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The systematic development of coarse-grained (CG) models via the Mori–Zwanzig projector oper-
ator formalism requires the explicit description of a deterministic drift term, a dissipative memory
term and a random fluctuation term. The memory and fluctuating terms are related by the fluctuation–
dissipation relation and are more challenging to sample and describe than the drift term due to
complex dependence on space and time. This work proposes a rational basis for a Markovian data-
driven approach to approximating the memory and fluctuating terms. We assumed a functional form
for the memory kernel and under broad regularity hypothesis, we derived bounds for the error com-
mitted in replacing the original term with an approximation obtained by its asymptotic expansions.
These error bounds depend on the characteristic time scale of the atomistic model, representing the
decay of the autocorrelation function of the fluctuating force; and the characteristic time scale of the
CG model, representing the decay of the autocorrelation function of the momenta of the beads. Using
appropriate parameters to describe these time scales, we provide a quantitative meaning to the obser-
vation that the Markovian approximation improves as they separate. We then proceed to show how
the leading-order term of such expansion can be identified with the Markovian approximation usu-
ally considered in the CG theory. We also show that, while the error of the approximation involving
time can be controlled, the Markovian term usually considered in CG simulations may exhibit signif-
icant spatial variation. It follows that assuming a spatially constant memory term is an uncontrolled
approximation which should be carefully checked. We complement our analysis with an application
to the estimation of the memory in the CG model of a one-dimensional Lennard–Jones chain with
different masses and interactions, showing that even for such a simple case, a non-negligible spatial
dependence for the memory term exists.

Key words: Molecular dynamics, Coarse-grained models, Mori-Zwanzig formalism, Memory
effects, Markovian approximation
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1 Introduction

The problem of predicting the evolution of a non-linear dynamical system is ubiquitous in sci-
ence and engineering. In many such applications, the fact that thousands or millions degrees
of freedom (DoF) must be solved for at once makes direct numerical solution infeasible, and
so many methods are constrained to apply to smaller (and hence less scientifically interesting)
problems. One of the most relevant example of this kind is represented by Molecular Dynamics
(MD) simulation [40]. In an MD simulation, a set of atoms which represents a particular molec-
ular system is considered, and their positions and momenta are calculated, assuming that they
evolve according to the Newton’s equations of motion [46] with prescribed interaction potentials
and an appropriate thermostat.

Fully atomistic MD simulations regularly performed nowadays reach the order of a few mil-
lion atoms (≈106) [55], a number which remains well below the size of a macroscopic system
with Avogadro’s number of atoms (≈1023). Although simulations with around 104 atoms are
usually large enough to extract properties of interest in systems like crystals and small macro-
molecules (such as polymers and peptides), in order to understand the dynamics of proteins, one
must consider the environment in which they evolve. From the point of view of simulation, the
problem for this kind of systems is not only the number of DoF required to represent the system,
but also the relaxation times of these biomacromolecules. These can be so large that the cost of
performing any atomistic simulation becomes quickly prohibitive, since billions of time steps
are still required to extract meaningful information. This dual space–time problem continues to
render accurate simulations of this type out of our reach.

For these reasons, in recent years, a series of techniques to derive simpler coarse-grained (CG)
model have been developed. The main idea behind CG models is to reduce the number of vari-
ables in the system while maintaining accuracy. In place of the detailed evolution of the atoms,
we consider a smaller number of macroscopic variables, functions of the underlying atomistic
structure [51, 44, 19, 17]. Although theoretical results concerning static equilibrium statistics for
coarse-grained systems are relatively well-developed [41], theoretical work on dynamical CG
models is still evolving, particularly focusing on applications of the Mori–Zwanzig (MZ) projec-
tion operator formalism. In [27], a systematic derivation of CG models based on MZ techniques
was proposed. The authors of the present work contributed by putting various aspects of MZ-CG
models on a more rigorous footing [18]. The idea behind the application of the MZ framework
to coarse-graining is to follow the dynamics of the CG DoF by explicitly integrating over the
non-coarse-grained DoF. The resulting equations represent a formidable mathematical problem,
and several works were already published reporting the analysis of different aspect of the MZ
equations [21, 7, 10]. The importance of the MZ equations is not limited to CG problems alone,
and similar approaches have been proposed to describe many different systems, ranging from
the relativistic heavy-ion collision, where Fick’s law breaks down [36, 37], to the dynamics of
supercooled liquids, glasses and other amorphous solids [12, 13, 14, 15, 22, 24, 50, 53, 54] and
the study of heat conduction [11].

A significant challenge with handling the MZ equations arises due to the need to approximate
the memory kernel M, which varies in both time and space. Different methods were proposed
to calculate this term as the use of Krylov-subspace method [6] or data-driven approximations
[38]. A route often followed in the literature is to assume a functional form for either the whole
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memory kernel or just the fluctuating force, and to ensure that both are coupled through the
Fluctuation–Dissipation Theorem. In Berkowitz et al. [2], the starting point is to assume that the
fluctuating force is a periodic function which can thus be developed in Fourier series. Taking
the other perspective, functional forms for the memory kernel that have been considered include
Gauss-exponential process [2, 3, 52], the Gauss-Gauss process [2], or combination of exponen-
tially decaying kernels [1, 2]. In all these cited examples, however, the choice of ansatz implies
a strong hypothesis: the memory kernel does not depend on the positions (i.e., it is spatial homo-
geneous). However, as we will show in the next sections, for most CG systems this hypothesis
does not seem justified. Even in a one-dimensional chain interacting with a simple Lennard–
Jones potential, which is the example we present here, we observe that the memory kernel has
a strong spatial dependence. The spatial dependence for this term was also observed in [11].
Although it is not clear yet how to quantify the importance of this spatial dependence, in partic-
ular for more complicated systems in higher dimensions, the spatial homogeneity of the friction
should not be taken for granted without verification.

1.1 The Mori–Zwanzig equations

The MZ-CG equations are a set of integro-differential equations which take the form of
Generalised Langevin Equations under appropriate assumptions. We assume that, at the micro-
scopic level, the considered system is well described by classical mechanics and is composed
by NFG particles. To derive a reduced description of this system, we consider a smaller set of
function of phase variables ζ and their time evolution

dζ (r(t), p(t))

dt
=L ζ (r(t), p(t)) , ζ (r(0), p(0)) ≡ ζ 0 . (1.1)

Here, the operator L≡ iL := {. . . , H} is the Liouville operator where {. . . , H} is Poisson bracket
with the Hamiltonian H, and i = √−1.

The Mori–Zwanzig formalism allows us to replace equation (1.1) for the functions of the phase
variables ζ (r(t), p(t)) by an equation of motion which depends on the microstate (r(t), p(t)) only
through the CG DoF themselves, and where, as shown by Di Pasquale et al. [18], the complexity
of the computation of equation (1.1) is shifted to the computation of the so-called orthogonal
dynamics.

Generally speaking, a CG model can be obtained by grouping DoF of the fine-grained (FG)
system into NCG beads. In the case of the Mori–Zwanzig projection this is done by projecting the
equations for the functions of the phase variables ζ (r(t), p(t)) onto the space of functions of the
CG variables, which may be regarded as a subspace of the FG observable space. Naturally,
the CG variables must be continuous and differentiable in the FG variables. The equations
satisfied by these beads can be written as (for full derivations see [18, 27])

dZR

dt
= M−1ZP ;

dZP

dt
= −∂V eff

∂ZR
+
∫ t

0
e(t−s) L PL es QL QL Z ds +FZP(t, ·) ;

(1.2)

where:

• Z = (ZR, ZP)=
(
R1, . . . , RCG

N , P1, . . . , PCG
N

)
are the CG DoF;
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• M = diag(M1, . . . , MNCG ) is a diagonal matrix of the masses of the beads;

• V eff is the effective potential (for an explicit definition we refer to [18]);

• P and Q are the MZ projection operator and its orthogonal counterpart (i.e., Q= I −P
where I is the identity operator), respectively.

The projection operator P applied to a generic function F(z) acting on the space phase X =
R

6NFG
is defined by

PaF(z) = 1

�(a)

∫
X

F(z′) δ
(
ζ (z′) − a

)
ρeq(z′) dz′ . (1.3)

Here, z = (r(t), p(t)) are the FG DoF, ζ (z) is a smaller set of phase function, and we have intro-
duced a set of fixed values a such that for a given set z we have ζ = a. The normalisation factor
(also called the structure function) represents the total volume of the surface S(ζ ) in phase space,
which is defined by ζ (z) = a:

�(a) =
∫

X
δ
(
ζ (z′) − a

)
P(dz′) , (1.4)

where P(dz′) = ρeq(z′) dz′ is the Gibbs measure on the FG phase space X . Loosely speaking, the
projection operator Pa ‘averages’ the function F(z) over the surface S(a) in case the observables
ζ are equal to a for a given set z. The fact that P is a projection operator can be easily verified
by showing that it satisfies the necessary and sufficient conditions for a projection operator, i.e.,
it is Hermitian and P2 =P [57]. Since the observed value of the phase function F(z) is the
expected value E[F] with respect to the Gibbs measure, we can interpret the phase function as a
random variable. Therefore, the projection operator P has a nice interpretation as a conditional
expectation over the CG DoF:

PaF =E[F|ζ (z) = a] . (1.5)

Finally, the term FZP (t, ·) is often called fluctuating force and can be written (for the K-th
bead) as

FK(t, ·) = et QL QL PK , K = 1, . . . , NCG. (1.6)

Here, we used a dot in the second argument of FK to stress that this term is a function of all of
the variables in the atomistic system. Computing FK requires the calculation of the evolution
of the orthogonal variables in the null space of P . In general, it is given by solving an auxiliary
set of equations called orthogonal dynamics equations [21], which (with an appropriate CG
mapping) can be determined by means of constrained dynamics (see [18]). Its presence in the MZ
equations equation (1.2) is usually considered as a random noise for the CG DoF [8]. Making this
assumption avoids the problem of its direct calculation, and so allows us to reduce the complexity
of the problem. However, ensuring that statistics of FK are captured accurately in a stochastic
model is important to preserve the accuracy of the CG system. This represents the main problem
we address in this work.

The integral term in equation (1.2) is known as the ‘memory’, since it requires information
coming from the elapsed time. In a sense, in order to know the next position occupied by the
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system, we need to ‘remember’ what happened since the initial time t = 0. The memory term can
be rewritten (for the K-th bead) as [18, 27]

∫ t

0

[
e(t−s)L PL es QL QL Z

]
K

ds =
NCG∑
J=1

∫ t

0
MKJ (Z (t − s), s)

PJ (t − s)

MJ
ds

+β−1
NCG∑
J=1

∫ t

0

∂MKJ (Z (t − s), s)

∂PJ
ds, (1.7)

where we introduced the KJ -th components of the memory kernel M (Z (t − s), s):

MKJ (Z (t − s), s)= β P [(QL PK)⊗
(
es QL QL PJ

)]
= β P [FK(0, ·) ⊗F J (s, ·)]
≡ β E [FK(0, ·) ⊗F J (s, ·)| Z (t − s)] . (1.8)

Here, ⊗ represents a tensor product and β−1 = kBT , with kB the Boltzmann constant, and
FK(0, ·) =QL PK (see equation (1.6)). Di Pasquale et al. have shown that (with an appropriate
CG mapping) the fluctuating force FK is given by the difference of the total force acting on
atoms within a bead and the mean force given by the effective potential that describe the bead
interaction (see [18]). Finally, in the last passage, we used the Zwanzig projection P , and the
fact that it is equivalent to take the conditional expectation given the CG (set of) variables Z ,
interpreted as random variables, with respect to the equilibrium distribution [8, 18].

For a system in thermal equilibrium, the memory kernel is related to the autocovariance of the
fluctuating forces (ACF) through the Fluctuation–dissipation theorem [20, 25, 30]:

β E[F (0) ⊗F (t)] =M(t) , (1.9)

where, as above, expectations are taken with respect to an appropriate ensemble. This description
is usually called ‘colored noise’ fluctuation, as opposed to the ‘white noise’ represented by the
Markovian behaviour (see Section 2.1) [25].

Different approaches have been proposed in the literature to deal with the memory term. In
[31], an analysis of the memory term obtained from the Mori projector operator [43, 32], a spe-
cial case of the more general MZ projector, was presented. A more detailed analysis is reported
in [56] where some boundary analysis is proposed and the hierarchical approximation, first intro-
duced by [47]), is further developed. Other approaches proposed in the literature to calculate the
memory term, include the use of the Galerkin decomposition [16], or the assumption that the
evolution of the CG DoF can be modelled using an autoregressive stochastic process [35].

The two most used approximations for the calculation of the memory term are related to the
behaviour of the integrand of the memory integral with respect to time. If the integrand quickly
decays to zero, it can be assumed that all the information is concentrated in a very short time (i.e.
we don’t need the whole history of the system from t = 0). The memory term becomes local in
time and we talk about the Markovian Approximation [7, 27]. If, on the other hand, the decay
of the integrand of the memory term is very slow compared to the characteristic time of the
dynamics of the system, then we can assume that the integrand is constant in the interval [0,t]
and we obtain the so-called t-model [9, 7, 23, 45].
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In this work, we will focus on the short-time approximation by describing a model which can
be interpreted as giving a Markovian reduction of the MZ equation. This paper is structured as
follows: we will start with the discussion of the memory term from the point of view of the
Markovian Approximation as usually is considered in the literature, and then we present our new
description for it. We will show how it can be effectively approximated and we will give a precise
definition of all the hypothesis used in the derivation. We will then apply the framework derived
in a simple example composed by a one-dimensional linear chain where atoms interact with a
non-linear potential. We will show how the relevant quantities described here can be explicitly
calculated and we draw some conclusions.

2 The behaviour of the MZ CG system

2.1 Memory approximation

The physical theory of Brownian motion assumes that thermal fluctuations which occur due to
the collision of the small, light particles with the larger Brownian particle happen at a time scale
which is much shorter than the one describing the evolution of the larger particle. The con-
sequence of this assumption is that the force acting on the Brownian particle at each time is
completely uncorrelated with the history of its evolution. Mathematically speaking, this corre-
sponds to the idea that the random force is a stochastic process which obeys the Markov property.
We note that in the theory of Brownian motion, there is a further important assumption, which is
that the behaviour of the heat bath is spatially uniform. This assumption is clearly justified for a
particle within a fluid which is at rest macroscopically. However, the spatial uniformity may not
be generally valid, since many coarse-grained DoF are tightly bound within a molecule or bulk
solid, and so are in close contact with their particular environment, rather than a homogeneous
random one.

Moreover, for coarse-graining of molecular systems, it is common to make an analogous time-
scale separation assumption about the action of the neglected DoF on the coarse-grained DoF,
i.e. that the discarded DoF fluctuate at a faster time-scale and so act on the CG DoF randomly
with no correlations in time.

Setting aside the justification for the use of time-scale separation and spatial homogeneity,
under these two assumptions the fluctuating forces F are usually modelled as a white noise
process, with an ACF which is assumed to take the form:

β E[FK(0) ⊗F J (t)] = 2�KJδ (t) where �KJ = β

∫ ∞

0
E[FK(0) ⊗F J (ξ )]dξ , (2.1)

with F being the fluctuating forces which act in the system at full resolution. Since the fluctuating
forces are assumed to be stationary as a random process (in fact they are defined as averages
over equilibrium ensembles, see [4]), the terms �KJ do not depend on the particular time origin
[39, 33], i.e. there is no time dependence in the definition of �KJ given in (2.1). One of the
problems with this description is the so-called plateau problem, first noticed by Kirkwood and
Buff [34]. The plateau problem stems from the fact that the integral definition of �KJ is zero if
the upper boundary is +∞, because of the decay of the negative part of the correlation function
at infinity [26]. For this reason, one approach has been to cut the domain of integration for the
last integral in equation (2.1) at a certain time τ which should be large enough to include the
relevant information in the ACF, but small compared to the time scale of the evolution of the CG
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DoF. By cutting the integral at a finite time, we are assuming that it remains constant for t> τ
(i.e. the integral reaches a plateau). The problem comes from the fact that the intermediate time
τ is not well defined within the theory and there is no method to estimate it a priori.

In the following, we will show that our derivation overcomes this issue by proposing an
asymptotic methodology which allows us to use data to fit a functional form for the memory,
and thereby derive an explicit form for the Markovian approximation directly from data.

2.2 Memory ansatz

Our analysis starts in a similar fashion by making an ansatz on the form of the memory kernel
M(Z , t), albeit a less restrictive one. We assume that the memory kernel for the generic pair of
beads K and J takes the general form

MKJ (Z , t) = exp

[
−
(

t

τKJ

)α]
fKJ (Z , t), (2.2)

where τKJ is a characteristic time, α is a constant, and fKJ (Z , t) is a sufficiently smooth function
on the interval 0 ≤ t<∞. In general, each entry of the memory kernel is specific to each pair of
beads. However, in the following, in order to simplify the notation, we will write

M(Z , t) = e−( t
τ )
α

f (Z , t), (2.3)

i.e. we will consider the case where all the entries in the memory kernel are equal. The general
case can then be easily obtained by repeating the same arguments for all the possible KJ pairs. It
is interesting to note that a similar ansatz was considered when using a MZ-derived Generalised
Langevin Equation to study the dynamical behaviour of amorphous solids [12, 13, 14, 15, 54].

While equation (2.3) represents a somewhat strict ansatz for the form of the memory ker-
nel, it is consistent with similar quantities calculated in other systems [42], and moreover, our
approach includes a possibly non-uniform dependence on the spatial position, in contrast to
assumptions made in other applications of CG theory discussed above. Moreover, given the
connection between the memory kernel and the ACF of equation (1.9), both τ and α can be
extracted from the ACF, for example by fitting to numerical data. In particular, τ represents the
time decay of the ACF and we will show in Section 3.3 its explicit calculation in a test system.
We will also make the natural physical assumptions that M(Z , t) is maximal when t = 0, and
that the parameters satisfy τ > 0 and α > 0.

Under the assumptions that α > 0 and τ > 0, the exponential factor makes it possible to expand
the memory kernel as an asymptotic series from which the behaviour close to the origin can be
explicitly obtained. Here, we argue that this asymptotic series approach leads naturally to a form
of the Markovian approximation commonly considered in CG theory. We note that the case
where α = 0 corresponds to algebraic decay of the memory kernel, and will require a different
approach which we leave for future work.

In the following, we consider only the first integral of the memory term (i.e., equation
(1.7)) since M does not depend on the momenta for an appropriate CG mapping, see [18].
Furthermore, we make the memory term dimensionless by multiplying it by suitable constants:

MLc

τ 2
P

∫ t̃

0

˜M(
Z̃ (t̃ − s̃), s̃

) · P̃(t̃ − s̃) ds̃ (2.4)
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=
∫ t̃

0
e
−
(
τP
τ

)α
s̃α

f̃
(
Z̃ (t̃ − s̃), s̃

)̃
P(t̃ − s̃) ds̃

where:

• M is the mean effective mass of the coarse-grained DoF;

• Lc is a characteristic length whose specific definition is not important for what is discussed
here (and can be taken as the average bead size, for instance);

• τP is a characteristic time, which can be interpreted as the decay of the autocovariance
function of the momenta (ACM) of the beads. This quantity can be interpreted also as the
characteristic time scale of the macroscopic system.

We indicate with ·̃ the dimensionless quantities and we note that we can always rewrite the
different terms in equation (2.4) as function of the dimensionless time t̃ = t/τP, by writing Z (t −
s) = Z (τP(t̃ − s̃)) = Z̃ (t̃ − s̃), where we absorb τP in the definition of the function. We will also
simplify the notation in equation (2.4) by defining the dimensionless quantity λ= (

τP
τ

)α
. We

want to highlight here the first result of the formulation presented here. The concept of the time-
scale separation can be precisely and quantitatively defined by measuring it with the parameter
λ. From the definition of λ, we can distinguish two cases:

(i) λ
 1, then τP 
 τ , that is to say that the macroscopic time scale is much larger than the
microscopic one. The Markovian approximation is expected to hold.

(ii) λ≈ 1, then τP ≈ τ and there is no separation between the macroscopic and the micro-
scopic time-scale. The Markovian approximation is expected to fail and the full memory
term must be considered.

In the next section, we will present a result which will make more clear the qualitative expla-
nation given here in terms of validity or not of the Markovian approximation. Then, the problem
will become the explicit calculation of the two quantities, τ and τP, which will be presented in
the following sections. In order to simplify our notation, we will drop tildes from now on, and
assume all quantities are dimensionless.

2.3 Rigorous approximation result

Under the assumption that the ansatz equation (2.3) holds, we now derive an error estimate for
an expansion of the memory integral which we can use to define proxy dynamics, providing a
theoretical guarantee of accuracy in the case where the time-scale separation is significant.

Proposition 1. Suppose that the memory kernel M takes the form

M(Z (t − s), s) = e−λsα f (Z (t − s), s),

where λ> 0, α > 0, and the function

g(t, s) = f (Z (t − s), s)P(t − s)
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is of class Ck,γ in both t and s, for some non-negative integer k and Hölder exponent γ ∈ (0, 1].
Then the absolute error committed by replacing the memory∫ t

0
M(Z (t − s), s)P(t − s)ds =

∫ t

0
e−λsαg(t, s)ds

by a k-term approximation is bounded by∣∣∣∣∣
∫ t

0
e−λsαg(t, s)ds −

k∑
n=0

Gn(t)

n!


(

n+1
α

)
αλ

n+1
α

∣∣∣∣∣≤
k∑

n=0

Cn

n!
∫ ∞

t
e−λsα snds + Ck+1



(

k+γ+1
α

)
k!αλ k+γ+1

α

,

where

Gi(t) = ∂ i

∂si
g(t, 0) = ∂ i

∂si

(
f (Z (t − s), s)P(t − s)

)∣∣∣∣
s=0

,


 is the Gamma function, and Cn are appropriate positive constants which depend upon the
regularity of the trajectories.

A full proof of this proposition is given in Appendix A, and we focus on the physical interpre-
tation of the result here. The error bound for the memory matrix is composed of two terms. The
first of these is

ψ(t, λ)
def=

k∑
n=0

Cn

n!
∫ ∞

t
e−λsα snds, (2.5)

and it can be shown thatψ decays exponentially in time for fixed λ (see Appendix B). Physically,
this decay represent transient behaviour as the system relaxes towards the equilibrium. We
believe this transient behaviour is closely related to the plateau problem which has been observed
in earlier works referred to above.

The second term

ζ (λ)
def= Ck+1



(

k+γ+1
α

)
k!αλ k+γ+1

α

(2.6)

does not decay with increasing time t. However, we can study its behaviour with respect to λ. In
particular, it follows that ζ (λ) decays to zero as λ→ ∞ because k+γ+1

α
> 0, then

ζ (λ) =O
(
λ− k+γ+1

α

)
, λ→ ∞. (2.7)

As already observed (see Section 2.2), λ represents the scale-separation between the underlying
atomistic model and the coarse-grained one, so as we will show below, the above result provides
both a form for a Markovian approximation of the dynamics, and a theoretical guarantee backing
up the commonly held belief that a Markovian approximation is more accurate when there is a
large time scale separation between atomistic and CG models.

In particular, as a corollary of Proposition 1, we note that if the integrand function g(t,s) in the
memory integral is Lipschitz, so that k = 0 and γ = 1, then we have∣∣∣∣∣

∫ t

0
e−λsαg(t, s)ds − G0(t)



(

1
α

)
αλ

1
α

∣∣∣∣∣≤ C0

∫ ∞

t
e−λsαds + C1



(

2
α

)
αλ

2
α

.
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We remark that the assumption that g(t,s) is Lipschitz is particularly mild. It is guaranteed to
hold if trajectories of the system are twice continuously differentiable in time, and this will in
turn be the case when the potential energy function is twice continuously differentiable in space.
As such, the assumption is therefore satisfied for almost all Hamiltonian systems of interest.

We note that the function G0(t) is

G0(t) = f (Z (t), 0)P(t) = β E [F (0, ·) ⊗F (0, ·)| Z (t)] P(t),

and hence we are able to approximate equation (2.4), where we have dropped the tildes, as∫ t

0
M(Z (t − s), s)P(t − s)ds ≈ 


(
1
α

)
αλ

1
α

β E [F (0, ·) ⊗F (0, ·)| Z (t)] P(t),

≡ χ(Z (t); α, λ)P(t). (2.8)

or in other words, we can define a spatially varying friction cooefficient matrix χ to replace the
memory integral.

In this case, we can use this expression to show that the relative error of the approximation is
bounded by∣∣∣∣∣

∫ t
0 e−λsαg(t, s)ds − G0(t)


(
1
α

)
α−1λ− 1

α

G0(t)

(

1
α

)
α−1λ− 1

α

∣∣∣∣∣≤
∫∞

t e−λsαds∫∞
0 e−λsαds

+ C1

λ
1
α |G0(t)|



(

2
α

)

( 1

α
)

. (2.9)

As we already observed for the absolute error bound, the former term exhibits decays to zero as
t → ∞, regardless of the value of λ, while the latter decays as λ→ ∞ for fixed t.

In the next section, we will show how to compute χ in practice and discuss the error committed
in replacing the memory term with its approximation shown in equation (2.8).

3 A numerical example

In this section, we demonstrate how one might apply the mathematical result of
Proposition 1. To do so, we use a numerical implementation of a one-dimensional periodic
chain made of NFG = 30 atoms of two different species, which differ in mass and bond stiffness,
grouped in NCG = 10 CG beads.

3.1 Model

We assume the atoms are arranged in a repeating pattern, and a coarse-grained model is obtained
by combining the single repeated units into beads. The CG variables are given by the centre
of mass of each bead and by the corresponding momenta, and the repeating pattern consists of
two atoms of mass M2 and a single atom of mass M1 arranged in the following configuration:
(M2 − M1 − M2). We considered two test cases: M1 = M2 = 1 and M1 = 1, M2 = 100.

The bond stiffness between the two different species of atoms is described by means of an
inter-atomic potential, which is a simple 12-6 Lennard–Jones potential:

Ui,i+1(r) = 4 εi,i+1

[(σi,i+1

r

)12 −
(σi,i+1

r

)6
]

= εi,i+1

[(
r∗

i,i+1

r

)12

− 2

(
r∗

i,i+1

r

)6
]

.
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Here, i ∈ {1, 2, . . . , NFG
}

and we choose σi,i+1 = 2−1/6 so that the minimum value of the poten-
tial is obtained for r∗

i,i+1 = 1. The value of the interaction strength, εi,i+1, is set to 1 and 10 for
M1 − M1 and M1 − M2 pairs, respectively. In the following, all parameters, such as temperature
and time step, are expressed in terms of Lennard–Jones reduced units [48].

The simulations to obtain the fluctuating force (and therefore to determine the memory kernel)
are implemented in the canonical (NVT) ensemble at fixed kBT = 1 and friction parameter γ = 1.
Furthermore, we assume periodic boundary conditions and nearest neighbour interactions.

The Hamiltonian of the atomistic system is given by

H(r, p) = 1

2
pT M−1 p +

NFG−1∑
i=1

Ui,i+1 (ri+1 − ri) + UNFG ,1

(
r1 − rNFG + r∗NFG

)
, (3.1)

where M is the mass matrix (that is, a diagonal matrix whose entries are the masses of each atom)
and r and p are the positions and momenta of the atoms, respectively. The final term takes into
account that periodic boundary conditions are in place, i.e., that the two ends of the linear chain
are connected to each other.

The results shown below were obtained through simulation of two different dynamics: (i)
the Fine-Grained Dynamics (FGD) when solving the equations of motion with the Hamiltonian
defined in equation (3.1),

dz(t)

dt
=L z ,

where, z = (
zr, zp

)= (r1, . . . , rNFG , p1, . . . , pNFG ) is a state of the system characterised by the
instantaneous positions and momenta of the NFG particles that compose it; (ii) the Orthogonal
Dynamics (OD) when solving the system of equations

drk

dt
= pk

mk
− PI

MI
;

dpk

dt
= −∂U(ζ r)

∂rk
+ mk

MI

∑
i∈SI

∂U(ζ r)

∂ri
;

for k = 1, 2, . . . , NFG, where I is the index such that k ∈ SI and SI is the set of particles of the
FG system included within the bead of index I . We note that both FGD and OD have roughly
the same numerical performances, and that for the simple system investigated here the speed-up
achieved by the coarse-graining procedure is ≈5.

3.2 Numerical sampling of the memory kernel

All the simulations reported below were performed using the code HybridZwanzJulia [29] writ-
ten in Julia v1.4.1 [5]. This code allows a relatively simple recalibration of the test system
through Julia ‘types’, which are initialised by the user to fix all the parameters of the simula-
tion, including the repeating pattern of the beads, the number of beads, the mass and stiffness of
the inter-atomic potentials. Here, we give an idea of the sampling implemented in the code to
compute the fluctuating force, given in equation (1.6), and therefore the memory term as given
in equation (2.8).

As mentioned in the introduction, the idea is to sample using OD, since it is possible to deter-
mine the fluctuating force through constrained dynamics. First, the initial conditions for the
simulation are fixed, so that the momenta are distributed according to the Maxwell–Boltzmann
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distribution and the positions lie in a neighbourhood of the equilibrium positions, determined by
the equilibrium distance of the inter-atomic potential. Then the trajectory of the FGD is com-
puted and samples of the positions and momenta are stored. These samples are used to determine
the CG positions and momenta and are used as initial condition for computing the trajectories
of the OD. Along these trajectories, time averages of the first and second moment of the effec-
tive force between beads are stored. The first moment gives the value of the mean force acting
between adjacent beads given the position of the center of mass, while the second moment is used
to compute the fluctuating force. Since the sampling steps of the OD can run at the same time
without having to communicate between the processes, these procedures can be run in parallel.

In order to improve the time required to sample the fluctuating force, we use the translational
symmetry of this simple system, the fact that the beads are identical and the assumption that
the effective potential can be approximated as a sum of two-body interactions based on the
distance to the nearest-neighbour beads only. We thus compute the interactions between any
combination of beads and assume that the interactions computed are valid for any equivalent
pair in the system. In this way, we reduce the dimensionality of the space to be sampled from
the total number of CG variables to simply one, i.e., the inter-bead distance, which simplifies the
exploration of the entire constrained phase space.

If we consider bead I , we can assume that the forces that act on it can be decomposed as the
independent ‘stress’ contributions σI+1,I and −σI ,I−1, which are the forces exerted on bead I by
its two neighbours, I − 1 and I + 1. Under these conditions, we write the conditional expectation
in the equation (2.8) as

E [F I ⊗F I |R] =E
[
(�σI+1,I −�σI ,I−1) ⊗ (�σI+1,I −�σI ,I−1)

∣∣R]
=E

[
�σI+1,I ⊗�σI+1,I

∣∣R]+E
[
�σI ,I−1 ⊗�σI ,I−1

∣∣R] ,

where �σ is the fluctuating part of the ‘stress’ contribution, R is the inter-bead distance and we
assume that the cross terms are negligible, i.e.,

E
[
�σI+1,I ⊗�σI ,I−1

∣∣R]≈ 0 and E
[
�σI ,I−1 ⊗�σI+1,I

∣∣R]≈ 0 .

In other words, we assume that the fluctuating stresses acting between adjacent pairs of beads are
not correlated, since we have made the assumption that pair interactions are sufficient to describe
the behaviour of the system.

Under this assumption, we obtain

E [F I ⊗F I+1|R] =E
[
(�σI+1,I −�σI ,I−1) ⊗ (�σI+2,I+1 −�σI+1,I )

∣∣R]
= −E

[
�σI+1,I ⊗�σI+1,I

∣∣R] ,

E [F I ⊗F I−1|R] =E
[
(�σI+1,I −�σI ,I−1) ⊗ (�σI ,I−1 −�σI−1,I−2)

∣∣R]
= −E

[
�σI ,I−1 ⊗�σI ,I−1

∣∣R] .

Therefore, we compute a smooth approximation of the variance of the fluctuating force between
beads which allows us to define

χI+1,I = τ

τP



(

1
α

)
α

β E
[
�σI+1,I ⊗�σI+1,I

∣∣R] , (3.2)
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Table 1. Results of fitting to the numerical data

M2 τ αF τP

1 0.027 2.59 0.12
100 0.29 2.34 1.0

and the spatially varying friction coefficient matrix χ (see equation (2.8)) as

χIJ (R; α, τ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−χI+1,I I = J − 1 mod NCG ,

χI+1,I + χI ,I−1 I = J ,

−χI ,I−1 I = J + 1 mod NCG ,

where I , J ∈ {1, 2, . . . , NCG
}
. We note here that the memory term we consider depends on CG

coordinates. The importance of this feature in this kind of models was shown in [28].

3.3 Fitting and results

In this section, we show the numerical results for the autocorrelation function (ACF) of the
fluctuating forces and of the bead momenta.

Applying our ansatz (see equation (2.3)), we fit the decaying of the ACF of the fluctuating
forces obtained from a fine-grained simulation using the function

FF(t; αF , τ ) = exp

[
−
(

t

τ

)αF
]

. (3.3)

The best fit values for αF and τ , obtained with the XMGRACE software [49], are reported in
Table 1 for the two systems investigated here. In order to check the consistency of the results,
we also fit the initial decay of the ACF of the momenta and of the fluctuating forces using

FP(t; τP) = exp

[
−
(

t

τP

)2
]

. (3.4)

For comparison, the data and the accompanying fitted curves are shown in Figure 1.
For the fluctuating force, for both systems (M2 = 1 and M2 = 100), the initial behaviour can be

described by a quasi-Gaussian behaviour with a characteristic decay time that does not depend
on the exponent used, followed by damped oscillations that we do not take into account in our
analysis. By contrast, the bead momenta ACF of both systems exhibit a nearly-perfect Gaussian
decay. This distinction is likely due to the quadratic nature of the kinetic energy term in the
Hamiltonian.

We can now use equation (3.2) to obtain the elements of χ , which explicitly depends on the
inter-bead distance R and are used to build our approximation of the memory term equation (2.8).
The results for the two systems investigated here are reported in Figure 2. The numerical data
shows that, while the fluctuating forces F (0, ·) (shown in the inset of Figure 2) depends only
weakly on the atomic masses, the resulting friction term features a much stronger dependence on
M2 through the value of τ . This formulation demonstrates the possibility of using the result of

https://doi.org/10.1017/S0956792522000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000158


A systematic analysis of the memory term in Coarse-Grained models 339

10
-3

10
-2

10
-1

10
0

10
1

t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

<
F(

t)
F(

t’
)>

M
2
 = 1

M
2
 = 100

(a)

10
-3

10
-2

10
-1

10
0

10
1

t

-0.2

0

0.2

0.4

0.6

0.8

M
om

en
ta

 a
ut

oc
or

re
la

tio
n M

2
 = 1

M
2
 = 100

(b)

FIGURE 1. Time autocorrelation function of the (a) fluctuating force and (b) momenta for two values of
M2. Symbols represents the simulations data whereas dotted lines and dashed lines are fits to equations (3.4)
and 3.3, respectively. In the ACF of the momenta (b) only one fitting is reported (solid black line) because
equations (3.4) and (3.3) coincide.
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FIGURE 2. The friction coefficients evaluated for two values of M2. The inset reports the fluctuating force
for the same systems. The curves are spline interpolations of the numerical data, which is shown with
symbols in the inset.

Proposition 1 to provide a CG approximation of the full system with appropriate theoretical guar-
antees on the error committed in replacing the memory integral with a simpler friction matrix.

3.4 Discussion

We can now use the numerical results reported in Table 1 to estimate the the error committed
in replacing the full memory term with its approximated value based on the ansatz reported
in equation (2.3). In particular, this error is controlled by the two terms ψ(t, λ) and ζ (λ) (see
equations (2.5), (2.6)). Using the results obtained for equations (B2), (2.7), we can write for the
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two terms of the boundary of the relative error in equation (2.9):

ψ ′(t̃, λ) =
∫∞

t̃ e−λs̃αds̃∫∞
0 e−λs̃αds̃

=O
(

e−λt̃α
)

=O
(

exp

[
− t

τ

α
])

, t̃ → ∞ (3.5a)

ζ ′(λ) = C1

λ
1
α |G0(t̃)|



(

2
α

)

( 1

α
)

=O
(
λ− 1

α

)
=O

(
τ

τP

)
, λ→ ∞ . (3.5b)

In order to check the magnitude of the leading term in equation (3.5a), we need the time t,
which represents the total simulated time of our simulation. However, for the sake of giving an
estimate of the order of magnitude of ψ ′(t̃, λ), we can simply use a time of the order of time
scales considered in a standard CG simulation. For this reason, it seems reasonable to assume
for it the typical time scale of the bead dynamics given by τP. Using the numbers reported in
Table 1, the leading term in equation (3.5a) is exp

[− (
τP
τ

)α]≈ 10−21 for the system with M2 = 1,
and exp

[− (
τP
τ

)α]≈ 10−8 for the system with M2 = 100. Although the specific values of these
numbers (and even their orders of magnitude) depend on the functional form used to fit the
simulation data, they are in all cases always much smaller than unity, demonstrating that the
portion of the relative error bounded by ψ ′(t) is extremely small. Moreover, the simulated time
is usually well beyond τP, that is to say that in a standard simulation we can expect an even lower
value of ψ ′(t̃, λ).

The term ψ ′(t) is roughly related to the replacement of the integration boundary in equation
(2.4) from (0,t) to (0, ∞). It is therefore expected that the error due to this replacement decreases
with the increase of t and, given the argument of the integral, it decreases with exponential
behaviour.

Let us now consider the portion of the relative error bounded by ζ ′(λ), equation (3.5b). With
the same values reported in Table 1 we obtain τ

τP
= 0.225 for the system with M2 = 1 and

τ
τP

= 0.29 for the system with M2 = 100. The term ζ ′(λ) represents the relative error commit-
ted by replacing the memory term by its Taylor expansion stopped at a some k. In this case, we
considered k = 0, i.e. we replaced the whole memory term with the leading term of its Taylor
expansion. We see that, in this case, the bounding value for the percentage error is ≈23% for
the system with M2 = 1 and ≈30% for the system with M2 = 100, meaning that the results of the
simulations should be carefully checked as it is not guaranteed that the error committed would
be negligible.

The analysis just showed puts on a more rigorous ground the qualitative statement that the
characteristic time of the decay of the momenta ACF, being of the same order of magnitude
of the decay time of the fluctuating-force ACF, makes resorting to equation (3.2) questionable.
Moreover, our results show that including more terms in the approximation (see Section 2.3)
should improve such model. Indeed, since in equation (2.7) ζ (λ) approaches zero faster upon the
increasing of k, this error bound can be reduced, making the results of such simulations more
robust. We plan to test this approach in future work.

4 Conclusions

In this work, we discussed the properties and various approximations of the dissipative memory
term in the Mori–Zwanzig equations applied to CG simulations in MD. A common approach
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to approximate this term is to assume a-priori a particular behaviour (e.g., Markovian) for the
dynamics of the system and therefore simplify the terms involved in the memory accordingly.
In this work, instead, starting from the Green–Kubo definition of the memory term involving
the autocovariance of the fluctuating forces, we assume a functional form for this latter quantity.
This is chosen such that an explicit calculation of the memory is possible, and it can be therefore
compared and calibrated with fine-grained data.

Starting from this ansatz, we proved a rigorous results on the boundary of the error committed
by replacing the full memory term with its approximation. We also included an asymptotic anal-
ysis on the terms bounding the error and an explicit definition of the parameters which control
the approximations used in the derivation.

Finally, we tested this approach on a simple system represented by a one-dimensional chain
interacting with a Lennard–Jones type potential in two different cases, with different masses of
the beads. We explicitly calculated the friction term for both of them checking the consistency
of the Markovian approximation, using the asymptotic analysis presented in Section 2.3.

Our results show that this approach is feasible in a one-dimensional case, and demonstrates that
the friction exhibits strong spatial dependence, suggesting that further investigation is required
for more complex, multidimensional systems.

Moreover, our rigorous analysis clearly gives what is the range of error expected, showing that
even for such a simple system like the one we considered the Markovian approximation should
be checked carefully, as the error committed by such approximation can be important.

This work represents a step towards a systematic data-driven analysis of the memory term,
and future work will focus on the analysis of the long-time memory behaviour of the system and
the application to more realistic models.
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A. Proof of Proposition 1

We begin by using Taylor’s theorem (with remainder in Lagrange form) to expand g in s about
s = 0 up to order k − 1, writing

g(t, s) =
k∑

n=0

1

n!
∂n

∂sn
g(t, 0)sn + 1

k!
(
∂k

∂sk
g(t, θs) − ∂k

∂sk
g(t, 0)

)
sk

=
k∑

n=0

1

n!Gn(t)sn + 1

k!
(
∂k

∂sk
g(t, θs) − ∂k

∂sk
g(t, 0)

)
sk

for some θ ∈ [0, 1]. Using this expansion and splitting the domain of integration, we have

∫ t

0
e−λsαg(t, s)ds −

k∑
n=0

Gn(t)

n!
∫ ∞

0
e−λsα snds

=
∫ t

0
e−λsα 1

k!
(
∂k

∂sk
g(t, θs) − ∂k

∂sk
g(t, 0)

)
skds −

k∑
n=0

Gn(t)

n!
∫ ∞

t
e−λsα snds.

Employing the triangle inequality, the regularity assumption on g, and the fact that θ ∈ [0, 1], we
obtain ∣∣∣∣ ∫ t

0
e−λsαg(t, s)ds −

k∑
n=0

Gn(t)
∫ ∞

0
e−λsα snds

∣∣∣∣
≤
∫ t

0
e−λsα 1

k!
∣∣∣∣ ∂k

∂sk
g(t, θs) − ∂k

∂sk
g(t, 0)

∣∣∣∣skds +
∣∣∣∣ k∑

n=0

Gn(t)

n!
∫ ∞

t
e−λsα snds

∣∣∣∣
≤ Gk,γ (t)

k!
∫ t

0
e−λsα sk+γ ds +

∣∣∣∣ k∑
n=0

Gn(t)

n!
∫ ∞

t
e−λsα snds

∣∣∣∣
≤ Gk,γ (t)

k!
∫ ∞

0
e−λsα sk+γ ds +

k∑
n=0

∣∣Gn(t)
∣∣

n!
∫ ∞

t
e−λsα snds ,

where Gk,γ (t) is the Hölder γ -semi-norm of a bounded function g on the set [0,t]. We note that,
for the evolution over a given time interval [0,T], we can replace the functions Gn(t) and Gk,γ (t)
by appropriate constants Cn and Ck+1 by taking a supremum over the time interval.

To conclude, we note that by making the change of variable, we can express the integrals over
the interval (0, ∞) in terms of the Gamma function:

∫ ∞

0
e−λsα sγ ds =



(
γ+1
α

)
αλ

γ+1
α

.

https://doi.org/10.1017/S0956792522000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000158


A systematic analysis of the memory term in Coarse-Grained models 345

Using this result, we conclude that the statement holds.

B. Proof of equation (2.5)

Let us start with the definition of ψ(t)

ψ(t)
def=

k∑
n=0

Cn

n!
∫ ∞

t
e−λsα snds

≤ (k + 1) max
n∈{0,1,. . .,k}

[
Cn

n!
∫ ∞

t
e−λsα snds

]
. (B1)

Let us now estimate the last integral in the previous expression. We start by making the change
of variable v = sα: ∫ ∞

t
e−λsα snds =

∫ ∞

tα

1

α
e−λvv

n+1
α −1dv.

There are now two cases: either (i) n+1
α

− 1 ≤ 0, or (ii) n+1
α

− 1> 0.
In case (i), we can estimate the integral as being∫ ∞

t
e−λsα snds =

∫ ∞

tα

1

α
e−λvv

n+1
α −1dv ≤

tn+1−α

α

∫ ∞

tα
e−λvdv= tn+1

α

e−λtα

λtα
.

This is exponentially small as long as λtα 
 1.
In case (ii), we can integrate by parts to obtain∫ ∞

tα

1

α
e−λv v

n+1
α −1 dv = − 1

α

(
e−λtα

λtα
tn+1 −

(
n+1
α

− 1

λ

) ∫ ∞

tα
e−λv v

n+1
α −2 dv

)
.

Integrating by parts more times as necessary, we ultimately obtain a similar result to that obtained
in case (i), i.e. that this error term is exponentially small as long as λtα 
 1.

In summary, we have shown that

ψ(t) =O
(

e−λtα
)

, t → ∞. (B2)
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