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Functions Universal for all Translation
Operators in Several Complex Variables

Frédéric Bayart and Paul M Gauthier

Abstract. We prove the existence of a (in fact many) holomorphic function f in C? such that, for
any a # 0, its translations f( - + na) are dense in H(C%).

1 Introduction

The roots of this paper go back to an old paper of Birkhoft [3] in which he proves
that, for any a # 0, there exists an entire function f such that its translates f(- + na)
are dense in the space of all entire functions H(C) endowed with the compact-open
topology. In modern terms, this means that the operators 7,: H(C) - H(C), f ~
f (- + a) are hypercyclic, and we shall denote by HC(7,) the set of hypercyclic func-
tions with respect to 7,, namely the set of functions whose translates by na, n =
1,2,..., are dense. Since Birkhoff’s theorem, the theory of hypercyclic operators has
grown, and we refer the reader to the books [2,5] for more on this subject.

Regarding hypercyclicity of translations, a major breakthrough was made by Cos-
takis and Sambarino in [4]. They were able to show that one can choose the
same hypercyclic function for all non-zero translation operators. In other words,
Nazo HC (7,) is non empty. In Tsirivas’ subsequent works (see [7-9]) as well as in
a paper by the first author [1], the authors were interested in considering common
universal functions for sequences of translations 7,,,. In particular, in [1], one is
interested in translation operators acting on H(C?) with d > 2. It is shown that
Naera\oy HC(7,) is a residual subset of H(C%). There are two main difficulties for
going from Costakis and Sambarino’s results to this last one:

(a) The method of [4] is one-dimensional and works very well for one-
dimensional families of operators. Then an algebraic trick allows one to go from R to
C. It was not clear how to go further, especially on C¢.

(b) Polynomial approximation is more difficult in H(C?), d > 2, than in H(C).
In particular, there is no satisfactory Runge or Mergelyan theorem in H(C?), and
one has to work with the delicate notion of polynomially convex sets. That is why the
result of [1] was for translations by real elements even though we are working in C¢.
In this paper, we overcome this last difficulty, and we are able to prove the following
result.
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Theorem 1.1 The set Maeca\(o} HC(74) is a residual subset of H(CY).

Our method of proof uses arithmetical tools from [1], in particular the forthcoming
Lemma 2.5. It allows us to obtain a redundant net in any compact subset of C%, for any
dimension d. We then use classical results on polynomially convex sets of C¢ to show
that we can do a polynomial approximation of any holomorphic function defined on
a union of sufficiently disjoint hypercubes.

2 Tools for the Construction

2.1 Polynomial Convexity

Let C, R, and N denote the complex, real, and natural numbers, respectively, and let
Ny = {0,1,2,...}. For a compact subset K of C*, we denote by K the polynomially
convex hull of K :

K={ze C% for every polynomial p, |p(z)| < max lp(w)l}.
weK

A compact set K ¢ C* is said to be polynomially convex if it is equal to its polynomially
convex hull; that is, if K = K. For example, compact convex sets are polynomially
convex and a compact subset of C is polynomially convex if and only if its complement
is connected.

Runge’s Polynomial Approximation Theorem states that if a compact subset K of
C has connected complement, then every function holomorphic on (a neighborhood
of) K can be uniformly approximated by polynomials. The following extension of the
Runge Theorem to higher dimensions is known as the Oka—Weil Theorem (see [6]).

Theorem 2.1 Let K be a polynomially convex compact subset of C*. Then, for every
function f holomorphic on K and for every € > 0, there exists a polynomial p such that

Ip(2) - f(2)| <€, forall zeK.

An important tool in constructing polynomially convex sets is the following Sep-
aration Lemma by Eva Kallin (see [6]).

Lemma 2.2 Let X and Y be two polynomially convex compact subsets of C?. If there
exists a polynomial p which separates X and Y in the sense that p(X) n p(Y) = @, then
the union X U'Y of X and Y is also polynomially convex.

We identify C? with R?¢ by means of either of the two natural complex structures
on R??, and henceforth |x| denotes the £o,-norm on R??. For x = (x(, ..., x(%) ¢
R?? we denote by Q(x, R) the closed hypercube

Q(x,R) = Q( (x(l),...,x(Zd)),R) ={yeR*:|x-y| <R},

which may also be considered as the closed ball of center x and radius R with respect to
the norm |- |. If z € C¥ corresponds to the point x € R??, we shall, by abuse of notation,
write Q(z, R) to mean the subset of C? identified with the hypercube Q(x, R) in R??,
When we say that a subset K of R?“ is polynomially convex, we mean that, as a subset
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of C4, it is polynomially convex. Since compact convex sets are polynomially convex,
it follows that hypercubes are polynomially convex.
We need to prove that several sets are polynomially convex.

Lemma 2.3 Let K, L be two compact polynomially convex subsets of R*?. Assume
that there exists a € R such that x(V < a < yO for all (x,y) € K x L. Then K U L is
polynomially convex.

Proof Let z(") be a complex coordinate generated by the real coordinate x(!). The
polynomial f(z) = z() separates K and L, and so by Kallin’s Separation Lemma, KUL
is polynomially convex. ]

Lemma 2.4 LetR > 0. For everyl < ¢ < 2d let (y )0<J<Q, be a finite family of
points in R such that, for all j # ', | >2R.

oy Q(u“) ...,yjjj>>,R>

is polynomially convex.

Proof For simplicity, let us write

x= U Q.5 R).

Recalling the identification R?¢ = C? and denoting by X(") the projection of X on
the complex coordinate z("), n = 1,...,d, we have X = H‘izl X, because of the
separation hypotheses. Since each X" is a disjoint (again by the separation hypoth-
esis) union of closed squares, it is polynomially convex (here, we are just working in
C) and since a product of polynomially convex sets is again polynomially convex, it
follows that X is polynomially convex. ]

2.2 Construction of Sequences of Integers

We will need the following lemma about the construction of sequences of integers
having some redundant properties. The following Lemma is [1, Corollary 2.8] applied
to the whole sequence of integers.

Lemma 2.5 Foralld >1andall A > 0, there exist p > 1 and an increasing sequence of
integers (, ) such that yns1 > ppy for any n > 1 and, for all P > 0, we can find s; € N,
finite subsets E, of N"™! forr =2,...,2d + 1, maps s,:E, > Nforr=2,...,2d and a
one-to-one map ¢: E» 4,1 = N such that the following hold.

e Foranyr=2,...,2d +1,
E, = {(k],. o ;kr—l) € N(r]_l : kl < $1, kz < Sz(kl),. o ;kr—l < Sr—l(kla- . .,k,»_z)}.
o Foreveryr=1,...,2d, forevery (ki,...,k;1) € E,, where E; =

Se(kiseeskeor) 1 § A

j=1 Bo(kireokra1,50,.00)  Ho(kpyeoiskro1,0,.. 0)'
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. $(0,...,0) > P.
o If (ki,....kaa) > (K{,...,k5,) in the lexicographical order, then

(p(k], e ,kzd) > (p(k{, . ’k;d)’

When r = 1, the second point of the lemma simply means that

1 1 A

=1 H¢(j,0,...,0)  H4(0,...,0) '
3 The Construction
Lemma 3.1 Let K be a compact subset of (0,+00)??. Assume that for all ¢ > 0 and

all R > 0, we can find N > 1, a finite increasing sequence of integers (An)n=1,...,N> and a
finite number (X, x )1<n<n, 1<k<p, Of elements of K satisfying the following:

(i)  The hypercubes Q(AnXnk>R), 1 < n < N, 1< k < p,, are pairwise disjoint and
are disjoint from Q(0, R).
(i)  The compact set Q(0, R) U Ucnen, 1<k<p, Q(AnXn k> R) is polynomially convex.

(iii) For every x € K, there exist n,m € {1,...,N} and k € {1,..., p,} such that
[Amx = Apxu k| < €.

Then Naex HC(7,) is a residual subset of H(C?).

Proof Let U, V be nonempty open subsets of H(C?). It is sufficient to show that
Un{feH(C'); VxeK, 3meN, 1,,f eV}

is nonempty (see for instance [2, Proposition 7.4]). Let §,p > 0 and g, h € H(C?%) be
such that

Us{feHC; |f - glecaqo.p) <20}
Vo {feH(C; |If - hleacop) <28}

where | - [ ¢(q(o,p)) denotes the sup-norm for €(Q(0, p)). We set R = 2p. By uniform
continuity of & on Q(0, 2p), there exists 7 € (0, p) such that

[h(- =20) = hlecqop)) <O

provided |zg| < . We set ¢ = min(J, ), and the assumptions of the lemma give us
sequences (1,) and (x, x). By (i) and (ii), there exists an entire function f € H(C%)
such that | f - glle(q(0,p)) < € <28 and

IfC +Anxnk) = hllecqeo.ry) <90

for any n, k. Now let x € K and let n, m and k be such that (iii) holds. Then for any
z € Q(0, p), observing that z + A,,x — A, x,, x belongs to Q(0, R), we get

|T2,xf(2) = h(2)| < |f(z FAmx = AuXpk + Anxpx) —h(z+ Apx — /\,,xn,k)|
+|h(z + Apx = Ayxn i) — h(2)] <26,

which concludes the proof. u
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We will use a version of the previous lemma for special K and restrict the covering
property to compact subsets of K.

Lemma 3.2 Let K be a compact subset of (0, +00)>4 of the form K = [12,[ae, ab].
Assume that, for all € > 0, for all R > 0, there exists y > 0 such that for every compact
hypercube L c K with diameter less than y, for every M € N, we can find N > M, a
finite increasing sequence of integers (Ay)n=m,.. N With Ayr > M, and a finite number
(Xn,k) M<n<N, 1<k<p, Of elements of L satisfying the following:

(i)  The hypercubes Q(AuXp,k>R), M < n <N, 1<k < p,, are pairwise disjoint.

(i)  The compact set Up<nen, 1<k<p, Q(AnXn k> R) is polynomially convex.

(ili) Foreveryx €L, thereexistn,me {M,...,N}andke{l,...,p,} such that
[Amx = Anxa il < e

Then Naex HC(7,) is a residual subset of H(C?).

Proof We show that the assumptions of Lemma 3.1 are automatically satisfied. Put
a =mina, > 0and a’ = max ajy. A positive real number y > 0 being fixed, K may be
decomposed as K = Ly U---U Ly, where each L ; is a compact hypercube with diameter
less than y. We set Ny = 0, A9 = 1, po = 0, and we construct inductively sequences
(An) and (x, ) as in Lemma 3.1. Assume that the construction has been done until
step j—1 (1< j<J)andletusdo it for step j. Let M; be sufficiently large such that
M; > Nj1, Mja - Ay, ,a’ — 2R > 0. We then apply the assumptions of Lemma 3.2 to
L=Ljand M = M; to get N; > M; and sequences (1, ), M; < n < N; and elements
(xnk) of Ly, Mj <n < Nj, 1<k < p,.

We claim that the union of the sequences (1,,), M; < n < Nyand (x,,x), Mj <
n<Npj1<k<py forj=1,...,], satisfies the hypotheses and hence the conclusion
of Lemma 3.1. Notice that the sequence (1,) is increasing, since Nj_; < M;. The
covering property (iii) of Lemma 3.1 clearly follows from Lemma 3.2(iii).

We then show that all the hypercubes Q(A,x, ., R) are pairwise disjoint, even if
they are constructed at different steps.

First of all, for fixed j, and n € {M;,...,N;}, the finite sequence x, ; was
chosen according to the hypothesis of Lemma 3.2, so we have that the hypercubes
Q(Anxy > R) are indeed pairwise disjoint.

For n and m coming from different j's, the crucial point is to observe that, for any
x€Ljjandany ye Lj, forany n € {Mj_y,...,Nj_}, forany m e {Mj,...,N;},

3.1 Aax® + R <Ay 0"+ R < Aya - R< A, y® - R.

The way we choose to initialize the construction (with M;a > 2R) guarantees that
Q(0, R) is also disjoint from all these hypercubes, and so our construction satisfies
Lemma 3.1(i).

Foreach j=1,...,], the set

n

N;
X;= U
}‘l:Mj

TCT

IQ(A'nxn,k» R)
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is polynomially convex, and an easy induction based on Lemma 2.3 and (3.1) ensures
that

Sl

N}
U

n=M; k

n

C~

j J
Q(0,R) L Q(Anxnks R) = Q0 R) U U X;
, =

J

Il
—
Il
—

is polynomially convex. We have verified (i), (ii), and (iii) of Lemma 3.1. This con-
cludes the proof. ]

Proposition 3.3  Let K be a compact subset of (0,+00)%4. Then Myex HC(7,) is a
residual subset of H(C?).

Proof Without loss of generality, we can assume that K = []3%,[ae, a}]. We intend
to apply Lemma 3.2. Thus, let R, ¢ > 0. We first apply Lemma 2.5 to A = 4R /¢ to get
some p > 1 and some sequence of integers (4, ) with g1 > py,. We then define
y > 0 as any positive real number such that, given any x € K, px(©) — x(6) —y > 0 for
all ¢ =1,...,2d. Now let L be a compact hypercube in K with diameter less than y
and let M e N. Without loss of generality, we can assume that L = []3,[be, be + y].
We then apply Lemma 2.5 with P > M such that

“r e=1i,r.l..f,2d(pbe ~be=y) > 2R

We get maps sy, . . ., S24 and ¢. We can now define our covering of L. Bearing in mind
that the domain of ¢ is finite, we set

no = mirkl ¢(ki,....kag) > M, N =  max )([)(kl,...,kzd)

and let n € {ng, ..., N}. Then either n is nota ¢(ky, ..., k4 ), in which case we set
Pn = 0, thatis, we do nothing; or n is equal to ¢(k;, . . ., kp4) for a (necessarily) unique
(kis..., kaq). We then define the set {x, k }1<k<p, as

4R
Ln{(b1+ Ny £ +~--+¥,

He(o,...,0)  H¢(,0,...,0) U (k1,0,...,0)
4Ra, £ £
bz + + ot —
H(ky,0,..,0)  H(kyi,1,0,...,0) K (ki kss...,0)
b2d+ 4R0(2d + € +...+¥
Ho(kiyekza1,0)  Bo(kiseskaars1) Ho(kyy...kaa)

(xl,...,(xzdeNo},

We also set 1, = pg(k,,....k,,) and we show that the assumptions of Lemma 3.2 are
satisfied. First of all, the hypercubes Q(A,x,,k, R) are pairwise disjoint. Indeed, let
(n,k) # (m, j). Then we have two cases:
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* n # m: for instance, n < m. In this case, looking at the first coordinate of A,,x, ¢
and A,, X, j, we get, using the fact that ¢(ky, ..., kaq) > P:

(32) mem,j - )Lnxn,k| 2 Ambl - An(bl + )/) 2 Plnbl - )Ln(bl + )’)
> HP(Pbl - bl - y) > 2R.
* n = m: Then x,, ; and x, ; may be written as above, with two different sequences

(a1, a2q) and (By, ..., B2q)- Let £ € {1,...,2d} be such that f, # a,. Looking
now at this coordinate, we get

4R
(3.3) AnXnk = AuXnj| > —————— > 2R,

Mqﬁ(kl)---,kefl)(),--- )
since Ay = gk, k) 2 Hp(kiookes, 0, )+
The covering property is also easy to verify using the construction of (x, ), k. Let
x € L. There exists ; € Ny such that

b1+ﬂ§x(l)§bl+w.
Hy(o,...,0) He(o,...,0)
Now, by construction of ¢, using Lemma 2.5 (recall that A = 4R /¢), there exists k; < s
such that
4Ry £ €
b, + + o —
He(0,...,0)  H¢(1,0,...,0) Ue(ki,0,...,0)
< xM
4R
<b + Ny £ +ot £ .
H¢(0,..,0)  H¢(1,0,...,0) H¢(ky+1,0,...,0)
This k; being fixed, there exists ay > 0 such that
by o R @)y, AR(e2t])
U (k1,0,...,0) U (k1,0,...,0)
Iterating this construction, we find a;, ..., a4 > 0 and k, ..., kp4 such that, for all
e=1,...,2d,
be + 4Rae + £ ot £ <x <
Ho(kiyske 150,...,0)  Bo(ki,....ke_1,1,0,...,0) Ko (kiy...oke_1,ke,0,...,0)
4R, £ £
be + + ot .
Ho(kiynoskeo1,0,...,0)  Ho(ki,....ke 151,0,...,0) Ho(ki,..ske_1,ke+1,0,...,0)

Let n = ¢(ki, ..., kyq) and let x,, ; correspond to these values of a;, . . ., ay4. Then,

€
Anx = AnXn k| € fo(k,.. kpy) X SUp —————————— <&
e=1,...,2d B¢ (ki,....ke+1,0,...,0)

It remains to be shown that Up<nen, 1<k<p, Q(AnXn k> R) is polynomially con-

vex, bearing in mind that we are orilyitaking n>ng. ForsucehM < n < N,n=
¢(ki,. ... kaa), weset Hy = Uick<p, Q(AnXn k> R), and we first show that H,, is poly-
nomially convex. For £ =1,...,2d, let Q, > 0 be the greatest integer such that
4RQ)
be + d + £ +oeet £ <bp+y.
Ho(kisiske 150,...,0)  Bo(ki,...ke_1,1,0,...,0) Ko (kis...oke 1 ke+1,0,...,0)
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For 0 < j < Q,, we also set

4Rj £ £
yée):be+ ] + ot
U (kise.ske-150,...,0)  Hé(ki,....ke_151,0,...,0) U (kys...oke_1,ke+1,0,...,0)
so that

{taws 1<k <pa} ={ (¥, ... yCD); 02 je <y £=1,...,2d) .

Since, as observed above (see (3.3)), |y(.l) -

i y§;1)| > 2R if jo # jj, it follows from
Lemma 2.4 that H,, is polynomially convex. Bearing in mind that H,, = &, for n < ny,
we then conclude that HyU---U Hy is polynomially convex by an easy induction us-
ing either Lemma 2.3 or Lemma 2.4. Indeed, for n = ny, ..., mg—1 foranyl1 < k < p,

andany 1< j < p,,

(34)  Aux(y+R<Au(bi+y) + R < Aunby R < dyaxl) - R. n

n+l,j

Proof of Theorem 1.1 So far, we have shown that if K is a compact subset of
(0,+00)%?, then N cx HC(7,) is a residual subset of H(C?). This property remains
true if K = Kj x --- x Kp4 where each K; is either a subset of (0, +00); or a subset of
(=00,0); or K; = {0} and at least one K, say K;,, is different from {0}. The con-
struction is exactly similar except that, on each coordinate such that K; = {0}, we
do nothing (we fix xfl’i = 0) and, wherever we need a separation property (see for
instance (3.1), (3.2), (3.4)), we look at the iy-th coordinate. Moreover, in this case,
the hypercubes K and L will have lower dimension. We finally conclude by writing
R29\{0} as a countable union of such compact sets. [ |
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