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1. Introduction

Let S, T be self-mappings on a (non-empty) complete metric space (X, d).
Let a;, i = 1,2,---,5, be non-negative real numbers such that X}. a;, < 1 and
for any x, y in X,

e)) d(S(x), T(y)) £ a;d(x,y) + a,d(x, T(y)) + asd(y, S(x))
+ a,d(x, S(x)) + asd(y, T(y)).

The Banach contraction mapping theorem says that T has a unique fixed point if
S =T and a, = a; = a, = a5 = 0. Kannan [15] proved that T has a unique
fixed pointif S = T and a; = a, = a; = 0. Reich [26] proved that T has a unique
fixed point if S = T and a, = a; = 0. Hardy and Rogers [13] proved that T has
a unique fixed point if S = T. Gupta and Srivastava [27] proved that S, T have a
unique common fixed point if a, = a, = a; = 0 and a, = a5. We proved [30]
that S, 7 have a unique common fixed point if a, = a3 and a, = as. When
S = T, because of the symmetry in x,y, one can, without loss of generality,
assume that a, = a5 and a, = as. So our result generalizes all of the results men-
tioned above. In general, there is however no such symmetry as a, = a; and
a, = as. There are examples [30] of S, T which satisfy the above conditions, but
(1) does not hold for any a;, i = 1,2,--,5, in [0,1] with a, = a;, a, = a5 and
Y%_, a; < 1. By extending the idea of Rakotch [25], we [30] introduced mono-
tonically non-increasing self-mappings «;, i = 1,2,---,5, on [0, c0 ] such that
a, = a3, a4y = a5 and X -, a(t) < 1 foreacht > 0. [t was proved that S, T have
a unique common fixed point if (1) is satisfied with a; replaced by a{(d(x, y)). By
extending the idea of Boyd and Wong [5], we [31] introduced self-mappings
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a, i =1,2,--,5, 0on [0, ) such that a, = a3, 0g = as, Y3.1(a(t) < t for all
t > 0 and each «; is upper semicontinuous. It is assumed that for any distinct x, y
in X, (1) is satisfied with a; replaced by «,(d(x, y))/d(x, y). We proved that either
S or T has a fixed point and if both S and T have fixed points, then each of S, T
has a unique fixed point and these two fixed points coincide. Thus when S = T, T
has a unique fixed point. In fact, in this case, the condition “‘each «; is upper
semicontinuous’’ can be weakened to “‘each «; is upper semicontinuous from the
right’’. The conclusion of the above result is best possible in the sense that there
are examples [30] of S, T which satisfy the above conditions but S has two fixed
points and T has none. However, in applying the above results, it may be difficult
to find the required «’s even if they exist. We shall obtain some fixed point
theorems by replacing each a; in (1) with a number a,(x, y) depending on {x, y},
i.e.each a; is a symmetric function of X x X into [0, o). Thus each «; need not be
a composite function of d with any function on the real line and it is possible that

Mu-

(2) sup {o(x, y): x,ye X} > L.

i=1

One such example is given in Section 2. Related results are obtained for mappings
in a Banach space.

2

THEOREM 1. Let S, T be self-mappings on a complete metric space. Suppose
that there exist functions o, i = 1,2,---,5, of X x X into [0, o) such that

@ r=sup{ Tl o y):xyeX} <l

(b) oy = a3, a4 = as;

(c) for any distinct x,y in X,

d(S(x), T(y)) = a,d(x,y) + a,d(x, T(y)) + asd(y,S(x))

+ a,d(x,S(x)) + asd(y, T(y)),
where a; = a(x, y).
Then S or T has a fixed point. If both S and T have fixed points, then each
of S, T has a unique fixed point and these two fixed points coincide.

PrOOF. Let x,€ X,
Xon+1 = S(xZn)s Xont+2 = T(x2n+1)’n = 0’192"" .

We shall prove that S or T has a fixed point. For this purpose, we may assume that
X, # X+, for each n. From (¢) with a; = o,(x¢, x;),

d(xy,%3) = d(S(xo), T(x1)) < (a; + az)d(xg,x1) + drd(xg,%3) + asd(xy, x,).
Since d(xg, x;) £ d(xg,x4) + d(xy,X,),

3) (I = a; — as)d(xy,%;) < (ay + a, + az)d(xg, xy).
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From (a) and (b), a, + a4 < r/2 < 1/2 and

a;+a,+a, < F—@—as _ r—x }<
4 1"a,-a, =~ 1—a,~a, = max{l_x : xe[0,12]} < .
From (3) and (4),

d(xy,xz) < rd(xy, Xo)-
By induction, we have

(5) d(xn+2’xn+l.) é rd(x,,“,x,,), h = 0,1,2,"'
By (5) and induction,

A(Xpq 15 X0) S rd(xq, %), n=2012--
Since r < 1,

A(Xy 415 Xp) < O

it

n

and therefore {x,} is Cauchy. By completeness of (X, d), {x,} converges to some
point x in X. Since x,,; # X, for each n, either x,,,, # x for infinitely many n
or x,, # x for infinitely many n. By symmetry, we may assume that x,,,; # x
for infinitely many n. Thus there is a subsequence {k(n)} of {n} such that
Xoxm+1 7 X for each n. Let n = 1. Then

6 d(x,T(x)) £ d(x,%zxm+1) + d(X2xm+ 1, T(X))
= d(X, Xzxmy+1) + d(S(xzxm), T(X)).
From (c) with a; = a/(X314m, X),
) d(S(xaxm), T(x)) £ a1d(Xakmy X) + @2d(X 2y T(X))
+ a3d(X, Xsp(my+1)
+ a4d(X 4wy X2kemy+1) + asd(x, T(x))
< d(xam X) + 5 AdCoaeny T(X)
+ d(X, X 2p(my+1)
+ A Xaum+1) + 5 A3 T().
From (6) and (7), we have by letting n — o0,
d(x, T(x)) £ rd(x, T(x)).

Since r < 1, T(x) = x. Let x be a fixed point of S and let y be a fixed point of T.
We need to prove that x = y. Suppose not. From (c) with a; = ay(x, y),

d(x,y) = d(S(x), T(y)) < (a, + a, + a3)d(x,y) < d(x, ),

a contradiction.
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THEOREM 2. Let T be a self-mapping on a complete metric space (X, d).
Suppose that there exist symmetric functions a;, i = 1,2,---,5, of X x X into
[0,1) such that

@ r=sup{ Ti-jax,y):x,yeX} < 1;
(b) for any x,y in X,

d(T(x), T(y)) £ a,d(x,y) + a,d(x, T(y)) + a3d(y, T(x))

+ a4d(x9 T(X)) + an(y: T(}’)),
where a; = a{x, y).
Then T has a unique fixed point.

PROOF. Let x, y € X. Calculating
(d(T(x), T(y)) + d(T(y), T(x)))/2
by (b), we obtain
d(T(x), T(y)) = byd(x,y) + byd(x, T(y)) + byd(y, T(x))

+ b4d(x’ T(x)) + bSd(y9 T(y))a
where

bl = (al(x’ y) + “1()” x))/2,
b2 = (aZ(x’ y) + (X3(y, X))/Z, b3 = (aZ(y’ x) + aS(x, y))/2,
by = (ts(x,3) + as(y,x))/2, bs = (a4(y,%) + as(x,y))/2.

Since each ¢; is symmetric, b, = by, b, = bs and

5 5
Zb = Zax,y)=sr.
i=1

So we may assume that a, = a5 and o, = a5. By Theorem 1, T has a unique fixed
point.

ExAMPLE. Let X be the unit interval with the usual distance. Let T be the
self-mapping on X defined by
109 3

(8) T(x) = 2= x— 5 if xe[10/11,1]

9) T(x) = - x if xe[0,10/11).

N =

Then T is a continuous increasing self-mapping on X. For x,y in [0, 10/11), we
define

al(x,y) = 1/6,ocz(x,y) = oz;,(x,y) = oc4(x,y) = “s(xuV) = 0.
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For x,y in X with x or y in [10/11, 1], we define

al(x’Y) = “z(x,J’) = oz3(x,y) = 0,a4(x,y) = “5(7‘,)’) = 19/41

Then each o; is a symmetric function of X x X into [0, c0) and X;_,a; < 38/41
< 1. Suppose that x, y € [10/11,1].
Then
109 109
AT, TO) = 5 4% 9) S oo

and

2405, Y)A(x, T + as(x, DA, TN = (3 - 55 >

19/, 49 49 ) 418
—_—X — — >
(3 60> ~ 607

So T is not nonexpansive on X and

(10) d(T(x), T(y)) S a4(x, p)d(x, T(x)) + as(x, y)d(y, T(y)).
Now suppose that x € [10/11,1], y €[0, 10/11). Then
109 3 1

dTE,TH) = TW~TO) = 5% =5 = ¢ 3

(5, M, TO) + s MOV TON) = (3 = 5% + 3 ).
Since
0 0 3_1 _Q’E_ﬁx+§) Nx-1n-8, <0
0> "2 & 41(2 0 7§ T A inr=0

(10) is satisfied. Finally, suppose that x, y € [0, 10/11).
Then

AT, TY) = & d(x,y) = aslx, d(x,y).

So T satisfies the conditions of Theorem 2. To see the advantage of Theorem 2,

we note that

269
up{al(x’y) X,,VEX} = %>1

"MU\

and a4 is not a composite function of d with any function on the real line
(24(0,1/11) # a,(10/11,1) but d(0,1/11) = d(10/11,1)). Also, if we replace 1/6 in
(9) by a number in [0, 1/6), we will obtain an example of T which is not continuous
on X and satisfies the conditions of Theorem 2.

3

Let X be a complete metric space. For any subset A4 of X, ¢l A will denote the
closure of A in X and 6(4) will denote the diameter of A4, i.e. 8(4) = sup{d(x, y):
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x,yeA}. Let T be a self-mapping on X. A subset 4 of X is T-invariant if
T(4) = A. Let x € X. O(x) will denote the set {T"(x): n = 0} (T°(x) = x) of all
iterates T"(x) of x and will be called the orbit of x. T has orbital diminishing
diameters if for any x in X, either §(O(x)) = 0 or
lim §(0(T"(x)) < 8(0(x)).

This definition was introduced by Belluce and Kirk [3], [4], [18]. Kirk [18] proved
that if X is compact and if T is a continuous self-mapping on X which has dimini-
shing orbital diameters, then for any x in X, some subsequence of {T"(x)} con-
verges to a fixed point of T. We shall obtain a related result with a different
approach.

THEOREM 3. Let T be a continuous self-mapping on a compact metric space.
Suppose that

(a) there exist symmetric functions oy, a,,03, of X x X into [0,1] such that
oy + oy + a3 = 1and for any x,y in X,

d(T(x), T(y)) = a,d(x,y) + a,d(x, T(y)) + a3d(y, T(x)),

where a; = a(x,);
(b) for any T-invariant closed subset A of X with 6(4) > 0, there exist y, z
in A such that
sup{d(y, T"(2)): n 2 0} < 8(A).
Then for any x in X, {T"(x)} has a subsequence which converges to a fixed point
of T.

Proor. Let x € X. Consider cl O(x). Then ¢l O(x) is compact and T-invariant.
By Zorn’s lemma, cl O(x) includes a minimal non-empty closed T-invariant subset
Y of X. Suppose to the contrary that §(Y) > 0. Then by (b), there exist y,zin Y
such that

r = sup{d(y, T"(2)): n = 0} < &(Y).

By continuity of T, d(y,u) =< r for each u e cl O(z). Since cl O(z) is T-invariant,
by minimality of Y, ¢l O(z) = Y. So the set

(1 W = {ueY:d(u,v) < rforeachvin Y}

contains y. By continuity of d, W is closed. Let u € W. By compactness of Y, there
exists vy € Y such that

(12) d(T(u),ve) = sup{d(T(u),v): ve Y}.

Since T is continuous, T(Y) is compact. Also, T(Y) is T-invariant. So by mini-
mality of ¥, T(Y) = Y. Therefore there exists v, in Y such that T(v,) = v,. By
(11), (12) and (a) with a; = o(u,vy),
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d(T(u),v0) = d(T(u), T(vy))
< ad(u,vy) + ad(u, T(vy)) + azd(vy, T(u))
< ayr + ar + a3d(T(u,v9) = (1 — az)r + asd(T(u), vo).
So
(13) (1 = a3)d(T(u),ve) £ (1 — az)r.

Since each «; is symmetric, we may assume that a, = a;. Thus a3 < 1/2. From
(13), we have d(T(u),v,) < r. So W is T-invariant. By minimality of Y, W = Y.
Therefore by (11),

oY) = é(W) = r < Y),

a contradiction. Hence §(Y) = 0 and the point x, in Y is a fixed point of T. Since
Xy Is a fixed point of T and x4 € ¢l O(x), some subsequence of {T7(x)} converges
to xo-

We remark that in Theorem 3, (b) is satisfied if T has diminishing orbital
diameters.

4

Let B be a Banach space. d will denote the metric for B induced by the norm
“ “ of B. For any subset A of B, co A will denote the convex hull of A. Let X be a
bounded closed convex subset of B. Let T be a self-mapping on X. X is regular
with respect to T if for any non-empty closed convex T-invariant subset 4 of X,
either 6(A) = 0 or there exist y, z in A such that

sup{d(y, T"(2)): n = 0} < 6(A).

X is normal with respect to T if for any non-empty closed convex T-invariant
subset 4 of X, either 8(4) = 0 or there exists z in 4 such that

sup{d(z,y): ye A} < 8(A).

X has normal structure [6] if X is normal with respect to the identity function on
X. It is clear that X is regular with respect to T if it is normal with respect to T';
X is normal with respect to T if it has normal structure. Our notions of regularity
and normality link T with the convex structure of X.

THEOREM 4. Let X be a weakly compact convex subset of a Banach space B.
Let T be a self-mapping on X. Suppose that
(@) X is normal with respect to T; v
(b) there exist symmetric functions ay,a,,%5 of X x X into [0, 00 ) such
that o, + a, + a3 < 1 and for any x,y in X,
d(T(x), T(y)) S a1d(x,y) + a,d(x,T)y)) + a3d(y, T(x)),
where a; = ay(x, y).

Then T has a fixed point.
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ProoFr. By Zorn’s lemma, there exists a minimal non-empty closed convex
T-invariant subset Y of X. Suppose to the contrary that 6(Y) > 0. Then by (a),
there exists z in Y such that

r = sup{d(z,y): ye Y} < &(Y).
So
W = {weY:d(w,y) < rforeach yin Y}

contains z. Obviously W is convex and closed. We shall prove that W is T-
invariant. Let we W,

ri = sup{d(T(w),x): xe Y}.
Since T(Y) = Y and Y is closed and convex, one has cl co T(Y) < Y; hence
T(cl co T(Y)) « T(Y) < clco T(Y).
By minimality of Y, ¢l co T(Y) = Y. So by continuity and convexity of d,
ry = sup {d(T(w), T()) 1 ye Y}.

(For nonexpansive mappings, the above argument or its variants occurred in [1],

(2], [3], [14], [16], [17], [19], [20], [21], [22], [23], [28], [29].) Let we W,
yeY. By (b) with a; = a(x, ),

d(T(w), T(y)) < a,d(w, y) + a,d(w, T(y)) + a3d(y, T(W)) < a,r + a,r + ar,.
Let ¢ > 0 and select ye Y so that

sup(a,r + a,r + asry) < d;r + d,r + dsry + & where 4; = ayw, y).
yeY

Then

ri = supd(T(w), T(y)) < sup(a,r + a,r + ayry) < d;r + d,r + asry + ¢
yeY yeY

(1 - d3)r + d3r1 + E.

Hence, since d; < 3,

r{ysr+

— < r + 2e.
1 —a,

Since ¢ is arbitrary, r; £ r. A contradiction can be obtained as in the proof of

Theorem 3. Hence Y is a singleton and the point in Y is a fixed point of T.

By refining the above argument, one can obtain the following result for
nonexpansive mappings.

THEOREM 5. Let X be a weakly compact convex subset of a Banach space.
Let T be a nonexpansive self-mapping on X. Suppose that X is regular with
respect to T. Then T has a fixed point.
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Let X be a weakly compact convex subset of a Banach space B. Let T be a
nonexpansive self-mapping on X. Browder [7] and Géhde [12] proved that T has
a fixed point if B is uniformly convex. Belluce and Kirk [1] proved that T has a
fixed point if X has normal structure. Then they [3] obtained the following more
general results: (i) T has a fixed point if for any x in X, ¢l co O(x) has normal
structure, (ii) T has a fixed point if T has diminishing orbital diameters. Theorem
5 combines all these results into a more general one.

We remark here that by modifying the definitions, conditions and proofs in
an obvious way, Theorem 3 can be proved for a compact Hausdorff topological
space X associated with a definite family of pseudo-metrics; Theorems 4 and 5 can
be proved for a locally convex Hausdorff topological vector space X associated
with a family of pseudo-norms.One such example can be found in [14] Also, every
uniformly convex Banach space is reflexive [24]. So in this case, to asSume that X
is weakly compact convex is the same as assuming that X is bounded, closed and
convex.

5
Let X be a bounded convex subset of a Banach space B. Let y e X,
, = sup{d(x,y): xe X},

r

r = inf{r,:yeX},

C = {xeX:r,=r}.
ris called the radius of X and C is called the Chebyshev centre of X. It was shown
in [17] that if B is reflexive and X is weakly compact convex, then C is a non-empty
closed convex subset of X. If C is a singleton {x}, then x is called the generalized

center of X. For example, every bounded closed convex subset of a uniformly
convex Banach space has a generalized centre [11].

THEOREM 6. Let X be a bounded convex subset of a Banach space B. Suppose
that X has a generalized centre x,. Let T be a self-mapping on X (not necessarily
continuous). Suppose further that

(@) cleco T(X)> X;

(b) there exist symmetric functions o;,0,,03 of X x X into [0, © ) such
that for all x,y in X,

d(T(X), T(.V)) § ald(x’ y) + azd(x, T(y)) + asd(y, T(X)),

where a; = o(x, ).
Then x, is a fixed point of T.

Proor. Form the definition of generalized centres,
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14 {xo} = N{xeY:d(x,y) <r},

yeY
where r is the radius of Y. Let x € Y. By (b) with a; = a,(x,, x),

@15) d(T(xo), T(x)) < ayd(xo,%) + a,d(x,T(x)) + a3d(x, T(x,))
< a.r + a,r + asry,
where r; = sup {d(T(x,),y): y€ Y}. By (a),

ry = sup{d(T(x,), T(y)): ye Y}.

Arguing as the the proof of Theorem 4, r; < r. So

T(xp)e N {xeY:d(x,y) £ r}.

| yeY
So by (14), T(xg) = Xo.

Let X be a weakly compact convex subset of a Banach space B. Let T be a
self-mapping on X. T is called a generalized nonexpansive mapping if there exist
symmetric functions a;, i = 1,2,--,5, of X x X into X such that X} o < 1
and for all x,y in X,

d(T(x), T(y)) = a.d(x,y) + ad(x, T(y)) + azd(y, T(x))
a4d(x, T(x)) + asd(y, T(y),

where a; = o(x,y). Let T be a generalized nonexpansive self-mapping on X. We
post the following open questions:

(a) inf{d(x,T(x)): xeX} =0?

(b) Does T have a fixed point?
By using the asymptotic center recently introduced by Edelstein [10], we can
prove that if X is uniformly convex and if T is continuous, then the above ques-
tions are equivalent. It is also interesting to note that if T has a fixed point, then
T must be quasi-nonexpansive [9].

We would like to mention here that the use of five monotonically non-
increasing functions a; on (0, 00 ) (with X3_,«; < 1) to contract self-mappings
on a complete metric space is invented by Hardy and Rogers [13].

References

[1] L. P. Belluce and W. A.Kirk, ‘Fixed-point theorems for families of contraction mappings’,
Pacific J. Math. 18 (1966), 213-217.

[2] L. P. Belluce and W. A. Kirk, ‘Nonexpansive mappings and fixed-points in Banach spaces’,
Hlinois J. Math. 11 (1967), 471-479.

[3] L. P. Belluce and W. A. Kirk, ‘Fixed point theorems for certain classes of nonexpansive
mappings’, Proc. Amer. Math. Soc. 20 (1969), 141-146.

https://doi.org/10.1017/51446788700022849 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700022849

[1in Fixed points theorems 275

[4] L. P. Belluce and W. A. Kirk, ‘Some fixed point theorems in a metric and Banach space’,
Canad. Math. Bull. 12 (1969), 481-489.

[5] D. W. Boyd and J. S. W. Wong, ‘On nonlinear contractions’, Proc. Amer. Math. Soc. 20
(1969), 458-464.

[6] M. S. Brodskii and D. P. Milman, ‘On the center of a convex set’, Dokl. Akad. Nauk. SSSR
(N.S.) 59 (1948), 837-840. ‘

[7} F. E. Browder, ‘Nonexpansive nonlinear operators in a Banach space’, Proc. Nat. Acad.
Sci. U.S.A. (1966), 1041-1044.

[8] J. A. Clarkson, ‘Uniformly convex spaces’, Trans. Amer. Math. Soc. 40 (1936), 396-414.

[91 W. G. Dotson, Jr., ‘Fixed points of quasi-nonexpansive mappings’, J. Austral. Math. Soc.

13 (1972), 167-170.

[10] M. Edelstein, ‘The construction of an asymptotic center with a fixed point property’, Bull.
Amer. Math. Soc. 18 (1972), 206-208.

[11) Klaus Floret, ‘Eine Bermekung iiber a priori-Fixpunkte nicht-expansiver Abbildungen’,
Manuscripta math. 6 (1972), 321-326.

[12] Von Dretrich Géhde, ‘Zum prinzip der Konstraktiven Abbildung’, Math. Nachr. 30 (1965),
251-258.

[13] G. Hardy and T. Rogers, ‘A generalization of a fixed point theorem of Reich’, Canad. Math.
Bull. 16 (1973), 201-206.

[14] R. D. Holmes and Anthony T. Lau, ‘Non-expansive actions of topological semigroups’ (to
appear in J. London Math. Soc.).

[15] R. Kannan. ‘Some results on fixed points II’, Amer. Math. Monthly 76 (1969), 405-408.

{16] Yoichi Kijima and Wataru Takahashi, ‘A fixed point theorem for nonexpansive mappings
in metric space’, Kodai Math. Sem. Rep. 21 (1969), 326-330.

[17] W. A, Kirk, ‘A fixed point theorem for mappings which do not increase distance’, Amer.
Math. Monthly 72 (1965), 1004-1007.

[18] W. A. Kirk, ‘On mappings with diminishing orbital diameters’, J. London Math. Soc. 44
(1969), 107-111.

[19] W. A. Kirk, ‘Fixed point theorems for nonexpansive mappings’, Proc. Sympos. Pure Math.
18, Amer. Math. Soc., Providence, R.I. (1970), 162-168.

[20] W. A. Kirk and W. D. Royalty, ‘Fixed point theorems for certain nonexpansive mappings’,
Hlinois J. Math. 15 (1971), 656-663.

[21] Anthony To-Ming Lau, ‘Invariant means on almost periodic functions and fixed point
properties’, (to appear in Rocky Mountain J. Math.).

[22] Ralph De Marr, ‘Common fixed-points for commuting contraction mappings’, Pacific J.
Mazh. 13 (1963), 1139-1141.

[23] Theodore Mitchell, ‘Fixed points of reversible semigroups of nonexpansive mappings’,
Kodai Math. Sem. Rep. 22 (1970), 322-323.

[24] B. J. Pettis, ‘A proof that every uniformly convex space is reflexive’, Duke Math. J. 5 (1939),
249-253,

[25] E. A. Rakotch, ‘A note on contractive mappings’, Proc. Amer. Math. Soc. 13 (1962),
459-465.

[26) Simon Reich, ‘Some remarks concerning contraction mappings’, Canad. Math. Bull. 14
(1971), 121-124.

[27] Pramila Srivastava and Vijay Kummer Gupta, ‘A note on common fixed points’, Yokohama
Math. J. 19 (1971), 91-95.

[28] Wataru Takahashi, ‘Fixed point theorem for amenable semigroups of nonexpansive map-
pings’, Kodai Math. Sem. Rep. 21 (1969), 383-386.

https://doi.org/10.1017/51446788700022849 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700022849

276 Chi Song Wong [121

[29] Wataru Takahashi, ‘A convexity in metric space and nonexpansive mappings’, I, Kodai
Math. Sem. Rep. 22 (1970), 142-149,

[30] Chi Song Wong, ‘Common fixed points of two mappings’, Pacific J. Math. 48 (1973),
299-312.

{311 Chi Song Wong, ‘Generalized contractions and fixed point theorems’, Proc. Amer. Math.
Soc. 42 (1974), 409-417.

Summer Research Institute
Department of Mathematics
University of Alberta
Edmonton, Alberta

Canada

Present address:
University of Windsor
Windsor, Ontario
Canada

https://doi.org/10.1017/51446788700022849 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700022849

