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In order to solve the problem of a strapdown Inertial Navigation System (INS) under a
vibrating base, a ground fine alignment method is proposed in this paper, and it is about
reconstructing the error equations of a strapdown INS. In this method, the effects aroused by
the linear and angular vibration are considered as system and measurement noise; in addition,
they are also regarded as the components of a system matrix. This setting avoids the effects of
linear and angular vibration under a vibrating base. The results of simulation and experiment
show that our method is suitable for a ground fine alignment of a strapdown INS under a
vibrating base.
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1. INTRODUCTION. The purpose of fine alignment is to obtain an accurate
initial strapdown attitude matrix between the body frame and navigation frame and,
at the same time, set the misalignments to zero (Qin, 2006). The performance of
strapdown Inertial Navigation System (INS) depends on the accuracy of the initial
alignment, and the strapdown INS has to accomplish fine alignment before normal
navigation and operation. Therefore the process of initial alignment, which requires
high accuracy and speed, is of great importance in the operation of strapdown INS
(Sun, 1996).
Under a vibrating base, (e.g., with a ground vehicle whose engine is running, or an

aircraft which is preparing to take off), the strapdown INS alignment is likely to be
disturbed by linear and angular vibrations. Therefore, the strapdown INS has to
withstand the vibrations which include pitch, roll and yaw; of course, some other
movements such as heave, surge and sway may take place as well (Silson, 2011). This
means that extra disturbed accelerations and angular velocities may occur during the
alignment process. Conventionally, alignment methods with a gyrocompass loop and
Kalman filter are frequently used. It is known that the gyrocompass loop method can
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only find North with the gyrocompass effect when the vehicle is operating properly
without linear vibration (Dai et al., 2011); so, any extra disturbed accelerations would
make this method feeble under vibrating conditions. The other method, using a
standard Kalman filter, utilizes modern control theory to estimate the misalignment
angles, and is feasible for linear and angular vibrations (Qin, 2006). However, the
disturbed acceleration and angular velocities may affect the estimation process
(Vasconcelos et al., 2011; Qin, 2005), so that the estimation duration would be
extended. Also, the ground vehicle then has to wait for the long-term alignment before
entering into the normal operating condition.
In order to shorten the ground fine alignment time, we propose a ground fine

alignment method in which the linear and angular vibration are considered as system
and measurement noises as a result of avoiding their effects on alignment. All the
analysis, results of simulations and experiments confirm our method.

2. NOMENCLATURE. Nomenclatures used in this paper are:

i Inertial frame
e Earth frame
b Body frame
n Navigation frame
n’ Computed navigation frame
L Latitude
R Earth radius
f Specific force
V Vehicle velocity
φ Misalignment between n frame and n’ frame
ωie Angular rate of Earth rotation
∇ Accelerometer bias
ε Gyro drift
δx Error of the term x

3. STRAPDOWN INS ERROR EQUATIONS. To accomplish the
ground fine alignment, error equations of a strapdown INS should be used. In this
paper, a local level North-East-Down frame is defined as the n frame. All the
strapdown INS error equations are projected on the n frame.
After deriving the coarse alignment results and linearizing the strapdown INS error

equation, we could obtain the linear and simple error equation. Referred to (Qin,
2005), the equation of velocity error δV is:

δV̇
n = f n × φn + (2ωn

ie + ωn
en) × δVn + ∇n (1)

where:
superscript denotes the frame on which the vector is projected.

ωen is the angular velocity from the n frame to the e frame.
ωie is the angular velocity from the e frame to the i frame.
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The equation of attitude error is in the φ formulation:

φ̇n = φn × ωn
in + δωn

en + εn (2)
where ωin is the angular velocity from the n frame to the i frame.
This equation is generally applicable for any three-axis navigation frame

mechanization.
The gyro drift and accelerator bias here are considered as constant terms.

Since gyros and accelerators are mounted on the three-axes of the b frame,
we need to transform the gyro drift and accelerator bias from the b frame to the n
frame.

εn = Cn
bε

b,∇n = Cn
b∇b (3)

We usually use the gyro drifts and accelerator biases as extended states of the
strapdown INS model.

4. CONVENTIONAL GROUND FINE ALIGNMENT. Under a
vibrating base, the strapdown INS of the vehicle would sense linear and angular
vibrations, which would affect the ground fine alignment process as well. As a result,
we chose in-motion ground fine alignment to accomplish the fine alignment task
instead of stationary ground fine alignment.
In terms of Section 3, the strapdown INS error model which is suitable for in-

motion and a vibrating base can be regarded as a linear system augmented with white
noises. The state equation is represented as (Fang and Yang, 2011):

Ẋ(t) = A(t)X(t) + B(t)W(t) (4)
where the state vector and state noise vector are:

X (t) = [ δVE δVN φE φN φU ∇x ∇y εx εy εz ]T (5)
The subscripts E, N and U denote the East, West and Up direction of n frame

respectively, and the subscripts x, y and z denote the x, y and z axis of b frame
respectively.
In Equation (4), W(t) is white noise vector and represents the system model noise,

and the state matrix is:

A(t) = F5×5 T5×5

05×5 05×5

[ ]
(6)

where:

F5×5 = F2×2 F2×3

03×2 F3×3

[ ]
(7)

in which the following definitions apply:

F2×2 =
0 2ωie sinL+ VE tanL

R

−2 ωie sinL+ VE tanL
R

( )
0





 (8)
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F2×3 = 0 −fU fN
fU 0 −fE

[ ]
, F3×2 =

0 − 1
R

1
R

0

tanL
R

0







(9)

F3×3 =

0 ωie sinL+ VE tanL
R

− ωie cosL+ VE

R

( )

− ωie sinL+ VE tanL
R

( )
0 −VN

R

ωie cosL+ VE

R
VN

R
0






(10)

Note that the scale errors as well as the installation errors of gyro and accelerometer
are eliminated by laboratory calibration. In addition, vertical velocity error is ignored
in ground alignment for terrestrial application.
The system noise matrix for ground fine alignment is:

B(t) = T5×5 05×5

05×5 05×5

[ ]
(11)

Assuming the strapdown attitude matrix is:

Cn
b =

C11 C12 C13

C21 C22 C23

C31 C32 C33





 (12)

we can obtain:

T5×5 =

C11 C12 0 0 0
C21 C22 0 0 0
0 0 C11 C12 C13

0 0 C21 C22 C23

0 0 C31 C32 C33





 (13)

During in-motion alignment, the velocity differences between the strapdown INS
and referenced system along the horizontal direction are defined as measurements.
The reference system which provides the accurate velocity is usually either a Global
Position System (GPS) or a Doppler Velocity Log (DVL) (Huang et al., 2010). As for
the ground fine alignment, we consider the true velocity as zero and do not need a
reference system i.e., the output horizontal velocities of strapdown INS compose
measurements Z(t).
The measurement equation is:

Z(t) = H(t)X(t) +M(t) (14)
where the measurement matrix is:

H(t) = 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

[ ]
(15)
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and where M(t) represents the measurement noise vector, including the effects of
measurement instruments and the disturbed accelerations on measurements.
In terms of the constructed state equation and measurement equations above, the

discrete Kalman filter can be utilized to estimate the state vector in Equation (5). After
deriving the convergence values of misalignments between navigation frame and
computed navigation frame, we can correct the coarse strapdown attitude matrix, and
then accomplish ground fine alignment (Song et al., 2010).

5. PROPOSED GROUND FINE ALIGNMENT. Unlike the normal
stationary fine alignment, linear and angular vibrations raised by vehicle motor
running would affect the alignment process.
In the deduced state equation and measurement equations, several terms could be

disturbed by linear and angular vibrations. For instance, the specific force projected
on the navigation frame in Equation (9), the East and North velocities in Equation
(10) and the strapdown attitude matrix in Equation (10) vary as sine form since linear
and angular vibrations exist. All variations make the Signal to Noise Ratio (SNR)
lower than normal stationary alignment, so the time of alignment is extended (Jiang
and Yu, 1992; Burak et al., 2004).
In order to solve this problem, we have to reconstruct the equations, and parameter

identification technology has also to be employed.
5.1. Reconstruction of Error Equations. Since the n frame has no move-

ments relative to the e frame under a vibrating base, the followed assumptions are
valid:

ωn
in = ωn

ie, δω
n
en = 0 0 0

[ ]T (16)
and gyro drifts projected on the n frame could be:

εn = C̄
n
b + ΔCn

b

( )
εb (17)

where:

C̄
n
b is the constant part of the strapdown attitude matrix, i.e., the strapdown attitude
matrix as the vehicle engine does not run.

ΔCb
n is the variational part of strapdown attitude matrix raised by angular vibration
as the vehicle engine runs.

Further deduction yields:

εn = ε̄n + Δεn (18)
During fine alignment, the gyro drifts along the axis of b frame εb is considered as

constant vector, thus ε̄n is constant vector too.
Under a vibrating base, the amplitudes of angular vibrations are so small that we

can make the following approximation:

ΔCn
b ≈

0 −ΔYaw ΔRoll
ΔYaw 0 −ΔPitch
−ΔRoll ΔPitch 0





 (19)
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Since the variations of angular vibrations ΔYaw, ΔRoll and ΔPitch are periodic in
sine form, ΔCb

n is periodic in sine form too:

Δεn = ΔCn
bε

b (19a)
As a result, under a vibrating base, Δεn varies periodically with the same frequency

as the vehicle vibration.
Returning to Equation (2) and considering the characters under vibrating base,

Equation (2) becomes:

φ̇n = φn × ωn
ie + ε̄n + Δεn (20)

Rewriting Equation (20) in matrix form yields:

φ̇E
φ̇N
φ̇U





 =

0 ωie sinL −ωie cosL
−ωie sinL 0 0
ωie cosL 0 0





 φE

φN
φU





+

ε̄E
ε̄N
ε̄U





+

ΔεE
ΔεN
ΔεU





 (21)

For the purpose of solving Equation (21), we make:

A =
0 ωie sinL −ωie cosL

−ωie sinL 0 0
ωie cosL 0 0





 (21a)

and:

X =
φE − φE0

φN − φN0

φU − φU0





 (21b)

The initial values of misalignments are φ0= [φE0, φN0, φU0]
T. Then Equation (21)

could be expressed as:

Ẋ(t) = AX(t) + Aϕ0 + ε̄n + Δεn (22)
by making the assumption:

u = Aφ0 + ε̄n (23)
which represents three equations:

uE = φN0
ωie sinL− φU0

ωie cosL+ εE

uN = −φE0
ωie sinL+ εN

uU = φE0
ωie cosL+ εU

(24)

we have:

Ẋ(t) = AX(t) + u+ Δεn (25)
Equation (25) with constant stimulation and periodic stimulation can be solved by

the Laplace transformation. The Laplace transformation analytical method requires
the determination of the characteristic values of Equation (25). Reduction of the
determinant in (25) yields the characteristic of Equation (26).

X(s) = (sI − A)−1 u
s
− Δεn(s)

[ ]
(26)
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furthermore, assuming that:

(sI − A)−1 = D (27)
we have:

D11 = s
s2 + ω2

ie

, D12 = ωie sinL
s2 + ω2

ie

, D13 = −ωie cosL
s2 + ω2

ie

D21 = −ωie sinL
s2 + ω2

ie

, D22 = s2 + ω2
ie cos

2 L
s(s2 + ω2

ie)
, D23 = ω2

ie sinL cosL
s(s2 + ω2

ie)

D31 = ωie cosL
s2 + ω2

ie

, D32 = ω2
ie sinL cosL
s(s2 + ω2

ie)
, D33 = s2 + ω2

ie sin
2 L

s(s2 + ω2
ie)

(27a)

Referring to the Cramer rule, we inverse D back into the time domain:

B = ℓ−1 D{ } (28)
then:

B11 = cosωiet B21 = sinL sinωiet B31 = − cosL sinωiet
B21 = − sinL sinωiet B22 = cos2 L+ sin2 L cosωiet B23 = sinL cosL(1− cosωiet)
B31 = cosL sinωiet B32 = sinL cosL(1− cosωiet) B33 = sin2 L+ cos2 L cosωiet

(29)
Since the time of alignment under a vibration base is usually less than 20 minutes,

and |ωiet| is less than 5 degrees, we make the following approximation:

cosωiet ≈ 1, sinωiet ≈ ωiet (30)
with Equation (30), Equation (29) becomes:

B(t) =
1 tωie sinL −tωie cosL

−tωie sinL 1 0
tωie cosL 0 1





 (31)

The next step is inversing Equation (26) back into the time domain:

X(t) =
∫

B(t) ∗ u− B(t) ∗ Δεn[ ]dt (32)

Under a vibrating base, Δεn varies periodically with the same frequency as the
vehicle vibration. Therefore, the integration term ∫[B(t)*Δεn]dt is nearly equal to be
zero. Equation (31) can be simplified as:

X(t) =
∫

B(t) ∗ u[ ]dt (33)

Expansion of Equation (32) gives:

X(t) =

uEt+ t2

2
uNωie sinL− t2

2
uUωie cosL

− t2

2
uEωie sinL+ uNt

t2

2
uEωie cosL+ uUt







(33a)
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which represents the three equations:

f n =
fdE + ∇E

fdN + ∇N

fdU + ∇U + g





 (34)

Referred to the computed navigation frame, the specific force by accelerometer
sensing is:

f n
′ =

1 φU −φN
−φU 1 φE
φN −φE 1





 fdE + ∇E

fdN + ∇N

fdU + ∇U + g





 (35)

Expanding Equation (35) and ignoring the two-order small error quantities, we
obtain:

f n
′

E =− gφN + fdE + ∇E

f n
′

N =− gφE + fdN + ∇N

f n
′

U =g + fdU + ∇U

(36)

From Equation (36), the misalignments coupled with gravitational acceleration act
on the horizontal specific forces. So we should choose the horizontal velocity error as
measurements for the Kalman filter.
Substituting Equation (24) into the first and second equations of Equation (36), and

then making the integration in [0, t], we can obtain:

ΔVE(t) = (∇E − gφN0)t−
t2

2
guN + t3

6
gωieuE sinL+ VDE

ΔVN(t) = (∇N + gφE0)t+
t2

2
guE + t3

6
gωie(uN sinL− uU cosL) + VDN

(37)

It can be seen from Equation (37) that the initial value of horizontal misalignments
added by the accelerator bias construct the one-order term about time, and they could
be estimated first. The terms uN and uE include real-time horizontal misalignments to
construct the two-order term about time, and they could be estimated. Thus
horizontal misalignments can be estimated quickly in our proposed method. But
unfortunately, azimuth misalignment exists in uE and the three-order term about time
t3

6
gωie(uN sinL− uU cosL), so we need a longer duration to estimate it than

horizontal ones. Moreover, the disturbed acceleration fd is integrated and since the
disturbed acceleration is in a periodic form under a vibrating base:

VDE ≈ VDE ≈ 0 (37a)

Making the denotations:

α1E =(∇E − gφN0), α2E = − 1
2
guN , α3E = 1

6
gωieuE sinL

α1N =(∇N + gφE0), α2N = t2

2
guE, α3N = 1

6
gωie(uN sinL− uU cosL)

(38)
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and rewriting Equation (37), Equation (39) may be derived:

ΔVE(t) = α1Et+ α2Et2 + α3Et3 + VDE

ΔVN (t) = α1Nt+ α2Nt2 + α3Nt3 + VDN

(39)

5.2. Filter Model. With Equation (39), the discrete form of estimating misalign-
ments in our proposed method is:

X(k + 1) = X(k)
ΔV(k) = H(k)X(k) + VD(k)

{
(40)

The system state is:

X(k) = α1E α2E α3E α1N α2N α3N
[ ]T (41)

The measurement is:

ΔV(k) = ΔVE(k)
ΔVN (k)

[ ]
(42)

The disturbed term is:

VD(k) = VDE(k)
VDN (k)

[ ]
(43)

The measurement matrix is:

H(k) = kT (kT)2 (kT)3 0 0 0
0 0 0 kT (kT)2 (kT)3

[ ]
(44)

where:
k is the updating index.
T is the updating interval of Kalman filter.

According to the well-known recurrent computation scheme of the Kalman
filter, we estimate the states in Equation (41) with noise disturbance. With the
horizontal velocity measurements under vibrating base, the Kalman filter works to
estimate the state vector in Equation (41), and then we obtain misalignments in term
of Equation (38).

φE0 =
α1N
g

− ∇E

g

φN0 =− α1E
g

+ ∇N

g

φU0 =− α1E tanL
g

− 2α2N
gωie cosL

− εE
ωie cosL

(45)

Without aided sensor instruments, such as rotation tables and GPS, we
cannot calibrate instrument errors in the field, so instrument errors cannot be
separated from misalignments.
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δφE0 =
∇E

g

δφN0 =− ∇N

g

δφU0 =
εE

ωie cosL

(46)

So, we have to make the approximations:

φE0 ≈
α1N
g

φN0 ≈ − α1E
g

φU0 ≈ − α1E tanL
g

− 2α2N
gωie cosL

(47)

From Equation (46), it can be seen that, interestingly, our proposed method has the
same alignment accuracy as the conventional stationary alignment methods.

6. SIMULATION AND EXPERIMENT
6.1. Simulation. Under the vibrating condition, the proposed ground fine

alignment is tested. Gyro and accelerator outputs are generated by the strapdown
INS simulator. The instrument measurement unit (IMU) errors are set as:

. The gyro constant drift: 0·01°/h

. The gyro measurement noise: 0.005°/
��
h

√
. The accelerator bias: 1×10−4 g
. The accelerator measurement noise: 1×10−5 g

Under the vibrating condition, the vehicle undertakes angular and linear vibrations.
In angular vibration, the yaw ψ, the pitch θ and the roll γ are controlled as:

ψ = 0.6W cos(2π ∗ 15t+ ρ1)
θ = 0.8W cos(2π ∗ 15t+ ρ2)
γ = 0.3W cos(2π ∗ 15t+ ρ3)

(48)

in which ρ1, ρ2 and ρ3 are angular vibration phases which are distributed randomly
between 0 and 2π.
In the lineal vibration, the vehicle lineal vibration velocities are:

VDi = ADi cos
2π
TDi

t+ γDi

( )
(49)

where:

i=E, N, U
γDi are lineal vibration phases which obey the uniform distribution on the

interval between 0 and 2π.
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Figure 1. Estimated error of East misalignment.

Figure 2. Estimated error of West misalignment.

59A GROUND FINE ALIGNMENT OF STRAPDOWN INSNO. 1

https://doi.org/10.1017/S0373463312000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000367


Figure 3. Estimated error of Up misalignment.

Figure 4. Pitch error of filter estimation.
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The lineal vibration amplitudes are:

ADE = 0.002m ADN = 0.001m ADU = 0.003m (50a)
and:

TDE = TDN = TDU = 1
15

s (50b)

Under the vibrating condition described above, simulated gyro and accelerator
outputs are saved for the purpose of comparing the proposed fine alignment
method with conventional one presented in Section 3. The total duration is 1200 s.
The sample frequency is chosen as 200Hz. The estimation processes for the
misalignments are shown in Figures 1, 2 and 3. In Figures 1, 2 and 3, the y-axis
depicts the misalignment estimation errors and the x-axis depicts the time for fine
alignments.
Note that we get the real-time estimations of α1N, α1E during the process of our

proposed method. Then according to Equation (47), the estimations of misalignments
can be drawn in Figures 1, 2 and 3. It is clear to see in these Figures that the
convergent duration for Up misalignment is longer than the other ones. Its convergent
estimation value can be obtained after 10 minutes for proposed ground fine alignment,
and at least 20 minutes for conventional one.

6.2. Experiment. The trial area used in this experiment was in Harbin
Engineering University. The trial data was collected with the Fiber Optic Gyro
(FOG) INS made by Harbin Engineering University, and the integrated navigation
system composed of yhe high accuracy INS and GG24 GPS receiver. The bias stability

Figure 5. Roll error of filter estimation.
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of our FOG is better than 0·01 deg/h. The integrated navigation system was used to
generate a precise reference solution. Our FOG INS and the integrated navigation
system were fixed on a board in the vehicle.
After turning on the engine, the vehicle experienced linear and angular vibrations

made by the engine running, but didn’t move. The trial had a 5-minute warm
up period for coarse alignment. Then the trial data was collected for off-line analysis
and comparison between the conventional ground fine alignment and pro-
posed method. The off-line analysis and comparative results are shown in Figures 4,
5 and 6.
From Figures 4, 5 and 6, we can see similar results to the simulation, showing that

the proposed ground alignment converges more rapidly than the conventional
method.

7. CONCLUSIONS. When ground vehicles are under a vibrating base, a
strapdown INS would experience angular and linear vibrations. Under that condition,
getting the initial strapdown attitude matrix accurately and quickly becomes a difficult
mission. In order to solve this problem, we propose a new ground fine alignment. This
method uses the reconstructed error equations for strapdown INS rather than
conventional one. The effects of angular and linear vibrations are considered as system
and measurement noises, and don’t exist in the system and measurement matrix. So
utilizing the proposed method, we can accomplish the ground fine alignment under the
vibrating base accurately and quickly.

Figure 6. Yaw error of filter estimation.

62 QIAN LI AND OTHERS VOL. 66

https://doi.org/10.1017/S0373463312000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000367


REFERENCES

Burak, H. K., Ismet, E. and Aydan, M. E. (2004). GPS/INS Enhancement for Land Navigation Using
Neural Network. The Journal of Navigation, 57, 297–310.

Dai, H. D., Dai, S.W. and Ma, Z. X. (2011). Velocity Plus Partial Rate Matching Rapid Transfer
Alignment. Consumer Electronics, Communications and Networks, International Conference, Xianning,
Hubei Province, China.

Fang, J. C. and Yang, S. (2011). Study on Innovation Adaptive EKF for In-Flight Alignment of Airborne
POS. Instrumentation and Measurement, 60, 1378–1388.

Huang, C.M., Su, W. X., Liu, P.W. and Ma, M. L. (2010). Application of Adaptive Kalman Filter
Technique in Initial Alignment of Strapdown Inertial Navigation System. Proceeding of the 29th Chinese
Control Conference, Beijing, China.

Jiang, W. F. and Yu, P. L. (1992). Error Estimation of INS Ground Alignment though Observability
Analysis. IEEE Transactions on Aerospace and Electronic Systems, 28, 92–97.

Qin, Y. Y. (2005). A Clever Way of SINS Coarse Alignment despite Rocking Ship. Journal of Northwestern
Polytechnichal University, 23, 681–685.

Qin, Y. Y. (2006). Inertial Navigation. Science, Inc.
Silson, P.M.G. (2011). Coarse Alignment of a Ship’s Strapdown Inertial Attitude Reference System Using
Velocity Loci. IEEE Transactions on Instrumentation and Measurement, 60, 1930–1941.

Song, C. L., Wu, W. S., Wang, J. H. and Long, Z. Z. (2010). Cubature Gaussian Particle Filter for Initial
Alignment of Strapdown Inertial Navigation System. Pervasive Computing Signal Processing and
Applications (PCSPA), First International Conference on, Beijing, China.

Sun, F. (1996). Integrated Navigation System, Harbin Engineering University.
Vasconcelos, J. F., Elkaim, G., Silvestre, C., Oliveira, P. and Cardeira, B. (2011). Geometric Approach to
Strapdown Magnetometer Calibration in Sensor Frame. Aerospace and Electronic Systems, 47, 1293–
1306.

63A GROUND FINE ALIGNMENT OF STRAPDOWN INSNO. 1

https://doi.org/10.1017/S0373463312000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000367

