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Abstract

Despite its many extensions and implications, we argue that punctuated equilibrium itself has
two core, empirical claims: (1) stasis dominates within fossil species; and (2) morphological
change is concentrated in pulses that occur associated with speciation. Here we assess the state of
the evidence for these two claims, 50 years after punctuated equilibrium’s foundational paper.
Spurred by controversy, paleontologists have amassed a large number of case studies in which
morphology in species-level lineages is tracked over time. Modern, likelihood-based methods
have been used to fit to these data models of stasis, randomwalks, and directional trends, as well
as more complex dynamics. Compilations reveal that the directional trends predicted by
gradualist expectations are infrequent. Although stasis is commonly observed, it is favored in
less than half of cases, and meandering random walks or more complex models generally
account for the majority of cases. The second claim of punctuated equilibrium has received
much less empirical scrutiny than the first. Although speciational pulses are plausible in theory,
only a few paleontological studies integrate ancestor–descendant time series into a phylogenetic
framework as is needed to estimate cladogenetic change and compare it with anagenesis. These
studies, as well as more indirect analyses of extant clades, suggest that speciational change can
occur, but we cannot yet assess with confidence its frequency or importance compared with
anagenetic changes.

Non-technical Summary

Punctuated equilibrium has two core, empirical claims: (1) stasis dominates—once species
appear in the fossil record, they do not change much; and (2) morphological change is
concentrated in pulses that occur associated with speciation. Here we assess the state of the
evidence for these two claims, 50 years after punctuated equilibrium’s foundational paper.
Spurred by controversy, paleontologists have amassed a large number of case studies in which
morphology in species-level lineages is tracked over time. Compilations reveal that the direc-
tional trends predicted by gradualist expectations are infrequent. Although stasis is commonly
observed, it is favored in less than half of cases, andmeandering randomwalks or more complex
models generally account for the majority of cases. The second claim of punctuated equilibrium
has received much less empirical scrutiny than the first. Although speciational pulses are
plausible, only a few paleontological studies integrate ancestor–descendant time series into a
phylogenetic framework as is needed to estimate changes associated with speciation. These
studies, as well as more indirect analyses of extant clades, suggest that speciational change can
occur, but we cannot yet assess its frequency or importance compared with anagenetic changes.

Punctuated Equilibrium and Its Reach

It is difficult to overstate the influence that punctuated equilibrium has had on the field of
paleontology. Since the publication of its foundational paper (Eldredge and Gould 1972), it has
spurred many thousands of pages of scientific reaction—praise and rebuke, extensions and
examinations—on its way to becoming the dominant frame that paleontologists adopt when
considering how species change over their lifetimes. Indeed, the very existence of this special
issue, devoted to the legacy of that single paper, is testament to the power and the reach of
punctuated equilibrium as a scientific idea.

There is no doubting punctuated equilibrium’s impact. But is it correct? That is, are its
predictions as a scientificmodel broadly supported by empirical evidence? Assessing this requires
that we first delimit punctuated equilibrium’s boundaries. This task is not entirely straightfor-
ward, because it was entangled with a variety of other evolutionary and conceptual issues,
including species selection (Stanley 1975; Jablonski 2008), hierarchical conceptualizations of
evolution (Vrba and Eldredge 1984), extensions into ecological change (Morris et al. 1995), the
relationship between micro- and macroevolution (Gould 1980; Charlesworth et al. 1982; Han-
cock et al. 2021), and its rolemore broadly in the history of paleontology as a science (Princehouse
2009; Sepkoski 2009). Without denying the richness of its implications, we consider punctuated
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equilibrium itself to have two core, empirical claims: (1) stasis
dominates: species do not change much after they appear in the
fossil record; and (2) morphological change is concentrated into
pulses of change associated with speciation. The complexity of
punctuated equilibrium’s implications has led some to view the
term as no longer useful (Pennell et al. 2014; Rolland et al. 2023),
but the two core claims we identify match well the recent views of
other paleontologists (Geary 2009; Lieberman and Eldredge 2014).
Our goal in this essay is to evaluate these two claims in light of the
paleontological evidence gathered over the past 50 years. We will
argue that the discipline of paleontology has amassed a very large
body of literature about the first claim, stasis, but that we still know
surprisingly little about the link between speciation and morpho-
logical change.

Given the cumulative volume of ink devoted to punctuated
equilibrium, it may seem that a review of its evidential support is
hardly needed. After all, several reviews have addressed this ques-
tion (Gingerich 1985; Erwin and Anstey 1995; Jackson and Chee-
tham1999), even at book length (Hoffman 1989; Levinton 2001), or
longer (Gould 2002). However, although these reviews consider
overlapping sets of case studies, they do not agree with one another,
and they form no useful consensus. Some conclude that punctuated
equilibrium is dominant (Jackson and Cheetham 1999; Gould
2002), others say that it is rarely supported (Gingerich 1985;
Levinton 2001), or that the evidence is mixed (Erwin and Anstey
1995). Such disagreement could coexist because these reviews
compiled verbal descriptions and qualitative judgments, with no
clear recourse when these interpretations were in conflict.

From Verbal to Statistical Models of Trait Evolution

Punctuated equilibrium was initially presented without an oper-
ational testing strategy. The two core claims of stasis and specia-
tional pulses were contrasted with an expectation of gradual trend
whereby a species insensibly transforms into its descendant
through a geological succession. Eldredge and Gould labeled this
view “phyletic gradualism” and argued it was a pervasive, if often
unstated, expectation among paleontologists. In 1972, few empir-
ical case studies were up to the task of discriminating these two
models, but the ensuing debate prompted researchers to tackle the
problem with increased empirical rigor. And yet these new and
better case studies could still receive diametrically opposing inter-
pretations (e.g., Gould and Eldredge 1977).

In response to this impasse, statistical tests were developed to
guide evolutionary interpretation (Raup 1977; Raup and Crick
1981; Bookstein 1987; Gingerich 1993; Roopnarine 2001). Most
of these earlier tests set, as a null hypothesis, an unbiased random
walk, a simple model in which trait changes from one time point to
the next are independent and centered around zero. A trajectory
would be classified as stasis if net change during the time series was
less than what was predicted by a random walk. Conversely, a trait
with net change greater or more consistent in direction than what a
random walk predicted would be interpreted as a gradual trend.
This shift in practice thus inserted an additional evolutionary mode
—randomwalks—intermediate between stasis and gradualism, the
two modes postulated by the punctuated equilibrium model. How-
ever, because these tests had low statistical power to reject random
walks (Roopnarine et al. 1999; Sheets andMitchell 2001), theymade
relatively little impact in practice.

The next generation of approaches used likelihood-based
methods to fit and compare models (Hunt 2006; Hannisdal 2007).

This approach requires that all evolutionary modes under consider-
ation be defined as statistical models. Random walks were already
well defined, but stasis and gradualismhad previously been described
somewhat impressionistically. For this model comparison approach,
stasis is usually modeled as fluctuating white noise (Sheets and
Mitchell 2001), and gradualism as a directional (also called biased)
random walk. These modeling choices were a reasonable—though
not exact—match to the initial qualitative accounts of stasis and
gradualism. The latter term was particularly ambiguous; sometimes
it meant a directional trend, but others used “gradual” to refer to the
broader category of any incremental (non-punctuated) evolutionary
change (see Hunt and Rabosky 2014; in this paper we use
“gradualism” only to discuss the historical debate and shift to less
ambiguous terms like directional or trend when discussing models).
Likelihood approaches have several advantages over the previously
developed null hypothesis tests, including that they naturally handle
sampling error, they allow for valid parameter estimates and confi-
dence intervals, and they can be extended tonewmodels of evolution.
Most important, however, was that these approaches could rigor-
ously compare the evidential support competingmodels received in a
way that treated each model on an equal footing, most commonly
through the Akaike information criterion (Akaike 1974) or related
metrics.

These features of likelihood analysis allowed for a new kind of
review study of within-lineage evolution. Instead of tallying of
subjective verdicts about stasis or gradualism, researchers could
compile trait data and fit them to a standard set of models, the
support for each could be summarized quantitatively (Hunt 2007b;
Hopkins and Lidgard 2012; Hunt et al. 2015; Voje 2016). The two
largest compilations (Hunt et al. 2015; Voje 2016), with 709 and
450 time series of trait evolution, respectively, will form the bulk of
the evidence we will draw upon to assess punctuated equilibrium’s
predictions about within-lineage change. These two studies con-
sidered a partially overlapping set of time series and employed very
similarmethods. In both cases, statistical support for stasis, random
walk, and directional trend was summarized using the sample size–
corrected Akaike information criterion. Hunt et al. (2015) fit add-
itional models, including punctuations and models in which the
mode shifted within a time series (e.g., a trait starts out in stasis and
then experiences a trend). It has long been recognized that no
evolutionary mode occurs universally, and so we use the cited
studies to summarize the relative frequency with which relevant
models are favored.

Claim 1: Stasis Dominates Within-Lineage Evolution

These surveys incorporate the outcomes of hundreds of instances in
which paleontologists tracked morphological traits through time in
unbranched, species-level lineages. In this section, we first focus on
the relative frequency of support for different models (what do we
know?), and then on the implications for the support of punctuated
equilibrium as a model and for our understanding of the evolu-
tionary processes that shape trait evolution (what does it mean?).
Finally, we conclude this section with a brief look at the future of
paleontological analysis of morphological time series.

What Do We Know about Patterns of Within-Lineage Change?

Stasis is common, but not the dominant mode of evolution within
lineages. Voje (2016) found stasis to be best supported in 34% of
cases. Hunt et al. (2015) similarly found 38% for uniform stasis
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models, with many of the other best-supported models also having
stasis as a component (e.g., two intervals of stasis separated by
punctuation). In total, 63% of time series were best fit by a model
with stasis occurring over some or all of its span. As expected,
sequences for which stasis is favored showmarkedly less net change
than other sequences (Voje 2016); in fact, nearly half of them are
better supported by a stricter version of the stasis model consistent
with no real evolutionary variation (this means that sampling error
on trait means is large enough to account for all observed trait
variation; Hunt et al. 2015). However, in other cases, the stasis
pattern encompasses substantial evolutionary change, and the
average amount of trait change between samples can even be larger
for stasis than for other models (Voje 2016).

Sustained directional trends, on the other hand, are rather
uncommon, comprising 12% (Voje 2016) or 9% (Hunt et al.
2015), with the latter figure increasing to 13% if all models that
include periods of directional change are included. Cases not best fit
by uniform stasis or trends instead favor random walks or models
with more complex dynamics. In both studies, these account for a
majority of time series (54% for Voje [2016] and 53% for Hunt et al.
[2015]). Thus, most time series conform neatly to neither stasis nor
gradual trends.

Which models are best supported can be influenced by the
nature of the observational window. Stasis becomes less likely to
be favored as the temporal duration of sequences increases (Hunt
et al. 2015); if one waits long enough, it becomes increasingly
probable that a trait will show some kind of accumulating evolu-
tionary change.

What Do These Patterns Mean for Punctuated Equilibrium?

On balance, these aggregate results offer at least partial support for
punctuated equilibrium’s claim about low net evolution during
within-lineage change. Stasis is common over the 105–106 year
timescales that paleontologists usually examine, and it occurs at
much higher frequencies than the directional patterns associated
with phyletic gradualism. Moreover, this differential must be even
greater than indicated by these compilations, because paleontolo-
gists have surely documented trends disproportionately, hoping
to capture “interesting” evolutionary change (Gould 2002). On the
other hand, most cases are not best explained as stasis, and its
frequency falls short of what most observers would consider
dominant.

Even if stasis is not quite dominant, punctuated equilibriumwas
important in recognizing stasis as a phenomenon of interest.
Indeed, its most lasting contribution to evolutionary biology may
well be the realization that net evolutionary rates are so often
exceedingly slow compared with instances of rapid evolution in
living populations. Although patterns of stasis were noted by some
earlier paleontologists (see examples in Gould 2002: pp. 745–755),
it was not widely anticipated by evolutionary biologists and would
not have been discovered without the fossil record. The frequent
occurrence of stasis in the fossil record despite sometimes rapid
evolution in extant populations (Hendry and Kinnison 1999) and
strong directional selection and abundant genetic variance in extant
populations has been termed “the paradox of stasis” (Hansen and
Houle 2004), and it has been suggested to be one of the significant
unsolved problems in evolutionary biology (Williams 1992). How-
ever, while stasis is commonly observed, it is not universal, and it
has become clear that the binary categories of stasis and gradualism
are not rich enough to capture the variety of patterns of trait

evolution we see in fossil lineages. This observation has several
implications to which we will return later.

What Do These Patterns Mean for Understanding Evolution?

Eldredge and Gould (1972) cautioned that evolutionary process
is difficult to infer from fossil data. Nonetheless, one front in
the controversy that followed concerned the microevolutionary
implications of the punctuated equilibrium model (Gould 1980;
Charlesworth et al. 1982; Hancock et al. 2021). We accept that
paleontologists usually lack the information needed to assess micro-
evolution in any particular lineage. Stepping back, however, do the
aggregate fossil patterns reveal anything about these underlying
processes?

We will not examine this issue in detail (see Uyeda et al. 2011;
Hansen 2012; Hunt and Rabosky 2014). Instead, we will use Simp-
son’s (1944) concept of phenotypic adaptive landscape to sketch out
some useful ways to think about species-level morphological time
series in the fossil record. Adaptive landscapes have axes that
specify phenotype, with mean population fitness represented as
elevation above these axes, similar to a contour map of topography.
Natural selection pushes populations uphill, toward higher fitness,
with drift adding a non-directional component of change. Simpson
used this concept qualitatively to explore evolutionary patterns,
such as the evolution of hypsodonty in the horse clade, but theory
development starting with Lande (1976, 1979) formalized this
conceptual tool. We now have equations that describe how popu-
lations move on specified adaptive landscapes (Arnold 2023),
which have become increasingly central to how evolutionary biolo-
gists understand microevolutionary processes over long timescales
(Arnold et al. 2001; Hansen 2012; Uyeda and Harmon 2014; Roll-
and et al. 2023).

In the simplest case of a fixed adaptive peak, populations located
far from the adaptive optimum are pushed toward it, rapidly at first,
but in a decelerating manner until the population converges to the
peak. Even with weak selection, this convergence will usually be too
rapid to resolve in the fossil record. Once the peak is attained, the
population fluctuates around it in a balance between outward
perturbations from drift and the inward pull of selection toward
the optimum. These fluctuations are a plausible cause of stasis for
traits that display a narrow range of variation (as for cases of strict
stasis, noted earlier), but empirical investigations have not found
support for this as a general explanation for stasis in the fossil
record (Voje et al. 2018). Meta-analysis of studies of natural selec-
tion has found that selection coefficients can vary substantially over
the course of several generations (Siepielski et al. 2009), although
much of this apparent variation may be attributable to noise in
estimating selection (Morrissey and Hadfield 2012). Regardless,
over timescales longer than a few generations, it seems unlikely
that environmental and biotic conditions would remain constant.
As factors that affect a species change, so does that species’ adaptive
landscape. Peaks can change in height and position, and popula-
tionswill follow themwith lags that are generallymuch shorter than
paleontological resolutions. This tracking of peaks may be cut short
by population extinction, especially for large changes in the adap-
tive landscape that indicate substantial mismatch between a popu-
lation’s traits and its conditions. The resulting population decline
and extirpation may thus filter out many of the largest evolutionary
responses that might have otherwise occurred (De Lisle et al. 2021).
Nevertheless, with dynamic adaptive landscapes, long-term mor-
phological changes are primarily governed by changes in the
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landscape itself, rather than the relatively quick population dynam-
ics on stable landscapes.

This framework suggests a first-order interpretation for the
distribution of patterns we see in paleontological time series
(Uyeda et al. 2011; Hansen 2012; Hunt and Rabosky 2014; Voje
et al. 2018; Arnold 2023). Traits that are best fit as randomwalks are
following peaks in the adaptive landscape that havemeandered, and
stasis results when conditions instead oscillate or fluctuate. These
fluctuations need not be small (Voje 2016), but as long as they are
bounded and non-directional, a stasis model will be a good descrip-
tion of the pattern. When conditions change heterogeneously over
time, evolutionary models that are uniform over time can fail, and
complex models (punctuations, mode shifts) may better capture
trait dynamics. Trends, which are otherwise difficult to account for
(Gould 2002), are likely rare, because conditions that species
experience tend not to change as simple, linear trends over hun-
dreds of thousands to millions of years. Short-term directional
changes are probably common, but likely only rarely sustained long
enough to result in accumulating change (Futuyma 1987) or
paleontological trends within species (e.g., Hunt and Roy 2006).
Of course, these evolutionary patterns may be altered or distorted
by temporal changes in preservation and sedimentation at a locality
(Kidwell and Holland 2002; Patzkowsky and Holland 2012). The
net effect of this geological overprint will depend greatly on both
sedimentary context and on the true evolutionary pattern. Simula-
tions and other approaches can be used to explore ranges of
plausible effects (Holland 2000; Hannisdal 2006, 2007; Hunt
2008; Patzkowsky and Holland 2012; Hohmann et al. 2024), but
this remains an understudied area of investigation. The immigra-
tion of morphologically similar lineages can also confound anagen-
etic patterns, but careful morphological analysis can at least
sometimes reveal this dynamic (Van Bocxlaer et al. 2008; Hull
and Norris 2009).

This interpretative framework focuses on natural selection as
the primary driver of morphological change, which is undoubt-
edly a simplification of a more complex evolutionary reality.
Genetic drift will always operate and may be potent in small
populations, but morphological change is far too slow in the fossil
record for neutral evolution to be dominant (Hansen 2012; Hunt
2012). Trait variation may also influence the direction of evolu-
tion, with evolutionary changes potentially concentrated in more
variable traits and combinations of traits (evolvability in its mod-
ern sense; Schluter 1996; Hansen and Houle 2004; Hunt 2007a;
Love et al. 2021; Opedal et al. 2023; Voje et al. 2023; Holstad et al.
2024). Some workers have also argued that population structure
and gene flow may be particularly important contributors to
stasis, as genetic exchange across variable environments may
average out local adaptive changes (Lieberman et al. 1994; Lieber-
man and Dudgeon 1996; Eldredge et al. 2005). The relationship
between gene flow and evolutionary divergence can be complex
(Hanski et al. 2011; Kopp and Matuszewski 2014), and testing the
importance of spatial structure and gene flow for stasis will require
adding to the few studies that document phenotypic evolution
within a species across multiple environments or regions (e.g.,
Cisne et al. 1980; Lieberman et al. 1995; Kucera and Malmgren
1998; Webber and Hunda 2007).

Despite all these potential complications, simulations by Hunt
et al. (2015) suggest that peak-tracking models have potential
to account for many aspects of the aggregated data we have.
Data simulated with a simple, calibrated model in which morph-
ology tracks a long-term temperature curve resulted in frequen-
cies of trends, random walks, stasis, and other models that were

strikingly similar to the distribution we see in empirical fossil
time series.

What Is Next for Analyzing Fossil Time Series?

We noted earlier that natural selection is usually too fast, and the
fossil record is usually too coarse, to resolve evolutionary changes
on a stable adaptive landscape. To our knowledge, there is just one
such example, in which a varved lake deposit captures the adaptive
reduction in skeletal armor in a lineage of stickleback as it invades a
new lake (Hunt et al. 2008). Targeted work in high sedimentation
rate environments, focusing on traits of adaptive significance, may
produce more such examples in which paleontologists can hope to
infer truly microevolutionary processes. In nearly all cases, how-
ever, the models discussed in this paper are better thought of as
phenomenological, rather than process models. Their parameters
do not reflect population genetic quantities such as selection gra-
dients (although selection can be estimated in fossil populations by
other means, at least under special circumstances; e.g., Van Valen
1963; Hunt and Yasuhara 2010; Di Martino and Liow 2021).
Instead, time-series models are tools to extract and quantify general
features of evolutionary change such as directionality, pace, and
punctuations. Recent papers have developedmodels to capture new
features of interest, for example, initially rapid but then slowing
changes in the adaptive landscape (Voje 2020), dynamics that
reflect underlying but hidden drivers (Reitan et al. 2012), and
sudden or gradual shifts in the adaptive landscape (Voje 2023).
There is more work to be done in crafting models to assess other
dynamics of interest.

One striking feature about the aggregated literature on fossil
time series is how univariate the analyses are. Often, multiple traits
are measured, but the analysis almost always proceeds one trait at a
time, sometimes after using principal components analysis or other
techniques to reduce dimensionality (which has its own complica-
tions in this context; Bookstein 2013; Uyeda et al. 2015). The net
effect is that we have good compilations of how traits evolve, but less
clear of an idea about how morphology, as an integrated whole,
changes. For example, it may be unremarkable when a single trait
does not change over time. But when all observable aspects of form
do not change, that is a more surprising outcome and greater
validation of punctuated equilibrium’s contribution to evolutionary
thought (Futuyma 2010). Modeling traits jointly is complicated
when different traits within the same lineage show different modes
of evolution, which is a common outcome (Hopkins and Lidgard
2012; Hunt et al. 2015). However, recent developments allow for
differing trait dynamics within a unifiedmodeling framework (Voje
2023). Although these models can be more challenging to fit
compared with univariate models, they open the door to an inte-
grated organismal approach to understanding evolution on multi-
variate adaptive landscapes.

Although such methodological developments are welcome, the
analysis of paleontological time series may be limited more by data
availability than by the lack of appropriate models. The hundreds of
cases gathered by recent compilations are only a small and somewhat
idiosyncratic fraction of what has been collected by paleontologists,
and they are insufficient for exploring differences in evolutionary
outcomes across taxa, trait types, temporal scales, and other factors of
interest. This limitation may be mitigated by the recently established
Phenotypic Evolution Time Series database (PETS, https://pets.nh
m.uio.no). This online community resource allows researchers to
deposit for public use their own (or other published) data on mor-
phological time series. The hope is that, just as for the Paleobiology
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Database, broad input from the paleontological community will
quickly result in a much larger and richer store of data than could
be compiled by any one researcher.

Claim 2: Most Change Is Associated with Speciation

When Eldredge and Gould (1972) posited that most change is
associated with speciation, they did not support this claim with
direct paleontological evidence. Instead, they suggested that it was
an expected consequence of allopatric speciation in small, periph-
eral populations. They also drew from ideas of Ernst Mayr and
others that genetic homeostasis buffered against change and that
speciation could disrupt this buffering. Mayr’s so-called genetic
revolutions were not supported by later research (Coyne and Orr
2004), and this explanation for speciational pulses has mostly been
abandoned (Gould 2002).

Although the originally proposed mechanism is no longer
viable, more recent work has focused on other processes that might
accelerate rates of phenotypic evolution during speciation. Natural
selection can spur trait changes under ecological speciation (Nosil
2012), as can sexual selection for traits related tomating preferences
(Ritchie 2007). Reduced population sizes in peripheral isolates and
subsequent population expansion may also accelerate trait change
(Slatkin 1996). All these scenarios can result in pulses of elevated
trait change associated with speciation. Another suggestion, pro-
posed by Futuyma (1987, 2010; see also Rosenblum et al. 2012;
Futuyma 2015), is that speciation does not cause a pulse of mor-
phological change but that the two nonethelessmay be associated in
the fossil record. Under this model, adaptive morphological change
can occur at any time in a species’ lifetime in response to local
ecological conditions, but these changes are usually ephemeral,
erased by gene flow and population extirpation. Speciation, by
shutting down gene exchange, gives these otherwise fleeting
changes enough permanence to be detected in the fossil record.
This ephemeral divergence model was received with enthusiasm by
some paleontologists (Gould 2002; Eldredge et al. 2005), although
direct tests of this idea may be challenging to devise.

These scenarios predict pulses of trait change at speciation, but
other plausible conditions allow for ample change without lineage
splitting (Charlesworth et al. 1982; Kopp and Matuszewski 2014).

Species often experience strong directional selection in nature
(Hereford et al. 2004) and harbor enough standing genetic variation
that the resulting evolutionary responses would be rapid and sub-
stantial (Hansen 2012; Hansen and Pélabon 2021). Indeed, large
evolutionary changes are sometimes observed in living populations
(Hendry and Kinnison 1999), which in part led to formulation of
the paradox of stasis, as discussed earlier. Thus, while speciational
pulses can plausibly occur, they are not required for substantial trait
change.

The case for speciational pulses also had a process of elimination
aspect that many paleontologists may have found appealing. If we
only see stasis within lineages, when else could change occur other
than between lineages? This argument would be strongest if we
observed only narrowly fluctuating stasis when documenting
changes within lineages. As we have seen, however, patterns other
than stasis are very common, and some of them result in substantial
evolutionary divergence in unbranched lineages (Fig. 1). Moreover,
as anyone who has carefully studied a fauna knows, closely related
species are often difficult to tell apart, which means that whatever
evolutionary changes occur at speciation, they can be quite modest.
Cryptic species (Struck et al. 2018; Shin and Allmon 2023), of
course, are the most extreme version of this phenomenon. Because
changes within lineages are not always small, and because changes
at speciation are not always large, resolving the nature of specia-
tional pulses requires that we actually measure and compare them
with anagenetic changes.

Inferring Unobserved Speciational Pulses

Ideally, paleontologists could assess speciational pulses by sampling
morphological changes through a cladogenetic event. Eldredge and
Gould (1972) considered speciation to be rapid—an event in the
geological sense. Some mechanisms of speciation do proceed quite
quickly compared with paleontological time resolutions (Coyne
and Orr 2004; Hendry et al. 2007), but not all do so, and the reality
may be complex (Norris and Hull 2012; Dynesius and Jansson
2014; Etienne et al. 2014). Nevertheless, only a handful of
paleontological studies have claimed to analyze trait evolution in
detail as, or shortly after, a lineage splits (e.g., Gingerich 1976;
Kellogg 1983; Lazarus 1986; Sorhannus et al. 1988).
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Figure 1. Examples of three paleontological time series that show substantial evolutionary change within unbranched, species-level lineages. Time is in units of millions of years
(Myr) elapsed from the start of the sequence; error bars indicate 1 standard error of themean. The three examples are, from left to right: number of axial rings in the pygidium in the
trilobite Flexicalymene (Cisne et al. 1980); shell width in the land snail Mandarina (Chiba 1996); height of the hyaline area in the diatom Rhizosolenia praebergonii from DSDP
573 (Sorhannus et al. 1988).
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Thus, barring unusually protracted speciation captured by a
fortuitous fossil window, the evidence used to assess speciational
pulses will be indirect. The most important paleontological studies
on this question were made by Alan Cheetham and colleagues on
the bryozoan genusMetrarabdotos (Cheetham 1986, 1987; Jackson
and Cheetham 1990; Cheetham et al. 2007). These studies are
widely seen as the best test of punctuated equilibrium because of
their detailed stratigraphic and geographic sampling, careful
delimitation of species, quantitative genetic analysis of traits, and
demonstrated correspondence between genetic and morphological
species. We would argue, however, that the most critical advance
was that these studies integrated ancestor–descendant sequences
into a phylogenetic framework, rather than analyzing them in
isolation. This approach allowed Cheetham and colleagues to esti-
mate changes within species and to compare them explicitly to the
changes between species. Doing so indicated that Metrarabdotos
showed only minor fluctuations within species and much larger
differences between species, supporting the claim that speciation
was associated with an extra burst of morphological change.

The status of Cheetham et al.’s conclusions ismore clouded now,
as a subsequent study (Voje et al. 2020) revealed that the finding of
speciational pulses depended on methodological decisions related
to missing data and the combination of continuous and discretely
measured traits in the same analysis (see that paper for details).
Regardless of the outcome in this one case study, the approach of
stitching ancestor–descendant sequences into a phylogenetic
framework is clearly a promising one. It is therefore surprising to

us that only a handful of subsequent studies have used this
approach in the nearly 40 years since Cheetham first employed it
(Polly 2002; Pachut and Anstey 2009; Hunt 2013).

We present a brief summary of one of these studies (Hunt
2013) to illustrate the potential—and the challenges—of this kind
of study. Like Cheetham’s work, this one focused on a single
genus, that of the deep-sea ostracode Poseidonamicus. This study
characterized morphology through 10 geometric landmarks
(Fig. 2A) that were largely independent of the features used to
define species, avoiding the potential circularity of looking for
speciational pulses in the same characters that were used to
separate species in the first place (Levinton and Simon 1980).
Fifty-one populations from 14 different species-level lineages
were sampled (Fig. 2B). Visually, some of these species displayed
little morphological change (e.g., P. rudis, P. miocenicus), whereas
others experienced anagenetic changes comparable to the differ-
ences between closely related species (Fig. 2B). These data were fit
to an evolutionary model, first proposed by Bokma (2002), with
anagenetic evolution within lineages that followed a randomwalk,
plus an additional, instantaneous pulse of change that occurs at
each speciation. A version of this model with stasis within lin-
eages, rather than random walks, turned out to be better sup-
ported, and we focus on those results here.

The parameters of this model can be converted into a metric
that summarizes the percent of total evolutionary change in a
species that can be attributed to the speciational pulse at its origin.
The best estimates for this metric differed by trait: PC 1’s estimate
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implies almost all change is speciational, whereas PC 2 shows the
opposite pattern (Fig. 2C). Body size is intermediate, with nearly
equal speciational and anagenetic contributions to evolutionary
change. Except for PC 1, however, the confidence limits on these
estimates are very broad, spanning solutions from near-zero to
almost 100% speciational evolution (Fig. 2C). Thus, this dataset,
even with its rather good phylogenetic and stratigraphic coverage,
cannot discriminate speciational and anagenetic evolution for
most traits.

The lack of similar paleontological studies makes it difficult to
know how general these findings are. For extant species, there is a
parallel literature in which the Bokma model or other tree-based
approaches are used to infer speciational change (Mooers and
Schluter 1998; Pagel 1998; Ricklefs 2006; Bokma 2008; Mattila
and Bokma 2008; McPeek et al. 2008; Ingram 2011; Ingram et al.
2016). Another strand of research tests for punctuated equilib-
riummore indirectly by looking for a correlation between lineage
diversification rates and morphological divergence (e.g., Ricklefs
2004; Adams et al. 2009; Rabosky et al. 2013), although this
correlation can be positive even in the absence of speciational
change (Rabosky 2012). Some, but not all, of these studies find
evidence for speciational evolution. Moreover, those studies that
include confidence intervals often report that the data cannot
well constrain the importance of speciational pulses (e.g., Mattila
and Bokma 2008; Ingram 2011; Ingram et al. 2016). This uncer-
tainty may be unsurprising for modern studies, because they
need to overcome the lack of data on within-species change with
strong evolutionary assumptions (see Hunt 2013). But the Posei-
donamicus case study shows that this uncertainty can persist
even with good paleontological data constraining anagenetic
evolution.

We conclude that punctuated equilibrium’s second core claim
cannot yet be assessed with any degree of confidence (see also
Rolland et al. 2023). Limited fossil evidence, along with broader
but less direct evidence from extant clades, indicates that pulses of
morphological evolution associated with speciation occur. But the
importance of these pulses compared with anagenetic change
within lineages is still unresolved. Moreover, we foresee that this
question will likely remain a challenging problem, because it faces
inherent difficulties. Speciation is inferred indirectly, with uncer-
tain timing, from an incomplete record of fossil occurrences.
Models of morphological change are needed to convert morpho-
logical observations into parameters that are relevant for testing,
but we do not know yet whether results will generally be robust
across plausible models.

Furthermore, all these analytical sources of uncertainty are
layered on top of the complexities of just recognizing the input
units—species—in the fossil record (Allmon and Yacobucci 2016).
A long-standing criticism of punctuated equilibrium concerned its
potential circularity: if species are defined on the basis of morph-
ology, then rapid trait evolution will lead to new named species, and
therefore a spurious association with “speciation” (Gingerich 1976;
Levinton and Simon 1980; see also Hopkins and Lidgard 2016).
Such a scenario is falsified when the putative ancestor persists
beyond the origin of the descendant; thus, the stratigraphic con-
figuration of species became an important line of evidence in these
studies (Gould 2002: p. 795). Recently developed phylogenetic
methods incorporate stratigraphic data and are able to compare
the support for hypotheses of anagenetic versus cladogenetic rela-
tionships among species (Wright et al. 2021). Although practical
challenges remain, we are optimistic about future progress in
this area.

Concluding Remarks

This special issue examines the legacy of a controversial paper. In
our contribution, we have argued that punctuated equilibrium has
two central claims. The first, that stasis dominates within-species
evolution, has been subject to extensive empirical testing. Hundreds
of compiled examples of trait evolution testify that stasis, although
not dominant, is indeed common, and even when other patterns of
change occur, magnitudes of trait divergence are often quite low.
The second claim, that most morphological change is associated
with lineage splitting, is inherently more difficult to test. Some
paleontological and phylogenetic analyses suggest that speciational
pulses can occur, but resolving their generality and importance
awaits further theoretical, methodological, and empirical develop-
ments. Although not all the claims in Eldredge and Gould (1972)
are upheld today, all of us interested in understanding how mor-
phological evolution operates within species owe this paper an
enormous debt. Its insight and rhetoric provoked much of the
empirical work that informs this subject today, while at the same
time enriching the theoretical framework within which these data
are interpreted.
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