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Abstract. Perturbation expansions are sought for the flow variables associated with the
diffraction of a plane weak shock wave around convex-angled corners in a polytropic, inviscid,
thermally-nonconducting gas. Lighthill's method of strained co-ordinates [4] produces a
uniformly valid expansion for most of the diffracted front, while the remainder of this front
is treated by a modification of the shock-ray theory of Whitham [6]. The solutions from these
approaches are patched just inside the 'shadow1 region yielding a plausible description of the
entire diffracted shock front.

1. Introduction

For a gas in which viscosity, thermal conductivity and body forces are
neglected, the flow pattern arising from the diffraction of a weak shock
wave by a rigid obstacle is governed by partial differential equations that
are non-linear. In previous literature this non-linearity has, in most cases,
been disregarded and the resulting approximate solutions exhibit a number
of unacceptable features particularly at the diffracted wave fronts. These
include the prediction of singularities in some pressure derivatives and the
incorrect placement of the incident and diffracted fronts. But there is also
an inherent physical inconsistency — the presence of a discontinuous lateral
jump in the pressure at the junction of the incident shock, the diffracted
wave front and the 'shadow' boundary of geometrical acoustics.

Now the non-linear terms cannot be given such a secondary role near
the wave fronts. It is the purpose of this paper to include them using a
perturbation expansion procedure, and such an approach discloses that
this is a singular perturbation problem.

The analysis is simplified without loss of essential features if a rigid
convex-angled wedge and a plane incident weak shock wave are the chosen
geometries. Further, the elimination of reflected waves, triple points and
slip streams is effected if the incident shock is made to propagate towards
the corner with its wave front perpendicular to the wedge face along which
it is travelling.

In Section 2 the governing flow equations are indicated, the existence
of a velocity potential is established and a similarity transformation,
namely that originated by Buseman [1], is deduced. These are combined
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738 N. J. De Mestre [2]

to produce the ultimate formulation of the problem in terms of a 'conical'
potential function.

The 'linearized' approximate results are given in Section 3, and display
all the inconsistencies hitherto mentioned. When higher order approxima-
tions are obtained, it is observed that the perturbation expansion is not
uniformly valid. Lighthill's method of strained coordinates [4] is applied
and provides a non-linear description of the diffracted front for rnost of the
'shadow' region — in fact a shock of higher order strength than the incident
shock is fitted into the flow. However troubles occur if Lighthill's technique
is used when the angular distance from the 'shadow' boundary is of the
order of the square root of the incident shock strength. As this is also the
order of the angular distance from the 'shadow' boundary to the upper limit
of the disturbed part of the shock in the 'illuminated' region, this trouble-
some zone near the 'shadow* boundary is termed the interaction zone for
it is here that the shock front is extensively modified by interactions
between advancing and receding waves.

Professor J. J. Mahony and the late Professor H. C. Levey suggested
to the author that approximate relations for the shock strength and shock
front equation could be obtained in this interaction zone by modifying
Whitham's shock-ray theory [6] so that the correct point of intersection
of the upper limiting characteristic and the incident shock front is predicted
for shocks of all strengths. The modified theory is developed in Section 4
and yields results which suggest that a 'boundary layer' approach could be
attempted near the wave front in this zone. Unfortunately the derived
equation and its boundary conditions are quite complicated, although a
similarity solution is obtained by considering only the equation and the
shock front conditions. It is remarkable that this solution predicts expres-
sions for the shock strength and shock front position that are asymptotically
equivalent to those given by the modified Whitham theory.

An endeavour is made, therefore, in Section 5 to patch these approx-
imate shock front relations from the interaction zone with those obtained
by the method of strained co-ordinates away from the 'shadow' boundary.
An effective patching is accomplished after a slight alteration to the
'strained co-ordinate' results, and this makes possible a new description of
the diffracted shock wave in which the shock strength, the shock front
position and the slope of the shock front are continuous from the wall
to the undisturbed part of the shock.

The author is indebted to the late Professor H. C. Levey for suggesting
the problem and critically discussing the work in a most helpful manner.
This research was carried out at the University of Western Australia while
the author was in receipt of a Commonwealth Public Service Post-Graduate
Scholarship.
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2. Formulation of the problem

Consider two semi-infinite plane walls that meet to form an edge, with
the region outside the corner (formed by the reflex angle) occupied by a
non-viscous, non-thermally conducting, polytropic gas at rest. Suppose
that a weak plane shock wave is generated so that it travels towards the
corner with its plane wave front perpendicular to the wall along which it is
travelling. Until the corner is reached it travels with a constant speed Uo

(determined by its strength), but after it passes the corner the flow becomes
non-trivial because of diffraction.

The flow can obviously be treated as two-dimensional and unsteady,
and Cartesian axes Ox, Oy are chosen with the corner as the origin 0, the
y-axis in the direction of propagation of the plane shock front, and the
x-axis such that its positive direction points into the region corresponding
to the 'shadow' region of geometrical acoustics. Let o> be the angle made
by the wall in this 'shadow' region with the x-axis (Figure I).

Direction of Propagation

o

Figure 1

If u, v, p, S, p respectively denote the x-component of velocity, the
{/-component of velocity, the density, the specific entropy and the pressure
at a general point (x, y) at time t, where t = 0 is the instant when the shock
wave reaches the corner, then since body forces may be neglected the
conservation laws and the equation of state yield

(2.1)

(2.2)

Pt+uPx+vPv+PUx+Pvy = °.
1

ut+uux+vuv-\ px = 0,

(2.3)

(2.4)

and

vt+uvx+vvy-\
P

P=P(P,S),

(2.5) St+uSx+vSv = 0,
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where lettered subscripts denote partial derivatives.
Now, if djdt denotes the 'derivative following the motion',

dp
dl

using (2.4) and (2.5), and as

where a is the sound speed for the gas, then

Pt+upz+vpv = -t [

Hence (2.1) becomes

(2.7) Pt+up.+vp.+pa'lu.+vJ = 0.

Since the gas ahead of the shock wave is at rest, then by (2.1) —(2.4)
and (2.6) the other flow quantities will be constant and are denoted respec-
tively by p0, a0, p0, So. At any time t < 0, the gas behind the shock wave
has velocity components u = 0, v = vt (a constant), therefore the equations
that govern the flow again show that the other dependent variables are
constant. If they are denoted by plt ax, px, Sx then certain relations exist
between these and p0, a0, p0, So by virtue of the conservation laws at the
shock front.

As the incident shock is weak, its shock strength (denoted by e) may be
used as a suitable parameter for a perturbation expansion of the flow
equations. Thus

Px-Po
ypo
2

(Ml-1)
y+1

where y is the adiabatic index of the gas and

and so

4

Now the initial conditions are
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= eH(-y)P-Po
yp

and

= 0,
t

where H denotes the Heaviside unit step-function.
The boundary conditions are

« = 0, (a; = 0, y < 0, all*)

v cos OD—U sin a> = 0, (y = x tan to, x > 0, all t)

and across any shock waves formed the Rankine-Hugoniot shock jump
conditions must hold.

At this stage it is found convenient to scale velocities with respect to
a0. With u = aou, v = aov, a = aoa, Uo = a0U0, p = alp and t = lja0,
the equations (2.2), (2.3), (2.6) and (2.7) together with the conditions
governing the flow remain unchanged with «, v, a, Uo, p, t replaced by
u, v, a, Uo, p, I. The bars on these six variables are now dropped.

It is reasonable to assume that any additional shocks that may occur
from interactions after t = 0 should only have strengths at most of order e.
The flow is therefore homentropic to order e2, and since the initial circulation
is zero everywhere the flow may be treated as irrotational to this order.
Thus to order e2 there exists a velocity potential denoted by <f> such that
« = <f>x a n d v = <f>v.

Since no fundamental length- or time-scale can be produced by a com-
bination of the physical constants defining the problem, the flow may be
treated as 'conical' in the sense of Busemann [1]. Thus if

x
— = r cos Q,
t

V
— = r sin 6,
t

and
4> = tf(r, 6),

the flow equations (2.2), (2.3) and (2.7) with the aid of Bernoulli's equation

(2.8) a2 = l - (y-l) lf-rfr+l£+ —
I 2r2

yield the equation
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/ 1 1 \ 2 V

(2-9) >r ^ ^ *

-2rfTfrr+ ^ —

1 2 1
lTTlr\ 4 I Bel 6~T~ 2 Irielre ^ 7 r / 0

for the 'conical' potential. The wall boundary condition is now

(2.10) fg = 0 (on 6 = co and

while, if r = K(6) is the map of the shock wave in this pseudo-two-dimen-
sional plane, the shock front conditions may be written in a form analogous
to that of Lighthill [5] for a steady three-dimensional potential problem.
For the unsteady problem these conditions are

(2.11) / = 0 (onr = K(6))

and

(2.12) / , = - ^ {aZiK-
7 (on r = K{6)),

where a prime denotes differentiation with respect to d. Therefore the non-
linear problem is to solve (2.9) under the boundary conditions (2.10) —(2.12).

3. The strained co-ordinate approach

The non-linear problem for the potential will be initially attacked
through the tentative assumption of the existence of a perturbation expan-
sion in the form

(3.1) f(r, d; s) = e/«»(r, 0)+**/<«(r, O)+tPfm(r, 0)+ • • •.

As it is intended near r = 1 to try to fit a shock r = K(0) into the
description of the flow, let

(3.2) K{0) = l+e/c<1>(e) + e2
K<2>(0)H .

If (3.1) and (3.2) are substituted into (2.9) —(2.12), and terms with
coefficients e2 or higher are neglected, the equation remaining is the first
approximate or linear equation, namely
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(3-3) (i_H)/£>+!/W+i/8 = 0,

with the boundary conditions

(3.4) /ID = 0 (d = co and ^j,

while on r = 1 (co ^ 0 < TT/2)

(3.5) /<*> = 0

and

(3.6) /a. = _ _ l _ [ ( y _ 1 ) ( / ( i , _ r / a ) ) + 2 ( l t ( i » _ / ( i ) ) ] .

The boundary condition on r = 1 (TT/2 < 0 5S 3TI/2) can be deduced to be

/»> = sin 0 - 1

and this completes the specifications on the closed boundary.
The solution for /(1) can be obtained via the method of Keller and

Blank [2]. The problem reduces to finding a function Pa)(a, 6), where

a =

which is harmonic inside the sector bounded by the arc a = 1 and the
radial lines d = a> and d = 3TT/2, and satisfies the boundary conditions

= 0

put = l

/ M
and P i ' = 0 |0 < cr < 1, 0 = co and —I •

e y — — 2j
A conformal transformation of this sector into a semi-circle and an

application of the Riemann-Schwarz principle of reflection enables the
unique solution for P(1) to be obtained directly by the Poisson Integral
Formula. Then for a> ^ 0 < n/2,

while for nj2 < 6 ̂  3TT/2,
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»P">(.. 6) _ tartan {({=£) cot ( i ( f -.))}

where principal values of the inverse tangents are to be taken and

Now P(1)(r, 0) obtained from Keller and Blank's approach corresponds to
the first order approximation to the 'reduced' pressure P(r, 0), where

^ = P(r. 8)

, d)+e2P™(r, 0)-\ ,
hence

1+yP = t
Po

by Bernoulli's equation. It should be noted that the value of the 'reduced'
pressure at any point on the shock front predicts the strength of the shock
at that point.

If coefficients of e on either side of this last equation are equated, it is
seen that

and so
rF'If

r P(r> 6) J
 n n / 3 j t

r(sin e-l)+rj^ -^-^ dr, -<0<-.
This solution predicts a lateral discontinuity in /<1( at r — 1, 0 = n/2
as well as an algebraic singularity in /£' on c = 1, « ^ 8 ^ 3?r/2 (except
d = */2).

For the purpose of trying to fit a shock near r = 1 it will only be
necessary to obtain local expansions of /(1) and its partial derivatives of
first and second order near r = 1. Thus for a> ^ 6 < nj2, as r -> 1

(3.7) /«>(,, 0) = _ — (?(0)( l_r) t+O(l- r )«
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where

<M> ew-«* £ (f-•)}-«*{-£(!+«-*.)}
provided that

for only then can the inverse tangent expressions in P(1) be expanded
uniformly in powers of (1—r). The local solution (3.7) obviously satisfies
(3.5) and substitution of it into (3.6) yields

KU> == 0,

since /J1' vanishes on r = 1.
The consideration of terms in e2 in (2.9) leads to the second approximate

equation

(3-9) = (y-ijpm-r/O)) (/«+ I /«+ I /fl

with boundary conditions

/<2> = 0

/«>(1. 6) = 0

and the second-order shock wave condition. The solution for /(2) is

which is no more singular than /(1), although /£2) will contribute to the
pressure.

When the third approximate differential equation is considered the
solution /(3) is seen to be O[(l—r)i], and this is more singular than /(1)

since its first derivative possesses a square root singularity at r = 1, which
leads to infinite speeds as r -> 1. It is easily shown that higher approximate
terms in the perturbation expansion (3.1) possess progressively worse
singularities at r = 1, so that within a certain neighbourhood of r = 1
later terms in (3.1) are just as important as the earlier ones. This means
that the perturbation expansion is not uniformly valid near r = 1.

The non-uniformities are removed by applying the method of strained
co-ordinates [4], which yields
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(3-10)

where

When these are used in the second shock condition (2.12) it is seen that

and so the equation of the shock front is

(3.H) r = l +

which is equivalent to

(3.12) R = l-£2 i 7 ^ X {Q(6)Y+O(e3).

Thus the shock lies inside R = 1 (which shows by (3.10) that no awkward
pressure derivative singularities occur in the flow behind this diffracted
front) and outside r = 1 (which confirms that the shock speed is greater
than the sonic speed in the fluid at rest). The strength of the fitted shock is

(3.13) £2

and the above results are seen to be similar to those obtained by Lighthill
[5] and Levey [3]. However neither of these authors pursued the strained
co-ordinate approach to see whether or not solutions from the higher
approximate equations would contribute appreciably to the expansion for
f(r, 0). The position is resolved simply by making each of the higher order
straining coefficients zero identically, so that

The nth approximate solution /<"> is then O[(l — 22)<5-»>/2] (n = 4, 5, 6 • • •).
But by (3.12), for all points in the neighbourhood behind the shock front

en(l_JR)(5-n)/2 = 0[e(l —22)*],

so in the neighbourhood of r = 1 the leading two terms in the expansion
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for f(r, 8) represent a fairly good approximation to the required velocity
potential.

For the 'shadow' region, the above results are valid near the shock
front provided that

G (*-))•eQ(6) < tan

which indicates that different solutions will have to be sought in this region
as soon as JT/2— 9 = O(ei). But in the 'illuminated' region it is easily shown
that the junction of the undisturbed part of the shock front with the
diffracted part is at

71

therefore the region rc/2— 0 = O(ei) is termed the interaction zone for it
appears that this is the region where secondary effects — such as the
interaction of advancing and receding waves — play a major role in the
determination of relatively rapid changes along the shock. It should be
noted that the shock strength is 0(s) at one end of this zone and only
O(s2) at the other end.

4. The interaction zone solutions

An application of the method of strained co-ordinates to the interaction
zone has so far proved to be unsuccessful, therefore some other approach
is needed.

A theory which could be applied — among other things — to the
diffraction of a shock wave around a finite-angled corner was developed by
Whitham [6]. Although the results predicted for strong shocks were in
reasonable agreement with those obtained by alternate methods, Whitham
recognized the unsuitability of his theory for weak shock diffraction as it
predicted that the junction of the undisturbed part of the shock front with
the diffracted part is at

0 = — +ei2-%+l)i+»(e*),

that is, the lateral speed of disturbance propagation is only half of what it
should be.

In Whitham's theory orthogonal curvilinear co-ordinates a and /? are
introduced such that the (x, y)-plane is mapped by a network of curves
a = constant and /? = constant. The curves a = constant are chosen to
represent the successive positions of the advancing shock, while the /S =
constant curves represent the orthogonal trajectories which Whitham calls
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rays. At any general time t the position of the shock is given by a = aot
and so the distance along the trajectory through (a, P) between the shock
positions given by a and a-f-da. is M (a, /3)<5a, where M is the Mach number
of the shock at (a, P). The corresponding distance along the shock front
through this point between the trajectories p and /9+<5/S is written as
A (a, /?)<5/3. From this the differential equation

8 /I 8A\ 8/1 8M\ _

da \M da / 8~p\A dp ) ~

for the problem is obtained, and if A = A (M) where dAjdM < 0 this is a
hyperbolic type and is solvable by the method of characteristics. The crux
of Whitham's approach is the choice of the relation between A and M.
By approximating the orthogonal trajectories by the instantaneous stream-
lines of the flow, Whitham made use of the results for shocks travelling
down a slowly varying channel, but the relation between A and M given
by this approach predicted an incorrect lateral speed of disturbance propaga-
tion for weak shocks.

As a consequence of the suggestion by Levey and Mahony no attempt
is made to identify the stream-lines with the orthogonal trajectories, and
instead a relation is proposed between A and M based on a 'first principles'
approach to the spread of a disturbance generated at a point by the passage
of a plane shock. Thus if

(v—1 2 \i
I—.M2H

_ _ = y+ l y+ l /
M M2

where
_ I / MdM

A
the correct rate of lateral spread of the disturbances is predicted for shocks
of all strengths (including in particular weak shocks). The Whitham shock-
ray theory with this new A—M relation will from here on be referred to as
the modified Whitham theory.

When the modified Whitham theory is applied to the diffraction of
a weak shock around the convex-angle corner of this problem the position
of the shock front is given by

while the shock strength is

(4.2) P = _ L _ (* -8-ei (r±lW+O{*).
V ' 2(y+l) 12 \ 2 / / T V '
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The orders of magnitude involved in (4.1) and (4.2) led the author to 
consider the possibility of obtaining a 'boundary layer' type solution in 
this interaction zone as this should give a more accurate description of the 
flow. If the dependent and independent variables of the potential problem 
are stretched such that 

r—1 = e{y+l)s, 

and 

f{r, 0) = e

2 ( y + l ) F ( s , rj) 

= e»(y+l ) [F<»(s , q)+f iF«»>(s, V ) + • • • ] , 

then terms of order e in the differential equation (2.9) yield 

(4.3) (FV-2s)FV + FV + Fn = 0, 

while terms of the same order in the shock front boundary conditions give 

(4.4) i?u> = 0 

and 

(4.5) = 4W-2\^£-} 

on the shock front s = W(t]). 
Additional conditions will have to be satisfied on the remaining 

boundaries of this small region, and the problem is relatively intractable 
in this form. If these other conditions are neglected for the present, the 
problem given by (4.3) — (4.5) can be solved in terms of a similarity variable 

s 

where rj0 is a constant, provided that 

and 

where /i0 is also a constant. Surprisingly, when ^ 0 and TJ0 are determined, 
the results for the shock position and shock strength are those given by 
(4.1) and (4.2). However the solutions away from the shock front are 
different from the 'modified Whitham' solutions. 

From (4.1) and (4.2) it is seen that r = 1+0 (e2) and P = 0(e 2 ) when 
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which indicates that this theory alone will not suffice to give reasons
diffraction results for corners with a large angle. Although the modii
Whitham theory gives a fairly correct analysis of the flow near the junct
of the undisturbed and diffracted parts of the shock front, it predict;
far too rapid attenuation of the shock strength as 6 decreases. Since
exact derivations are available for the whole interaction zone, the suppc
given to the 'modified Whitham' solutions by the results of the 'bounda
layer' similarity approach lends plausibility to the use of the 'modifi<
Whitham' results in at least the upper part of the interaction zone.

With this in mind an attempt is now made to 'patch' the shock fror
results obtained from the application of the method of strained coordinate
away from the 'shadow' boundary with the approximate shock front result
from the modified Whitham theory.

5. Patching the shock front results

Provided that co is not jtj2+O(si) it is deduced from (3.8) that

2
Q(6)

as 6 -H>- n/2. Hence the 'strained co-ordinate' results give r— l-f-O(e) as
the interaction region is entered (although they are not applicable inside
this region), and this is the same order as that given by the modified
Whitham theory. Physically there seems to be no reason for the presence of
any form of discontinuity in the shock front equation inside the 'shadow'
region, therefore the assumption is now made that (3.11) is the approximate
shock front equation even as the region n/2—d = 0(ei) is penetrated.
Of course this assumption cannot be correct for jtj2—d = o(ei) for it
predicts that r -> oo as 6 -*• n/2, but it should not lead to errors that are
too large if a patching can be arranged between the 'strained co-ordinate'
results and the 'modified Whitham' results at a value of Q < n\2.

However in the region 9 — n/2-\-0(ei), as 0 approaches n\2 from below,
the shock front position co-ordinate r as given by (3.11) increases too
quickly to enable a successful patching to take place with the corresponding
result from the modified Whitham theory. Such a large value of drjdd near
8 = n\2 must arise from the discontinuity in fl1} which occurs on the sound
circle r = 1.

If modifications are made such that (3.11) is significantly altered near
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d = TT/2 but almost left unchanged in value for the remainder of the
'shadow' region, it is conceivable that a patching might now be attained.

The author tried various modifications and the most successful was
that in which the discontinuity in /J1' is shifted along the sound circle
into the 'illuminated' region. This new position of the singularity has no
physical significance since the discontinuity itself is physically inconsistent.
The principal asset of the modification is that the 'strained co-ordinate'
results for the 'shadow' region have a smaller value of dr/dd than before.
This is accomplished by requiring that the boundary conditions on a = 1
are now

= 0

pa, = ! '»

where x is 0(1) and has to be determined. With this modification the
first order approximate potential solution near r = 1 in the range
co ^ 6 < n/2+xei is

(5.1) /("(r, 0) = -

where

(5.2) Q*(0) = cot {A^. + T eJ-e)} ~ c o t { - J(J

If the development of Section 3 is now followed using (5.1) instead
of (3.7), the shock front results (3.11) and (3.13) are replaced by

(5.3) r = l + ^ ^ - ^ i {Q*(d)]*+O(e»)

and

(5.4) P =

Away from the neighbourhood of the shadow boundary the difference
between each of these two modified results and the corresponding result of
Section 3 is only of the same order as the errors already indicated.

The discussion and assumption concerning (3.11) at the beginning of
this section now applies to (5.3), so that (5.2) yields

even as the region nj2—B = O(si) is penetrated. Again from (5.3) it is
seen that
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and

(5.7)

when JT/2— 0 = O(el).
However the shock strength is not given in this region by (5.4) for the

second shock wave condition produces an extra term in the dominant part
of /, as 6 -*• TI/2. Thus as the interaction region is entered from below the
modified shock strength relation is

(5.8)

9(y+l) 3 [7i .

It is now proposed to patch the 'modified strained co-ordinate' results
(5.5) — (5.8) with the corresponding ones from the modified Whitham theory,
which are

(5.9) r

and

Because of the lower limit of the Whitham theory any angle at which
patching takes place is governed by the condition

Elementary calculations then show that corresponding r and P expressions
agree at the patching angle dlP) given by

0.120.12 l
2 \ 2
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provided that

T =

0.76

As well the two expressions for dr/dd are equal at the patching angle, but
the curvatures do not patch at these values of 8iP) and r since (5.7) gives

Thus it has been shown that it is possible to approximately join up
the 'modified Whitham' results with the 'modified strained co-ordinate'
results for all convex corners whose angles lie in the range

^

It may be plausible then that a reasonable description of the shock front
is given by

n

~~ 2

where

e*(0) = cot(Ag+ e

which is continuous up to second derivatives at the patching point, with
the values of the 'reduced' pressure on this curve being taken as the
approximate shock strength. It is recognized that this description can still
only be qualitative as the 'modified Whitham' results are more and more
unreliable as 6 decreases away from its value at the junction of the straight
and diffracted parts of the shock. On the other hand the relative success of
the patching procedure means that a treatment has now been developed
which gives a continuous shock strength along a front that is certainly
closer to the true shock front than those predicted by 'linearized' theory.
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