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SOME FUNCTION SPACES RELATIVE TO

MORREY-CAMPANATO SPACES ON METRIC SPACES

DACHUN YANG

Abstract. In this paper, the author introduces the Morrey-Campanato spaces
Ls

p(X) and the spaces Cs
p(X) on spaces of homogeneous type including metric

spaces and some fractals, and establishes some embedding theorems between
these spaces under some restrictions and the Besov spaces and the Triebel-
Lizorkin spaces. In particular, the author proves that Ls

p(X) = Bs
∞,∞(X) if

0 < s < ∞ and µ(X) < ∞. The author also introduces some new function
spaces As

p(X) and Bs
p(X) and proves that these new spaces when 0 < s < 1

and 1 < p < ∞ are just the Triebel-Lizorkin space F s
p,∞(X) if X is a met-

ric space, and the spaces A1
p(X) and B1

p(X) when 1 < p ≤ ∞ are just the
Haj lasz-Sobolev spaces W 1

p (X). Finally, as an application, the author gives a
new characterization of the Haj lasz-Sobolev spaces by making use of the sharp
maximal function.

§1. Introduction

On metric spaces including fractals, how to reasonably introduce some

well-known functions on the Euclidean spaces is the main subject of a lot

of recent papers and books; see [26], [21], [29], [30], [16], [17]. The main

purpose of this paper is to introduce the Morrey-Campanato spaces Ls
p(X)

and the spaces Cs
p(X) on spaces of homogeneous type including metric

spaces and some fractals, whose versions on R
n and its domains are studied

by DeVore and Sharpley in [6], Christ in [3] and Miyachi in [24], [25]; see also

[28] for more references. Moreover, L0
1(Ω) is just the usual space bmo(Ω)

if Ω is a bounded C∞ domain in R
n; see [28, p. 49]. We will establish

some embedding theorems between these spaces under some restrictions

and the Besov spaces and the Triebel-Lizorkin spaces in [12], [13], [16], [17].

In particular, we will prove that Ls
p(X) = Bs

∞,∞(X) if 0 < s < ∞ and

µ(X) < ∞ (see Theorem 2.1 below), which is known if X is a bounded C∞
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2 D. YANG

domain in R
n; see [28, pp. 50, 247–248]. Motivated by [21], we also introduce

some new function spaces As
p(X) and Bs

p(X), which can be regarded as

the fractional versions of the function spaces studied in [21]. However,

the metric spaces studied in [21] have the segment property and we do

not need this property by assuming some other properties. It is easy to

find a metric space satisfying our assumptions (see Definition 2.1 below),

which has no segment property. For example, consider X = [0, 1] ∪ [2, 3]

with the euclidean distance and the 1-dimensional Lebesgue measure. We

will prove that these new spaces As
p(X) and Bs

p(X), when 0 < s < 1,

1 < p < ∞ and X is a metric space, are just the Triebel-Lizorkin space

F s
p,∞(X) (see Theorem 2.4 below), and that the spaces A1

p(X) and B1
p(X),

when 1 < p ≤ ∞ and X is a metric space, are just the Haj lasz-Sobolev

spaces W 1
p (X) in [9] (see Theorem 3.3 below). Finally, as an application

of this result, we will establish a new characterization of the Sobolev space

W 1
p (X) by means of the sharp maximal function introduced by Triebel in

[28, p. 246] (see Theorem 3.4 below), which is also known if X is a bounded

C∞ domain in R
n; see [28, pp. 50, 247–248].

We remark that although some of our results are known if X is a

bounded C∞ domain in R
n, some new ideas and techniques are needed

to obtain their counterparts on spaces of homogeneous type. In particular,

we need the Calderón reproducing formulae established by Han in [11] and

we will also use some ideas from [21].

Section 2 is devoted to the study of the Morrey-Campanato spaces

and the Cs
p(X) spaces, and the new characterization of the Haj lasz-Sobolev

spaces W 1
p (X) is given in Section 3.

§2. Morrey-Campanato spaces and Cs
p spaces

Let us first recall some definitions and notation on spaces of homoge-

neous type. A quasi-metric ρ on a set X is a function ρ : X × X → [0,∞)

satisfying that

(i) ρ(x, y) = 0 if and only if x = y;

(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(iii) there exists a constant A ∈ [1,∞) such that for all x, y and z ∈ X,

ρ(x, y) ≤ A[ρ(x, z) + ρ(z, y)].
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MORREY-CAMPANATO SPACES 3

Any quasi-metric defines a topology, for which the balls

B(x, r) = {y ∈ X : ρ(y, x) < r}

for all x ∈ X and all r > 0 form a basis.

In what follows, we set diam X = sup{ρ(x, y) : x, y ∈ X}. We also

make the following conventions. We denote by f ∼ g that there is a con-

stant C > 0 independent of the main parameters such that C−1g < f < Cg.

Throughout the paper, we will denote by C a positive constant which is

independent of the main parameters, but it may vary from line to line.

Constants with subscripts, such as C1, do not change in different occur-

rences. We denote N∪ {0} simply by Z+ and for any q ∈ [1,∞], we denote

by q′ its conjugate index, namely, 1/q + 1/q ′ = 1. If X1 and X2 are two

quasi-Banach spaces, B1 ⊂ B2 means that there is a constant C > 0 such

that for all f ∈ B1,

‖f‖B2
≤ C‖f‖B1

.

Definition 2.1. ([16]) Let d > 0 and 0 < θ ≤ 1. A space of homoge-
neous type, (X, ρ, µ)d,θ, is a set X together with a quasi-metric ρ and a
nonnegative Borel regular measure µ on X with supp µ = X such that for
some constant C0 > 0 and for all 0 < r < diam X and all x, x′, y ∈ X,

(2.1) µ(B(x, r)) ∼ rd

and

(2.2) |ρ(x, y) − ρ(x′, y)| ≤ C0ρ(x, x′)θ[ρ(x, y) + ρ(x′, y)]1−θ.

Obviously, d can be regarded as the Hausdorff dimension of X (see

[23]). Moreover, if ρ is a metric, then θ in (2.2) can be 1; and, if X = R
n, ρ

is the usual Euclidean metric and µ is the n-dimensional Lebesgue measure,

then d = n and θ = 1.

Space of homogeneous type defined above is a variant of space of ho-

mogeneous type introduced by Coifman and Weiss in [4]. In [22], Macias

and Segovia have proved that one can replace the quasi-metric ρ of space

of homogeneous type in the sense of Coifman and Weiss by another quasi-

metric ρ̄ which yields the same topology on X as ρ such that (X, ρ̄, µ) is

the space defined by Definition 2.1 with d = 1.

Moreover, the spaces of homogeneous type in Definition 2.1 include the

Euclidean space, the C∞-compact Riemannian manifolds, the boundaries
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of Lipschitz domains and, in particular, the Lipschitz manifolds introduced

recently by Triebel in [31] and the isotropic and anisotropic d-sets in R
n.

It has been proved by Triebel in [29] that the isotropic and anisotropic

d-sets in R
n include various kinds of self-affine fractals, for example, the

Cantor set (see also [23]), the generalized Sierpinski carpet, the fern-like

fractals, Picasso-Xmas-Tree fractals and Oval-Ferny fractals; see [30], [1],

[2] and [8]. We particularly point out that the spaces of homogeneous type

in Definition 2.1 also include the post critically finite self-similar fractals

studied by Kigami in [20] and by Strichartz in [26], and the metric spaces

with heat kernel studied by Grigor’yan, Hu and Lau in [8].

We now recall the definition of the Besov and Triebel-Lizorkin spaces

on spaces of homogeneous type. To do so, let us first recall the definition

of the spaces of test functions on X in [15]; see also [11].

Definition 2.2. Fix γ > 0 and θ ≥ β > 0. A function f defined on
X is said to be a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0,
if f satisfies the following conditions:

(i) |f(x)| ≤ C1
rγ

(r + ρ(x, x0))d+γ
;

(ii) |f(x) − f(y)| ≤ C1

(
ρ(x, y)

r + ρ(x, x0)

)β rγ

(r + ρ(x, x0))d+γ

for ρ(x, y) ≤
1

2A
[r + ρ(x, x0)],

where C1 > 0 is independent of x, y and r. If f is a test function of type
(x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and the norm of f in G(x0, r, β, γ)
is defined by

‖f‖G(x0,r,β,γ) = inf{C1 : (i) and (ii) hold}.

Here and in what follows, θ is the same as in (2.2).

Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)

with the equivalent norms for all x1 ∈ X and r > 0. Furthermore, it is easy

to check that G(β, γ) is a Banach space with respect to the norm in G(β, γ).
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MORREY-CAMPANATO SPACES 5

Also, let the dual space (G(β, γ))′ be all linear functionals L from G(β, γ)

to C with the property that there exists a finite constant C > 0 such that

for all f ∈ G(β, γ),

|L(f)| ≤ C‖f‖G(β,γ).

We denote by 〈h, f〉 the natural pairing of elements h ∈ (G(β, γ))′ and

f ∈ G(β, γ). It is easy to see that, for all h ∈ (G(β, γ))′, 〈h, f〉 is well

defined for all f ∈ G(x0, r, β, γ) with x0 ∈ X and r > 0. Moreover, in what

follows, we will denote by G̊(β, γ), for 0 < β, γ < θ, the completion of

G(θ, θ) in G(β, γ).

To state the definition of the inhomogeneous Besov spaces Bs
p,q(X) and

the inhomogeneous Triebel-Lizorkin spaces F s
p,q(X) studied in [12], we need

the following approximations to the identity which were first introduced in

[11].

Definition 2.3. A sequence {Sk}
∞
k=0 of linear operators is said to be

an approximation to the identity of order ε ∈ (0, θ] if there exist C2, C3 > 0
such that for all k ∈ Z+ and all x, x′, y and y′ ∈ X, Sk(x, y), the kernel of
Sk is a function from X × X into C satisfying

(i) Sk(x, y) = 0 if ρ(x, y) ≥ C22−k and ‖Sk‖L∞(X×X) ≤ C32dk;

(ii) |Sk(x, y) − Sk(x′, y)| ≤ C32k(d+ε)ρ(x, x′)ε;

(iii) |Sk(x, y) − Sk(x, y′)| ≤ C32k(d+ε)ρ(y, y′)ε;

(iv) |[Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]|

≤ C32k(d+2ε)ρ(x, x′)ερ(y, y′)ε;

(v)

∫

X
Sk(x, y) dµ(y) = 1;

(vi)

∫

X
Sk(x, y) dµ(x) = 1.

Here, that Sk(x, y) is the kernel of Sk means that for suitable functions

f ,

Skf(x) =

∫

X
Sk(x, y)f(y) dµ(y).

We point out that by a similar Coifman’s construction to that in [5], one

can construct an approximation to the identity with compact supports as

in Definition 2.3 for those spaces of homogeneous type in Definition 2.1.

Now, we can introduce the spaces Bs
p,q(X) and F s

p,q(X) via the approx-

imations to the identity defined above, which were first studied in [12].
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6 D. YANG

Definition 2.4. Suppose s ∈ (−θ, θ) and that {Sk}
∞
k=0 is an approx-

imation to the identity of order θ and let Dk = Sk − Sk−1 for k ∈ N and
D0 = S0. The inhomogeneous Besov space Bs

p,q(X) for 1 ≤ p, q ≤ ∞ is the

collection of f ∈
(
G̊(β, γ)

)′
for |s| < β < θ and 0 < γ < θ such that

‖f‖Bs
p,q(X) =

{
∞∑

k=0

[
2ks‖Dk(f)‖Lp(X)

]q
}1/q

< ∞.

The inhomogeneous Triebel-Lizorkin space F s
p,q(X) for 1 < p < ∞ and

1 < q ≤ ∞ is the collection of f ∈
(
G̊(β, γ)

)′
for |s| < β < θ and 0 < γ < θ

such that

‖f‖F s
p,q(X) =

∥∥∥∥∥

{
∞∑

k=0

[
2ks|Dk(f)|

]q
}1/q∥∥∥∥∥

Lp(X)

< ∞.

It was proved in [12] that the above definitions of the spaces Bs
p,q(X)

and F s
p,q(X) are independent of the choices of approximations to the identity

and the pair (β, γ) with max(0,−s) < β < θ and 0 < γ < θ. Moreover, in

[16], it was also proved that the above definitions are also independent of

the equivalent quasi-metrics satisfying (2.2). We say that a quasi-metric ρ

is equivalent to another quasi-metric ρ′ if there is a constant C > 0 such

that for all x, y ∈ X,

C−1ρ′(x, y) ≤ ρ(x, y) ≤ Cρ′(x, y).

Moreover, it was proved in [32] that the Besov spaces on d-sets in R
n defined

by two different and equivalent methods, namely, traces and quarkonial de-

compositions in the sense of Triebel in [29], [30] are the same spaces as those

introduced in [12], [17] by regarding the d-set as a space of homogeneous

type when 0 < s < 1, 1 < p < ∞ and 1 ≤ q ≤ ∞.

For s ∈ R, C4 > 0, u ∈ (0,∞] and x ∈ X, we introduce the sharp

maximal function

f s
u,C4

(x) = sup
0<t<C4

t−s

(∮

B(x,t)

∣∣∣∣f(y) −

∮

B(x,t)
f(z) dµ(z)

∣∣∣∣
u

dµ(y)

)1/u

,

where

∮

B(x,t)
f(y) dµ(y) means the average on B(x, t) of f , that is,

∮

B(x,t)
f(y) dµ(y) =

1

µ(B(x, t))

∫

B(x,t)
f(y) dµ(y).
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MORREY-CAMPANATO SPACES 7

Using this sharp maximal function, we can now introduce the so-called

Morrey-Campanato spaces and the spaces C s
p(X), whose versions on R

n

and its domains have been introduced by DeVore and Sharpley in [6] and

Christ in [3]; see also [24], [25] and [28, pp. 48–49, 246] for some applications

of these spaces, the detailed references, further explanations and a short

history of the versions on R
n and its domains of these spaces.

Definition 2.5. Let C4 > 0.

(i) Let 1 ≤ p < ∞ and −d/p ≤ s < 1. Then

Ls
p(X) =

{
f ∈ Lp(X) : ‖f‖Ls

p(X) = ‖f‖Lp(X) + sup
x∈X

f s
p,C4

(x) < ∞
}

.

(ii) Let 0 < s < 1, 0 < p ≤ ∞ and p̄ = max(1, p). Then

Cs
p(X) =

{
f ∈ Lp̄(X) : ‖f‖Cs

p(X) = ‖f‖Lp(X) + ‖f s
p,C4

‖Lp(X) < ∞
}

.

Remark 2.1. It is easy to see that the definition of the spaces Ls
p(X)

and Cs
p(X) are independent of the choice of C4 > 0.

The following is one of the main theorems of this section.

Theorem 2.1. Let 1 ≤ p < ∞.

(i) L
−d/p
p (X) = Lp(X) with equivalent norms, and for min(−θ,−d/p) <

s < θ, Ls
p(X) ⊂ Bs

∞,∞(X), that is, there is a constant C > 0 such

that for all f ∈ Ls
p(X),

‖f‖Bs
∞,∞(X) ≤ C‖f‖Ls

p(X).

(ii) If 0 < s < θ and µ(X) < ∞, then Bs
∞,∞(X) ⊂ Ls

p(X), that is, there

is a constant C > 0 such that for all f ∈ Bs
∞,∞(X),

‖f‖Ls
p(X) ≤ C‖f‖Bs

∞,∞(X).

Remark 2.2. The space Bs
∞,∞(X) for 0 < s < θ is usually called the

Hölder-Zygmund space; see [28], [27].

To establish Theorem 2.1, we need the following inhomogeneous

Calderón reproducing formulae established in [11].
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Lemma 2.1. Suppose that {Sk}k∈Z+
is an approximation to the iden-

tity of order ε1 ∈ (0, θ] as defined in Definition 2.3. Let Dk = Sk −Sk−1 for

k ∈ N and D0 = S0. Then there exist a family of linear operators D̃k for

k ∈ Z+ such that for f ∈ G(β1, γ1) with 0 < β1, γ1 < ε1,

(2.3) f =

∞∑

k=0

DkD̃k(f),

where the series converge in the norm of G(β ′
1, γ

′
1) for 0 < β′

1 < β1 and

0 < γ′
1 < γ1. Moreover, the kernel, D̃k(x, y), of the operator D̃k for k ∈ Z+

satisfies the conditions

(i) |D̃k(x, y)| ≤ C
2−kε

(2−k + ρ(x, y))d+ε
,

(ii) |D̃k(x, y) − D̃k(x, y′)| ≤ C

(
ρ(y, y′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))d+ε

for ρ(y, y′) ≤
1

2A
(2−k + ρ(x, y)),

and

(iii)

∫

X
D̃k(x, y) dµ(y) =

∫

X
D̃k(x, y) dµ(x) =

{
1, k = 0;

0, k ∈ N,

where ε ∈ (0, ε1).

The following lemma can be found in [12]; see also [15].

Lemma 2.2. Let {D̃k}k∈Z+
be as in Lemma 2.1 with θ > |s|.

(i) For 1 ≤ p, q ≤ ∞ and all f ∈ Bs
p,q(X),

{
∞∑

k=0

2ksq‖D̃kf‖
q
Lp(X)

}1/q

≤ C‖f‖Bs
p,q(X),

where C is independent of f .

(ii) For 1 < p < ∞, 1 < q ≤ ∞ and all f ∈ F s
p,q(X),

∥∥∥∥∥

{
∞∑

k=0

2ksq|D̃kf |
q

}1/q∥∥∥∥∥
Lp(X)

≤ C‖f‖F s
p,q(X),

where C is independent of f .
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MORREY-CAMPANATO SPACES 9

Proof of Theorem 2.1. We first show (i). Let f ∈ L
−d/p
p (X). From

Definition 2.5, we know that f ∈ Lp(X) and

(2.4) ‖f‖Lp(X) ≤ ‖f‖
L
−d/p
p (X)

.

We now suppose that f ∈ Lp(X) and the Hölder inequality and µ(B(x, t)) ∼
td tell us that for all x ∈ X,

f
−d/p
p,C4

(x) = sup
0<t<C4

td/p

(∮

B(x,t)

∣∣∣∣f(y) −

∮

B(x,t)
f(z) dµ(z)

∣∣∣∣
p

dµ(y)

)1/p

≤ C‖f‖Lp(X).

Thus, f ∈ L
−d/p
p (X) and

(2.5) ‖f‖
L
−d/p
p (X)

= ‖f‖Lp(X) + sup
x∈X

f
−d/p
p,C4

(x) ≤ C‖f‖Lp(X).

The estimates (2.4) and (2.5) show that L
−d/p
p (X) = Lp(X) with equivalent

norms.
Let {Dk}k∈Z+

be as in Definition 2.4. Let min(−θ,−d/p) < s < θ and
f ∈ Ls

p(X). We denote B1 = B(x, 2C12−k). The Hölder inequality yields
that

|D0f(x)| =

∣∣∣∣
∫

X
D0(x, y)f(y) dµ(y)

∣∣∣∣(2.6)

≤ ‖f‖Lp(X)

{∫

X
|D0(x, y)|p

′

dµ(y)

}1/p′

≤ C‖f‖Lp(X),

and, by the fact that

(2.7)

∫

X
Dk(x, y)f(y) dµ(y) = 0

and suppDk(x, · ) ⊂ B1 for k ∈ N, we have

|Dkf(x)| =

∣∣∣∣
∫

X
Dk(x, y)f(y) dµ(y)

∣∣∣∣(2.8)

=

∣∣∣∣
∫

X
Dk(x, y)

[
f(y) −

∮

B1

f(z) dµ(z)

]
dµ(y)

∣∣∣∣
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≤ C

∮

B1

∣∣∣∣f(y) −

∮

B1

f(z) dµ(z)

∣∣∣∣dµ(y)

≤ C

{∮

B1

∣∣∣∣f(y) −

∮

B1

f(z) dµ(z)

∣∣∣∣
p

dµ(y)

}1/p

.

Thus, the estimates (2.6) and (2.8) tell us that

‖f‖Bs
∞,∞(X) = sup

k∈Z+

sup
x∈X

2ks|Dkf(x)|

≤ C‖f‖Lp(X) + C sup
x∈X

f s
p,2C1

(x)

≤ C‖f‖Ls
p(X).

This proves (i).

We now turn to the proof of (ii). Let f ∈ Bs
∞,∞(X). By the Hölder

inequality, we have that

‖f‖Lp(X) =

{∫

X

∣∣∣∣∣

∞∑

k=0

Dkf(x)

∣∣∣∣∣

p

dµ(x)

}1/p

(2.9)

≤

{∫

X

[
∞∑

k=0

2−ks sup
k∈Z+, x∈X

2ks|Dkf(x)|

]p

dµ(x)

}1/p

≤ Cµ(X)‖f‖Bs
∞,∞(X).

On the other hand, let C4 = 1 and 2−k0−1 ≤ t < 2−k0 for some k0 ∈ Z+.
Let y, z ∈ B(x, 2−k0). By Lemma 2.1, we decompose f(y) − f(z) into

f(y) − f(z) =
∞∑

k=0

[
DkD̃kf(y) − DkD̃kf(z)

]
(2.10)

=

k0∑

k=0

[
DkD̃kf(y) − DkD̃kf(z)

]

+

∞∑

k=k0+1

[
DkD̃kf(y) − DkD̃kf(z)

]

= I1 + I2.

For I1, noting that ρ(y, z) ≤ C2−k0 if ρ(y, x) ≤ C2−k0 and ρ(z, x) ≤ C2−k0 ,
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by Lemma 2.2, we have

|I1| ≤

k0∑

k=0

∫

X
|Dk(y, u) − Dk(z, u)|

∣∣D̃kf(u)
∣∣ dµ(u)

(2.11)

≤ C

k0∑

k=0

2k(d+θ)

∫

{u∈X:ρ(y,u)≤C2−k or ρ(z,u)≤C2−k}
ρ(y, z)θ

∣∣D̃kf(u)
∣∣ dµ(u)

≤ C

k0∑

k=0

2−(k0−k)θ sup
u∈X

∣∣D̃kf(u)
∣∣

= C2−k0s

[
k0∑

k=0

2−(k0−k)(θ−s)

]
sup

k∈Z+, u∈X
2ks
∣∣D̃kf(u)

∣∣

≤ C2−k0s‖f‖Bs
∞,∞(X),

and for I2, we have

|I2| ≤

∞∑

k=k0+1

[∣∣DkD̃kf(y)
∣∣+
∣∣DkD̃kf(z)

∣∣
]

(2.12)

≤

∞∑

k=k0+1

2−ks

[ ∫

X

∣∣Dk(y, u)
∣∣dµ(u) +

∫

X

∣∣Dk(z, u)
∣∣dµ(u)

]

× sup
k∈Z+, u∈X

2ks
∣∣D̃kf(u)

∣∣

≤ C2−k0s‖f‖Bs
∞,∞(X).

The definition of f s
p,1 and the estimates (2.11) and (2.12) imply that

f s
p,1(x) = sup

0<t<1
t−s

(∮

B(x,t)

∣∣∣∣f(y) −

∮

B(x,t)
f(z) dµ(z)

∣∣∣∣
p

dµ(y)

)1/p

(2.13)

≤ sup
0<t<1

t−s

(∮

B(x,t)

[ ∮

B(x,t)
|f(y) − f(z)| dµ(z)

]p

dµ(y)

)1/p

≤ C sup
k0∈Z+

2k0s

(∮

B(x,2−k0 )

[ ∮

B(x,2−k0 )
|f(y) − f(z)| dµ(z)

]p

dµ(y)

)1/p

≤ C‖f‖Bs
∞,∞(X).
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Finally, (2.9) and (2.13) yield that

‖f‖Ls
p(X) ≤ C‖f‖Bs

∞,∞(X).

This finishes the proof of Theorem 2.1.

On the relation between Cs
p(X) and the Triebel-Lizorkin space F s

p,q(X),

we have the following result.

Theorem 2.2. Let 0 < s < θ.

(i) If 1 < p < ∞, then Cs
p(X) ⊂ F s

p,∞(X), namely, there is a constant

C > 0 such that for all f ∈ Cs
p(X),

‖f‖F s
p,∞(X) ≤ C‖f‖Cs

p(X).

(ii) If 1 < p2 < p1 < ∞ and µ(X) < ∞, then F s
p1,∞(X) ⊂ Cs

p2
(X),

namely, there is a constant C > 0 such that for all f ∈ F s
p1,∞(X),

‖f‖Cs
p2

(X) ≤ Cµ(X)1/p2−1/p1‖f‖F s
p1,∞(X).

Proof. We first show (i). Let f ∈ Cs
p(X) and {Dk}k∈Z+

be as in
Definition 2.4. We first have

(2.14) |D0f(x)| =

∣∣∣∣
∫

X
S0(x, y)f(y) dµ(y)

∣∣∣∣ ≤ CMf(x),

where M is the Hardy-Littlewood maximal function. Thus, for 1 < p < ∞,
by the Lp(X)-boundedness of M (see [4], [18]), we obtain

(2.15) ‖D0f‖Lp(X) ≤ C‖Mf‖Lp(X) ≤ C‖f‖Lp(X).

Let B1 = B(x, 2C12−k). The estimate (2.8) tells us that for k ∈ N and all
x ∈ X,

(2.16) 2ks|Dkf(x)| ≤ Cf s
p,C1

(x),

where C is independent of x. The estimates (2.15) and (2.16) yield that

Cs
p(X) ⊂ F s

p,∞(X)
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and

‖f‖F s
p,∞(X) =

∥∥∥∥ sup
k∈Z+

2ks|Dkf |

∥∥∥∥
Lp(X)

(2.17)

≤ C‖f‖Lp(X) + C
∥∥f s

p,C1

∥∥
Lp(X)

≤ C‖f‖Cs
p(X).

This proves (i).
We now turn to prove (ii). By the properties of F s

p,q(X) in [12], [14]
(see also [16]), we have that

F s
p1,∞(X) ⊂ F 0

p1,2(X) = Lp1(X) ⊂ Lp2(X),

since s > 0, p2 < p1 and µ(X) < ∞. Thus,

‖f‖Lp2 (X) ≤ µ(X)1/p2−1/p1‖f‖Lp1 (X)(2.18)

≤ Cµ(X)1/p2−1/p1‖f‖F s
p1,∞(X).

Moreover, without loss of generality, we may assume that C4 = 1 in the
definition of Cs

p2
(X) by Remark 2.1. Let 2−k0−1 ≤ t < 2−k0 for some k0 ∈

Z+ and we decompose f(y) − f(z) as in (2.10) of the proof of Theorem 2.1
by means of Lemma 2.1. Then, for y, z ∈ B(x, 2−k0),

|I1| ≤

k0∑

k=0

∫

X
|Dk(y, u) − Dk(z, u)|

∣∣D̃kf(u)
∣∣ dµ(u)

(2.19)

≤ C

k0∑

k=0

2k(d+θ)

∫

{u∈X:ρ(y,u)≤C2−k or ρ(z,u)≤C2−k}
ρ(y, z)θ

∣∣D̃kf(u)
∣∣ dµ(u)

≤ C

k0∑

k=0

2(k−k0)θ2kd

∫

{u∈X:ρ(y,u)≤C2−k or ρ(z,u)≤C2−k}

∣∣D̃kf(u)
∣∣ dµ(u)

≤ C2−k0s
k0∑

k=0

2(k−k0)(θ−s)

×

{
2kd

∫

{u∈X:ρ(y,u)≤C2−k}

(
sup
k∈Z+

2ks
∣∣D̃kf(u)

∣∣
)

dµ(u)

+ 2kd

∫

{u∈X:ρ(z,u)≤C2−k}

(
sup
k∈Z+

2ks
∣∣D̃kf(u)

∣∣
)

dµ(u)

}
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≤ C2−k0s

[
k0∑

k=0

2(k−k0)(θ−s)

]

×

{
M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y) + M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(z)

}

≤ C2−k0s

{
M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y) + M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(z)

}

and

|I2| ≤

∞∑

k=k0+1

∫

X

[
|Dk(y, u)| + |Dk(z, u)|

]∣∣D̃kf(u)
∣∣ dµ(u)(2.20)

≤ C

[
∞∑

k=k0+1

2−ks

]

×

{
M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y) + M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(z)

}

≤ C2−k0s

{
M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y) + M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(z)

}
.

Then similarly to (2.13), the estimates (2.19) and (2.20) and the Minkowski
inequality yield that

f s
p2,1(x)

(2.21)

≤ C sup
k0∈Z+

2k0s

(∮

B(x,2−k0 )

[ ∮

B(x,2−k0 )
|f(y) − f(z)| dµ(z)

]p2

dµ(y)

)1/p2

≤ CM2

(
sup
k∈Z+

2ks
∣∣D̃kf(u)

∣∣
)

(x) + C

{
M

[
M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)]p2

}1/p2

,

where M is the Hardy-Littlewood maximal operator and M 2 means M ◦
M , the composition of M . The estimate (2.21), the Hölder inequality,
Lemma 2.2 and the Lp(X)-boundedness of M for p ∈ (1,∞] then imply
that

‖f s
p2,1‖Lp2 (X) ≤ C

∥∥∥∥ sup
k∈Z+

2ks
∣∣D̃kf(u)

∣∣
∥∥∥∥

Lp2(X)

(2.22)

https://doi.org/10.1017/S002776300000903X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000903X


MORREY-CAMPANATO SPACES 15

+ Cµ(X)1/p2−1/p1

∥∥∥∥M
[
M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)]p2

∥∥∥∥
1/p2

Lp1/p2 (X)

≤ Cµ(X)1/p2−1/p1

{∥∥∥∥ sup
k∈Z+

2ks
∣∣D̃kf(u)

∣∣
∥∥∥∥

Lp1 (X)

+

∥∥∥∥M
(

sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)∥∥∥∥

Lp1(X)

}

≤ Cµ(X)1/p2−1/p1

∥∥∥∥ sup
k∈Z+

2ks
∣∣D̃kf(u)

∣∣
∥∥∥∥

Lp1(X)

≤ Cµ(X)1/p2−1/p1‖f‖F s
p1,∞(X).

The estimates (2.18) and (2.22) imply (ii) and we finish the proof of Theo-
rem 2.2.

Motivated by [21], we now introduce some new function spaces on

spaces of homogeneous type. These spaces under some restrictions will

be proved to be the special cases of the Triebel-Lizorkin spaces.

Definition 2.6. Let 1 ≤ p ≤ ∞ and s > 0. The space Bs
p(X) is the

set of functions f ∈ Lp(X) satisfying that there exists a function g ∈ Lp(X)
such that

(2.23)

∣∣∣∣f(x) −

∮

B
f(z) dµ(z)

∣∣∣∣ ≤ r(B)sg(x)

for µ-a. e. x ∈ B and any ball B ⊂ X, where r(B) is the radius of the ball
B. Moreover, if f ∈ Bs

p(X), we define its norm by

‖f‖Bs
p(X) = ‖f‖Lp(X) + inf

g
‖g‖Lp(X),

where the infimum is taken over all functions g satisfying (2.23).

We remark that in some sense, the function g in Definition 2.6 behaves

like the fractional derivative of f , which is also the main subject of [7].

The following theorem will indicate the relation between the space

Bs
p(X) and the Triebel-Lizorkin space.

Theorem 2.3. Let 1 < p < ∞ and 0 < s < θ. Then Bs
p(X) =

F s
p,∞(X) with equivalent norms.
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Proof. Let f ∈ F s
p,∞(X). If r(B) ≥ 1, then, for y ∈ B, we have

∣∣∣∣f(y) −
1

µ(B)

∫

B
f(z) dµ(z)

∣∣∣∣(2.24)

=

∣∣∣∣
1

µ(B)

∫

B
[f(y) − f(z)] dµ(z)

∣∣∣∣

=

∣∣∣∣
1

µ(B)

∫

B

∞∑

k=0

[
DkD̃kf(y) − DkD̃kf(z)

]
dµ(z)

∣∣∣∣

≤ C

∞∑

k=0

1

µ(B)

∫

B

[
M
(
D̃kf

)
(y) + M

(
D̃kf

)
(z)
]
dµ(z)

≤ C

∞∑

k=0

M2
(
D̃kf

)
(y)

≤ CM2

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y)

∞∑

k=0

2−ks

≤ CM2

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y)

≤ Cr(B)sM2

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y),

since s > 0, where we used the facts that

(2.25) |f(x)| ≤ Mf(x)

and

(2.26) |Dkf(x)| ≤ Mf(x).

If 2−(k0+1) ≤ r(B) < 2−k0 for some k0 ∈ Z+, then for y, z ∈ B, we
write f(y) − f(z) as in (2.10) and the estimates (2.19) and (2.20) tell us
that

|f(y)−f(z)| ≤ Cr(B)s

{
M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y) +M

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(z)

}
.

Therefore, this estimate and (2.25) yield

(2.27)

∣∣∣∣f(y) −
1

µ(B)

∫

B
f(z) dµ(z)

∣∣∣∣ ≤ Cr(B)sM2

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y)
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for all y ∈ B.

Let

g(y) = CM 2

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)

(y).

By Lemma 2.2 and the Lp(X)-boundedness of M for p ∈ (1,∞), we obtain

‖g‖Lp(X) ≤ C

∥∥∥∥M
2

(
sup
k∈Z+

2ks
∣∣D̃kf

∣∣
)∥∥∥∥

Lp(X)

(2.28)

≤ C

∥∥∥∥ sup
k∈Z+

2ks
∣∣D̃kf

∣∣
∥∥∥∥

Lp(X)

= C‖f‖F s
p,∞(X).

The estimates (2.24), (2.27) and (2.28) show that f ∈ Bs
p(X) and

‖f‖Bs
p(X) ≤ C‖f‖F s

p,∞(X).

Now suppose f ∈ Bs
p(X). By Definition 2.6, for any given ε > 0, there

exists a function g ∈ Lp(X) such that (2.23) holds for any ball B ⊂ X and

(2.29) ‖f‖Lp(X) + ‖g‖Lp(X) < ‖f‖Bs
p(X) + ε.

Let B1 be the same as in the proof of Theorem 2.1. For k ∈ N, by (2.7)
and Definition 2.6, we have

|Dkf(x)| =

∣∣∣∣
∫

X
Dk(x, y)f(y) dµ(y)

∣∣∣∣(2.30)

=

∣∣∣∣
∫

X
Dk(x, y)

[
f(y) −

∮

B1

f(z) dµ(z)

]
dµ(y)

∣∣∣∣

≤ C2−ks

∫

X
|Dk(x, y)| |g(y)| dµ(y)

≤ C2−ksMg(x).

The estimates (2.14) and (2.30) tell us that

(2.31) sup
k∈Z+

2ks|Dkf(x)| ≤ C[Mf(x) + Mg(x)].
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Finally the estimates (2.31) and (2.29) and the Lp(X)-boundedness of M
yield that

‖f‖F s
p,∞(X) =

∥∥∥∥ sup
k∈Z+

2ks|Dkf |

∥∥∥∥
Lp(X)

≤ C
{
‖Mf‖Lp(X) + ‖Mg‖Lp(X)

}

≤ C
{
‖f‖Lp(X) + ‖g‖Lp(X)

}

≤ C
[
‖f‖Bs

p(X) + ε
]
.

Letting ε → 0, we obtain that Bs
p(X) ⊂ F s

p,∞(X) and

‖f‖F s
p,∞(X) ≤ C‖f‖Bs

p(X).

This finishes the proof of Theorem 2.3.

We now introduce some other space of functions and we will prove that

these spaces under some restrictions are just the Triebel-Lizorkin spaces.

Definition 2.7. Let 1 < p ≤ ∞ and s > 0. The space As
p(X) is the

set of functions f ∈ Lp(X) satisfying that there exist some q ∈ [1, p) and a
non-negative function g ∈ Lp(X) such that

(2.32)

∮

B

∣∣∣∣f(x) −

∮

B
f(y) dµ(y)

∣∣∣∣dµ(x) ≤ r(B)s

(∮

B
gq(x) dµ(x)

)1/q

for every ball B ⊂ X. Moreover, if f ∈ As
p(X), we define its norm by

‖f‖As
p(X) = ‖f‖Lp(X) + inf

{g}
‖g‖Lp(X),

where the infimum is taken over all functions g satisfying (2.32).

The following theorem will indicate the relations among these spaces,

the Triebel-Lizorkin spaces and the spaces Bs
p(X) under some restrictions.

Theorem 2.4. Let 1 < p < ∞ and 0 < s < θ. Then As
p(X) =

F s
p,∞(X) = Bs

p(X) with equivalent norms.

Proof. Let f ∈ As
p(X). For any given ε > 0, there is a non-negative

function g ∈ Lp(X) and some q ∈ (0, p) satisfying (2.32) and

(2.33) ‖f‖Lp(X) + ‖g‖Lp(X) < ‖f‖As
p(X) + ε.
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Let {Dk}k∈Z+
be as in Definition 2.4. For k ∈ N, let B1 = B(x, 2C12−k).

By (2.7), we then have

|Dkf(x)| =

∣∣∣∣
∫

X
Dk(x, y)f(y) dµ(y)

∣∣∣∣(2.34)

=

∣∣∣∣
∫

X
Dk(x, y)

[
f(y) −

∮

B1

f(z) dµ(z)

]
dµ(y)

∣∣∣∣

≤ C

∮

B1

∣∣∣∣f(y) −

∮

B1

f(z) dµ(z)

∣∣∣∣dµ(y)

≤ C2−ks

(∮

B1

gq(y) dµ(y)

)1/q

≤ C2−ks{M(gq)(x)}1/q .

Thus, the estimates (2.14), (2.34) and (2.33), the fact q < p and the
Lp/q(X)-boundedness of M tell us that

‖f‖F s
p,∞(X) =

∥∥∥∥ sup
k∈Z+

2ks
∣∣Dkf

∣∣
∥∥∥∥

Lp(X)

≤ C‖Mf‖Lp(X) + C
∥∥{M(gq)}1/q

∥∥
Lp(X)

≤ C‖f‖Lp(X) + C‖g‖Lp(X)

≤ C
{
‖f‖As

p(X) + ε
}
.

Letting ε → 0, we obtain that As
p(X) ⊂ F s

p,∞(X) and

(2.35) ‖f‖F s
p,∞(X) ≤ C‖f‖As

p(X).

On another hand, let f ∈ Bs
p(X). Then, by Definition 2.6, there is a

function g ∈ Lp(X) such that (2.23) holds and

(2.36) ‖f‖Lp(X) + ‖g‖Lp(X) < ‖f‖Bs
p(X) + ε.

Then the estimate (2.23) and the Hölder inequality tell us that for any ball
B ⊂ X and any q ∈ [1, p),

∮

B

∣∣∣∣f(x) −

∮

B
f(y) dµ(y)

∣∣∣∣dµ(x) ≤ r(B)s

∮

B
g(x) dµ(x)

≤ r(B)s

{∮

B
gq(x) dµ(x)

}1/q

.
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Thus, f ∈ As
p(X) and, by (2.36),

‖f‖As
p(X) ≤ ‖f‖Lp(X) + ‖g‖Lp(X) < ‖f‖Bs

p(X) + ε.

Letting ε → 0, we finally obtain that Bs
p(X) ⊂ As

p(X) and

(2.37) ‖f‖As
p(X) ≤ ‖f‖Bs

p(X).

Then (2.35) and (2.37) together with Theorem 2.3 imply Theorem 2.4 and
we finish this proof.

§3. Sobolev spaces

The main purpose of this section is to give several new characteriza-

tions of the Haj lasz-Sobolev spaces of order 1 on spaces of homogeneous

type. We will first show that the space A1
p(X) is the same space as the

space B1
p(X) by using some ideas from [21]. In fact, Theorem 3.1 below is

similar to Theorem 1 in [21]. However, we do not suppose that the space

of homogeneous type, X, has the segment property as in [21].

Theorem 3.1. Let 1 ≤ q < ∞, f be a locally integrable function on X
for which there is a non-negative function g ∈ Lq(X) such that the Poincaré

inequality

(3.1)

∮

B

∣∣∣∣f(x) −

∮

B
f(z) dµ(z)

∣∣∣∣dµ(x) ≤ Cr(B)

(∮

B
gq(x) dµ(x)

)1/q

holds for every ball B ⊂ X. Then for µ-a. e. x ∈ B,
∣∣∣∣f(x) −

∮

B
f(z) dµ(z)

∣∣∣∣ ≤ Cr(B)M(gq)(x)1/q ,

where C is independent of x and B.

Proof. Let x ∈ B be a Lebesgue point of

∣∣∣∣f(y) −

∮

B
f(z) dµ(z)

∣∣∣∣ and

g(y). Let B0 = B and Bj = B(x, 2−jr(B)) for j ∈ N. Then
∣∣∣∣f(x) −

∮

B
f(z) dµ(z)

∣∣∣∣ = lim
j→∞

∮

Bj

∣∣∣∣f(y) −

∮

B
f(z) dµ(z)

∣∣∣∣dµ(y)

≤ lim sup
j→∞

∮

Bj

∣∣∣∣f(y) −

∮

Bj

f(z) dµ(z)

∣∣∣∣dµ(y)

+ lim sup
j→∞

∣∣∣∣
∮

Bj

f(z) dµ(z) −

∮

B
f(z) dµ(z)

∣∣∣∣

= I1 + I2.
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For I1, by (3.1), we have

I1 ≤ C lim sup
j→∞

r(Bj)

(∮

Bj

gq(y) dµ(y)

)1/q

= 0 · g(x) = 0.

We further control I2 by

I2 ≤ lim sup
j→∞

j−1∑

l=0

∣∣∣∣
∮

Bl+1

f(z) dµ(z) −

∮

Bl

f(z) dµ(z)

∣∣∣∣

≤

∞∑

l=1

∣∣∣∣
∮

Bl+1

f(z) dµ(z) −

∮

Bl

f(z) dµ(z)

∣∣∣∣

+

∣∣∣∣
∮

B1

f(z) dµ(z) −

∮

B
f(z) dµ(z)

∣∣∣∣

= I1
2 + I2

2 .

For I1
2 , the facts that Bl+1 ⊂ Bl and µ(Bl+1) ∼ µ(Bl) for l ∈ N and (3.1)

imply that

I1
2 ≤ C

∞∑

l=1

∮

Bl

∣∣∣∣f(y) −

∮

Bl

f(z) dµ(z)

∣∣∣∣ dµ(y)

≤ C

∞∑

l=1

2−lr(B)

[ ∮

Bl

gq(y) dµ(y)

]1/q

≤ Cr(B)M(gq)(x)1/q .

We estimate I2
2 . Let B̄ = B(x, 2Ar(B)). Then B ∪ B1 ⊂ B̄ and

µ(B̄) ∼ µ(B) ∼ µ(B1).

Therefore,

I2
2 ≤

∣∣∣∣
∮

B1

f(z) dµ(z) −

∮

B̄
f(z) dµ(z)

∣∣∣∣ +

∣∣∣∣
∮

B̄
f(z) dµ(z) −

∮

B
f(z) dµ(z)

∣∣∣∣

≤

∮

B1

∣∣∣∣f(y) −

∮

B̄
f(z) dµ(z)

∣∣∣∣dµ(y) +

∮

B

∣∣∣∣f(y) −

∮

B̄
f(z) dµ(z)

∣∣∣∣dµ(y)

≤ C

∮

B̄

∣∣∣∣f(y) −

∮

B̄
f(z) dµ(z)

∣∣∣∣dµ(y)

≤ Cr(B)M(gq)(x)1/q.

This proves Theorem 3.1.
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Using Theorem 3.1, we can establish the relation between the space

A1
p(X) and B1

p(X).

Theorem 3.2. Let 1 < p ≤ ∞. Then A1
p(X) = B1

p(X) with equivalent

norms.

Proof. Let f ∈ A1
p(X). For any given ε > 0, Definition 2.7 then tells

us that there exist some q ∈ [1, p) and a non-negative function g ∈ Lp(X)
such that (2.32) holds for any ball B ⊂ X, and

‖f‖Lp(X) + ‖g‖Lp(X) < ‖f‖A1
p(X) + ε.

Therefore, Theorem 3.1 yields that

∣∣∣∣f(x) −

∮

B
f(z) dµ(z)

∣∣∣∣ ≤ C5r(B)M(gq)(x)1/q

for a. e. x ∈ B and all B ⊂ X. Let h = C5M(gq)(x)1/q . Then (2.23) holds
with g replaced by h, and

‖f‖Lp(X) + ‖h‖Lp(X) ≤ ‖f‖Lp(X) + C5

∥∥M(gq)1/q
∥∥

Lp(X)

≤ C
{
‖f‖Lp(X) + ‖g‖Lp(X)

}

≤ C
{
‖f‖A1

p(X) + ε
}
,

where we used the Lp/q(X)-boundedness of M . Let ε → 0. We therefore
obtain that A1

p(X) ⊂ B1
p(X) and

‖f‖B1
p(X) ≤ C‖f‖A1

p(X).

Conversely, by an argument similar to the proof of Theorem 2.4, it is
easy to show that B1

p(X) ⊂ A1
p(X) and

‖f‖A1
p(X) ≤ C‖f‖B1

p(X),

which finishes the proof of Theorem 3.2.

We now recall the definition of the Sobolev spaces of Haj lasz in [9]; see

also [10], [18].
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Definition 3.1. Let 1 < p ≤ ∞. The Sobolev space W 1
p (X) is defined

by

W 1
p (X) = {u ∈ Lp(X) : there is a set E ⊂ X, µ(E) = 0,

and a function g ≥ 0, g ∈ Lp(X) such that

|u(x) − u(y)| ≤ ρ(x, y)[g(x) + g(y)] for all x, y ∈ X \ E},

where g is called a generalized gradient of u. Moreover, we define

‖u‖W 1
p (X) = ‖u‖Lp(X) + inf

{g}
‖g‖Lp(X),

where the infimum is taken over all generalized gradients of the function u
in the definition of W 1

p (X).

The following theorem indicates the relations among the Haj lasz-

Sobolev space, the space A1
p(X) and the space B1

p(X).

Theorem 3.3. Let 1 < p ≤ ∞. Then W 1
p (X) = A1

p(X) = B1
p(X) with

equivalent norms.

Proof. Let 1 < p ≤ ∞ and f ∈ W 1
p (X). For any given ε > 0, then

there is a non-negative function g ∈ Lp(X) such that

|f(x) − f(y)| ≤ ρ(x, y)[g(x) + g(y)]

for a. e. x, y ∈ X, and

‖f‖Lp(X) + ‖g‖Lp(X) < ‖f‖W 1
p (X) + ε.

Thus, for any ball B ⊂ X and a. e. x ∈ B,

∣∣∣∣f(x) −

∮

B
f(y) dµ(y)

∣∣∣∣ ≤
∮

B
|f(x) − f(y)| dµ(y)

≤ r(B)

∮

B
[g(x) + g(y)] dµ(y)

≤ r(B)[g(x) + Mg(x)]

≤ 2r(B)Mg(x),
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where we used the estimate (2.25). Thus, (2.23) holds with g replaced by
2Mg, and

‖f‖B1
p(X) ≤ ‖f‖Lp(X) + 2‖Mg‖Lp(X)

≤ ‖f‖Lp(X) + 2C‖g‖Lp(X)

≤ C
[
‖f‖W 1

p (X) + ε
]
,

where we used the Lp(X)-boundedness of M . Letting ε → 0, we then obtain
that W 1

p (X) ⊂ B1
p(X) and

‖f‖B1
p(X) ≤ C‖f‖W 1

p (X).

Let f ∈ B1
p(X). Then, for any given ε > 0, there is a non-negative

function g ∈ Lp(X) such that for any ball B ⊂ X and a. e. x ∈ B,
∣∣∣∣f(x) −

∮

B
f(y) dµ(y)

∣∣∣∣ ≤ r(B)g(x)

and
‖f‖Lp(X) + ‖g‖Lp(X) < ‖f‖B1

p(X) + ε.

From this, it follows that for a. e. x, y ∈ B,

|f(x) − f(y)| ≤ r(B)[g(x) + g(y)].

By suitably choosing r(B), we finally obtain that for a. e. x, y ∈ X,

|f(x) − f(y)| ≤ ρ(x, y)[g(x) + g(y)].

Thus, f ∈ W 1
p (X) and

‖f‖W 1
p (X) ≤ ‖f‖Lp(X) + ‖g‖Lp(X) < ‖f‖B1

p(X) + ε.

Letting ε → 0, we obtain that B1
p(X) ⊂ W 1

p (X) and

‖f‖W 1
p (X) ≤ ‖f‖B1

p(X).

Thus, W 1
p (X) = B1

p(X) with equivalent norms. Furthermore, this fact
and Theorem 3.2 imply Theorem 3.3. This finishes the proof of Theorem 3.3.

Finally, the following theorem gives another new characterization of the

Sobolev space W 1
p (X).
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Theorem 3.4. Let 1 ≤ u < p ≤ ∞. Then f ∈ W 1
p (X) if and only if

f ∈ Lp(X) and f 1
u,C4

∈ Lp(X). Moreover,

‖f‖W 1
p (X) ∼ ‖f‖Lp(X) +

∥∥f1
u,C4

∥∥
Lp(X)

.

Proof. Let f ∈ W 1
p (X). Then Theorem 3.3 tells us that f ∈ B1

p(X).
By Definition 2.6, for any given ε > 0, there is a function g ∈ Lp(X) such
that (2.23) holds for all B ⊂ X and a. e. x ∈ B, and

‖f‖Lp(X) + ‖g‖Lp(X) < ‖f‖B1
p(X) + ε.

Thus,

f1
u,C4

(x) = sup
0<t<C4

t−1

[ ∮

B(x,t)

∣∣∣∣f(y) −

∮

B(x,t)
f(z) dµ(z)

∣∣∣∣
u

dµ(y)

]1/u

≤ sup
0<t<C4

[ ∮

B(x,t)
gu(y) dµ(y)

]1/u

≤ M(gu)(x)1/u.

Therefore, the Lp/u(X)-boundedness of M implies that

‖f‖Lp(X) +
∥∥f1

u,C4

∥∥
Lp(X)

≤ ‖f‖Lp(X) +
∥∥M(gu)1/u

∥∥
Lp(X)

≤ ‖f‖Lp(X) + C‖g‖Lp(X)

≤ C
(
‖f‖B1

p(X) + ε
)
.

Letting ε → 0, we obtain

‖f‖Lp(X) +
∥∥f1

u,C4

∥∥
Lp(X)

≤ C‖f‖B1
p(X) ≤ C‖f‖W 1

p (X).

Let now f ∈ Lp(X) and f 1
u,C4

∈ Lp(X). Let x be a Lebesgue point of
f . For any fixed 0 < t < C4, consider the Lebesgue point of the function

f(v) −

∮

B(x,t)
f(z) dµ(z).

Moreover, let B0 = B(x, t) and Bj = B(y, 2−jt/A) for j ∈ N. Then, for
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a. e. y ∈ B(x, t/2A), we have

∣∣∣∣f(y) −

∮

B(x,t)
f(z) dµ(z)

∣∣∣∣ = lim
j→∞

∮

Bj

∣∣∣∣f(v) −

∮

B(x,t)
f(z) dµ(z)

∣∣∣∣dµ(v)

≤ lim sup
j→∞

∮

Bj

∣∣∣∣f(v) −

∮

Bj

f(z) dµ(z)

∣∣∣∣dµ(v)

+ lim sup
j→∞

∣∣∣∣
∮

Bj

f(z) dµ(z) −

∮

B0

f(z) dµ(z)

∣∣∣∣

= J1 + J2.

The Hölder inequality tells us that

J1 ≤ lim sup
j→∞

{∮

Bj

∣∣∣∣f(v) −

∮

Bj

f(z) dµ(z)

∣∣∣∣
u

dµ(v)

}1/u

≤ lim sup
j→∞

2−jtf1
u,C4

(y)

= 0.

We now estimate J2. The Hölder inequality and the fact that µ(Bl+1) ∼
µ(Bl) for l ∈ N yield that

J2 ≤ lim sup
j→∞

j−1∑

l=0

∣∣∣∣
∮

Bl+1

f(z) dµ(z) −

∮

Bl

f(z) dµ(z)

∣∣∣∣

≤

∞∑

l=1

∣∣∣∣
∮

Bl+1

f(z) dµ(z) −

∮

Bl

f(z) dµ(z)

∣∣∣∣

+

∣∣∣∣
∮

B1

f(z) dµ(z) −

∮

B0

f(z) dµ(z)

∣∣∣∣

≤
∞∑

l=1

{∮

Bl+1

∣∣∣∣f(v) −

∮

Bl

f(z) dµ(z)

∣∣∣∣
u

dµ(v)

}1/u

+ C

{∮

B0

∣∣∣∣f(v) −

∮

B0

f(z) dµ(z)

∣∣∣∣dµ(v)

}1/u

≤ C
∞∑

l=1

2−ltf1
u,1(y) + Ctf 1

u,1(x)

≤ Ct
[
f1

u,1(y) + f1
u,1(x)

]
.
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Thus, for a. e. y ∈ B(x, t/2A),

|f(y) − f(x)| ≤ Ct
[
f1

u,1(y) + f1
u,1(x)

]
.

By suitably choosing t, we obtain that for a. e. x, y ∈ X,

|f(y) − f(x)| ≤ C6ρ(x, y)
[
f1

u,1(y) + f1
u,1(x)

]
.

Therefore, letting g(x) = C6f
1
u,1(x), we then verify that f ∈ W 1

p (X) and

‖f‖W 1
p (X) ≤ ‖f‖Lp(X) + ‖g‖Lp(X)

≤ ‖f‖Lp(X) + C6‖f
1
u,1‖Lp(X)

≤ C
[
‖f‖Lp(X) + ‖f1

u,C4
‖Lp(X)

]
.

This proves Theorem 3.4.
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