ON UNIFORM APPROXIMATIONS OF ABSTRACT FUNCTIONS
Elias Zakon

(received June 7, 1966)

As is well known, every real function is the pointwise
(uniform) limit of a sequence of functions with a finite (countable)
range of values. Monna [5] and Kvadko [4] suggested some ex-
tensions of this theorem to functions with values in a separable
metric space. 1 I the present note we give some further
generalizations, with an emphasis on uniform approximations
which have many applications in the generalized theory of mea-
sure and integration. In particular, we consider measurable
abstract functions (mappings).

In order to be able to deal with uniform approximations in
an arbitrary space, it is convenient to use '"indexed neighborhood
systems' which, as was shown by Davis [2], can be introduced
in any space, in such a manner as “to preserve its tOpology,Z
In this connection, we shall formulate a few definitions:

TERMINOLOGY AND NOTATION. A topological space T
is said to be semi-uniform if, for some fixed index set 1, each

point xe¢ T has a local base of open indexed neighborhoods Nl(x)
(briefly N;) , iel, such that:
K . .
(N1) Forany i, jel, thereis keI, with N_ = N:c ﬂN}‘l
for all xe¢T . Egquivalently, Nk = Nlﬂ NJ where

! Unfortunately, both papers contain errors which we rectify
below.

In a sense, this note is also a contribution to the theory of such
neighborhood systems.
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_ i
= {(x,v) l xeT , yeNx}

(NZ) yeN1 always implies xe N; (symmetry axiom).

(N3) For each N , there is j = j(i, x)el such that

NJ(N)CN , where NJ(A)=-U b oac'T) .
N —
zeA z

If in (N3), j depends on i only (not on x), then T becomes
a uniform space in the sense of A. Weil [6, pages 7-8]. Itis worth
noting that the uniform limit of a net of continuous functions is con-
tinuous in semi-uniform spaces, as it is in uniform spaces. Thus
the former are a natural generalization of the latter.

If only (N1) is assumed, T is called a graded space; I is
its grader, and N = {N; liel, xeT) is its graded base

(structure), also denoted by (N, I). Similarly, (T,N,I) is a
space T with graded base (N,I). If T satisfies (N1) and
(N2}, we call it a symmetric space, and (N, I) a symmetric base.
We say that T admits a structure (N, I) if the latter preserves
the topology of T . (T, N,I) is said to be totally (o-totzily)

bounded if, for each iel, T = Nl(Ai) for some finite (at most
countable) set Ai_g_ T . T is called an RO—sEace (Davis) if

each open set G C T contains the closure X of every one-
point set {x} CG . Other topological concepts (e.g. nets) are
defined as in [3]. Uniform convergence of nets of functions

{fk} is defined for graded spaces exactly as in uniform spaces.

(notation: fk-'f (unif.)); similar notation holds for pointwise (ptw.)
and (a.e.) convergence. The grader I of T is directed by setting

i>3 (i, jel) if N1 QNJ ; thus we may consider nets of the form
{f. l iel} . As will be seen, all nets obtained in our theorems
i

can be chosen to be of that type. The importance of graded

structures is evident from the following Lemma (due to Davis):

LEMMA 1 . (a) Every topological space T admits some
graded base (N, I).

(b} This (N, I) can be chosen symmetric if T is an Ro-

space (e.g., a Ti—space).
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1
(c) ¥ T is regular, (T, N,I) can be made semi-uniform.

Indeed, all this is proved in [2, Theorems 1,2 and 4].

Below, m will denote a non-negative countably additive
measure defined on a o-algebra M of subsets ("measurable
sets') of a set S. A mapping (function) f:S— T is called
measurable (or Jf-measurable) if f-1(G)e /M for every open
set GCT ; f is said to be simple (elementary) if £(S) is a
finite (at most countable) set. Clearly, such an f is measurable

if and only if it is constant on certain measurable sets Ai' A

We now proceed to prove our theorems.

THEOREM 1. Every regular topological space T admits
a totally bounded semi-uniform structure (N, I) under which
every mapping f:S- T is the uniform limit of a net {fi [ieI} of

simple maps. If further f is M-measurable, the simple maps
f.i can be made measurable as well.

Proof. By part (c) of Lemma 4, T admits a semi-~
uniform base (N,I). Thus, to prove our first assertion, it
suffices to show that (N,I) can be transformed into a semi-
uniform structure (N',I') which is also totally bounded and is
likewise admitted by T (though possibly not equivalent to (N, I)).
This can be done by using a method outlined by Behrend [1], with
only slight modifications. Thus one need not assume, as Behrend
does, that T is a uniform Hausdorff space; our axioms (N1-N3)
suffice for his proof of the fact that (N',I') preserves the topo-
logy of T and is semi-uniform. Also, instead of the filter of all
entourages, it suffices to use the filter base {Nliiel} consis-
ting of open symmetric entourages and closed under finite inter-
sections (the fact that the sets N' defined in (N1) are indeed
such "entourages', i.e. neighborhoods of the diagonal of T X T,
is true in every symmetric structure, by Davis' Theorem 2).
The rest of Behrend's proof carries over to our case almost
verbally; so we omit its further details and assume that (N, I)
is itself totally bounded.

Thus, for each iel, there is a finite point set {pik} ,

1
- A strengthening of (c) is contained in Theorem 1 below.
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n.
1

i
k—i,Z,_...,ni, such that T = U N (pik) . Let

k=1
-1 k1
Aik=f [N (pik)-.u N(pij)],k=2,...,ni,a:nd
J=1
-1 i
A = . T i i
a1 f T[N (pil)] Itx'en, for each (fixed) iel, the sets Aik

i
are disjoint and S= [J A,
k=1

t . b . -
functions fi, iel, by setting fi(x) Pk for xeAi

K We now define a net of simple
k ?
k=1,2,..., 1'1i . Then, by the definition of the sets A'k R
i

f(x)e N‘(fi(x)) or, by (N2), £, (x)e N' (£ (x)) , for all xe¢S and
iel. This, however, easily implies that fi—>f {unif.), as re-
quired. Moreover, the A'k are f-i-images of Borel sets

. i T —
(for the sets Nl(pik) are open). Thus, if f is M-measurable,
then Aike M, i.e. the maps fi are measurable as well. Q. E.D.

COROLLARY 4. Every map f:S—=T (where T is an
arbitrary topological space) is the pointwise limit of a net of
simple maps.

This follows by applying Theorem 1 to T with discrete
topology. (suggested by the referee).

COROLLARY 2. If (T,N,I) is symmetric and totally
o-totally) bounded, then every map f:S— T is the uniform limit
of a net {fi[iel} of simple (elementary) maps fi:S—>T (al

measurable if f is).

Indeed, if the total boundedness of (T, N,I) is assumed
a priori, the proof of Theorem 1 only requires the use of (N2) ,
not (N3). In the o-totally bounded case, one only has to replace
finite sets {pik} by countable ones.

¥ I={4,2,...}, the net {fi} becomes a sequence. We

use this to obtain a slightly stronger (and rectified) version of
a theorem by Monna [5]:

COROLLARY 3. If T is a regular space with countable
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base (e.g., a separable pseudometric space), then every map
f:S—+ T is the uniform limit of a sequence of simple maps
(measurable if f is), under a suitable totally bounded pseudo-
metric d preserving the topology of T (hence it also is a
pointwise limit under that topology).

Proof. As T is regular, itis an Ro—space. Thus, for

any p,qe T, the closures p, @ are either identical or disjoint
[2, Theorem 2(e)]. Hence T has a separated quotient space T
whose elements are such closures P , with topology defined as
follows: a set of elements P is open in T if and only if its union
is openin T . Then our assumptions imply that T is a regular
T1-Space with countable base. Thus by Urysohn's theorem (cf.[3,

p.125]), T is topologically embedded in the Hilbert cube Q% .

Under the metric of Q®, T is totally bounded, while T itself be-
comes a totally bounded pseudometric space. The result then follows

by Cor.2, with I={1,2,...} and N' = the sphere of radius
- P

i
2 about p , under the pseudometric d inherited from QY.

NOTE 4. The idea of using Urysohn's theorem here is
due to Monna who, however, considers only metric spaces T
and erroneously claims uniform approximation under the original
metric of T (cf. his "Conséquence' on p.405).

THEOREM 2. Every separable space T admits the
uniform approximation of any map f:S—=T by a net {fi!iel}

of elementary functions, under any graded base (N, I) for the

1
topology of T . If further T is an Ro—space and f is

measurable, then all fi , for a suitable choice of (N, I), can be

made so.

Proof. Let {pk} be a dense sequence in T, and (N,]I)
a graded base for T . For each iel.and k=1,2,... , let
i .
Bik ={yeT] Py € NY } . Then, by the density of the Py

Such a base exists by part (a) of Lemma 1. Note that here
(unlike Theorem 1), (N, I) may be chosen at will.
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T = U Bik for each iel . The rest of the proof now proceeds
k=1

as in Theorem 1, with the sets Ni(pik) replaced by Bik .
This yields here a net of elementary maps, with fi—>f (unif.)

on S, If further T is an R.o- space, then T admits a
symmetric base (N,I), by part (b) of Lemma 4. Thus, by (N2),
Bik = {yeT] P € N; } = {yeT]|ye N'l(pk)} = Nl(pk) , so that

the Bik

as in Theorem 1. Q.E.D.

are open sets, and the measurability of the f. results
i

NOTE 2. If, in Theorem 2, T also satisfies the first
axiom of countability then, clearly, T admits a graded base
(N,I), with I={1,2,...}; thus the net {f } becomes a

i

sequence. However, in general, such a base (N, I) is not
symmetric, and the measurability of the f, fails.
i

Theorems 1 and 2 may be summarized thus: the regularity
(separability) of T ensures a uniform approximation (under a
suitable graded base) of any map f:S—- T by simple (elementary)
functions f., . In general, elementary functions cannot be re-
- 1 . .
placed by simple ones. The following error (occurring in
Kvalko's Lemma 3 [4, p.89]) should be avoided: given a sequence

of elementary functions fi»f (unif.), with fi =p, on Aik'c" S
(i,k=1,2,... ), one can certainly define simple functions
k+1

g; (i=1,2,...) by setting g = fi on U Aik and g P4
k+1 j=1

on S~ |} A'j . However, Kvalko's seemingly plausible in-
. i
J=1

ference that g.—f (ptw.) unfortunately fails to materialize,
i :
even if T is a metric space and the sets Aik are defined as

in the proof of Theorem 1. As an alternative, avoiding this
error, we give below a proposition (Theorem 3) which suffices
for most measure-theoretical applications. First we prove:

In particular, it suffices for all of Kvatko's paper, including
generalized theorems of Lusin and Egoroff and some appli-
cations in integration. Despite its simplicity, the theorem
seems to be new in the proposed generality.
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LEMMA 2. I (S, JvL,m) is a measure space with
m(S) < o, and if f :S-T (i=1,2,...) are measurable
—_— i

elementary mappings, then for every ¢> 0 there is a set
DeM such that m(S-D) <e¢ and such that all fi are measurable

and simple on D (i.e., they become so when restricted to D).

Proof. By assumption, each fi is constant on some
00
disjoint sets Aike -.M.(k =1,2,...), with S = U Aik , so that
) n k=1
m( U Aik) = m(S) < o and lim m(S- U Aik) = 0 . Hence,
k=1 n =00 k=1

given € >0, we can find for each i an integer n, > 0 with

n.
1

. [ee]
m(S- | Aik)<e/21. Let D, = A, and D= [) ;Diej'l.

k=1 iy i i=1

P

1"

Then m(S-D)<e , and each fi is measurable and simple on

D . Hence all fi become so when restricted to D. Q.E.D.
i -

We shall say that gi»f almost uniformly (a.unif.) on S
if for every € >0 there is a set De /1 such that m(S-D)<e¢ and
gi»f(unif.) on D . Then:

THEOREM 3. If the measure space (S, /, m) is o-finite,
every sequence of measurable elementary maps fi :S—>T (where

T is any graded space) can be replaced by simple measurable
maps g, such that g = fi on some D ¢ M with DiC Di
=Leome Y RLA122 =

- +1’
i=1,2,..., and with m(S- |J D.)=0. Moreover, the g
i=1
satisfy:

(a) gi»f (a.e.) S whenever fi-*f (a.e.) on S, and

(b) gi»f (a.unif.) on S whenever fi->f (a.unif.) on S

and m(S)< « .
)
Proof. (a) By o-finiteness, S = U En for some sets
n=1
Ene M, m(En)< o. Thus Lemma 2 (with S replaced by En)

yields for every n, k=1,2,..., some Dn c En (aneJL)

k
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such that m(E - D k) < 1/k and all fi are simple and measur-
n n

bl h D . W that D -
able on eac nk em:iriassuxne a nngn,kH (other

©
by |\J D_. Clearly, rn(En_ kt;jian)=0.

wise replace Dn n )
=1 W

, k+1

k
Thus, setting Dk = nL_Ji an , k=1,2,..., and neglecting a set

o [>.]
of meas o, ite E = D  C ,
measure zero, we may write E_ U kS kL_Ji Dk

1
o
D ,i.e., m(S-D)=0

n=1,2,...,1whence S=U E
n
n=1 k=1

1t
C sx

o]

h D= D . , si ,
where U K€ M. Also, since angDn,k+1 we have
k=1
(¢ o]

D CD k=1,2,... . The formula S= |J D

) then yields
k= "k+
1 k=1

k

lim m(Dk) = m(S) . We also note that all fi are simple and
k=>o0

).

k
measurable on each Dk = nui an (being so on each an

Thus, setting g, :fk on Dk and g, = const. on S-Dk )

k=1,2,..., we obtain a sequence of simple measurable functions
g, on S, satisfying the first clause of Theorem 3. Moreover,

we clearly have

(1) gk(x) = fk(x) whenever xean and n< k.

Now, if fk»f (a.e.) on S, we lose no generality by

assuming that fk->f (ptw.) on S . We then complete the proof

00

of (a) by showing that gk»f (ptw.) on D = U Dk . Fix any
k=1
xeD : Then there are integers n and ko > n such that xeDr1

k

for k > ko (since ang Dn, k+1) . Hence, by (i), gk(x) = fk(x)

We write "z'" for an equality valid to within a set of measure 0.
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for k>k , and thus lim g (x) = lim f (x) = {f(x) , proving(a).
= o k k
k= k=0

(b) Now suppose that fk»f (a.unif.) on S and
m(S)< . Fixany € >0 . Then, with gk and Dk as above,

the formula lim m(Dk) = m(S) yields a k = k with

k= o
m(S-Dk)< e/2. Also, as fk—»f (a.unif.) , there is a set
Ee¢M such that m(S-E)< ¢/2 and f —f (unif.) on E and, a

k

fortiori, on END By the definition of the maps g, » we have

K

=£k on D QDk for k> k. Hence gk*f (unif.) on

Bk k= "k
EN Dk . Since m(S-E ﬂDk) <e¢ , assertion (b) is proved. Q.E.D.

Thus, in o-finite measure spaces, measurable elementary
functions may be replaced by simple ones in practically all cases
of interest.

It might be of interest to investigate necessary and suf-
ficient conditions for the replacement of nets by sequences, as
well as to analyze point-wise approximations more closely. We
leave these questions for a separate paper.
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