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Abstract
The optimal 𝐿4-Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus T2 is proved,
which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach
yields a stronger 𝐿4 bound on a logarithmic time scale, which implies global existence of solutions to the cubic
(mass-critical) nonlinear Schrödinger equation in 𝐻𝑠 (T2) for any 𝑠 > 0 and data that are small in the critical norm.
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1. Introduction

In the seminal work [1], Bourgain proved Strichartz estimates for the Schrödinger equation on (rational)
tori T𝑑 := (R/2𝜋Z)𝑑 . More precisely, in dimension 𝑑 = 2, the endpoint estimate in [1] states that there
exists 𝑐 > 0 such that for all 𝜙 ∈ 𝐿2 (T2) and 𝑁 ∈ N,

‖𝑒𝑖𝑡Δ𝑃𝑁 𝜙‖𝐿4
𝑡,𝑥 ( [0,2𝜋 ]×T2) ≤ 𝐶𝑁 ‖𝜙‖𝐿2 (T2) , where 𝐶𝑁 = 𝑐 exp

(
𝑐

log(𝑁)
log log(𝑁)

)
.

The proof in [1] is based on the circle method and can be reduced to an estimate for the number of
divisors function, which necessitates the above constant𝐶𝑁 . However, in the example 𝜙 = 𝜒[−𝑁 ,𝑁 ]2∩Z2 ,
we have

‖𝑒𝑖𝑡Δ𝑃𝑁 𝜙‖𝐿4
𝑡,𝑥 ( [0,2𝜋 ]×T2) ≈ (log 𝑁)1/4‖𝜙‖𝐿2 (T2) ; (1.1)

see [1, 15, 11].
More recently, the breakthrough result of Bourgain–Demeter on Fourier decoupling [2] provided a

more robust approach which has significantly extended the range of available Strichartz estimates on
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rational and irrational tori. However, the above endpoint 𝐿4 estimate has not been improved by this
method. Here, we will consider dimension 𝑑 = 2 only, but let us remark that in dimension 𝑑 = 1, there
is a similar problem concerning the 𝐿6 estimate, where it is known from [1] that the best constant is
between 𝑐(log 𝑁)1/6 and 𝐶𝑁 , with recent improvements of the upper bound to 𝑐(log 𝑁)2+𝜀 [7, 6] by
Fourier decoupling techniques.

In this paper, we obtain the sharp 𝐿4 estimate in dimension 𝑑 = 2 by using methods of incidence
geometry. Set log 𝑥 := max{1, log𝑒 𝑥} for 𝑥 > 0.
Theorem 1.1. There exists 𝑐 > 0, such that for all bounded sets 𝑆 ⊂ Z2 and all 𝜙 ∈ 𝐿2 (T2), we have

‖𝑒𝑖𝑡Δ𝑃𝑆𝜙‖𝐿4
𝑡,𝑥 ( [0,2𝜋 ]×T2 ]) ≤ 𝑐 (log #𝑆)1/4 ‖𝜙‖𝐿2 . (1.2)

In fact, we prove a stronger result.
Theorem 1.2. There exists 𝑐 > 0, such that for all bounded sets 𝑆 ⊂ Z2 and all 𝜙 ∈ 𝐿2 (T2), we have

‖𝑒𝑖𝑡Δ𝑃𝑆𝜙‖𝐿4
𝑡,𝑥 ( [0,

1
log #𝑆 ]×T

2 ]) ≤ 𝑐‖𝜙‖𝐿2 . (1.3)

Remark 1.3. Theorem 1.2 implies Theorem 1.1: Applying (1.3) to each interval [2𝜋 𝑘−1
𝑚 , 2𝜋 𝑘

𝑚 ],
𝑘 = 1, . . . , 𝑚, for 𝑚 ≈ log #𝑆, we obtain (1.2). In particular, (1.1) implies the sharpness of Theorem 1.2
as well.

For the proof of Theorem 1.2, we develop a new method based on a counting argument for parallel-
ograms with vertices in given sets, which relies on the Szemerédi-Trotter Theorem. We remark that the
Szemerédi-Trotter Theorem was previously used to bound the number of right triangles with vertices in
a given set [13], and it has also been introduced in [2] in connection to Fourier decoupling and discrete
Fourier restriction theory. More precisely, if 𝜙 = 𝜒𝑆 , estimate (1.2) is a corollary of the Pach-Sharir
bound in [13]. We point out that in our proof of Theorem 1.2, we also make use of the fourth vertex.

Theorems 1.1 and 1.2 apply to functions with Fourier support in arbitrary sets. Although we make
use of the lattice structure, we only use an elementary number theoretic argument in the proof of
Theorem 1.2: in the parallelogram (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ (Z

2)4 the quantity 𝜏 = 2(𝜉1 − 𝜉2) · (𝜉1 − 𝜉4) must
be a multiple of the greatest common divisor of the two coordinates of 𝜉1 − 𝜉4, which is used to avoid a
logarithmic loss in Theorem 1.2.

The 𝐿4-Strichartz estimate plays a distinguished role in the analysis of the cubic nonlinear Schrödinger
equation (cubic NLS)

𝑖𝑢𝑡 + Δ𝑢 = ±|𝑢 |2𝑢, 𝑢 |𝑡=0 = 𝑢0 ∈ 𝐻
𝑠 (T2), (NLS)

which is 𝐿2 (T2)-critical. (NLS) is known to be locally well-posed in Sobolev spaces 𝐻𝑠 (T2) for 𝑠 > 0
due to [1]. It is also known [11, Cor. 1.3] that the Cauchy problem is not perturbatively well-posed in
𝐿2 (T2), which is closely related to the example (1.1) discussed above.

By the conservation of energy, local well-posedness in 𝐻1(T2) implies global well-posedness for
small enough data [1, Theorem 2]. In the defocusing case, this has been refined to global well-posedness
in 𝐻𝑠 (T2) for 𝑠 > 3/5; see [4, 5, 14]. Additionally, the result in [3] shows that energy is transferred
from small to higher frequencies and therefore causing growth of Sobolev norms ‖𝑢(𝑡)‖𝐻 𝑠 for 𝑠 > 1.

Theorem 1.2 has the following consequence:
Theorem 1.4. There exists 𝛿 > 0 such that for 𝑠 > 0 and initial data 𝑢0 ∈ 𝐻

𝑠 (T2) with ‖𝑢0‖𝐿2 (T2) ≤ 𝛿,
the Cauchy problem (NLS) is globally well-posed.

The proof is based on an estimate showing that ‖𝑢(𝑡)‖𝐻 𝑠 (T2) can grow only by a fixed multiplicative
constant on a logarithmic time scale and because of

∑
𝑁 ∈2N 1/log 𝑁 = ∞, any finite time interval

can be covered. This argument crucially relies on the sharpness of the estimate in Theorem 1.2.
Indeed, if the time interval in Theorem 1.2 were [0, (log #𝑆)−𝛼] for 𝛼 > 1 instead, the sum would be∑

𝑁 ∈2N 1/(log 𝑁)𝛼 < ∞, which would not yield a global result.
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Outline of the paper

In Section 2, we introduce notations and recall the Szemerédi-Trotter Theorem. In Section 3, we
provide the proof of Theorem 1.2. Finally, in Section 4, we prove the global well-posedness result (i.e.,
Theorem 1.4).

2. Preliminaries

We write 𝐴 � 𝐵 if 𝐴 ≤ 𝐶𝐵 for some universal constant 𝐶 > 0, and 𝐴 ≈ 𝐵 if both 𝐴 � 𝐵 and 𝐵 � 𝐴.
Given a set E, we denote 𝜒𝐸 as the sharp cutoff at E.

For proposition P, denote by 1𝑃 the indicator function

1𝑃 :=

{
1, 𝑃 is true
0, otherwise

.

For a function 𝑓 : T2 → C, F 𝑓 = �̂� denotes the Fourier series of f. For 𝑆 ⊂ Z2, we denote by 𝑃𝑆 the
Fourier multiplier 𝑃𝑆 𝑓 := 𝜒𝑆 · �̂� . 2N denotes the set of dyadic numbers. For dyadic number 𝑁 ∈ 2N, we
denote by 𝑃≤𝑁 the sharp Littlewood-Paley cutoff 𝑃≤𝑁 𝑓 := 𝑃 [−𝑁 ,𝑁 ]2 𝑓 . We denote 𝑃𝑁 := 𝑃≤𝑁 −𝑃≤𝑁 /2,
where we set 𝑃≤1/2 := 0. For function 𝜙 : T2 → C and time 𝑡 ∈ R, we define 𝑒𝑖𝑡Δ𝜙 as the function such
that �𝑒𝑖𝑡Δ𝜙(𝜉) = 𝑒−𝑖𝑡 |𝜉 |

2
𝜙(𝜉).

For simplicity, we denote 𝑢𝑁 = 𝑃𝑁 𝑢 and 𝑢≤𝑁 = 𝑃≤𝑁 𝑢, for 𝑢 : T2 → C.

Geometric notations on Z2

For integer point (𝑎, 𝑏) ∈ Z2, (𝑎, 𝑏)⊥ denotes (−𝑏, 𝑎).
For integer point (𝑎, 𝑏) ∈ Z2 \ {0}, gcd ((𝑎, 𝑏)) denotes gcd(𝑎, 𝑏).
Given two integer points 𝜉1, 𝜉2 ∈ Z

2,←−→𝜉1𝜉2 denotes the line through 𝜉1 and 𝜉2.
A parallelogram is a quadruple 𝑄 = (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ (Z

2)4 such that 𝜉1 + 𝜉3 = 𝜉2 + 𝜉4. The set
of all parallelograms is denoted by Q. Segments and points are two-element pairs and elements of Z2,
respectively. We call by the edges of Q either the segments (𝜉1, 𝜉2), (𝜉2, 𝜉3), (𝜉3, 𝜉4), (𝜉4, 𝜉1), or the
vectors ± (𝜉1 − 𝜉2) ,± (𝜉1 − 𝜉4).

For a parallelogram 𝑄 = (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ Q (see Fig. 2.1), we denote by 𝜏𝑄 the number

𝜏𝑄 = 𝜏(𝜉1, 𝜉2, 𝜉3, 𝜉4) =
		|𝜉1 |

2 − |𝜉2 |
2 + |𝜉3 |

2 − |𝜉4 |
2		 = 2 | (𝜉1 − 𝜉2) · (𝜉1 − 𝜉4) | .

For 𝜏 ∈ N, we denote by Q𝜏 the set of parallelograms 𝑄 ∈ Q such that 𝜏𝑄 = 𝜏. Thus, in particular, Q0

is the set of rectangles.

Szemerédi-Trotter

The following is a consequence of Szemerédi-Trotter theorem of incidence geometry.

𝜉1

𝜉4

𝜉3

𝜉2

𝑄

Figure 2.1. Parallelogram Q.
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Proposition 2.1 [16, Corollary 8.5]. Let 𝑆 ⊂ R2 be a set of n points, where 𝑛 ∈ N. Let 𝑘 ≥ 2 be an
integer. The number m of lines in R2 passing through at least k points of S is bounded by

𝑚 �
𝑛2

𝑘3 +
𝑛

𝑘
. (2.1)

Remark 2.2. An optimizer S for (2.1) is a lattice 𝑆 = Z2 ∩ [−𝑁, 𝑁]2, 𝑁 ∈ N.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We will first reduce Theorem 1.2 to Proposition 3.1, then to
showing Lemma 3.3. Then we will finish the proof by showing Lemma 3.3.

The proof of Theorem 1.2 will be reduced to the following proposition.

Proposition 3.1. Let 𝑓 : Z2 → [0,∞) be a function of the form

𝑓 =
𝑚∑
𝑗=0

𝜆 𝑗2− 𝑗/2𝜒𝑆 𝑗 ,

where 𝑆0, . . . , 𝑆𝑚, 𝑚 ≥ 1 are disjoint subsets of Z2 such that #𝑆 𝑗 ≤ 2 𝑗 , and 𝜆0, . . . , 𝜆𝑚 ≥ 0. Suppose
that for each 𝑗 = 0, . . . , 𝑚 and 𝜉 ∈ 𝑆 𝑗 , there exists at most one line ℓ 
 𝜉 such that #(ℓ ∩ 𝑆 𝑗 ) ≥ 2 𝑗/2+𝐶 .
Then, we have ∑

𝑄∈Q0

𝑓 (𝑄) � 𝑚 · ‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

(3.1)

and

sup
𝑀 ∈2N

1
𝑀

∑
𝜏≈𝑀

∑
𝑄∈Q𝜏

𝑓 (𝑄) � ‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

. (3.2)

Here, 𝐶 > 0 is a uniform constant to be specified shortly, and 𝑓 (𝑄) denotes 𝑓 (𝜉1) 𝑓 (𝜉2) 𝑓 (𝜉3) 𝑓 (𝜉4) for
parallelogram 𝑄 = (𝜉1, 𝜉2, 𝜉3, 𝜉4).

Proof of Theorem 1.2 (assuming Proposition 3.1). Let 𝑆 ⊂ Z2 be a bounded set. Let m be the least
integer greater than log2 #𝑆. Since 1

log #𝑆 �
1
𝑚 , to prove Theorem 1.2, we only need to show for

𝜙 ∈ 𝐿2 (T2) that

‖𝑒𝑖𝑡Δ𝑃𝑆𝜙‖𝐿4
𝑡,𝑥 ( [0,

1
𝑚 ]×T

2) � ‖𝜙‖𝐿2 (T2) . (3.3)

Decomposing 𝜙 =
∑3

𝑘=0 𝑖
𝑘𝜙𝑘 , 𝜙𝑘 ≥ 0, it suffices to show that for 𝑓 : Z2 → [0,∞) supported in S,

‖𝑒𝑖𝑡ΔF−1 𝑓 ‖𝐿4
𝑡,𝑥 ( [0,

1
𝑚 ]×T

2) � ‖ 𝑓 ‖ℓ2 (Z2) . (3.4)

We define a sequence { 𝑓𝑛} of functions 𝑓𝑛 : Z2 → [0,∞), supp( 𝑓𝑛) ⊂ 𝑆 inductively. Let 𝑓0 := 𝑓 .
Given 𝑛 ∈ N and a function 𝑓𝑛, we choose an enumeration 𝜉1, 𝜉2, . . . of Z2 (which may depend on n)
such that 𝑓𝑛 (𝜉1) ≥ 𝑓𝑛 (𝜉2) ≥ . . .. Let 𝑆0

𝑗 := {𝜉2 𝑗 , . . . , 𝜉2 𝑗+1−1} and 𝜆 𝑗 := 2 𝑗/2 𝑓𝑛 (𝜉2 𝑗 ) for 𝑗 = 0, . . . , 𝑚.
We have

#𝑆0
𝑗 = 2 𝑗 (3.5)
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and

‖𝜆 𝑗 ‖ℓ2
𝑗≤𝑚

= ‖2 𝑗/2 𝑓𝑛 (𝜉2 𝑗 )‖ℓ2
𝑗≤𝑚

(3.6)

� 𝑓𝑛 (𝜉1) + ‖

𝑚∑
𝑗=1

𝑓𝑛 (𝜉2 𝑗 )𝜒{𝜉2 𝑗−1+1 ,..., 𝜉2 𝑗 }
‖ℓ2 (Z2)

� ‖ 𝑓𝑛‖ℓ2 (Z2) .

For 𝑗 = 0, . . . , 𝑚, we define 𝐸 𝑗 ⊂ 𝑆0
𝑗 as the set of intersections 𝜉 ∈ 𝑆0

𝑗 of two lines ℓ1, ℓ2 such that

#
(
ℓ1 ∩ 𝑆

0
𝑗

)
, #

(
ℓ2 ∩ 𝑆

0
𝑗

)
≥ 2 𝑗/2+𝐶 .

By the Szemerédi-Trotter bound (2.1) and (3.5), we have√
#𝐸 𝑗 ≤ #

{
ℓ ⊂ R2 : ℓ is a line and #

(
ℓ ∩ 𝑆0

𝑗

)
≥ 2 𝑗/2+𝐶

}
(3.7)

� (#𝑆0
𝑗 )

2/(2 𝑗/2+𝐶 )3 + #𝑆0
𝑗/2

𝑗/2+𝐶

� 2 𝑗/2−𝐶 .

Let 𝑓𝑛+1 : Z2 → [0,∞) be the function

𝑓𝑛+1 := 𝑓𝑛𝜒𝐸 , 𝐸 :=
𝑚⋃
𝑗=0

𝐸 𝑗 .

Since 𝑓𝑛 (𝜉) ≤ 𝑓𝑛 (𝜉2 𝑗 ) = 𝜆 𝑗2− 𝑗/2 holds for 𝜉 ∈ 𝐸 𝑗 ⊂ 𝑆0
𝑗 , by (3.7) and (3.6), we have

‖ 𝑓𝑛+1‖ℓ2 (Z2) = ‖ 𝑓𝑛𝜒𝐸 ‖ℓ2 (Z2) � ‖𝜆 𝑗2− 𝑗/2 ·
√

#𝐸 𝑗 ‖ℓ2
𝑗≤𝑚
� 2−𝐶 ‖ 𝑓𝑛‖ℓ2 (Z2) .

Fixing 𝐶 ∈ N as a big number gives

‖ 𝑓𝑛+1‖ℓ2 (Z2) ≤
1
2
‖ 𝑓𝑛‖ℓ2 (Z2) ,

which implies

‖ 𝑓𝑛‖ℓ2 (Z2) ≤
1
2
‖ 𝑓𝑛−1‖ℓ2 (Z2) ≤ . . . ≤ 2−𝑛‖ 𝑓 ‖ℓ2 (Z2) . (3.8)

Let 𝑆 𝑗 := 𝑆0
𝑗 \ 𝐸 𝑗 . By the definition of 𝐸 𝑗 , the function

𝑔𝑛 :=
𝑚∑
𝑗=0

𝜆 𝑗2− 𝑗/2𝜒𝑆 𝑗

satisfies the conditions for Proposition 3.1. Since 𝑓𝑛 (𝜉) ≤ 𝑓𝑛 (𝜉2 𝑗 ) = 𝜆 𝑗2− 𝑗/2 holds for 𝜉 ∈ 𝑆 𝑗 ⊂ 𝑆0
𝑗 =

{𝜉2 𝑗 , . . . , 𝜉2 𝑗+1−1}, we have

ℎ𝑛 := 𝑓𝑛 − 𝑓𝑛+1 =
𝑚∑
𝑗=0

𝑓𝑛𝜒𝑆 𝑗 ≤
𝑚∑
𝑗=0

𝜆 𝑗2− 𝑗/2𝜒𝑆 𝑗 = 𝑔𝑛. (3.9)
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Denoting 𝑇0 := 1
𝑚 , by (3.9), we have∫ 𝑇0

0

∫
T2

		𝑒𝑖𝑡ΔF−1ℎ𝑛
		4 𝑑𝑥𝑑𝑡 ≤ 1

𝑇0

∫ 2𝑇0

0

∫ 𝑇

0

∫
T2

		𝑒𝑖𝑡ΔF−1ℎ𝑛
		4 𝑑𝑥𝑑𝑡𝑑𝑇

≈
1
𝑇0

∫ 2𝑇0

0

∫ 𝑇

0
F

(		𝑒𝑖𝑡ΔF−1ℎ𝑛
		4) (0)𝑑𝑡𝑑𝑇

≈
1
𝑇0

∑
𝑄∈Q

ℎ𝑛 (𝑄) · Re
∫ 2𝑇0

0

∫ 𝑇

0
𝑒𝑖𝑡 𝜏𝑄𝑑𝑡𝑑𝑇

≈
∑
𝑄∈Q

ℎ𝑛 (𝑄) ·
1 − cos

(
2𝑇0𝜏𝑄

)
𝑇0𝜏

2
𝑄

� 𝑇0
∑
𝑄∈Q0

ℎ𝑛 (𝑄) +
∑
𝜏>0

min
{
𝑇0,

1
𝑇0𝜏2

} ∑
𝑄∈Q𝜏

ℎ𝑛 (𝑄)

� 𝑇0
∑
𝑄∈Q0

𝑔𝑛 (𝑄) +
∑
𝜏>0

min
{
𝑇0,

1
𝑇0𝜏2

} ∑
𝑄∈Q𝜏

𝑔𝑛 (𝑄)

and ∑
𝜏>0

min
{
𝑇0,

1
𝑇0𝜏2

} ∑
𝑄∈Q𝜏

𝑔𝑛 (𝑄)

�
∑
𝑀 ∈2N

min
{
𝑇0𝑀,

1
𝑇0𝑀

}
1
𝑀

∑
𝜏≈𝑀

∑
𝑄∈Q𝜏

𝑔𝑛 (𝑄)

� sup
𝑀 ∈2N

1
𝑀

∑
𝜏≈𝑀

∑
𝑄∈Q𝜏

𝑔𝑛 (𝑄),

concluding by (3.1), (3.2) and (3.6) that

‖𝑒𝑖𝑡ΔF−1ℎ𝑛‖𝐿4 ( [0,𝑇0 ]×T2) =

(∫ 𝑇0

0

∫
T2

		𝑒𝑖𝑡ΔF−1ℎ𝑛
		4 𝑑𝑥𝑑𝑡)1/4

(3.10)

� ‖𝜆 𝑗 ‖ℓ2
𝑗≤𝑚
� ‖ 𝑓𝑛‖ℓ2 (Z2) .

Writing 𝑓 =
∑∞

𝑛=0 ( 𝑓𝑛 − 𝑓𝑛+1) =
∑∞

𝑛=0 ℎ𝑛, by (3.10) and (3.8), we have

‖𝑒𝑖𝑡ΔF−1 𝑓 ‖𝐿4
𝑡,𝑥 ( [0,𝑇0 ]×T2) ≤

∞∑
𝑛=0
‖𝑒𝑖𝑡ΔF−1ℎ𝑛‖𝐿4

𝑡,𝑥 ( [0,𝑇0 ]×T2)

�
∞∑
𝑛=0
‖ 𝑓𝑛‖ℓ2 (Z2)

�
∞∑
𝑛=0

2−𝑛‖ 𝑓 ‖ℓ2 (Z2) � ‖ 𝑓 ‖ℓ2 (Z2) ,

which is (3.4) and therefore completes the proof of Theorem 1.2. �

A cross is a triple (𝜉, ℓ1, ℓ2) of two mutually orthogonal lines ℓ1, ℓ2 and their intersection 𝜉. For
{𝑆 𝑗 }

𝑚
𝑗=0 as in Proposition 3.1, we categorize crosses (𝜉, ℓ1, ℓ2) , 𝜉 ∈ ∪

𝑚
𝑗=0𝑆 𝑗 into three types:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Type 1 if 𝑎 ≥ 𝑗/2 + 𝐶
Type 2 if 1 ≤ 𝑎 < 𝑗/2 + 𝐶
Type 3 if 𝑎 = 0,
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where j is the index such that 𝜉 ∈ 𝑆 𝑗 , and a is the number

𝑎 = log2 max
{
#
(
ℓ1 ∩ 𝑆 𝑗

)
, #

(
ℓ2 ∩ 𝑆 𝑗

)}
.

Note that 𝑎 ∈ {0} ∪ [1,∞) since ℓ1 ∩ 𝑆 𝑗 is nonempty.
Given a rectangle (𝜉1, 𝜉2, 𝜉3, 𝜉4) of four distinct vertices, its vertex 𝜉1 is called a vertex of type𝛼,

𝛼 = 1, 2, 3 if the cross (𝜉1,
←−→
𝜉1𝜉2,

←−→
𝜉1𝜉4) is of type 𝛼.

For 𝛼, 𝛽 = 1, 2, 3, we denote byQ0
𝛼,𝛽 the set of rectangles (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ Q0 of four distinct vertices

𝜉1, 𝜉2, 𝜉3, 𝜉4 ∈ ∪
𝑚
𝑗=0𝑆 𝑗 such that 𝜉1, 𝜉2 are type 𝛼-vertices and 𝜉3, 𝜉4 are type 𝛽-vertices. Although the

union of Q0
𝛼,𝛽 is only a proper subcollection of Q0, the following lemma provides a reduction to

counting rectangles in Q0
𝛼,𝛽 .

Lemma 3.2. Let f and
{
𝑆 𝑗

}𝑚
𝑗=0 be as in Proposition 3.1. Let 𝜏 ≥ 0 be an integer. We have∑

𝑄∈Q𝜏

𝑓 (𝑄) � max
𝛼,𝛽=1,2,3

∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0

𝛼,𝛽

gcd( 𝜉1−𝜉4) |𝜏

𝑓 (𝑄) + ‖ 𝑓 ‖4
ℓ2 (Z2)

. (3.11)

Proof. For 𝜉 ∈ Z2 \ {0} and 𝜎 ∈ Z, we denote by E𝜎
𝜉 the set of segments (𝜉1, 𝜉4) ∈ (Z

2)2 such that
𝜉1 − 𝜉4 = 𝜉 and 𝜉1 · 𝜉 = 𝜎.

Since 𝜏𝑄 = 2 | (𝜉1 − 𝜉2) · (𝜉1 − 𝜉4) | is a multiple of gcd(𝜉1 − 𝜉4) for any parallelogram 𝑄 =
(𝜉1, 𝜉2, 𝜉3, 𝜉4) such that 𝜉1 − 𝜉4 ≠ 0, we have∑

𝑄∈Q𝜏

𝑓 (𝑄) �
∑

𝜉 ∈Z2\{0}

∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q𝜏

𝜉1−𝜉4=𝜉

𝑓 (𝑄) +
∑

𝜉1 , 𝜉2∈Z2

𝑓 (𝜉1)
2 𝑓 (𝜉2)

2

�
∑

𝜉 ∈Z2\{0}
gcd( 𝜉 ) |𝜏

∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q𝜏

𝜉1−𝜉4=𝜉

𝑓 (𝑄) + ‖ 𝑓 ‖4
ℓ2 (Z2)

,

and by Cauchy-Schwarz inequality,∑
𝜉 ∈Z2\{0}
gcd( 𝜉 ) |𝜏

∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q𝜏

𝜉1−𝜉4=𝜉

𝑓 (𝑄)

�
∑

𝜉 ∈Z2\{0}
gcd( 𝜉 ) |𝜏

∑
𝜎1 ,𝜎2∈Z

𝜎1−𝜎2=±𝜏/2

∑
( 𝜉1 , 𝜉4) ∈E

𝜎1
𝜉

( 𝜉2 , 𝜉3) ∈E
𝜎2
𝜉

𝑓 (𝜉1) 𝑓 (𝜉4) 𝑓 (𝜉2) 𝑓 (𝜉3)

�
∑

𝜉 ∈Z2\{0}
gcd( 𝜉 ) |𝜏

∑
𝜎∈Z

���
∑

( 𝜉1 , 𝜉4) ∈E𝜎𝜉

𝑓 (𝜉1) 𝑓 (𝜉4)
�  !

2

� max
𝛼,𝛽=1,2,3

∑
𝜉 ∈Z2\{0}
gcd( 𝜉 ) |𝜏

∑
𝜎∈Z

���������
∑

( 𝜉1 , 𝜉4) ∈E𝜎𝜉
( 𝜉1 , 𝜉1+𝜉R, 𝜉1+𝜉

⊥
R) is a cross of type 𝛼

( 𝜉4 , 𝜉4+𝜉R, 𝜉4+𝜉
⊥
R) is a cross of type 𝛽

𝑓 (𝜉1) 𝑓 (𝜉4)

�       !

2
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� max
𝛼,𝛽=1,2,3

∑
𝜉 ∈Z2\{0}
gcd( 𝜉 ) |𝜏

∑
𝜎∈Z

∑
( 𝜉1 , 𝜉4) ∈E𝜎𝜉

( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0
𝛼,𝛽 or ( 𝜉2 , 𝜉3)=( 𝜉1 , 𝜉4)

𝑓 (𝜉1) 𝑓 (𝜉4) 𝑓 (𝜉2) 𝑓 (𝜉3)

� max
𝛼,𝛽=1,2,3

∑
𝜉 ∈Z2\{0}
gcd( 𝜉 ) |𝜏

������
∑

𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0
𝛼,𝛽

𝜉1−𝜉4=𝜉

𝑓 (𝑄) +
∑

𝜉1−𝜉4=𝜉

𝑓 (𝜉1)
2 𝑓 (𝜉4)

2
�    !

� max
𝛼,𝛽=1,2,3

∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0

𝛼,𝛽

gcd( 𝜉1−𝜉4) |𝜏

𝑓 (𝑄) + ‖ 𝑓 ‖4
ℓ2 (Z2)

,

finishing the proof. �

There are three main inequalities to be shown.

Lemma 3.3. Let f and {𝜆 𝑗 }
𝑚
𝑗=0 be as in Proposition 3.1.

In the cases (𝛼, 𝛽) ≠ (2, 2), we have ∑
𝑄∈Q0

𝛼,𝛽

𝑓 (𝑄) � ‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

. (3.12)

In case (𝛼, 𝛽) = (2, 2), we have ∑
𝑄∈Q0

2,2

𝑓 (𝑄) � 𝑚‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

(3.13)

and ∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0

2,2

1
gcd(𝜉1 − 𝜉4)

𝑓 (𝑄) � ‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

. (3.14)

Proof of Proposition 3.1 assuming Lemma 3.3. We first prove (3.1), which concerns the case 𝜏 = 0. By
(3.11), (3.12) and (3.13), we have∑

𝑄∈Q0

𝑓 (𝑄) � max
𝛼,𝛽=1,2,3

∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0

𝛼,𝛽

𝑓 (𝑄) + ‖ 𝑓 ‖4
ℓ2 (Z2)

� 𝑚‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

,

which is just (3.1).
Now we prove (3.2), which is for 𝜏 ≠ 0. By (3.11), for 𝑀 ∈ 2N, we have

1
𝑀

∑
𝜏≈𝑀

∑
𝑄∈Q𝜏

𝑓 (𝑄) �
1
𝑀

max
𝛼,𝛽=1,2,3

∑
𝜏≈𝑀

∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0

𝛼,𝛽

gcd( 𝜉1−𝜉4) |𝜏

𝑓 (𝑄) + ‖ 𝑓 ‖4
ℓ2 (Z2)

,

and for 𝛼, 𝛽 = 1, 2, 3, we have

1
𝑀

∑
𝜏≈𝑀

∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0

𝛼,𝛽

gcd( 𝜉1−𝜉4) |𝜏

𝑓 (𝑄)

=
1
𝑀

∑
𝜏≈𝑀

∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0

𝛼,𝛽

1gcd( 𝜉1−𝜉4) |𝜏 · 𝑓 (𝑄)
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=
∑

𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0
𝛼,𝛽

(
1
𝑀

∑
𝜏≈𝑀

1gcd( 𝜉1−𝜉4) |𝜏

)
· 𝑓 (𝑄)

�
∑

𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0
𝛼,𝛽

1
gcd(𝜉1 − 𝜉4)

· 𝑓 (𝑄),

which is 𝑂 (‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

) by (3.12) and (3.14), and finishes the proof of (3.2). �

Before turning to the proof of Lemma 3.3, we consider two preparatory lemmas, where we use the
following notation:

For vectors −→𝑗 = ( 𝑗1, 𝑗2, 𝑗3, 𝑗4) ∈ N4 and −→𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ N
4, we denote by Q0(

−→
𝑗 ,−→𝑎 ) the set

of rectangles (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ Q0 ∩
(
𝑆 𝑗1 × 𝑆 𝑗2 × 𝑆 𝑗3 × 𝑆 𝑗4

)
of four distinct vertices such that

2𝑎𝑘 ≤ max
{
#
(←−−−→
𝜉𝑘𝜉𝑘+1 ∩ 𝑆 𝑗𝑘

)
, #

(←−−−→
𝜉𝑘𝜉𝑘−1 ∩ 𝑆 𝑗𝑘

)}
< 2𝑎𝑘+1, (3.15)

where the cyclic convention on index 𝜉4𝑙+𝑘 = 𝜉𝑘 , 𝑙 ∈ Z is used (see Fig. 3.1).

Lemma 3.4. Let
{
𝑆 𝑗

}𝑚
𝑗=0 , 𝑚 ≥ 1 be as in Proposition 3.1. Let 𝑗1, 𝑗2, 𝑗3, 𝑗4, 𝑎3 ≥ 0 be integers. Then,

the number of rectangles (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ Q0 ∩ (𝑆 𝑗1 × 𝑆 𝑗2 × 𝑆 𝑗3 × 𝑆 𝑗4 ) of four distinct vertices such that

#
(←−→
𝜉2𝜉3 ∩ 𝑆 𝑗3

)
< 2𝑎3+1

is 𝑂 (2 𝑗1+ 𝑗2+𝑎3).

Proof. There are at most #𝑆 𝑗1 · #𝑆 𝑗2 = 𝑂 (2 𝑗1+ 𝑗2) possible choices of (𝜉1, 𝜉2) ∈ 𝑆 𝑗1 × 𝑆 𝑗2 . Once the pair
of two vertices (𝜉1,𝜉2) ∈ 𝑆 𝑗1 × 𝑆 𝑗2 is fixed, the third vertex 𝜉3 should lie on the line ℓ23 
 𝜉2 orthogonal
to←−→𝜉1𝜉2 (see Fig. 3.2), and we require

#
(
ℓ23 ∩ 𝑆 𝑗3

)
= #

(←−→
𝜉2𝜉3 ∩ 𝑆 𝑗3

)
< 2𝑎3+1,

so there are only 𝑂 (2𝑎3 ) possible choices of 𝜉3 ∈ ℓ23, which then uniquely determines a rectangle.
Therefore, we have 𝑂 (2 𝑗1+ 𝑗2 · 2𝑎3 ) = 𝑂 (2 𝑗1+ 𝑗2+𝑎3) such rectangles. �

𝜉1

𝜉2 𝜉3

𝜉4𝑆 𝑗1

𝑆 𝑗2 𝑆 𝑗3

𝑆 𝑗4

Figure 3.1. Rectangle (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ Q0(
−→
𝑗 ,−→𝑎 ).
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𝜉1

𝜉2 𝜉3

𝑆 𝑗1

𝑆 𝑗2 𝑆 𝑗3

ℓ23

Figure 3.2. Choice of 𝜉1, 𝜉2, 𝜉3 in the proof of Lemma 3.4.

The following lemma is useful in the case that 𝜉1 is a vertex of type 2.

Lemma 3.5. Let
{
𝑆 𝑗

}𝑚
𝑗=0 , 𝑚 ≥ 1 be as in Proposition 3.1. Let 𝑗1, 𝑗2, 𝑗3, 𝑗4, 𝑎1, 𝑎2, 𝑎3, 𝑎4 ≥ 0 be

integers. Assume that

1 ≤ 𝑎1 < 𝑗1/2 + 𝐶. (3.16)

We have

#Q0 (
−→
𝑗 ,−→𝑎 ) � 22 𝑗1−2𝑎1+𝑎2+𝑎4 , (3.17)

#Q0 (
−→
𝑗 ,−→𝑎 ) � 22 𝑗1−2𝑎1+𝑎2+𝑎3 , (3.18)

and ∑
( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0 (

−→
𝑗 ,−→𝑎 )

1
gcd(𝜉1 − 𝜉4)

� 22 𝑗1−2𝑎1+𝑎2+𝑎4/2. (3.19)

We note that the assumption (3.16) is a priori necessary if 𝜉1 is a vertex of type 2.

Proof. By (2.1), the number of lines ℓ such that 2𝑎1 ≤ #(ℓ∩ 𝑆 𝑗1) < 2𝑎1+1 is 𝑂 (22 𝑗1 ·2−3𝑎1 +2 𝑗1 ·2−𝑎1) =
𝑂 (22 𝑗1−3𝑎1), and for each such ℓ, we have 𝑂 (2𝑎1) number of points 𝜉1 ∈ ℓ ∩ 𝑆 𝑗1 . Thus, there exist at
most 𝑂 (22 𝑗1−2𝑎1) crosses (𝜉1, ℓ12, ℓ14) such that

2𝑎1 ≤ max
{
#(ℓ12 ∩ 𝑆 𝑗1), #(ℓ14 ∩ 𝑆 𝑗1)

}
< 2𝑎1+1.

For such a cross (𝜉1, ℓ12, ℓ14) to be a corner of a rectangle in Q0(
−→
𝑗 ,−→𝑎 ), for (3.15), we require further

that

#(ℓ12 ∩ 𝑆 𝑗2) < 2𝑎2+1 (3.20)

and

#(ℓ14 ∩ 𝑆 𝑗4 ) < 2𝑎4+1. (3.21)

By (3.20), there exist at most 𝑂 (2𝑎2 ) choices of vertices 𝜉2 ∈ ℓ12 ∩ 𝑆 𝑗2 .
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𝜉1

𝜉2

𝑆 𝑗1

𝑆 𝑗2 𝑆 𝑗3

𝑆 𝑗4
ℓ14

ℓ23

ℓ12

Figure 3.3. Choice of 𝜉1 and 𝜉2 in the proof of Lemma 3.5.

Having fixed 𝜉1 and 𝜉2, we choose either 𝜉3 or 𝜉4 as follows, which then uniquely determines a
rectangle (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ Q0.

• Choice of 𝜉4. Since the choice of 𝜉4 ∈ ℓ14∩𝑆 𝑗4 in advance uniquely determines a rectangle, by (3.21),
we have (3.17). Also, labeling ℓ14 ∩ 𝑆 𝑗4 \ {𝜉1} =:

{
𝜉1

4 , . . . , 𝜉
𝑙
4
}
, 𝑙 < 2𝑎4+1, we have

𝑙∑
𝑟=1

1
gcd(𝜉1 − 𝜉

𝑟
4 )
�

1
1
+ · · · +

1
𝑙
� log 𝑙 � 2𝑎4/2,

which implies (3.19).
• Choice of 𝜉3. We can also determine a rectangle by choosing 𝜉3 ∈ ℓ23 ∩ 𝑆 𝑗3 , where ℓ23 
 𝜉2 is the

line parallel with ℓ14 (see Fig. 3.3). To form a rectangle in Q0(
−→
𝑗 ,−→𝑎 ), we require

#(ℓ23 ∩ 𝑆 𝑗3) = #(←−→𝜉2𝜉3 ∩ 𝑆 𝑗3 ) < 2𝑎3+1,

so there are at most 𝑂 (2𝑎3 ) choices of such vertices 𝜉3. Thus, we have (3.18). �

We can now lay the last brick of the proof of Proposition 3.1.

Proof of Lemma 3.3. We split the proof into the cases (i) 𝛼 = 1 (or 𝛽 = 1), (ii) (𝛼, 𝛽) = (2, 2), (iii)
(𝛼, 𝛽) = (3, 3) and (iv) (𝛼, 𝛽) = (2, 3) (or (3, 2)).

Case I: 𝛼 = 1 (or 𝛽 = 1).
For 𝜉1 ∈ 𝑆 𝑗1 , 𝑗1 ∈ N, by the assumption of Proposition 3.1, there exists at most one line ℓ𝜉1 
 𝜉1 such

that #(ℓ𝜉1 ∩ 𝑆 𝑗1) ≥ 2 𝑗1/2+𝐶 . Thus, for any rectangle 𝑄 = (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ Q0
1,𝛽 , to which the inequality

max
{
#
(←−→
𝜉1𝜉2 ∩ 𝑆 𝑗1

)
, #

(←−→
𝜉1𝜉4 ∩ 𝑆 𝑗1

)}
≥ 2 𝑗1/2+𝐶

applies since 𝜉1 is of type 𝛼 = 1, we have either 𝜉2 ∈ ℓ𝜉1 or 𝜉4 ∈ ℓ𝜉1 . We conclude that for each pair
of points (𝜉1, 𝜉3) ∈ (Z

2)2 such that 𝜉1 ≠ 𝜉3, there is only one possible choice of the other two vertices
{𝜉2, 𝜉4} such that 𝑄 = (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ Q0

1,𝛽 , and similar for (𝜉2, 𝜉4). By Cauchy-Schwarz inequality,
we have
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𝜉1

𝜉3

𝑆 𝑗1

𝑆 𝑗3

ℓ𝜉1

Figure 3.4. Determination of a rectangle from given 𝜉1, 𝜉3 ∈ Z
2.

∑
𝑄∈Q0

1,𝛽

𝑓 (𝑄) =
∑

𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0
1,𝛽

𝑓 (𝜉1) 𝑓 (𝜉3) · 𝑓 (𝜉2) 𝑓 (𝜉4)

�
∑

𝜉1 , 𝜉3∈Z2

( 𝑓 (𝜉1) 𝑓 (𝜉3))
2

� ‖ 𝑓 ‖4
ℓ2 (Z2)

� ‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

,

which is just (3.12) for the case.

Case II: (𝛼, 𝛽) = (2, 2).
Let 𝑗1, . . . , 𝑗4, 𝑎1, . . . , 𝑎4 be integers such that 0 ≤ 𝑗𝑘 ≤ 𝑚 and 1 ≤ 𝑎𝑘 < 𝑗𝑘/2 +𝐶 for 𝑘 = 1, . . . , 4.

By (3.17), (3.18) and their cyclic relabels of indices 1, 2, 3, 4, for non-negative tuple
(
𝑐𝑘,𝑙

)
𝑘≤4,𝑙≤2 such

that
∑4

𝑘=1
∑2

𝑙=1 𝑐𝑘,𝑙 = 1, we have

#Q0 (
−→
𝑗 ,−→𝑎 ) � 2

∑4
𝑘=1

∑2
𝑙=1 𝑐𝑘,𝑙 (2 𝑗𝑘−2𝑎𝑘+𝑎𝑘+1+𝑎𝑘+1+𝑙) .

The choices (𝑐𝑘,𝑙)𝑘≤4,𝑙≤2 = 1
24 · ((2, 3), (3, 4), (0, 6), (3, 3)) and 1

12 · ((1, 2), (1, 2), (3, 0), (1, 2)) give

#Q0 (
−→
𝑗 ,−→𝑎 ) � 2

1
2 ( 𝑗1+ 𝑗2+ 𝑗3+ 𝑗4)−

1
12 ( 𝑗1− 𝑗2) , (3.22)

#Q0 (
−→
𝑗 ,−→𝑎 ) � 2

1
2 ( 𝑗1+ 𝑗2+ 𝑗3+ 𝑗4)+

1
6 (𝑎1−𝑎2) , (3.23)

respectively. Interpolating (3.22), (3.23) and their dihedral relabelings of indices 1, 2, 3, 4, for 𝛿 = 1
10000 ,

we have

#Q0 (
−→
𝑗 ,−→𝑎 ) � 2

1
2 ( 𝑗1+ 𝑗2+ 𝑗3+ 𝑗4)−𝛿

∑4
𝑘=1 ( | 𝑗𝑘− 𝑗𝑘+1 |+ |𝑎𝑘−𝑎𝑘+1 |) ,

from which we conclude by

Q0
2,2 ⊂

⋃
0≤ 𝑗𝑘 ≤𝑚

1≤𝑎𝑘 ≤ 𝑗𝑘/2+𝐶
𝑘=1,2,3,4

Q0(
−→
𝑗 ,−→𝑎 )

that (using that 𝑓 (𝜉) = 2− 𝑗/2𝜆 𝑗 for 𝜉 ∈ 𝑆 𝑗 )∑
𝑄∈Q0

2,2

𝑓 (𝑄) �
∑

0≤ 𝑗𝑘 ≤𝑚
1≤𝑎𝑘< 𝑗𝑘/2+𝐶

𝑘=1,2,3,4

#Q0 (
−→
𝑗 ,−→𝑎 ) · 2−( 𝑗1+ 𝑗2+ 𝑗3+ 𝑗4)/2𝜆 𝑗1𝜆 𝑗2𝜆 𝑗3𝜆 𝑗4

�
∑

0≤ 𝑗𝑘 ≤𝑚
1≤𝑎𝑘< 𝑗𝑘/2+𝐶

𝑘=1,2,3,4

2−𝛿
∑4
𝑘=1 ( | 𝑗𝑘− 𝑗𝑘+1 |+ |𝑎𝑘−𝑎𝑘+1 |)𝜆 𝑗1𝜆 𝑗2𝜆 𝑗3𝜆 𝑗4
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�
∑

0≤ 𝑗𝑘 ≤𝑚
𝑘=1,2,3,4

(
2−𝛿 | 𝑗1− 𝑗2 |/2𝜆 𝑗1𝜆 𝑗2 · 2

−𝛿 | 𝑗3− 𝑗4 |𝜆 𝑗3𝜆 𝑗4

)
·

∑
1≤𝑎𝑘 ≤𝑚/2+𝐶

𝑘=1,2,3,4

2−𝛿 ( |𝑎1−𝑎2 |+ |𝑎2−𝑎3 |+ |𝑎3−𝑎4 |)

� ‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

·
∑

1≤𝑎4≤𝑚/2+𝐶
1 � 𝑚‖𝜆 𝑗 ‖

4
ℓ2
𝑗≤𝑚

,

which is just (3.13).
We pass to showing (3.14), which is just a repeat of the preceding proof. By (3.17), (3.18), (3.19)

and their cyclic relabels, for non-negative tuple
(
𝑐𝑘,𝑙

)
𝑘≤4,𝑙≤2 such that

∑
𝑘,𝑙 𝑐𝑘,𝑙 = 1, we have

∑
( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0 (

−→
𝑗 ,−→𝑎 )

1
gcd(𝜉1 − 𝜉4)

� 2
∑4
𝑘=1

∑2
𝑙=1 𝑐𝑘,𝑙 (2 𝑗𝑘−2𝑎𝑘+𝑎𝑘+1+𝑎𝑘+1+𝑙) · 2−𝑐1,2 ·𝑎4/2.

Plugging the same choices of
(
𝑐𝑘,𝑙

)
𝑘≤4,𝑙≤2, we obtain

∑
( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0 (

−→
𝑗 ,−→𝑎 )

1
gcd(𝜉1 − 𝜉4)

� 2
1
2 ( 𝑗1+ 𝑗2+ 𝑗3+ 𝑗4)−𝛿

∑4
𝑘=1 ( | 𝑗𝑘− 𝑗𝑘+1 |+ |𝛼𝑘−𝛼𝑘+1 |) · 2−𝛿𝑎4 ,

concluding that ∑
𝑄=( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0

2,2

1
gcd(𝜉1 − 𝜉4)

𝑓 (𝑄)

�
∑

0≤ 𝑗𝑘 ≤𝑚
1≤𝑎𝑘< 𝑗𝑘/2+𝐶

𝑘=1,2,3,4

∑
( 𝜉1 , 𝜉2 , 𝜉3 , 𝜉4) ∈Q0 (

−→
𝑗 ,−→𝑎 )

1
gcd(𝜉1 − 𝜉4)

2−( 𝑗1+ 𝑗2+ 𝑗3+ 𝑗4)/2𝜆 𝑗1𝜆 𝑗2𝜆 𝑗3𝜆 𝑗4

�
∑

0≤ 𝑗𝑘 ≤𝑚
1≤𝑎𝑘< 𝑗𝑘/2+𝐶

𝑘=1,2,3,4

2−𝛿
∑4
𝑘=1 ( | 𝑗𝑘− 𝑗𝑘+1 |+ |𝑎𝑘−𝑎𝑘+1 |)𝜆 𝑗1𝜆 𝑗2𝜆 𝑗3𝜆 𝑗4 · 2

−𝛿𝑎4

�
∑

0≤ 𝑗𝑘 ≤𝑚
𝑘=1,2,3,4

(
2−𝛿 | 𝑗1− 𝑗2 |/2𝜆 𝑗1𝜆 𝑗2 · 2

−𝛿 | 𝑗3− 𝑗4 |𝜆 𝑗3𝜆 𝑗4

)
·

∑
1≤𝑎𝑘 ≤𝑚/2+𝐶

𝑘=1,2,3,4

2−𝛿 ( |𝑎1−𝑎2 |+ |𝑎2−𝑎3 |+ |𝑎3−𝑎4 |) · 2−𝛿𝑎4

� ‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

,

which is just (3.14).

Case III: (𝛼, 𝛽) = (3, 3).
For 𝑗1, 𝑗2, 𝑗3, 𝑗4 ∈ N, by Lemma 3.4, we have

𝑞 𝑗1 , 𝑗2 , 𝑗3 , 𝑗4 := #Q0
3,3 ∩

(
𝑆 𝑗1 × 𝑆 𝑗2 × 𝑆 𝑗3 × 𝑆 𝑗4

)
� min

𝑘=1,2,3,4
2 𝑗𝑘+ 𝑗𝑘+1 .
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One can check

min
𝑘=1,2,3,4

{ 𝑗𝑘 + 𝑗𝑘+1} −
1
2
( 𝑗1 + 𝑗2 + 𝑗3 + 𝑗4) ≤ −

1
100
( | 𝑗1 − 𝑗3 | + | 𝑗2 − 𝑗4 |) ,

and so ∑
𝑄∈Q0

3,3

𝑓 (𝑄) �
∑

𝑗1 , 𝑗2 , 𝑗3 , 𝑗4≥0
𝑞 𝑗1 , 𝑗2 , 𝑗3 , 𝑗4 2−

1
2 ( 𝑗1+ 𝑗2+ 𝑗3+ 𝑗4)𝜆 𝑗1𝜆 𝑗2𝜆 𝑗3𝜆 𝑗4

�
∑

𝑗1 , 𝑗3≥0
2−

1
100 | 𝑗1− 𝑗3 |𝜆 𝑗1𝜆 𝑗3 ·

∑
𝑗2 , 𝑗4≥0

2−
1

100 | 𝑗2− 𝑗4 |𝜆 𝑗2𝜆 𝑗4

� ‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

,

which is just (3.12) for the case.

Case IV: (𝛼, 𝛽) = (2, 3) (or (3, 2)).
For 𝑗1, 𝑗2, 𝑗3, 𝑗4 ∈ N, by Lemma 3.4, we have

𝑞 𝑗1 , 𝑗2 , 𝑗3 , 𝑗4 := #Q0
2,3 ∩

(
𝑆 𝑗1 × 𝑆 𝑗2 × 𝑆 𝑗3 × 𝑆 𝑗4

)
� 2min{ 𝑗1+ 𝑗4 , 𝑗2+ 𝑗3 , 𝑗1+ 𝑗2 } . (3.24)

For −→𝑎 = (𝑎1, 𝑎2, 0, 0) with integers 𝑎1, 𝑎2 such that 1 ≤ 𝑎1 < 𝑗1/2 + 𝐶 and 1 ≤ 𝑎2 < 𝑗2/2 + 𝐶, by
Lemma 3.4 and (3.18), we also have

#Q0 (
−→
𝑗 ,−→𝑎 ) � 2 𝑗3+ 𝑗4+min{𝑎1 ,𝑎2 } � 2 𝑗3+ 𝑗4+

1
2 (𝑎1+𝑎2) (3.25)

and

#Q0 (
−→
𝑗 ,−→𝑎 ) � min

{
22 𝑗1−2𝑎1 , 22 𝑗2−2𝑎2

}
(3.26)

� 2 𝑗1+ 𝑗2−(𝑎1+𝑎2) .

Interpolating (3.25) and (3.26), we have

#Q0 (
−→
𝑗 ,−→𝑎 ) � 2

3
5 ( 𝑗3+ 𝑗4+

1
2 (𝑎1+𝑎2))+ 2

5 ( 𝑗1+ 𝑗2−(𝑎1+𝑎2))

= 2
3
5 ( 𝑗3+ 𝑗4)+

2
5 ( 𝑗1+ 𝑗2)−

1
10 (𝑎1+𝑎2) ,

which implies

𝑞 𝑗1 , 𝑗2 , 𝑗3 , 𝑗4 ≤
∑

1≤𝑎1< 𝑗1/2+𝐶
1≤𝑎2< 𝑗2/2+𝐶

#Q0 (
−→
𝑗 ,−→𝑎 ) (3.27)

�
∑

𝑎1 ,𝑎2∈N

2
3
5 ( 𝑗3+ 𝑗4)+

2
5 ( 𝑗1+ 𝑗2)−

1
10 (𝑎1+𝑎2)

� 2
3
5 ( 𝑗3+ 𝑗4)+

2
5 ( 𝑗1+ 𝑗2) .

By (3.24), (3.27) and the inequality

min
{
𝑗1 + 𝑗4, 𝑗2 + 𝑗3, 𝑗1 + 𝑗2,

3
5
( 𝑗3 + 𝑗4) +

2
5
( 𝑗1 + 𝑗2)

}
− ( 𝑗1 + 𝑗2 + 𝑗3 + 𝑗4)/2

≤ −
1

100
(| 𝑗1 − 𝑗3 | + | 𝑗2 − 𝑗4 |) ,
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we conclude ∑
𝑄∈Q0

2,3

𝑓 (𝑄) �
∑

𝑗1 , 𝑗2 , 𝑗3 , 𝑗4≥0
𝑞 𝑗1 , 𝑗2 , 𝑗3 , 𝑗4 2−( 𝑗1+ 𝑗2+ 𝑗3+ 𝑗4)/2𝜆 𝑗1𝜆 𝑗2𝜆 𝑗3𝜆 𝑗4

�
∑

𝑗1 , 𝑗2 , 𝑗3 , 𝑗4≥0
2−

1
100 ( | 𝑗1− 𝑗3 |+ | 𝑗2− 𝑗4 |)𝜆 𝑗1𝜆 𝑗2𝜆 𝑗3𝜆 𝑗4

�
∑

𝑗1 , 𝑗3≥0
2−

1
100 | 𝑗1− 𝑗3 |𝜆 𝑗1𝜆 𝑗3 ·

∑
𝑗2 , 𝑗4≥0

2−
1

100 | 𝑗2− 𝑗4 |𝜆 𝑗2𝜆 𝑗4

� ‖𝜆 𝑗 ‖
4
ℓ2
𝑗≤𝑚

,

which is just (3.12) for the case. �

Remark 3.6. We thank Po-Lam Yung for the following more conceptional explanation of above inter-
polation type arguments. For example, in Case IV, ( 1

2 ,
1
2 ,

1
2 ,

1
2 ) is in the interior of the convex hull C of

(1, 0, 0, 1), (0, 1, 1, 0), (1, 1, 0, 0) and ( 2
5 ,

2
5 ,

3
5 ,

3
5 ). More precisely,

( 1
2 ,

1
2 ,

1
2 ,

1
2 ) =

1
5 (1, 0, 0, 1) +

1
5 (0, 1, 1, 0) +

1
10 (1, 1, 0, 0) +

1
2 (

2
5 ,

2
5 ,

3
5 ,

3
5 ).

All these points lie in the plane 𝑃 = {𝑥1 + 𝑥3 = 1 and 𝑥2 + 𝑥4 = 1}. Hence, for small 𝛿 > 0, the four
points

( 1
2 ±1 𝛿,

1
2 ±2 𝛿,

1
2 ∓1 𝛿,

1
2 ∓2 𝛿), ±1,±2 ∈ {−, +}

are all in 𝑃 ∩ 𝐶. Therefore, regardless of the signs of 𝑗1 − 𝑗3 and 𝑗2 − 𝑗4, there exist 𝑐 𝑗 ≥ 0 satisfying
𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 = 1 so that

𝑐1 ( 𝑗1 + 𝑗4) + 𝑐2 ( 𝑗2 + 𝑗3) + 𝑐3 ( 𝑗1 + 𝑗2) + 𝑐4(
3
5 ( 𝑗3 + 𝑗4) +

2
5 ( 𝑗1 + 𝑗2))

= 1
2 ( 𝑗1 + 𝑗2 + 𝑗3 + 𝑗4) − 𝛿(| 𝑗1 − 𝑗3 | + | 𝑗2 − 𝑗4 |),

and in the argument in Case IV above, we have chosen 𝛿 = 1
100 .

This completes the overall proof of Theorem 1.2.

4. Proof of Theorem 1.4

We only carry out the proof on the relevant case 0 < 𝑠 ≤ 1, which is most convenient with adapted
function spaces. For this purpose, we recall the definition of the function space𝑌 𝑠 from [10] and relevant
facts. For a general theory, we refer to [12, 10, 8, 9].
Definition 4.1. Let Z be the collection of finite non-decreasing sequences {𝑡𝑘 }𝐾𝑘=0 in R. We define 𝑉2

as the space of all right-continuous functions 𝑢 : R→ C with lim𝑡→−∞ 𝑢(𝑡) = 0 and

‖𝑢‖𝑉 2 :=

(
sup

{𝑡𝑘 }
𝐾
𝑘=0∈Z

𝐾∑
𝑘=1
|𝑢(𝑡𝑘 ) − 𝑢(𝑡𝑘−1) |

2

)1/2

< ∞.

For 𝑠 ∈ R, we define 𝑌 𝑠 as the space of 𝑢 : R × T2 → C such that 𝑒𝑖𝑡 |𝜉 |2𝑢(𝑡)(𝜉) lies in 𝑉2 for each
𝜉 ∈ Z2 and

‖𝑢‖𝑌 𝑠 =
���
∑
𝜉 ∈Z2

(
1 + |𝜉 |2

)𝑠
‖𝑒𝑖𝑡 |𝜉 |

2
𝑢(𝑡)(𝜉)‖2

𝑉 2
� !

1/2

< ∞.

For time interval 𝐼 ⊂ R, we also consider the restriction space 𝑌 𝑠 (𝐼) of 𝑌 𝑠 .
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The space 𝑌 𝑠 is used in [10] and later works on critical regularity theory of Schrödinger equations
on periodic domains. Some well-known properties are the following.

Proposition 4.2 [10, Section 2]. 𝑌 𝑠-norms have the following properties.

• Let 𝐴, 𝐵 be disjoint subsets of Z2. For 𝑠 ∈ R, we have

‖𝑃𝐴∪𝐵𝑢‖
2
𝑌 𝑠 = ‖𝑃𝐴𝑢‖

2
𝑌 𝑠 + ‖𝑃𝐵𝑢‖

2
𝑌 𝑠 . (4.1)

• For 𝑠 ∈ R, time 𝑇 > 0 and a function 𝑓 ∈ 𝐿1𝐻𝑠 , denoting

I ( 𝑓 ) (𝑡) :=
∫ 𝑡

0
𝑒𝑖 (𝑡−𝑡

′)Δ 𝑓 (𝑡 ′)𝑑𝑡 ′,

we have

‖𝜒[0,𝑇 ) · I ( 𝑓 )‖𝑌 𝑠 � sup
𝑣 ∈𝑌 −𝑠 :‖𝑣 ‖𝑌−𝑠 ≤1

				∫ 𝑇

0

∫
T2

𝑓 𝑣𝑑𝑥𝑑𝑡

				 . (4.2)

• For time 𝑇 > 0 and a function 𝜙 ∈ 𝐻𝑠 (T2), we have

‖𝜒[0,𝑇 ) · 𝑒
𝑖𝑡Δ𝜙‖𝑌 𝑠 ≈ ‖𝜙‖𝐻 𝑠 (4.3)

and for function 𝑢 ∈ 𝑌 𝑠 , 𝑢 ∈ 𝐿∞𝐻𝑠 and

‖𝜒[0,𝑇 )𝑢‖𝑌 𝑠 � ‖𝑢‖𝐿∞ ( [0,𝑇 );𝐻 𝑠) . (4.4)

For 𝑁 ∈ 2N, denote by C𝑁 the set of cubes of size N

C𝑁 :=
{
(0, 𝑁]2 + 𝑁𝜉0 : 𝜉0 ∈ Z

2} .
We transfer (1.3) to the following estimate.

Lemma 4.3. For all 𝑁 ∈ 2N, intervals 𝐼 ⊂ R such that |𝐼 | ≤ 1
log 𝑁 , cubes 𝐶 ∈ C𝑁 , and 𝑢 ∈ 𝑌0, we have

‖𝑃𝐶𝑢‖𝐿4
𝑡,𝑥 (𝐼×T

2) � ‖𝑢‖𝑌 0 . (4.5)

Proof. We follow the notations in [10, Section 2]. Let u be a 𝑈4
Δ𝐿

2-atom; that is,

𝑢(𝑡) =
𝐽∑
𝑗=1

1[𝑡 𝑗−1 ,𝑡 𝑗 )𝑒
𝑖𝑡Δ𝜙 𝑗

for 𝜙1, . . . , 𝜙𝐽 ∈ 𝐿
2 (T2), 𝑡0 ≤ ... ≤ 𝑡𝐽 ,

∑𝐽
𝑗=1 ‖𝜙 𝑗 ‖

4
𝐿2 = 1. By (1.3), we have

‖𝑃𝐶𝑢‖
4
𝐿4
𝑡,𝑥 (𝐼×T

2)
�

𝐽∑
𝑗=1
‖𝑃𝐶𝑒

𝑖𝑡Δ𝜙 𝑗 ‖
4
𝐿4
𝑡,𝑥 (𝐼×T

2)
�

𝐽∑
𝑗=1
‖𝜙 𝑗 ‖

4
𝐿2 � 1. (4.6)

By [10, Proposition 2.3] and (4.6), for 𝑢 ∈ 𝑌0, we conclude

‖𝑃𝐶𝑢‖𝐿4
𝑡,𝑥 (𝐼×T

2) � ‖𝑢‖𝑈4
Δ𝐿

2 � ‖𝑢‖𝑉 2
Δ 𝐿2 � ‖𝑢‖𝑌 0 . �

Since we only rely on the 𝐿4 estimate, Lemma 4.3 explains why we can work with the 𝑌 𝑠-norm
instead of the 𝑈2-based space as was used in [10].
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For 𝑁 ∈ 2N, we set the interval 𝐼𝑁 := [0, 1/log 𝑁). Let 𝑍𝑁 be the norm

‖𝑢‖𝑍𝑁 := ‖𝜒𝐼𝑁 · 𝑢‖𝑌 0 + 𝑁−𝑠 ‖𝜒𝐼𝑁 · 𝑢‖𝑌 𝑠 .

We show our main trilinear estimate:

Lemma 4.4. For 0 < 𝑠 ≤ 1 and 𝑁 � 21/𝑠 , we have

‖I (𝑢1𝑢2𝑢3)‖𝑍𝑁 � ‖𝑢1‖𝑍𝑁 ‖𝑢2‖𝑍𝑁 ‖𝑢3‖𝑍𝑁 , (4.7)

where each 𝑢 𝑗 could also be replaced by its complex conjugate. The implicit constant is independent
from s.

Proof. Let 𝑘𝑠 = �1/𝑠�. In this proof, we use 2𝑘𝑠 -adic cutoffs: for 𝑁 ∈ 2𝑘𝑠N, we denote

𝑃∼𝑁 𝑢 = 𝑢∼𝑁 = 𝑢<2𝑘𝑠 𝑁 − 𝑢<𝑁 .

Since ‖𝜒𝐼𝑁 · 𝑢‖𝑍𝑁 ≈ ‖𝑢‖𝑍𝑁 holds for 𝑁 ∈ [2−𝑘𝑠𝑁, 𝑁], we assume further that 𝑁 ∈ 2𝑘𝑠N. (4.7) is
reduced to showing 				∫

𝐼𝑁×T2
𝑢1𝑢2𝑢3 · 𝑣<𝑁 𝑑𝑥𝑑𝑡

				 � ‖𝑢1‖𝑍𝑁 ‖𝑢2‖𝑍𝑁 ‖𝑢3‖𝑍𝑁 ‖𝑣‖𝑌 0 (4.8)

and 				∫
𝐼𝑁×T2

𝑢1𝑢2𝑢3 · 𝑣≥𝑁 𝑑𝑥𝑑𝑡

				 � ‖𝑢1‖𝑍𝑁 ‖𝑢2‖𝑍𝑁 ‖𝑢3‖𝑍𝑁 · 𝑁
𝑠 ‖𝑣‖𝑌 −𝑠 (4.9)

with implicit constants in (4.8) and (4.9) independent from s.
We prove (4.8) and (4.9). For 𝑀 ≥ 𝑁 in 2𝑘𝑠N and 𝐶 ∈ C𝑀 , partitioning 𝐼𝑁 to intervals of length

comparable to 1
log 𝑀 and applying (4.5) to each, we have

‖𝜒𝐼𝑁 · 𝑃𝐶𝑢‖𝐿4
𝑡,𝑥
�

(
log 𝑀
log 𝑁

)1/4
‖𝑢‖𝑌 0 . (4.10)

By (4.10), for 𝑢 ∈ 𝑌 𝑠 , we have

‖𝜒𝐼𝑁 · 𝑢‖𝐿4
𝑡,𝑥
� ‖𝑢<𝑁 ‖𝑌 0 +

∑
𝑀 ≥𝑁

(
log 𝑀
log 𝑁

)1/4
‖𝑢∼𝑀 ‖𝑌 0 (4.11)

� ‖𝑢‖𝑌 0 +
∑
𝑀 ≥𝑁

(
log 𝑀
log 𝑁

)1/4
𝑁𝑠

𝑀𝑠
· 𝑁−𝑠 ‖𝑢‖𝑌 𝑠

� ‖𝑢‖𝑌 0 + 𝑁−𝑠 ‖𝑢‖𝑌 𝑠 � ‖𝑢‖𝑍𝑁 ,

which implies (4.8).
We prove (4.9) by partitioning the frequency domain Z2 into congruent cubes. By (4.10) and (4.1),

for 𝑀 ∈ 2𝑘𝑠N and 𝑢, 𝑣 ∈ 𝑌0, we have

‖𝜒𝐼𝑁 · 𝑃≤𝑀 (𝑢𝑣) ‖𝐿2
𝑡,𝑥

(4.12)

�
∑

𝐶1 ,𝐶2∈C𝑀
dist(𝐶1 ,𝐶2) ≤𝑀

‖𝜒𝐼𝑁 · 𝑃𝐶1𝑢 · 𝑃𝐶2𝑣‖𝐿2
𝑡,𝑥
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�
∑

𝐶1 ,𝐶2∈C𝑀
dist(𝐶1 ,𝐶2) ≤𝑀

‖𝜒𝐼𝑁 · 𝑃𝐶1𝑢‖𝐿4
𝑡,𝑥
‖𝜒𝐼𝑁 · 𝑃𝐶2𝑣‖𝐿4

𝑡,𝑥

�
(
1 +

log 𝑀
log 𝑁

)1/2
( ∑
𝐶∈C𝑀

‖𝑃𝐶𝑢‖
2
𝑌 0

∑
𝐶∈C𝑀

‖𝑃𝐶𝑣‖
2
𝑌 0

)1/2

�
(
1 +

log 𝑀
log 𝑁

)1/2
‖𝑢‖𝑌 0 ‖𝑣‖𝑌 0 .

We conclude quadrilinear estimates. By (4.12) and Young’s convolution inequality on (𝐿, 𝐾) using that∑
𝑅∈2𝑘𝑠N 𝑅

−𝑠 � 1, we have∑
𝐾 ≥𝑁

∑
𝐿�𝐾

				∫
𝐼𝑁×T2

𝑃<𝑁 (𝑢1𝑢2)𝑃<𝑁 (𝑤∼𝐿𝑣∼𝐾 )𝑑𝑥𝑑𝑡

				 (4.13)

� ‖𝑢1‖𝑌 0 ‖𝑢2‖𝑌 0

∑
𝐾 ≥𝑁

∑
𝐿�𝐾

‖𝑤∼𝐿 ‖𝑌 0 ‖𝑣∼𝐾 ‖𝑌 0

� ‖𝑢1‖𝑌 0 ‖𝑢2‖𝑌 0

∑
𝐾 ≥𝑁

∑
𝐿�𝐾

(𝐿/𝐾)−𝑠 ‖𝑤∼𝐿 ‖𝑌 𝑠 ‖𝑣∼𝐾 ‖𝑌 −𝑠

� ‖𝑢1‖𝑌 0 ‖𝑢2‖𝑌 0 ‖𝑤‖𝑌 𝑠 ‖𝑣‖𝑌 −𝑠

and ∑
𝑀 ≥𝑁

∑
𝐾 ≥𝑁

∑
𝐿�𝐾

				∫
𝐼×T2

𝑃∼𝑀 (𝑢1𝑢2) 𝑃∼𝑀 (𝑤∼𝐿𝑣∼𝐾 ) 𝑑𝑥𝑑𝑡

				 (4.14)

�
∑
𝑀 ≥𝑁

log 𝑀
log 𝑁

(‖𝑃≥𝑀/4𝑢1‖𝑌 0 ‖𝑢2‖𝑌 0 + ‖𝑢1‖𝑌 0 ‖𝑃≥𝑀/4𝑢2‖𝑌 0)

·
∑
𝐾 ≥𝑁

∑
𝐿�𝐾

‖𝑤∼𝐿 ‖𝑌 0 ‖𝑣∼𝐾 ‖𝑌 0

�
∑
𝑀 ≥𝑁

log 𝑀
log 𝑁

𝑁𝑠

𝑀𝑠
‖𝑢1‖𝑍𝑁 ‖𝑢2‖𝑍𝑁

∑
𝐾 ≥𝑁

∑
𝐿�𝐾

‖𝑤∼𝐿 ‖𝑌 0 ‖𝑣∼𝐾 ‖𝑌 0

� ‖𝑢1‖𝑍𝑁 ‖𝑢2‖𝑍𝑁

∑
𝐾 ≥𝑁

∑
𝐿�𝐾

(𝐿/𝐾)−𝑠 ‖𝑤∼𝐿 ‖𝑌 𝑠 ‖𝑣∼𝐾 ‖𝑌 −𝑠

� ‖𝑢1‖𝑍𝑁 ‖𝑢2‖𝑍𝑁 ‖𝑤‖𝑌 𝑠 ‖𝑣‖𝑌 −𝑠 .

Combining (4.13) and (4.14), we have∑
𝐾 ≥𝑁

∑
𝐿�𝐾

				∫
𝐼𝑁×T2

(𝑢1𝑢2)𝑤∼𝐿𝑣∼𝐾 𝑑𝑥𝑑𝑡

				 � ‖𝑢1‖𝑍𝑁 ‖𝑢2‖𝑍𝑁 ‖𝑤‖𝑍𝑁 𝑁
𝑠 ‖𝑣‖𝑌 −𝑠 . (4.15)

Note that in (4.12), (4.13), (4.14), (4.15) each function on the left-hand side could be replaced by its
complex conjugate. We bound				∫

𝐼𝑁×T2
𝑢1𝑢2𝑢3𝑣≥𝑁 𝑑𝑥𝑑𝑡

				
≤

∑
𝐾 ≥𝑁

				∫
𝐼𝑁×T2

𝑃≥𝐾/4𝑢1 · 𝑢2 · 𝑢3 · 𝑣∼𝐾 𝑑𝑥𝑑𝑡
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+
∑
𝐾 ≥𝑁

				∫
𝐼𝑁×T2

𝑃<𝐾/4𝑢1 · 𝑃≥𝐾/4𝑢2 · 𝑢3 · 𝑣∼𝐾 𝑑𝑥𝑑𝑡

				
+

∑
𝐾 ≥𝑁

				∫
𝐼𝑁×T2

𝑃<𝐾/4𝑢1 · 𝑃<𝐾/4𝑢2 · 𝑃≥𝐾/4𝑢3 · 𝑣∼𝐾 𝑑𝑥𝑑𝑡

				 .
Applying (4.15) to each term, we conclude (4.9). �

Proof of Theorem 1.4. Let 𝑠 > 0 and 𝑁 � 21/𝑠 . By (4.7), (4.2) and the expansion |𝑢 |2𝑢 − |𝑣 |2𝑣 =
(|𝑢 |2 + 𝑢𝑣) (𝑢 − 𝑣) + 𝑣2 (𝑢 − 𝑣), we have

‖I (|𝑢 |2𝑢 − |𝑣 |2𝑣)‖𝑍𝑁 � (‖𝑢‖𝑍𝑁 + ‖𝑣‖𝑍𝑁 )2‖𝑢 − 𝑣‖𝑍𝑁 . (4.16)

Based on (4.16), we use the contraction mapping principle. Let 𝐵𝑁 ⊂ 𝐻𝑠 be the ball

𝐵𝑁 := {𝑢0 ∈ 𝐻
𝑠 : ‖𝑢0‖𝐿2 + 𝑁−𝑠 ‖𝑢0‖𝐻 𝑠 ≤ 2𝛿},

and 𝑋𝑁 be the complete metric space

𝑋𝑁 := {𝑢 ∈ 𝐶0(𝐼𝑁 ;𝐻𝑠) ∩ 𝑌 𝑠 (𝐼𝑁 ) : ‖𝑢‖𝑍𝑁 ≤ 𝜂}

equipped with the norm 𝑍𝑁 , where 𝛿, 𝜂 > 0 are universal constants to be fixed shortly.
By (4.16), there exists 𝜂 > 0 such that the map

𝑢 ↦→ I (|𝑢 |2𝑢)

is a contraction map on 𝑋𝑁 of Lipschitz constant 1/2, which fixes 0.
By (4.3), there exists 𝛿 > 0 such that

‖𝑒𝑖𝑡Δ𝜙‖𝑍𝑁 < 𝜂/4 (4.17)

holds for every 𝜙 ∈ 𝐵𝑁 , so that the map

𝑢 ↦→ 𝑒𝑖𝑡Δ𝑢0 ∓ 𝑖I (|𝑢 |2𝑢)

is a contraction mapping on 𝑋𝑁 . Thus, for 𝑢0 ∈ 𝐵𝑁 , there exists a solution u to (NLS) in 𝑋𝑁 on time
interval 𝐼𝑁 . Moreover, since the map 𝑢 ↦→ I (|𝑢 |2𝑢) is a contraction map of Lipschitz constant 1/2,
given solutions 𝑢, 𝑣 ∈ 𝑋𝑁 to 𝑢0, 𝑣0 ∈ 𝐵𝑁 , we have

‖𝑢 − 𝑣‖𝑍𝑁 ≤ ‖𝑒
𝑖𝑡Δ (𝑢0 − 𝑣0)‖𝑍𝑁 + ‖I (|𝑢 |2𝑢) − I (|𝑣 |2𝑣)‖𝑍𝑁

≤ ‖𝑒𝑖𝑡Δ (𝑢0 − 𝑣0)‖𝑍𝑁 +
1
2
‖𝑢 − 𝑣‖𝑍𝑁 ,

which implies that the flow map 𝑢0 ↦→ 𝑢 ∈ 𝑋𝑁 is Lipschitz continuous by (4.3).
We then check uniqueness. Let 𝑢, 𝑣 ∈ 𝑌 𝑠∩𝐶0𝐻𝑠 be solutions to (NLS) on a time interval [0, 𝑇), 𝑇 > 0,

with common initial data 𝑢0 such that ‖𝑢0‖𝐿2 ≤ 𝛿. There exists 𝑁0 � 21/𝑠 such that 𝐼𝑁0 ⊂ [0, 𝑇) and

‖𝑢>𝑁0 ‖𝑌 0 + 𝑁−𝑠0 ‖𝑢‖𝑌 𝑠 ≤ 2𝑁−𝑠0 ‖𝑢‖𝑌 𝑠 ≤ 𝜂/2,

‖𝑣>𝑁0 ‖𝑌 0 + 𝑁−𝑠0 ‖𝑣‖𝑌 𝑠 ≤ 2𝑁−𝑠0 ‖𝑣‖𝑌 𝑠 ≤ 𝜂/2.

We have

‖𝑃≤𝑁0 (𝑢 − 𝑒
𝑖𝑡Δ𝑢0)‖𝑌 0 (𝐼𝑁 ) � ‖𝑃≤𝑁0 (|𝑢 |

2𝑢)‖𝐿1 (𝐼𝑁 ;𝐿2)

� 𝑁0‖|𝑢 |
2𝑢‖𝐿1 (𝐼𝑁 ;𝐿1) � 𝑁0‖𝑢‖

3
𝐿4 (𝐼𝑁 ;𝐿4)

,

https://doi.org/10.1017/fmp.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.11


20 S. Herr and B. Kwak

which shrinks to zero as 𝑁 →∞ since 𝑢 ∈ 𝐿4
𝑡 ,𝑥 on 𝐼𝑁0 by (4.11). Thus, applying the same argument to

v, by (4.17), there exists 𝑁 ≥ 𝑁0 such that

𝜒𝐼𝑁 𝑢, 𝜒𝐼𝑁 𝑣 ∈ 𝑋𝑁 ,

which implies 𝑢 = 𝑣 on 𝐼𝑁 . Therefore, the maximal time 𝑡∗ ≥ 0 that 𝑢 = 𝑣 on [0, 𝑡∗] cannot be less than
T, implying the uniqueness of solution to (NLS).

In summary, we proved uniform Lipschitz local well-posedness of (NLS) mapping 𝐵𝑁 to 𝑋𝑁 . It
remains to extend the lifespan over arbitrarily large time interval. For 𝑁 � 21/𝑠 , 𝑡0 ∈ R, and a solution
𝑢 ∈ 𝑌 𝑠 to (NLS) such that 𝑢(𝑡0) ∈ 𝐵𝑁 and ‖𝑢(𝑡0)‖𝐿2 ≤ 𝛿, by (4.4), we have

𝑁−𝑠 ‖𝑢(𝑡0 +
1

2 log 𝑁
)‖𝐻 𝑠 � ‖𝑢‖𝑍𝑁 ≤ 𝜂.

Moreover, since 𝑢(𝑡0) is a limit of smooth data in 𝐵𝑁 and solutions to (NLS) in 𝐶0𝐻2 conserve their
𝐿2-norms, we have

‖𝑢(𝑡0 +
1

2 log 𝑁
)‖𝐿2 = ‖𝑢(𝑡0)‖𝐿2 ≤ 𝛿.

Thus, there exists a constant 𝐾 ∈ 2N such that 𝑢(𝑡0 + 1
2 log 𝑁 ) ∈ 𝐵𝐾𝑁 .

Let 𝑢0 ∈ 𝐻
𝑠 be any function that ‖𝑢0‖𝐿2 ≤ 𝛿. Let 𝑁0 � 21/𝑠 be a dyadic number such that 𝑢0 ∈ 𝐵𝑁0 .

For 𝑗 ∈ N, let

𝑁 𝑗 := 𝐾 𝑗𝑁0 and 𝑇𝑗 :=
𝑗−1∑
𝑘=0

1
2 log 𝑁𝑘

.

We extend the solution inductively. For 𝑗 ∈ N, we can extend the solution 𝑢 ∈ 𝑌 𝑠 to (NLS) on [0, 𝑇𝑗 ]

to [0, 𝑇𝑗+1] with 𝑢(𝑇𝑗+1) ∈ 𝐵𝑁 𝑗+1 . Since lim 𝑗→∞ 𝑇𝑗 = ∞, the lifespan of u is infinite. �
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