
2

Convective Instability

The mechanism of convective instability is intuitively straightforward: dense fluid
sinks under the action of gravity, while light fluid rises to take its place. Familiar
examples include water heated on a stove, cumulus clouds (Figure 2.1a), and the
slow currents in the Earth’s mantle that drive continental drift (Figure 2.1b). The
mechanism is complicated by the action of viscosity and diffusion, which tend to
oppose the instability.

In the simplest convection problems, no differential equations must be solved;
the problem is entirely algebraic. In this simple context, we will introduce several
important concepts that will be used repeatedly when we address more complicated
problems. Watch for the following:

● normal modes,
● the fastest-growing mode,
● isomorphism,
● scaling, and
● critical states.

We will also introduce the use of the Dirac delta function in modeling instabilities.

2.1 The Perturbation Equations

We begin with the equations of motion developed in section 1.5, assuming that the
Coriolis effect is negligible. We collect the equations here for convenience:

�∇ · �u = 0 (2.1)
D�u
Dt

= −�∇π + bê(z) + ν∇2�u (2.2)

Db

Dt
= κ∇2b. (2.3)
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2.1 The Perturbation Equations 25

Figure 2.1 Examples of convection in geophysical flows. (a) Atmospheric con-
vection cells revealed by cloud formation in the updrafts (NOAA). (b) Numerical
simulation of convection in the Earth’s mantle. Gray-red: cold surface plates sink-
ing. Yellow-white: hot mantle plumes rising (courtesy F. Crameri, University of
Oslo).

2.1.1 Hydrostatic Equilibrium

Under what conditions may a fluid be, and remain, motionless? In other words, if
we assume that (1) �u = 0 and (2) ∂/∂t = 0, can we extract a solution from the
equations of motion?

The incompressibility condition (2.1) is satisfied automatically. The momentum
equation (2.2) is a bit more complicated. First, when ∂/∂t = 0 and �u = 0, the
material derivative of any field vanishes:

D

Dt
= ∂

∂t
+ �u · �∇ = 0.

So, the left-hand side of (2.2) is zero. Also, with �u = 0, the viscous term is zero,
leaving

0 = −�∇π + bê(z),

expressing hydrostatic balance between the pressure and buoyancy fields. The
horizontal components give

∂π

∂x
= ∂π

∂y
= 0.

Therefore, pressure is a function of z only. In this book we denote equilibrium
fields with uppercase letters, so the hydrostatic pressure is

π = �(z). (2.4)

From the vertical component we have

∂π

∂z
= b,
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26 Convective Instability

or

b = B(z) = d�

dz
(2.5)

Finally we have the diffusion equation for buoyancy, (2.3). As with (2.2), the
material derivative on the left-hand side is zero. Using (2.5), we obtain

κ
d2 B

dz2
= 0. (2.6)

We sometimes assume that κ is vanishingly small, in which case (2.6) is satisfied
automatically. Otherwise, B must be a linear function of z:

B = B0 + d B

dz
z, where

d B

dz
≡ Bz = constant. (2.7)

The derivative d B/dz is the square of the buoyancy, or Brunt-Väisälä, frequency,
often denoted as N 2. What (2.7) tells us is that, for equilibrium, d B/dz must
be constant; otherwise, the buoyancy profile will evolve due to diffusion. We
abbreviate d B/dz as Bz .

Together with the assumption �u = 0, (2.4), (2.5), and (2.7) define the motionless
(or “static”) equilibrium state.

2.1.2 Small Departures from Equilibrium: the Linearized Equations

Here we will derive a pair of equations that govern the evolution of small distur-
bances to a motionless fluid. We begin by assuming that buoyancy, pressure, and
velocity are close to hydrostatic equilibrium:

b = B(z) + εb′(�x, t), (2.8)

π = �(z) + επ ′(�x, t), (2.9)

�u = 0 + ε �u′(�x, t). (2.10)

We refer to B and � as the “background state” and to the primed quantities as
the “perturbations.” The evolution of the perturbations is our main focus. We have
introduced the ordering parameter ε. In perturbation theory, many quantities are
assumed to be “small,” and ε is basically a bookkeeping trick that will help us keep
track of them. Any quantity proportional to ε is “small”; anything proportional to
ε2 is “really small,” etc. (See section 1.7 for a more rigorous discussion.)

We now substitute (2.8–2.10) into the equations of motion, (2.1), (2.2), and (2.3).
We start with the easiest one: �∇ · ε �u′ = 0, and therefore

�∇ · �u′ = 0. (2.11)
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2.1 The Perturbation Equations 27

The second-simplest equation is (2.3). We work on the left-hand and right-hand
sides separately. The left-hand side is:

Db

Dt
=
(
∂

∂t
+ ε �u′ · �∇

) (
B(z) + εb′)

= ∂B

∂t
+ ε �u′ · �∇ B(z) + ε

∂b′

∂t
+ ε2�u′ · �∇b′

= 0 + εw′ d B

dz
+ ε

∂b′

∂t
+ 0

= ε

(
∂b′

∂t
+ w′ d B

dz

)
.

The first term, ∂B/∂t , is zero by construction. The term proportional to ε2 (red) is
neglected because it is the product of two small quantities and is therefore “really
small.”

On the right-hand side,

κ∇2b = κ
d2 B

dz2
+ εκ∇2b′.

From (2.6) the first term on the right is zero. As a result, (2.3) becomes:

∂b′

∂t
+ w′ Bz = κ∇2b′. (2.12)

Recall from (2.6) that either (1) κ �= 0 and Bz is a constant, or (2) κ = 0 and Bz

is an arbitrary function of z. The second term on the left describes perturbations
to the local buoyancy as a result of vertical motions advecting the “background”
buoyancy (i.e., that found in the static equilibrium state).

Two important aspects of (2.12) should be noted.

● (2.12) is a linear equation, because the nonlinear term ε2�u′ · �∇b′ has been
discarded.

● The ordering parameter ε does not appear.

Finally we address the momentum equation (2.2). The left-hand side is

D�u
Dt

=
(
∂

∂t
+ ε �u′ · �∇

)
ε �u′ = ε

∂ �u′

∂t
,

where once again the O(ε2) term has been discarded. The remaining substitutions
are straightforward:
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28 Convective Instability

ε
∂ �u′

∂t
= −�∇(�+ επ ′)+ (B + εb′)ê(z) + ν∇2ε �u′ (2.13)

= −d�

dz
ê(z) + Bê(z) − ε �∇π ′ + εb′ê(z) + εν∇2�u′.

From (2.5), we see that the first two terms on the right-hand side add up to zero.1

The remaining terms are all proportional to ε, which therefore cancels, leaving:

∂ �u′

∂t
= −�∇π ′ + b′ê(z) + ν∇2�u′ . (2.14)

Once again, the equation is linear and does not involve ε. We now have a closed
system: (2.11), (2.12), and (2.14) comprise five equations for the five unknowns
u′, v′, w′, b′, and π ′.

Note that (2.12) actually involves only two of these unknowns: w′ and b′. Life
could be made much easier if we could find another equation involving only those
unknowns, for then we would have only two equations to solve. A good place to
start is the vertical component of (2.14):

∂w′

∂t
= − ∂π ′

∂z
+ b′ + ν∇2w′. (2.15)

This involves three unknowns, but we can eliminate the pressure as follows. We
begin by taking the divergence of (2.14):

�∇ · ∂ �u′

∂t
= − �∇ · �∇π ′ + �∇ · (b′ê(z))+ �∇ · ∇2�u′,

or,

∂

∂t
( �∇ · �u′)︸ ︷︷ ︸

=0

= − ∇2π ′ + ∂b′

∂z
+ ∇2 ( �∇ · �u′)︸ ︷︷ ︸

=0

.

The first and last terms vanish by (2.11), and we are left with a Poisson equation
for π ′ in terms of b′:

∇2π ′ = ∂b′

∂z
. (2.16)

Now take the Laplacian of (2.15):

∂

∂t
∇2w′ = − ∂

∂z
∇2π ′ + ∇2b′ + ν∇4w′,

1 Another way to think about this is to recognize that, other than being � 1, ε can take any value. Therefore,
the only way that (2.13) can be valid is if the terms proportional to each power of ε balance separately. See
section 1.7.1 for a fuller discussion.
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2.2 Simple Case: Inviscid, Nondiffusive, Unbounded Fluid 29

and substitute from (2.16):

∂

∂t
∇2w′ = −∂2b′

∂z2
+ ∇2b′ + ν∇4w′

= ∇2
H b′ + ν∇4w′,

where

∇2
H = ∂2

∂x2
+ ∂2

∂y2
.

Success! We now have two equations in two unknowns:

∂

∂t
∇2w′ = ∇2

H b′ + ν∇4w′,

∂

∂t
b′ = − Bz w

′ + κ∇2b′.

(2.17)

(2.18)

In the following subsections we will look at solutions of these equations in three
cases of increasing complexity. We’ll begin by neglecting viscosity and diffusion.
We’ll then restore those effects, and finally we’ll add upper and lower boundaries.

2.2 Simple Case: Inviscid, Nondiffusive, Unbounded Fluid

We first investigate the highly simplified case ν = κ = 0, in which (2.17) and
(2.18) are

∂

∂t
∇2w′ = ∇2

H b′; ∂

∂t
b′ = −Bz w

′.

Applying ∂/∂t to the first of these and substituting from the second, we obtain

∂2

∂t2
∇2w′ = −Bz∇2

Hw
′. (2.19)

For now, we will assume that Bz is a constant, but later in this subsection we will
consider more general forms of Bz .

2.2.1 The Normal Mode Solution

In this simple context we will introduce a flow structure that will be used repeat-
edly in this course: the plane-wave, or normal mode perturbation. For the vertical
velocity, this has the form

W (�x, t) = ŵ exp{ι(kx + �y + mz − ωt)}, (2.20)

Several aspects of (2.20) should be noted:
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30 Convective Instability

K

k
~

m

θ

k
→

Figure 2.2 Definition sketch for the wavevector �k and its horizontal and vertical
projections k̃ and m.

● ι = √−1.
● The amplitude ŵ is a complex constant.
● While W is a complex function, only the real part is physically relevant:

w′ = Wr .

● {k, �,m} = �k is the wave vector (Figure 2.2). Its components k, �, and m are the
wavenumbers corresponding to the x, y, and z directions, and are assumed to be
real. The corresponding periodicity intervals (or wavelengths) are 2π/k, 2π/�,
and 2π/m, respectively. In MKS units, �k is measured in m−1.

● We define the magnitude of the wave vector K = √
k2 + �2 + m2 and its

horizontal part k̃ = √
k2 + �2.

● The angle of elevation, measured from the horizontal plane, is θ , so that k̃ =
K cos θ and m = K sin θ . Since k̃ ≥ 0 by definition, −π/2 < θ ≤ π/2.

● ω is the complex frequency. In MKS units, ω is measured in s−1.
● The real part of ω is interpreted as the angular frequency, measured in radians

per second. Dividing by 2π gives the cyclic frequency f , measured in cycles per
second.

● If ω has a nonzero imaginary part, it represents exponential growth or decay.

The solution form (2.20) is more general than it may seem, because the equations
(2.19 in this case) are linear and therefore obey the principle of superposition: two
solutions can be added to make a third solution. Using the techniques of Fourier
analysis, any perturbation can be expressed as a sum of expressions like (2.20).

When we substitute normal mode solutions such as (2.20) into (2.19), or (2.17),
considerable simplification results as derivatives are replaced by multiplications.
For example, differentiating (2.20) with respect to x produces the factor ιk but
otherwise changes nothing. We now list the most common differential operations
and how they apply to (2.20):
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2.2 Simple Case: Inviscid, Nondiffusive, Unbounded Fluid 31

∂

∂t
→ − ιω, or

∂

∂t
→ σ

�∇ → ι�k, e.g.,
∂

∂x
→ ιk

∇2 → − K 2

∇2
H → − k̃2.

(2.21)

(2.22)

(2.23)

(2.24)

After we substitute these expressions, (2.19) becomes

(−ω2)(−K 2)W = −Bz(−k̃2)W = 0

or

(ω2 K 2 − Bzk̃
2)W = 0.

If there is a nonzero perturbation (w′ �= 0), the expression in parentheses must
vanish:

ω2 = Bz
k̃2

K 2
= Bz cos2 θ. (2.25)

You may recognize this as the dispersion relation for internal gravity waves.
However, the gravity wave solution applies only when Bz > 0.

2.2.2 Instabilities and the Fastest-Growing Mode

What if Bz < 0, i.e., if dense fluid overlies light fluid? In that case ω2 < 0. Writing

ω = ισ,

(2.25) gives

σ = ±√−Bz cos θ. (2.26)

When σ is positive the mode is identified as unstable. Because e−ιωt = eσ t , we can
identify σ as an exponential growth rate. Like ω, σ is measured in s−1.

The Fastest-Growing Mode

Naturally occurring flows are never as simple as the equilibrium state we defined in
section 2.1.1; there is almost always an additional component consisting of small-
scale, quasi-random fluctuations. According to Fourier’s theorem, the fluctuations
are equivalent to a superposition of normal modes like (2.20) with a range of ω and
�k (and hence θ) connected by a dispersion relation such as (2.25) or, equivalently,
(2.26).

If a given �k represents a maximum of σ , then that mode will grow the fastest.
Because the growth is exponential, even a small difference in σ can make a big
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32 Convective Instability

difference to the amplitude later on. We usually assume that the initial fluctuations
are infinitesimal (far too small to be detectable), so that by the time the distur-
bance grows to visible amplitude, this so-called fastest-growing mode (FGM) will
dominate. Based on this assumption, we focus our attention on the FGM.

Fastest-Growing Mode of Convection for an Inviscid,
Nondiffusive Fluid

In the present case, (2.26) shows that the FGM has cos θ = 1, so that θ = 0
and m = K sin θ = 0. The wave vector is purely horizontal. Motions associated
with the fastest-growing mode are purely vertical,2 which stands to reason because
vertical motions are oriented ideally to respond to gravity.

The FGM therefore consists of spatially alternating columns of upward and
downward motion, i.e., updrafts and downdrafts (Figure 2.3). The wavelength (the
distance between updrafts, say) is 2π/k̃. The growth rate is

√−Bz . A property of
particular importance in this example is that, while the growth rate depends on the
orientation of the wave vector, it does not depend on its magnitude. As a result, the
FGM can have any wavelength, including arbitrarily large and small wavelengths.
A random noise field can grow to produce a random distribution of updrafts and
downdrafts on a wide range of scales. This is called a broadband instability (e.g.,
Figure 2.4). In section 2.3 we’ll re-introduce viscosity and diffusion and see how
this can produce an FGM with a single, well-defined wavelength.

Classification of Normal Modes

In the case studied here (perturbations of a motionless, inviscid, nondiffusive fluid
with Bz a negative constant), the growth rate has turned out to be purely real

gravity

k
→

w

Figure 2.3 Normal mode in an inviscid, nondiffusive, uniformly stratified fluid.
The wavevector is horizontal (i.e., θ = 0); hence the motions are vertical. This
orientation “feels” gravity most strongly: it exhibits the fastest oscillations when
Bz > 0 (see equation 2.25), and the fastest exponential growth when Bz < 0
(equation 2.26).

2 To verify this, note that the normal mode form of (2.16) is −K 2π̂ = imb̂ and, since m = 0 and K 2 �= 0 for
the FGM, there is no pressure perturbation. Examination of the horizontal components of (2.14) then shows
that, with π ′ = 0, there is no horizontal velocity perturbation.
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2.2 Simple Case: Inviscid, Nondiffusive, Unbounded Fluid 33

Figure 2.4 Filaments formed by Rayleigh-Taylor convective instability (section
2.2.4) in a supernova, the Crab Nebula. A rapidly expanding shell of dense ejecta
is gradually decelerated as it accumulates circumstellar material, leaving it con-
vectively unstable. Photographic mosaic created by the Hubble Space Telescope,
completed January 2000, courtesy of the US National Aeronautics and Space
Administration (NASA).

[recall 2.26]. We will soon see that this is true for arbitrary Bz as well. In general,
though, σ also has an imaginary part, which represents an oscillatory component
of the motion:

σ = σr + ισi .

Some terminology:

● When σr > 0, the solution grows exponentially and is called an unstable mode,
or an instability. (Conversely, solutions with σr < 0 are called decaying modes.
Those are of less interest here.)

● We define the e-folding time 1/σr , the time needed for an unstable disturbance
to grow by a factor of e = 2.71828.

● When σi = 0 [as is the case in (2.26) with Bz < 0, for example], we have
stationary instability.

● If σi were nonzero (and σr > 0) the instability would be called oscillatory,
and would have the form of an exponentially growing oscillation. We will see
examples of this later.
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34 Convective Instability

● If σr = 0 and σi �= 0, the solution represents a wave that propagates without
change of amplitude. The internal gravity wave described by (2.26) with Bz > 0
is an example.

● The normal mode form (2.20) can be written in terms of σ :

W (�x, t) = ŵ eσ t+ι(kx+�y+mz) . (2.27)

2.2.3 Instabilities of an Arbitrary Buoyancy Profile

In the foregoing sections 2.2.1 and 2.2.2, we explored normal mode solutions for
the simple case in which Bz is a constant. However, in the nondiffusive fluid that
we consider in this section, any buoyancy profile B(z) can remain steady. There-
fore, the theory may be applied to the wide range of buoyancy profiles found in
geophysical fluids if diffusion is considered negligible.

Suppose that Bz is an arbitrary function of z. Equation (2.19) is still valid, but it
now has coefficients that vary with z, and therefore (2.20) is no longer a solution.
Instead, we use the more general normal mode form

W (�x, t) = ŵ(z)eι(kx+�y)+σ t , (2.28)

where the complex amplitude ŵ(z) is a function of height whose form is yet to be
determined. The wave vector �k = (k, �) is now directed entirely in the horizontal.
The vertical wavenumber component, m, the three-dimensional magnitude, K , and
the angle of elevation, θ , are no longer relevant. As before, only the real part is
retained: w′ = Wr .

Substituting in (2.19), we obtain

σ 2
( d2

dz2
− k̃2

)
ŵ = Bzk̃

2ŵ. (2.29)

This is not an algebraic equation, as in sections 2.2.1 and 2.2.2, but rather is
a second-order ordinary differential equation. In general, (2.29) must be solved
numerically. Numerical solution methods will be discussed in the next chapter. For
now, we’ll derive a general theorem that tells us something important about the
instability.

Suppose that the fluid is confined between two horizontal planes z = z1 and
z = z2 where ŵ = 0. These may represent impermeable boundaries, or bound-
aries at infinity where the amplitude goes to zero. We now multiply (2.29) by the
complex conjugate ŵ∗ and integrate the result over the vertical domain:

σ 2
∫ z2

z1

(
ŵ∗ d2ŵ

dz2
− k̃2ŵ∗ŵ

)
dz =

∫ z2

z1

Bzk̃
2ŵ∗ŵdz. (2.30)
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The first term in parentheses can be integrated by parts:∫ z2

z1

ŵ∗ d2ŵ

dz2
dz = ŵ∗ dŵ

dz

∣∣∣z2

z1

−
∫ z2

z1

dŵ∗

dz

dŵ

dz
dz = −

∫ z2

z1

∣∣∣dŵ
dz

∣∣∣2dz. (2.31)

Substituting in (2.30), we have

σ 2
∫ z2

z1

(
−
∣∣∣∣dŵdz

∣∣∣∣2 − k̃2|ŵ|2
)

dz =
∫ z2

z1

Bzk̃
2|ŵ|2dz. (2.32)

Close inspection of (2.32) yields three useful observations.

● While σ 2 may be complex in general, in this case it is purely real [since every
other quantity in (2.32) is real]. As a result, solutions separate cleanly into two
categories:

(i) σ 2 > 0, a growing mode and a decaying mode
(ii) σ 2 < 0, a pair of waves propagating in opposite directions.

● Suppose that Bz is positive throughout z1 < z < z2. In that case the integral on
the right-hand side of (2.32) must be positive. On the left-hand side, the quantity
in parentheses is negative, and hence σ 2 < 0. The solution represents a wave,
not an instability, i.e., category 1 above.

● The solution represents instability (σ 2 > 0, category 1) if the right-hand side is
negative. This requires, at least, that the minimum value of Bz in z1 < z < z2

be negative. The latter is a necessary condition for σ 2 > 0, but it is not suffi-
cient; the sufficient condition is that (1) there be some z where Bz < 0 and (2)
the vertical motions be concentrated in that region enough to make the integral∫ z2

z1
Bz|ŵ|2dz negative.

With a bit of rearranging we can place an upper bound on the growth rate. After
moving the second term to the right-hand side, (2.32) becomes

σ 2
∫ z2

z1

∣∣dŵ
dz

∣∣2dz = −
∫ z2

z1

(
σ 2 + Bz

)
k̃2|ŵ|2dz. (2.33)

For σ 2 > 0, the left-hand side, and hence the right-hand side, must be positive.
This means that the integrand on the right must be negative somewhere in z1 <

z < z2, and therefore the minimum value of Bz must not only be negative (as we
already know) but must also be less than −σ 2. Rearranging this inequality, we
have

σ <
√− min

z
Bz. (2.34)

You can check this by comparing with (2.26) and with homework problems 6 and
16.
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36 Convective Instability

We will also find that the upper bound (2.34) is actually reached (to arbitrary
precision), provided only that Bz > 0 for some z. In that case

lim
k̃→∞

σ = √− min
z

Bz. (2.35)

You can learn more about this important result in section 7.8.1 and project B.7.

2.2.4 Convection at an Interface – Rayleigh-Taylor Instability

We now examine instabilities that arise from convection between two layers of
inviscid, nondiffusive fluid with different buoyancy by solving (2.29) with the
appropriate function B(z). We place the interface at z = 0 and define buoyancy
with respect to the lower layer, so that the background buoyancy profile has the
step function form:

B(z) =
{

b0, z > 0
0 , z < 0

(2.36)

When dealing with discontinuous profiles like (2.36), it will be helpful to use a
general notation to represent the jump in a quantity, f say, occurring at the level
z = zi : [[

f
]]

zi
≡ f (z+

i )− f (z−
i ). (2.37)

Obviously
[[

f
]] = 0 for a continuous function. But in (2.36), the jump in buoy-

ancy at z = 0 is
[[

B
]]

0 = b0.
The buoyancy gradient, Bz , is expressed in terms of the Dirac delta function:

Bz = b0δ(z). If the delta function is unfamiliar to you, spend some time looking at
Figure 2.5.

For z �= 0, Bz = 0 (see property 2 in Figure 2.5). Therefore, in both the upper
and lower layers, (2.29) becomes

d2ŵ

dz2
− k̃2ŵ = 0. (2.38)

This ordinary differential equation must be solved to determine ŵ(z) in each layer.
The general solution is

ŵ =
{

A1e−k̃z + A2ek̃z, for z > 0
A3e−k̃z + A4ek̃z, for z < 0,

where A1, A2, A3, and A4 are constants to be determined. We assume that the
domain is vertically unbounded, and that ŵ is continuous and finite for all z. Those
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Figure 2.5 The Dirac delta function δ(x) can be thought of as a peak centered
at x = 0, with zero width, infinite height, and unit area. It has the following
properties:

1. δ(0) = ∞ .
2. δ(x) = 0, for x �= 0.
3.
∫∞
−∞ δ(x)dz = 1.

4.
∫∞
−∞ f (x)δ(x)dz = f (0).

5. limε→0
∫ ε
−ε f (x)δ(x)dz = f (0).

6. limε→0
∫ x0+ε

x0−ε f (x)δ(x − x0)dz = f (x0).

conditions require A2 = 0, A3 = 0, and A4 = A1. (Show this.) Our solution can
then be written compactly as

ŵ(z) = A1e−k̃|z|. (2.39)

Note that the largest amplitude of vertical velocity is found at the interface level,
and that the motions decay with distance from the interface over a length scale
proportional to the wavelength of the disturbance, k̃−1.

As we have stated, ŵ is continuous. In fact, this is always true. (If it were not,
voids would appear within the fluid, and we do not observe this.) What about its
derivative? If the coefficients of our differential equation were nice, smooth func-
tions with no infinities, ŵz would be continuous also, and this would furnish an
additional constraint on the solution. But at z = 0, because Bz ∝ δ(z), ŵz is
discontinuous, as you can also see by examination of (2.39). To complete the solu-
tion, we use the properties of δ(z) to establish the change in ŵz , then require that
the derivative change by that amount.

The function δ(x) has several properties (Figure 2.5) that allow us to remove
it by means of integration. Here, we take advantage of property 5 by integrating
(2.29) over a layer extending vertically from z = −ε to z = ε, i.e.,

σ 2
∫ ε

−ε

(d2ŵ

dz2
− k̃2ŵ

)
dz = b0k̃2

∫ ε

−ε
δ(z)ŵ(z)dz, (2.40)
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and take ε to be vanishingly small. Integration of the first term is trivial. The second
term will vanish along with ε, given that ŵ is finite. The integral on the right-hand
side is simplified using property 5 of the delta function (Figure 2.5), resulting in

σ 2
[[dŵ

dz

]]
0

= b0k̃2ŵ(0). (2.41)

This is called a jump condition, and the technique is one we’ll use repeatedly in
this book. For the solution (2.39),

ŵ(0) = A1, and
[[dŵ

dz

]]
0

= −2k̃ A1. (2.42)

Substituting, we can solve for the growth rate:

σ = ±
(

− b0k̃

2

)1/2
. (2.43)

Recall that for a top-heavy buoyancy profile we have b0 < 0, so that instability
is always present. The largest growth rates occur at the smallest scales (i.e., where
k̃ is large). This situation is called ultraviolet catastrophe. It arises here because of
our neglect of viscosity and diffusion, which would damp the instability at small
scales.3 We will consider these effects in the next section.

A beautiful laboratory demonstration of convective instability arising at the
interface between two fluids is shown in Figure 2.6. The experimental setup con-
sists of a rectangular container that initially separates the two fluids with a gate. In
order to minimize the disturbances caused to the interface as the gate is removed,
a fabric covering was used over the gate, which “peeled,” rather than “slid,” away
from the interface. The removal of this gate can be seen at the left of the top panel.

If b0 > 0, σ is imaginary, and the solution represents a pair of oppositely
propagating gravity waves with phase speeds

c = ±
( b0

2k̃

)1/2
. (2.44)

We’ll encounter these waves again in Chapter 4.

2.3 Viscous and Diffusive Effects

We now return our attention to the viscous, diffusive case described by (2.17) and
(2.18) with the equilibrium condition (2.7). Remember that equilibrium requires

3 In fact, due to the highly simplified setup of this problem, there are only three characteristic scales present in
our problem: σ , k̃, and b0, and only two fundamental dimensions: length and time. This means that, before
doing any stability analysis, we could have predicted from the dimensions of these parameters alone that the
growth rate must scale as σ ∝ (b0k̃)1/2.
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Figure 2.6 Dye visualization of convective instability at an interface (Davies
Wykes, and Dalziel, 2014). Upper panel: removal of barrier (at left) 4 seconds
after initial gate opening. Lower panel: 11 seconds after gate opening, disturbance
is larger at the left due to peeling back of the barrier.

uniform Bz . Assuming a normal mode solution, we make the transformations
(2.21–2.24) in (2.17), resulting in

−σ K 2ŵ = − k̃2b̂ + ν(−K 2)2ŵ,

or

σŵ = cos2 θ b̂ − νK 2ŵ,

and in (2.18):

σ b̂ = − Bz ŵ − κK 2b̂.

These can be written as a 2 × 2 matrix eigenvalue equation, with eigenvalue σ and
eigenvector [ŵ b̂]T :

σ

[
ŵ

b̂

]
=
[ −νK 2 cos2 θ

−Bz −κK 2

] [
ŵ

b̂

]
. (2.45)

The eigenvalues are determined by the characteristic equation:∣∣∣∣ −νK 2 − σ cos2 θ

−Bz −κK 2 − σ

∣∣∣∣ = 0,

or

σ 2 + (ν + κ)K 2 σ + νκK 4 + Bz cos2 θ = 0. (2.46)

Note that, in the limit K 2 → 0, we recover the inviscid, nondiffusive result (2.25).
This tells us that viscosity and diffusivity have negligible influence on disturbances
with sufficiently large spatial scale, a common result in fluid mechanics.

In general, the solutions are

σ = 1

2

[
−(ν + κ)K 2 ± √

D
]
, (2.47)
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where the discriminant is

D = (ν + κ)2 K 4 − 4(νκK 4 + Bz cos2 θ).

There are three classes of solutions based on D:

● If D < 0, both values of σ are complex. Their real parts are the same:

σr = −(ν + κ)K 2

2
,

and both are negative, so the flow is stable. The imaginary parts have opposite
signs and thus represent waves propagating in opposite directions, decaying as
they go.

● If 0 < D < (ν + κ)2K 4, then both solutions are real and negative, so the
disturbance simply decays in place and the flow is classified as stable.

● If D > (ν + κ)2K 4, both solutions are real and one has σr > 0, i.e., the flow is
unstable.

The condition for instability D > (ν + κ)2 K 4 is equivalent to

νκK 4 + Bz cos2 θ < 0,

which can only happen if Bz < 0. Solving for K 2 gives

K 2 <

√−Bz cos2 θ

νκ
.

This condition is illustrated in Figure 2.7. Differentiating (2.46) with respect to K 2,
one gets

2σ
∂σ

∂K 2
+ (ν + κ)K 2 ∂σ

∂K 2
+ (ν + κ) σ + 2νκK 2 = 0,

or

∂σ

∂K 2
= −(ν + κ)σ + 2νκK 2

2σ + (ν + κ)K 2
< 0,

Figure 2.7 Growth rate for convection in an unbounded fluid.
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which is negative in the unstable regime because σ is real and positive. In the same
way, you can show that

∂σ

∂ cos2 θ
> 0.

Note that

● Short waves are stabilized by viscosity and diffusion, and the effect increases as
K 2 increases.

● The fastest-growing instability is found in the limit K 2 → 0 and has purely
vertical motions (cos2 θ = 1) just as in the inviscid, nondiffusive case.

● In the special case Bz = 0 (either the fluid is homogeneous or gravity is negligi-
ble), (2.46) has two decaying solutions: σ = −νK 2 and σ = −κK 2. Again, the
smallest scales decay the fastest.

● If Bz < 0, the flow is unstable, i.e., there will always be some values of K and
θ such that the growth rate is positive.

The fact that growth rate increases monotonically with wavelength tells us that
convective instability prefers the largest possible scale, and therefore that boundary
conditions are important. We’ll address that issue in the next section.

2.4 Boundary Effects: the Rayleigh-Benard Problem

Consider a layer of fluid in motionless equilibrium bounded by frictionless, hori-
zontal plates at z = 0 and z = H (Figure 2.8). At these boundaries,w′ must vanish.
To satisfy that condition, we use a variant of the normal mode solution (2.20):

W (�x, t) = ŵ sin(mz) exp{ι(kx + �y)+ σ t}, where m = n
π

H
; n = 1, 2, . . .

(2.48)

where once again w′ = Wr . We assume in addition that the buoyancy at the bound-
aries is fixed, so that b′ = 0 and the normal mode form for buoyancy is therefore
the same as (2.48). These modes have a form very different from the planar motions
described by (2.20). Counter-rotating cells are arranged so that there is no vertical
motion at the boundaries (Figure 2.9). The vertical scale decreases with increasing
mode number n.

Figure 2.8 Definition sketch for Rayleigh-Benard convection.
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42 Convective Instability

Figure 2.9 Normal modes (2.48) for the Rayleigh-Benard convection problem.

Substituting (2.48) in (2.17) and (2.18), we once again obtain (2.45); the only
difference is the quantization condition m = nπ/H . The characteristic equation is
again (2.46), but we will now find it more convenient to write it in terms of k̃ rather
than cos θ :

σ 2 + (ν + κ)K 2 σ + νκK 4 + Bz
k̃2

K 2
= 0. (2.49)

Because of the quantization of m, the squared magnitude of the wave vector is now:

K 2 = k2 + �2 + m2 = k̃2 + n2π2

H 2
; n = 1, 2, . . . . (2.50)

2.4.1 Diffusion Scaling

Note that the solution of (2.49, 2.50) depends on six parameters:

σ = F(k̃, n; Bz, ν, κ, H). (2.51)

The semicolon separates parameters describing the disturbance from those describ-
ing the environment it evolves in. Even though the solution for σ is relatively
simple, the exploration of its properties in a six-dimensional parameter space is
inefficient. We can reduce the dimensionality of the parameter space by means of
scaling, a concept that we will use repeatedly. To set the stage for scaling, we define
the concept of isomorphism.

Isomorphism
Two mathematical problems are isomorphic if they have, literally, the same form.
For example, these two quadratic equations are isomorphic:

Ax2 + Bx + C = 0 (2.52)
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αy2 + βy + γ = 0. (2.53)

We write this relationship as (2.52) ↔ (2.53).
Now suppose we have a solution algorithm for (2.52). This could be an analytical

formula or a subroutine. In the present example, our solution algorithm could be the
quadratic formula, as implemented in the following Matlab subroutine:

function x = quad(A,B,C)
D = B∧2-4*A*C;
x(1) = -B/2+sqrt(D)/2;
x(2) = -B/2-sqrt(D)/2;
return

We can use the same subroutine to solve (2.53); we simply substitute the
appropriate variables:

y=quad(α, β, γ ).

To sum up, if two problems are isomorphic, we can solve them using the
same solution algorithm with different variables.4 In this case we would write:

A → α

B → β

C → γ

x → y.

To apply this idea to (2.51), we define a length scale and a time scale, which
we choose to be H and H 2/κ , respectively. We then use these scales to define the
nondimensional variables σ �, k̃�, and K �:

σ = σ � κ

H 2
(2.54)

k̃ = k̃�

H
(2.55)

K = K �

H
. (2.56)

Substituting these into (2.49), we have

σ �2 κ
2

H 4
+ (ν + κ)

K �2

H 2
σ � κ

H 2
+ νκ

K �4

H 4
+ Bz

k̃�2/H 2

K �2/H 2
= 0.

Is this isomorphic to (2.49)? We can make the first term look the same by
multiplying through by H 4/κ2:

4 Mathematicians have a more exacting definition of “isomorphism.” Here, the essential characteristic defining
isomorphic equations is that a single algorithm solves both.
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σ �2 + (
ν

κ
+ 1)K �2 σ � + ν

κ
K �4 + Bz H 4

κ2

k̃�2

K �2
= 0. (2.57)

This form of the equation contains two new parameters: the Prandtl number

Pr = ν

κ
,

and the Rayleigh number,

Ra = −Bz H 4

νκ
.

The Prandtl number depends only on the chemical makeup of the fluid. For air,
Pr ≈ 1. For water, Pr ≈ 7 when the stratification is thermal, 700 when the
stratification is saline. The Rayleigh number quantifies the relative importance of
gravity and viscosity/diffusion.5

Substituting the definitions of Pr and Ra in (2.57), we have

σ �2 + (Pr + 1)K �2 σ � + Pr K �4 − Ra Pr
k̃�2

K �2
= 0. (2.58)

We can also write a nondimensional version of the quantization condition (2.50):

K �2 = k̃�2 + n2π2. (2.59)

Note that (2.58) and (2.59) are isomorphic to (2.49) and (2.50). Now suppose
that, in (2.51), F stands for some solution algorithm for (2.49, 2.50). The same
solution algorithm will then work for (2.58, 2.59), after we make the appropriate
substitutions:

σ → σ �

ν → Pr

K → K �

κ → 1

Bz → −Ra Pr

k̃ → k̃�

H → 1,

resulting in

σ � = F(k̃�, n; −Ra Pr, Pr, 1, 1). (2.60)

5 To see this, recall that the maximum growth rate due to gravity alone (in the absence of viscosity and
diffusion; see 2.26) is

√−Bz . A disturbance with length H is damped by viscosity at a rate ∼ ν/H2, and by
diffusion at a rate ∼ κ/H2. The Rayleigh number is therefore a nondimensional combination of rates: the
gravitational growth rate (squared) divided by the product of viscous and diffusive decay rates.
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Figure 2.10 Minimum Rayleigh number for instability versus squared scaled
wavenumber k̃�2. The bullet shows the critical point k̃�2 = π2/2, Rac = 657.5.

The number of independent parameters is now reduced to four, k̃�, n, Ra, and Pr ,
greatly simplifying the subsequent analysis.

In this book, we will explore both numerical and analytical solutions to many
instability problems. When developing subroutines, we will use dimensional vari-
ables, as in (2.51). But when exploring solutions in multidimensional parameter
spaces, we will simplify the task by calling the subroutines using appropriately
scaled variables, as in (2.60).

2.4.2 The Critical State for the Onset of Convective Instability

The solution of (2.58) is

σ � = 1

2

[
−(Pr + 1)K �2 ± √

D
]
,

where

D = (Pr + 1)2 K �4 − 4Pr

(
K �4 − Ra

k̃�2

K �2

)
.

This is just (2.47) with the diffusion scaling applied, but because of the boundaries
we must also impose the quantization condition (2.59).

The solution is unstable if and only if

D > (Pr + 1)2 K �4,

or

K �4 − Ra
k̃�2

K �2
< 0,
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Figure 2.11 Turbulent convection in a numerical simulation. Blue (red) indicates
buoyant (dense) fluid. From Cabot and Cook (2006).

or

Ra >
(k̃�2 + n2π2)3

k̃�2
(2.61)

(see Figure 2.11).
This illustrates something interesting about the physics of convection in a

bounded fluid: it is not enough that dense fluid overlie light fluid, i.e., Bz < 0,
or Ra > 0, because disturbances amplified by gravity are simultaneously damped
by viscosity and diffusion. As we saw previously in the unbounded cases (section
2.3), the relative strength of gravity and viscosity/diffusion is determined by two
factors: the spatial scale of the normal mode, and the orientation of the motions.
Specifically:

● Large-scale motions are relatively immune to damping by viscosity and diffu-
sion. In the absence of boundaries, as long as Bz < 0, there will always be a
normal mode large enough that viscosity and diffusion are too weak to prevent
its growth. Boundaries limit the spatial scale, however, so that a sufficiently large
wavelength may not fit.

● Gravity works most effectively on motions that are purely vertical (section
2.2.2). For a fixed value of m, as k̃ decreases (i.e., for wider convection cells,
see Figure 2.9), the motion becomes mainly horizontal, so the gravitational
acceleration is weaker.

Because of this competition, there is an optimal horizontal scale for growth: a scale
at which viscosity and diffusion are small but gravity is still effective. There is also
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a minimum value of Ra below which even the mode with the optimum horizontal
scale will not grow.

We now quantify these intuitive ideas by analyzing (2.61). Differentiating the
right-hand side with respect to k̃�2 and setting the result to zero, we find that the
minimum Ra for instability is smallest, for a given n, when

k̃� = nπ/
√

2.

With k̃� set to this optimal value, the minimum Ra for instability is 27/4×n4π4.
The higher the vertical mode number n, the higher Ra has to be (because higher
n means stronger damping by viscosity/diffusion). The minimum Ra is therefore
lowest when n = 1. The critical Ra for instability is therefore

Rac = 27

4
π4 ≈ 657.5.

The horizontal wavelength 2π/k̃ is 2
√

2H . Since a wavelength comprises two con-
vection cells, each cell has width about 1.4 times the thickness of the convecting
layer.

So, suppose that Bz starts out at zero but gradually becomes more negative, as
happens when fluid is heated from below. When Bz becomes negative enough that
Ra exceeds 657.5, convective motions begin. These have vertical mode number
n = 1 (i.e., a single row of convection cells that occupy the entire vertical domain)
and k̃� = π/

√
2. Therefore, the spacing between updrafts (or between downdrafts)

is about three times the layer thickness.6

Note that the parameters of this critical state do not depend on the Prandtl num-
ber. As a result, they apply equally well to air, seawater, magma, or any other
convecting fluid.

2.5 Nonlinear Effects

While the growth rate depends on the magnitude of the horizontal wavenumber k̃,
the direction of the wave vector (in the horizontal) is of no consequence. There-
fore, a random initial perturbation will produce convection rolls with all possible
horizontal orientations. By Fourier’s theorem, these can sum to make a variety
of planforms. Nonlinear analyses predict that the dominant planform is hexagonal
(Schluter et al., 1965), and laboratory experiments have confirmed this (e.g., Figure
2.12a, also Figure 9.1). In a much more energetic environment such as the Sun’s
surface (Figure 2.12b), the planform is less regular.

6 The foregoing solution applies to a fluid with frictionless boundaries. If one assumes frictional boundaries, at
which the horizontal velocity must vanish, the critical state has Ra = 1708.
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(a) (b)

Figure 2.12 (a) Convection cells at centimeter scale in a lab experiment. A
mixture of silicone oil and fine aluminum powder is heated from below. Cells
form with fluid rising in the center and sinking at the edges (NOAA). (b)
Convection cells at 1000 km scale in the solar photosphere. Bright (dark)
regions are rising (sinking). (NASA Hinode Solar Optical Telescope, Hinode
JAXA/NASA/PPARC).

In most geophysical examples of convection, Ra is many orders of magnitude
greater than the critical value. Convection is turbulent, with chaotic motions over a
broad range of scales (e.g., Figures 2.1 and 2.11). The vertical motion is dominated
by thin plumes. The spacing of the strongest plumes is generally of the same order
of magnitude as the thickness of the convecting layer, reflecting the underlying
linear instability.

Linden (2000) gives a clear and detailed description of environmental convec-
tion, including the nonlinear regime.

2.6 Summary

The main “rules of thumb” about convection that one should take away from this
chapter are:

● In a layer with frictionless boundaries, convection requires that Ra > 657.5.
● The exact value of Ra that must be exceeded for convection depends on the

boundary conditions, so a more general rule of thumb is Ra � 103.
● The spacing between updrafts (or between downdrafts) is about three times the

layer thickness.

2.7 Appendix: Waves and Convection in a Compressible Fluid

Compressibility is a property of all fluids, though it is more important in
some fluids (e.g., the atmosphere) and less so in others (e.g., lakes and rivers).
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Compressibility mainly affects the meaning and measurement of the buoyancy
gradient Bz , which is of course critical to the prediction of gravity waves and
convective instability. Here we will examine the stability characteristics of a com-
pressible fluid using the parcel method, a less-precise, but often more-intuitive
alternative to the normal mode method. After introducing the parcel method in an
incompressible fluid, we’ll conduct a thought experiment aimed at understanding
convection and waves in a compressible fluid. To highlight compressibility effects,
we will neglect viscosity and diffusion.

2.7.1 Thought Experiment: Assessing Stability via the Parcel Method

Consider a layer of inviscid, incompressible fluid that is stably stratified, so that its
vertical density gradient ρz is negative as shown in Figure 2.13a. Now imagine that
a parcel of fluid is lifted up a distance η above its equilibrium height. If the parcel
is sufficiently small, the resulting pressure change is negligible and the parcel’s
motion is governed only by the buoyancy force. If the displacement is rapid, there
will be no exchange of heat with the surrounding fluid, and therefore no change in
the density of the parcel. This is called an adiabatic displacement.

At its new elevation, the parcel is denser than the surrounding fluid and is there-
fore accelerated downward (upper blue arrow in Figure 2.13a). Conversely, a parcel
displaced below its equilibrium height will be accelerated upward. Buoyancy
therefore creates a restoring force that can support oscillatory motion.

Let’s make this observation a bit more quantitative. If the vertical displacement
is small, then the buoyant acceleration is −g�ρ/ρ, where �ρ is the density of the
parcel minus that of the surrounding fluid. To first order in η, we can approximate
�ρ as −ρzη (show this), and therefore

Figure 2.13 The parcel method applied to gravity waves (a), convection (b), and
neutral stability (c). Circles represent small fluid parcels displaced vertically from
their equilibrium heights. The density differential�ρ is the parcel’s density minus
that of the surrounding fluid. The fluid is assumed to be incompressible and the
motion adiabatic, so the parcel’s density remains constant as it moves.
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d2η

dt2
= g

ρ
ρzη. (2.62)

With ρz < 0, the solution is η ∼ e±ιωt , with

ω =
√

− g

ρ
ρz = √Bz . (2.63)

You will recognize this as the buoyancy frequency discussed previously in sec-
tion 2.1.1. It corresponds to the frequency of an internal gravity wave, in uniform
stratification, in which the motion is purely vertical, i.e., θ = 0 in (2.25).

Now, what happens if the density gradient is reversed, so that ρz > 0 (Figure
2.13b)? Displaced above its equilibrium height, our fluid parcel finds itself lighter
than its surroundings and therefore continues to rise. Conversely, a parcel displaced
downward continues to sink. This is the parcel version of convective instability. The
solution of (2.62) is now η ∼ eσ t , with the growth rate σ given by

σ =
√

g

ρ
ρz = √−Bz ,

exactly as found in section 2.2 using normal modes (cf. 2.26 with θ = 0).
Finally, suppose that the fluid is homogeneous (Figure 2.13c). In that case the

displaced parcel has the same density as its surroundings, and it therefore feels no
buoyancy force. This is the state of neutral stratification.

2.7.2 Another Thought Experiment: Effects of Compressibility

We’ll now repeat the thought experiment described above, but our working fluid
will be an imaginary substance whose compressibility we can alter at will. Con-
sider a layer of inviscid, incompressible fluid. Beginning with the simplest case,
we assume that the density is uniform, as in Figure 2.13c or 2.14a. Now we flip
a magic switch and the fluid becomes compressible (Figure 2.14a). Picture what
happens next: the surface descends slightly as the fluid is compressed under its
own weight. Compression is greatest at the bottom, where the pressure is greatest.
In fact, the density increase is nearly proportional to the pressure, so after compres-
sion the density gradient ρz will equal −γ , where γ is a constant that quantifies the
degree of compressibility.7

Based on this negative density gradient, you might think that the fluid is now sta-
bly stratified, but you’d be wrong. Suppose that a fluid parcel is displaced upward,
as in Figure 2.14a. In contrast to the incompressible case, the parcel does not retain

7 The density profile will actually be exponential, but linearity is a fine approximation for small changes.
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Figure 2.14 Density profiles in a fluid with (solid) and without (dashed) com-
pression effects. Circles illustrate the change in density as a fluid parcel is raised
above its equilibrium position.

its original density, but rather expands as the ambient pressure decreases. Its den-
sity decreases at exactly the same rate as that of the surrounding fluid, namely −γ ,
and it therefore feels no buoyancy force. The fluid is neutrally stable, just as when it
was incompressible. Put another way, the state of neutral stability in a compressible
fluid is defined not by ρz = 0 but by ρz = −γ .

Next, suppose that our original fluid layer is already stably stratified, with den-
sity gradient ρo

z < 0. When the fluid is allowed to compress (Figure 2.14b), its
density will once again increase in proportion to pressure. The density gradient
now decreases from its original, negative value ρo

z to the more negative value
ρo

z − γ .
At a glance it looks like the fluid has become even more stable, but what happens

to a lifted fluid parcel? Again, the parcel expands as the pressure is released, so that
its density decreases with height at the rate −γ . The difference between the density
of the parcel and its surroundings is −ρo

z η, and the parcel oscillates with frequency
ω = √−(g/ρ)ρo

z . This is superficially similar to the incompressible result (2.63),
the difference being that ρo represents the original density profile, before the fluid
was allowed to compress.

As a final example, suppose that the original stratification is unstable, i.e.,
ρo

z > 0, so that a displaced parcel will accelerate away from its equilibrium
height (Figure 2.14c). The result of compression is to reduce the density gradi-
ent by adding −γ . However, the compressibility of the parcel compensates for that
change, so that the displacement grows exponentially with rate σ = √(g/ρ)ρo

z .
Now here is a critical point: the density gradient we actually observe in a com-

pressible fluid includes the compressive part, −γ . The original, “uncompressed”
state described in our thought experiment is actually a nonexistent fiction, albeit an
important one because it determines the stability of the fluid. To assess the stability
of a compressible fluid like the atmosphere, we first measure the net density gradi-
ent, ρo

z − γ , then remove the compressive part to recover ρo
z . Another way to say
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this is that the squared buoyancy frequency (or buoyancy gradient) Bz is given by
the observed density gradient, ρz , minus the compressive part, which works out to

Bz = − g

ρ
(ρz + γ ). (2.64)

So in summary, a compressible fluid is less stable (or more unstable) than it
looks. The difference is the compressibility parameter γ .

2.7.3 A Quantitative View

We can quantify γ as follows:

γ = −dρ

dz
= −∂ρ

∂p

∂p

∂z
.

For adiabatic displacements, the partial derivative ∂ρ/∂p is the positive quantity
1/c2

s . We won’t prove it here, but cs turns out to be the speed of sound in the fluid.
Moreover, since the ambient fluid is in equilibrium, its pressure is hydrostatic:
∂p/∂z = −ρg. Combining these results, we have

γ = ρg

c2
s

. (2.65)

In the incompressible limit, the sound speed goes to infinity, and hence γ → 0 and
N 2 → Bz (cf. 2.64) as we have found before.

In meteorology, stability is usually discussed in terms of temperature rather than
density. Those who have studied such things will recognize that γ is related to the
adiabatic lapse rate of temperature, commonly called �, via γ = αρ�, α being the
thermal expansion coefficient. The Earth’s troposphere is often found near a state
of neutral stability: its temperature decreases with height at the adiabatic lapse rate,
in that case typically 10◦C/km.

The density in our imaginary “uncompressed” state, ρo(z), is called potential
density. Potential density is defined as the density a fluid parcel would have if
moved adiabatically to some reference height. In our thought experiment, the ref-
erence height is the surface of the fluid layer. For a simple example, refer to Figure
2.14a. There, the uncompressed density profile (dashed line) is just a constant. In
the compressed state, lifting a parcel adiabatically from any height moves it along
the solid line to the surface, where its density becomes that same constant value ρ0.
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