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GENERALIZED AFFINE KAC-MOODY LIE ALGEBRAS 
OVER LOCALIZATIONS 

OF THE POLYNOMIAL RING IN ONE VARIABLE 

MURRAY BREMNER 

ABSTRACT. We consider simple complex Lie algebras extended over the commu­
tative ring C[z,(z — ci\)" ' , . . . ,{z — cin)

 l] where « | , . . . ,a„ G C. We compute the 
universal central extensions of these Lie algebras and present explicit commutation re­
lations for these extensions. These algebras generalize the untwisted affine Kac-Moody 
Lie algebras, which correspond to the case n = \,a\ = 0. 

1. Introduction. An untwisted affine Kac-Moody Lie algebra may be defined in 
two ways: either by generators and relations in terms of the data in a generalized Cartan 
matrix, or as the universal central extension of a loop algebra. By a loop algebra we 
mean a Lie algebra of the form L — C[z,z,~l] 0 c G» where c\ is a finite-dimensional 
simple complex Lie algebra; the commutation relations are \f<S>x,g<g>y] =fg<8>[xy]. It is 
well-known that the homology group Hi(L, C) is one-dimensional, and hence the center 
of the universal central extension L of L is also one-dimensional. All of this material, 
together with the theory of general Kac-Moody algebras and their representations, is 
explained in detail in [Kac, 1990]. 

The loop algebra construction suggests a natural generalization. We let A be any com­
mutative associative C-algebra; we then form the Lie algebra L = A <g>c $>, with Lie 
brackets defined by the formula given above. The theory of affine Kac-Moody algebras 
leads us to expect that the most interesting representations of L will be projective; that is, 
they will be ordinary representations of the universal central extension L of L. The ho­
mology group H2(L, C), and the commutation relations for L, can be computed in terms 
of Kahler differentials of A, following [Kassel, 1984]. 

The ring of Laurent polynomials C[z,z-1] may be regarded as the ring of rational 
functions on the projective line C U {oo} which have poles only at z G {oo, 0}. One of 
the simplest generalizations of this picture is to allow poles at an arbitrary finite set of 
points {oo,<2i,<22,. • • ,««}• This gives the ring 

A = C[zAz-alr\...9(z-a„r1]; 

for the rest of this paper this will be the definition of A. The universal central extensions 
L of the Lie algebras L — A 0 c H are the Lie algebras to which the title of this paper 
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refers. (Perhaps it is more informative and convenient to call these Lie algebras N-point 
affine algebras, where N = n+ \.) 

Since the automorphism group PGL2(C) of the projective line is (simply) 3-transitive, 
we lose no generality by assuming that oo is one of the points where a pole is allowed; 
indeed we could even assume that a\ = 0 and ai = \. For n G {1,2} there is thus a 
unique isomorphism class of rings A. For n > 3 there will be parametrized families of 
non-isomorphic rings. 

In principle, there is nothing to prevent us from letting A be the localization of a finite 
algebraic extension B of C[z]. That is, we let K be a finite extension of the function field 
C(z), and let B be the subring of K consisting of the elements which are integral over 
C[z]. This corresponds to replacing the projective line with an algebraic curve of positive 
genus. (Some results for the case of genus 1 appear in [Sheinman, 1990].) However in 
what follows we will consider only the case of genus zero. 

Another generalization of the affine Kac-Moody Lie algebras has been studied in 
[Moody et ai, 1990]. That paper considers the ring B — C[>i, t][\ . . . , tn, Ç

1] and the 
universal central extension of B 0 c G, called a toroidal Lie algebra. The toroidal alge­
bras have a Z"-grading (with finite dimensional subspaces), whereas the TV-point affine 
algebras appear to have no grading by any finite Abelian group except when N = 2. 
The centre of a toroidal algebra is infinite dimensional, whereas the centre of an TV-point 
affine algebra is finite dimensional (see Theorem 2 below). We have a surjective ring 
homomorphism B —» A given by t-t \—> z — d[ for 1 < / < n. This induces a surjective 
linear map HiiB&c #, C) —•» H2(A ®c fl, C), which shows that the TV-point affine algebra 
is a homomorphic image of the toroidal algebra. 

I thank S. Berman, R. V. Moody, D. Melville and the referee for helpful comments on 
a previous version of this paper. 

2. Calculating Hj(L, C). We start with an elementary fact. 

LEMMA 1. The subset {1} U {z*, (z - a}Y
k \ k G Z+, 1 <j< n} is a basis of A 

over C. 

PROOF. This subset spans A over C by the theory of partial fractions. To show that 
this subset is linearly independent, suppose that the linear combination 

* = 0 j=1k=1 

equals 0 in A. If mj = 0 for all j , 1 <j<n, then this expression is a polynomial, and so 
all its coefficients (i.e. the bQ

k for 0 < k < mo) must be 0. In the other case, ray > 1 for 
some j , 1 <j<n, and ym ^ 0. Multiplying the expression by (z — a/-)

,"/ then gives an 
element of A in which z — af never occurs with negative exponent, and in which every 
term, except that with coefficient Z?JW , has z — a} as a factor. This element of A is clearly 
still 0 in A, and so its value at z — a} is also 0. But this gives blm = 0, a contradiction. 
Thus all the coefficients of the expression must be 0. • 
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Using the results of [Kassel, 1984] (see also the special case worked out in [Moody et 
ai, 1990]), it is not hard to determine the dimension of the center of the universal central 
extension L of A 0 c fl- The center of L is linearly isomorphic to the homology group 
H2(L,Q-

THEOREM 2. We have HiiL, C) = C". Hence the center oft has dimension n. 

PROOF. Let {fi | / £ / } , for some index set /, denote the basis for A described in 
the lemma. Let F be the free left A-module on the generators {dfi}, where the dfi are 
formal symbols in bijective correspondence with the/. By setting (dfi) g = g(dfi) for any 
g G A we may regard F as a two-sided A-module. We define a C-linear map d:A —* F 
by d(T,i Cjfi) — E/ Cj(dfi). We let K denote the submodule of F spanned by the elements 
d(gh) — {(dg)h + g(dh)} for any g, h G A. In F/K the following elements are zero: 

d\, d(zk) - kzk~]dz, d((z - ai)-k) + k(z - aiT^diz - ad, 

for k > 1,1 < i < n. Note also that d(z - ai) = dz. Write QA = F/K. The differential 
map d: A —-> Q,A is defined by dg — dg + K. A basis of QA consists of the elements 

zkdz (k>0), (z-ai)-kdz (k>l,\<i<n). 

Write C = Q^/dA. Then since 

d(zk) = kzk~] dz, d((z - ai)-k) = -k(z - aiTk-x dz, 

we see that a basis of C consists of the cosets of the n elements 

ci = (z — ai)~] dz, 1 < / <n. 

The result of [Kassel, 1984] states that the center of L is linearly isomorphic to C. • 

Write g(dh) \—> g(dh) for the canonical quotient map QA —> C. Kassel's paper shows, 
in addition, that L is linearly isomorphic to (A <g>c l̂) © C, with Lie brackets 

[g ®x,h®y]=gh(g)[xy] + (x,y){dg)h, [L, C] = 0, 

where (x,y) denotes the Killing form of c\. 

3. Commutation relations for the universal central extension. To give a more 
explicit form to the commutation relations for L, we need a formula to express the product 
of two basis elements of A as a linear combination of basis elements. We start with a 
combinatorial result. 

LEMMA 3. For any non-negative integer a, and any real numbers b, c, we have the 
identity of binomial coefficients (where the sum is always finite): 

(*r)-s-"C-,)(cr> 
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PROOF. From the formal power series expansion of the equation 

(1 +x)h = (1 + x)c(\ +x)h-c, 

we derive the Vandermonde convolution formula 

(b\ _™(b- c\ (c 

(See [Riordan, 1968], p. 8.) Writing b' = b — c, replacing c by —c, and then using b 
instead of bf, we obtain 

( b - c \ » ( b \(-c\ 

\ a ) U\a-i)\ ' 
Now using the relation 

we obtain the result. 
There are two non-trivial cases for the product of basis elements of A. 

PROPOSITION 4. (a) We have 

(b) For i ^ j , we have 

,(k + l-h 
(z-air^z-aj)-' = £ ( - ! ) ' I ; _ j } (« , - a^-'iz ~ at)

 h 

+ £(-lW* + /, \ l)(ai-ai)
h-k-'(z-air': 

PROOF, (a) We first consider the special case at = 1. We set w — z — 1 and obtain 

where the second summation must be rewritten, since the powers of z— 1 are nonnegative. 
We have 

k 
* W r - , V - ' - * / ' - ' W rlrt-n'-'-xftt'-1' 

/=/ \ ' / /» = () £ .. E ( - D " " fc K = E £(-»' \ * r ^ , ^ ~ " v A * ; r 
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Replacing / by / + / + h in the inner summation, and using the lemma with a — k — I — h, 
b = k, c — h+ 1, gives 

h{ %+/+*A h ) - h( l)\k-i-h-i)\ i )-\k-i-h)-

We now conclude that 

where we have replaced / by / — / in the first summation. 
For the case of arbitrary nonzero q, we set z = cijw and obtain zk{z — aj)~l 

ak~~lwk{w — 1)-/. We conclude that 

(b) We first consider the special case a,- = 0, a,•= 1. We set w = 1 jz and obtain 

z-'(z-ir' = (-i)V>- lr' 

where the first summation must be rewritten. Using 1 /(w — 1 ) = —(\ + \/(z— 1 )) we 
have 

tn-"-^r-
Replacing / by / + h in the inner sum, and using the lemma with a = I — h, b = k + I, 
c = h+ 1, gives 

l-h 

(-1)* £(-!)'' 
£ + / \ / /* + A _ (k + l - h - l\ _ (k + l - h - 1 

We conclude that 

^(z-.r^ÉMr^i-V'Vz-ir^èc-i/*^"*"1^-* 
/ i = \ *-i r ' tr"\ i 
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where the three constant terms have cancelled. 
For the case of general a{, aj, we set z — {a, — ai)w + a\, and obtain 

(z - air
k(z - ajT1 = (aj - a^w^iw - 1 )"' 

= É ( - 1 )l+h lk+l
k~l\ " ] ) («j - *<•>"*"'(w - l >~* 

* ,(k + l-h-\\ , , ,, 

+ g(-»'( ,_ , )<«,-«,•)-<-'*-'. 

Since w = (z — at)/(a-f — at) and w — \ = (z — a^)j{a\ — ai), w e conclude that 

(z - fll)-*(Z - a,)-' = É ( - 1 )'+" (* + ^ " ' j («,- - a(.)"-*-'(z - aj)-h 

In order to write down the explicit commutation relations for L we also need to work 
out (dg)h for any two elements g,h of the basis of A given in the first lemma. In each 
case the result will lie in the n-dimensional vector space C spanned by the central basis 
elements Q = (z — <z/)_1 dz for 1 < / < n. 

PROPOSITION 5. (a) For g = zk, h = (z — aj)"1, we have 

- I (b) For g = (z — cii) , h = (z — aj) , we have 

Jk+l-\ 
(dg)h=(-l)'kr ' ^ ' )(aJ~ai)

k '(Cj-c,). 

PROOF. For (a), it is easy to see that the coefficient of cm in (dg)h h jusi the coefficient 
of (z — amy] in the expansion of kzk~ l (z — aj)"1 as a linear combination of basis elements 
of A. This coefficient can be easily read off from the formula in the previous proposition. 
For (b) we find the coefficient of (z — am)~ ' in the expansion of —k(z — cij)~k~] (z — aj)"1. 
Note that the correctness of the last proposition can be checked by verifying that in each 
case (dg)h and g(dh) give the same answer but with opposite sign. • 

We can now write down the commutation relations for L. We first introduce some 
shorthand notation for non-central elements of L. For any x G (], we set 

x(0,0) = 1 <g> JC, x(k, 0) = zk <g> x, ke Z+, 

x(k, i) = (z- at)~
k (g) JC, 1 < / < n, k G Z+. 
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THEOREM 6. The commutation relations for L are: 

[x(k, /), y(l, /)] = [xy](k + /,/), k, l G Z+, 0 < i < n, 

[x(k,0),y(lj)] = £ L * .Ja^'+'[xy](-/J) 

• E ^ V ) ^ ' - ^ ^ 

and 

[x(k,i),y(l,j)] 
k 

£ 
h=\ 

}(k + l - h - \ 
= £(-!>' , , (fl;-a/)*~*~W](-A,0 

+ £(-1) /+/ ' (* + [ _\ ' W - «/)*-*"W](-A.y) 
/ ? = 1 

+ (-l)^( + ' ) ( ^ - « / ) ^ w ( x , j ) ( c 7 - c z ) , k,leZ+, \ <i,j<n. 

We conclude with some brief remarks on representation theory. To define Verma mod­
ules over the Lie algebras L, we consider the subalgebraLo©L+ where LQ = (C03o)(BC 
(here g0 is the Cartan subalgebra of q) and L+ = zC[z] 0 9. We let v be a symbol and 
consider the vector space Cv. We make this into a module over the Lie algebra Lo 0 L+ 
by defining L+. v = {0} and a. v = A(tf)v for all a E L0, where À G LJ (the dual vector 
space). We then form the induced module 

V(X)=U{t)®mt^Lt)Cv, 

and call this the Verma module with highest weight A. The standard argument from Kac-
Moody theory then shows that each V(X) has a unique maximal proper submodule, and 
hence a unique irreducible quotient M(A). 
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