n n—1 n—1 n—1 r—1
= uy, § Vi — Uy § Vit Uy § Vi — E {(ur—uH) E Vk]
k=1 k=1 k=1 r=2 k=1

n—1 r—1

n n—1
n Ve — (thy = Up1) Y Ve — Z[(ur — Ur—1) Vk}
k=1 k=1

r=2 k=1

n n r—1
:unzvk_Z[(ur_ur—l)ka} u
k=1 r=2 k=1

Theorem 3.1 Let n > 2 be a positive integer and a > n. Let P, be the number of
positive integral solutions of *+ + %2 + .. + 7 < 1, ie, P, = #{(x1, %2, ..., %,) € 2 :
42 4.4 2 1), Let [a] be the greatest integer less than or equal to a. Then

n! P, = [a]([a] — D)([a] —2)---([a] —n+1)
(3.2) <ala-—1)(a—-2)---(a—n+1)

with equality if and only if a is an integer.
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Proof Forn = 2, wehave 7 +% < 1. From the level x, = 1 to thelevel x, = [a] -1,
we have the following positive integral points:

x2=1:(1,1),(2,1),...,([&]—1,1)
XZZZZ(1,2),(2,2),...,([0]—2,2)

x=[a] = 1:(1,[a] = 1).

Hence P, = 1+4+2+---+([a] — 1) = W, ie, 2! P, = [a]([a] — 1).
Now assume that (3.2) holds for any integer n. Consider a homogeneous (#n + 1)-
dimensional tetrahedron "71 + % + -+ "7*1 <1.

From the level x,,4; = 1 to the level x,,,; = [a] — n, we have the following homo-
geneous n-dimensional tetrahedron:

X1 X2 Xn
Xp1 = 1 <1
H a—1 a—1 a—1"—
X X X
Xl =2 ——+ <
a—2 a—2 a—2
x X X
Xpy1 = a] — n: ! + 2 toot —2 <1
a—lal+n a-—la]l+n a—la]l+n

Hence by induction hypothesis we have
la]—1
Py =Y kik—1)--- (k= (n—1))
k=n
[a]—1
= k(k—1)-- (k= (n—1)).
k=1

Now we apply Lemma 3.1 with u = (k— 1)(k—2) - -- (k —(n— 1)) , Vi = k. Then

r—1 _ r—1 _ r(r—=1)
1 V= D k=75

=ty = =D =2 (r—(n—1) —(r=2)(r—3)---(r—mn)

=(r—=20r=3)(r—n+1)((r—1)—(r—n))
=m-—1Dr—-2)(r—3)---(r—n+1).
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From (3.1), we have
[a]—1
> kk—1)--(k—n+1)
k=1
[a]—1
T T T N (U
r=2
= () = 2)(la] = 3)~(la] ~ =D
n—1 [el-1
— 5 D kk=D(k=2) - (k—n+1).
k=1
Hence we have
[a]—1
(1+%5 D) Y k- k-2 ke n )
k=1
= %[a]([a] - 1)([a] =2)---([a] —n),
which implies
[a]—1
(n+1) Z k(k—1)(k=2)---(k—n+1) = [a]l([a] — 1)([a] =2)---([a] —n).
k=1
Therefore we have
[a]—1
nl Ppyy = Z k(k—1)(k—2)---(k—n+1)
k=1
= nil[a]([a] —1([a] =2)---([a] —n)
ie, (n+ 1! Py = [al([a] — 1)([a] —2)---([a] —n). u

Corollary 3.1  The Main Conjecture in Section 2 is true for n-dimensional homoge-
neous tetrahedra A(a, a, . . ., a).

Proof Seta; = a, = --- = a, = a in the Main Conjecture. We get
M Py..a <a+ (—I)Si'fla"_1 + (—1)285'7111”_2 + (—1)3527111”_3
+o (=DM e (—1)"1SI  a
=a(a — 1)(a—2)~~~(a— (n— 1)) by (2.2)
This is exactly Theorem 3.1.
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4 Bernoulli Polynomials and Counting the Number of Integral Points
in an n-Dimensional Homogeneous Tetrahedron

Let us define the Bernoulli polynomials, By(x), B (x), By(x), ..., by the following

equation
te'™ >, B,(x) ;
(4.1) =)t
n=0
Then (4.1) implies
o0
B,(x+1) , tef®D te*
HZ:O n! e —1 et —1 (e )1l
oo oo
B,(x+1) — Bu(x) , » X"
= A A T W
(4.2) > ! =D
n=0 n=0
N Bu(x+1)—B,(x)  x"!
n! (n—1)!

= B,(x+1) — B,(x) = nx""L.

Differentiating (4.1) with respect to x, we get

e >, B!(x) o
ed—1 —~ n!
— B, (x) — B} (x)
ey B § B,
(4.3) ot n! —~ n!
anl(x) _ Br/l(x)
n—1!"  n

= B/(x) = nB,_1(x).
Therefore if we denote Bffl ) (x) the j-th derivative of B,,(x), then we have
(4.4) BY(x) = nBU "V (x).

Theorem 4.1  Let n > 2 be a positive integer and a > n — 1. Let P, be the number of
positive integral solution of *- + 2 + .. + 72 < 1, i.e, P, = #{(x1,%2,...,%,) € Z}} :
o424 3 1Y Let [a] be the greatest integer less than or equal to a. then

n—1 —1 nfkflsfl*Z
n)!p, = Z (=1 i 1n7k71n(Bk+1([ﬂ]) — B (1))

k=1

n—1 _1\n—k—1¢n—2
=y C e (i - ).

pa (n—1)! "
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Proof By (4.2), we have

(Bu1([a]) = Busi([a] = 1)) = ([a] = 1)"

n+1

—— (Bua(lal = 1)~ Byoa(la] ~ 2)) = ([a] - 2)"

n+

1
;:T(mﬂo)—Bmua)=2"

(B~ Bua() =1,

n+

Summing the above equations, we have

[a]—1

(4.5) %(B,,H([a]) —By(1)) =1"+2"+ -+ ([a] - )" = Z X

Similarly by (4.2) and (4.4), we have

1 (n—1)!
;(Bn([ﬂ]) (1)) m( n+1([a]) n+1(1))
1 ( _2)! 1 1
n_J(EHdMD—BWAD):(H+DﬂBMAMD—BMAD)

(4.6)

(Bi([al) — Bi(1)) = ((’;:))'( BUE () — B (1))

1=

S (Balla) = Ba() = (B3 (la]) — B ().

(n+1)!
By the proof of Theorem 3.1, we have

la]—1
0 Ppyy = Z x(x—1(x—2) - (x—n+1)
x=1

[a]—1

=y En:(—n" ki
k=1

x=1 k=

https://doi.org/10.4153/CMB-2003-023-0 Published online by Cambridge University Press

239


https://doi.org/10.4153/CMB-2003-023-0

240

References
[Br-Vel]

[Br-Ve2]
[Ca-Sh]

[Di-Ro]
[Du]
(Eh]
[Ha-Lil]
[Ha-Li2]
[Ha-Li3]

[Ha-Li4]
[Hi-Za]

[Ka-Kh]

[Li-Yal]

[Li-Ya2]
[Li-Ya3]

[Me-Te]

[Mo1]

[Mor]
[Po]

[Sp1]

[Sp2]
[Xu-Yal]

Ke-Pao Lin and Stephen S.-T. Yau

n [a]—1
_Z Z( 1)n ksnfl k
=1 x=1
(1" s

—— "k (Bii([a]) — B (1)) by (4.5)

—Z
—Z

k+1

(="~ "S"f1 k!

o (B lad — Bif)

by (4.6)

M. Brion and M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric
varieties. ]. Reine Angew. Math. 482(1997), 67-92.

, Lattice points in simple polytopes. ]. Amer. Math. Soc. 10(1997), 371-392.

S. E. Cappell and J. L. Shaneson, Genera of algebraic varieties and counting lattice points. Bull.
Amer. Math. Soc. 30(1994), 62-69.

R. Diaz and S. Robbin, The Ehrhart polynomial of a lattice polytope. Ann. of Math. 135(1997),
503-518.

A. H. Durfee, The signature of smoothings of complex surface singularities. Math. Ann.
232(1978), 85-98.

E. Ehrhart, Sur un probleme de geometrie diophantienne lineaire II. ]. Reine Angrew Math.
227(1967), 25-49.

G. H. Hardy and J. E. Littlewood, Some problems of diophantine approximation. Proc. 5th Int.
Congress of Mathematics, (1912), 223-229.

, The lattice points of a right-angled triangle. Proc. London Math. Soc. (2) 20(1921),

15-36.

, The lattice points of a right-angled triangle (second memoir). Hamburg Math. Abh.
1(1922), 212-49.

, A series of coseconts. Bull. Calcutta Math. Soc. 20(1930), 251-66.

F. Hirzebruch and D. Zagier, The Atiyah-Singer Index Theorem and Elementary Number
Theory. Publish or Perish, Inc., Boston, Massachusetts, 1974.

J. M. Kanter and A. Khovanskii, Une application du Théoréme de Riemann-Roch combinatoire
au polynéme & Ehrhart des polytopes intier de R. C. R. Acad. Sci. Paris 1 317(1993), 501-507.
K.-P. Lin, and S. S.-T. Yau, Sharp upper estimate of geometric genus in terms of Milnor number
and multiplicty with application on coordinate free characterization of 3-dimensional
homogeneous singularities. (preprint).

, Analysis of sharp polynomial upper estimate of number of positive integral points in
4-dimensional tetrahedra. J. Reine Angew. Math. 547(2002), 191-205.

, A sharp upper estimate of the number of integral points in 5-dimensional tetrahedra.

J. Number Theory 93(2002), 207-234.

M. Merle and B. Teissier, Conditions d’adjonction d’aprés Du Val. Séminaire sur les
singularities des surfaces (center de Math, de I’Ecole Polytechnique, 1976-1977), Lecture
Notes in Math. 777, Springer, Berlin, 1980, 229-245.

L. J. Mordell, Lattice points in a tetrahedron and Dedekind sums. J. Indian Math. 15(1951),
41-46.

R. Morelli, Pick’s theorem and the Todd class of tori variety. Adv. in Math. 100(1993), 183-231.
J. Pommersheim, Toric varieties, lattice points and Dedekind sums. Math. Ann. 295(1993),
1-24.

D. C. Spencer, On a Hardy-Littlewood problem of Diophantine approximation. Proc.
Cambridge Philos. Soc. XXXV(1939), 527-547.

, The lattice points of tetrahedron. J. Math. Phys. (3) XXI(1942), 189-197.

Y.-J. Xu and S. S.-T. Yau, Sharp estimate of number of integral points in a tetrahedron. J. Reine
Angew. Math. 423(1992), 199-219.

https://doi.org/10.4153/CMB-2003-023-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2003-023-0

Integral Points 241

[Xu-Ya2] , Durfee conjecture and coordinate free characterization of homogeneous singularities.
]. Differential Geom. 37(1993), 375-396.

[Xu-Ya3] , Sharp estimate of numbers of integral points in a 4-dimensional tetrahedron. J. Reine
Angew. Math. 473(1996), 1-23.

Department of Information Management Department of Mathematics, Statistics

Chang Gung Institute of Technology and Computer Science (M/C 249)

261 Wen-Hwa 1 Road University of Illinois at Chicago

Kwei-Shan, Tao-Yuan 851 South Morgan Street

Taiwan 333-03 Chicago, Illinois 60607-7045

Republic of China US.A.

e-mail: kplin@cc.cgin.edu.tw e-mail: yau@uic.edu

https://doi.org/10.4153/CMB-2003-023-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2003-023-0

