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QUASI-HEREDITARY ENDOMORPHISM ALGEBRAS 

V. DLAB, P. HEATH AND F. MARKO 

ABSTRACT. Quasi-hereditary algebras were introduced by Cline-Parshall-Scott (see 
[CPS] or [PS]) to deal with highest weight categories which occur in the study of semi-
simple complex Lie algebras and algebraic groups. In fact, the quasi-hereditary algebras 
which appear in these applications enjoy a number of additional properties. The objec­
tive of this brief note is to describe a class of lean quasi-hereditary algebras [ADL] 
which possess such typical characteristics. A study of these questions originated in col­
laboration with C. M. Ringel (see [DR]). 

1. Introduction. Throughout the paper, R denotes a (finite dimensional) commu­
tative local self-injective AT-algebra with a splitting field K, and A the endomorphism 
algebra of a (finite) direct s u m l = ©A€AX(A) of pair-wise non-isomorphic (finite di­
mensional) local-colocal ̂ -modulesX(X), i.e. such that bothX{\)/ radX(X) andsoc.Y(A) 
are simple. Write, for each A, e\ = m\p\, where p\.X —> X{\) and nt\:X(X) —» X 
are the canonical projection and embedding, respectively. Thus, for all A G A, S(X) — 
Ae\j mdAex are the (pair-wise non-isomorphic) left simple ^-modules, P(X) = Ae\ 
their projective covers and /(A) = HomK(e\A,K) their injective hulls. 

Observe that, for each X(X), there is a (unique) embedding into R and that every R-
homomorphism/: X(X) —> X{n) is induced by multiplication by an element r G R: 
Given/, there is an extension/:/? —+ R and every endomorphism of RR is given by 
multiplication, 

0 _ > X(X) — > RR 

0 — • X(K) — > RR 

Thus, in particular the image Im/ is isomorphic to a submodule of X(X). As a result, 
the following three statements which will be used repeatedly, are equivalent: 

(a) R D X(K) 2 X(X); 
(b) there is a monomorphism from X(X) to X(K)\ 

(c) there is an epimorphism from X(n) to X(X). 

Furthermore, each X(X) is a factor module ofR and as such has a natural structure of 
a local commutative self-injective ^-algebra; thus Hom^^A) ,^ ) ^ ^f(A). As a con­
sequence, A — End/? X is an algebra with involution and thus there is a duality functor 
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D:A-mod —> A-mod satisfying D(S) ~ 5 for all simple ,4-modules 5. Indeed, the map 
*:A—> A defined for 

f:X-^-*X(X) ^X(n) -^X 

by 

f:X^X(K) ~ nomK(X(K\K) H ^ 3 HomK(X(X\K) ~X(\) ^X 

is an involution. In addition to the relations (ab)* = b*a* and (a*)* = a, we have also 
e\ = e\ for all À € A. Hence, we get a duality functor D if, for every right ^-module 
YA we define the left module AY* by putting y* = Y and ay = ya*, and set D(YA) = 
Hom*C< !* ,*)• Thus D(P(X)) ~ /(A) and D(S(X)) ~ 5(A). 

The main result of this paper is the following theorem. 

THEOREM. Let R be a commutative local self-injective K-algebra over a splitting 
field K; dim*: R = n. Let X = {X(X) | A G A} be a set of local ideals ofR indexed by a 
finite partially ordered set A reflecting inclusions: X{\') C X{X") if and only if\' > \". 
Let R = X(X\) belong to X Then A = Enà(®\^^X{Xfj is a quasi-hereditary algebra 
with respect to A if and only if 

(i) card(A) = n and 
(ii) radX(A) = EA<«X(«). 

Let us add that under the conditions of the theorem, we can easily verify the following 
facts: 

(a) as mentioned earlier, there is a duality functor on the category of ^-modules 
which fixes the simple modules 5(A), A G A; 

(b) the algebra A is lean (see [ADL]) and every standard module A(A) has a simple 
socle isomorphic to 5(Ai); 

(c) [A(A) : S(K)] < 1 for all A, « G A; in fact, [A(A) : S(K)] = 1 if and only if K < A, 
and thus dim/-A(A) = card{« | K < A}; 

(d) R/ radfl ~ X(Xn) G X, dimA:P(A„) = n and generally 

dimKP(K) = Y, dim* A(A); 

thus dim* ̂  = £ A G A (dim*: A(A)) ; 
(e) the dominant dimension of A is > 2 (see [T]). 

2. Proof of sufficiency. Let A be a finite dimensional (associative) algebra. Let 
{5(A) | A G A} be the set of all non-isomorphic (left) simple ^-modules indexed by 
a partially ordered set A. For every A, denote by P(X) the projective cover of 5(A) and 
by A(A) the corresponding standard module, i.e. the maximal factor module of P(X) with 
composition factors of the form 5(«) for K, < A. 

We say thatv4 is quasi-hereditary with respect to A if there is a linear order A i < A2 < 
• • • < A„ on A refining the given partial order and satisfying the following conditions: 
for each 1 <i<n, 
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(i) the standard module defined above equals 

A(Ay) = P(\i)l trace(0P(Ay) -> P(A,)), 

(ii) the endomorphism algebra of A(A,) is a division algebra and 
(iii) P{\i) can be filtered by A(Ay)'s,y > /. 

Here, traced —•> F) denotes the submodule of Y generated by all homomorphic images 
of X in Y. The latter condition is equivalent to the fact that the factors 

trace(0P(A;) - P(h))/ trace( 0 P(Xj) - P(A,)) 
y=k ' y=k+\ ' 

of the trace filtration of P(A/) are direct sums of A(A*)'s (/ < k < n) [D]. 
The endomorphisms of X = 0A<=AX(A) will operate on the module from the left; 

thus we shall deal with the left regular representation AA of the (basic) A'-algebra A = 
Endjt(X). Denote by e\ the canonical idempotent X-^» X(X) - i l 5 A e A , and note that 
the set {S(X) | A G A} of all (left) simple ,4-modules is indexed by the partially ordered 
set A. Put, for every A G A, A(A) = {/x G A | X(n) C X(X)}. Furthermore, since every 

X(X) is local, there is x\ G R such that X(X) = x\R. 
Now, for the remaining portion of this section assume that conditions (i) and (ii) of the 

theorem hold. Let us remark that condition (ii) can be expressed in the form radX(X) = 
T,neA(\)X(fi), A G A. It follows that there is the largest element A„ G A (i.e. X < X„ for 
all A G A) andX(X„) is the (unique) simple /^-module. 

First, establish the following three lemmas. 

LEMMA 1. The set {x\ \ X G A} is a K-basis of the vector space RK, and the set of all 
ideals X(I) C R generated by {x\ \ X G / } , for every subset I of A, forms a distributive 
lattice with respect to addition and intersection. 

PROOF. In view of (ii), {xx \ X G A} generates the AT-space RK. Furthermore, (i) 
implies that this set is a A^-basis. The rest then follows immediately. 

LEMMA 2. Every R-homomorphism f: X(X) —> E^/A^/x) C R for some I Ç A, 
factors through the canonical (summation) map /?:0MG/JJf(/x) —> Y^^iX^i). In partic­
ular, every R-homomorphism f: X{X) —* radX(K) factors through the canonical map 
®pcA(K)X(p) —> radJffa). 

PROOF. The i?-homomorphism/ is induced by multiplication; thus 

f(xx) = xxr G [ E ^ ) | HJf(A) = £ [ * 0 0 HX(X)] 
lnei J /ie/ 

by Lemma 1. Hence xxr — E/ie/JA'V with xxr^ G X(fi) r\X(X). Consequently,/ = pg, 
where g:X(X) —> Q^XQi) is given by g(x^) = (xxr^ | /x G /), as required. 

LEMMA 3. For every A G A, 

(*) {mKmKXpx | X(X) C X(K)}9 
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where mnX denotes the embedding X{X) Ç X(K), is a K-basis for the (left) standard 
module A(A). In fact, 

(**) A(A) = P(X)I trace ( 0 PQi) - P(X)). 
VeA(A) J 

PROOF. By definition, A(A) = P(X)/ trace(0^( /z)^(A) P(/i) —> P(A)). Thus to prove 
(**), it is sufficient to show that every ^-homomorphism/: X(X) —» X([i) with incom­
parable A,/i can be factored through a direct sum ©PGA(A)^(P)- However, this follows 
readily from Lemma 2, since/ cannot be a monomorphism and thus / factors through 
radX(A) = EpeA(A) Jf(p). 

Now, since no monomorphism/: X(A) —* X(K) can be factored through ©PGA(A)^(A)> 

(*) can be seen easily to be a AT-basis of A(A). 

REMARK. Let us point out that Lemma 3 describes the structure of the standard 
modules: the factorizations mK\ — mKpmpx correspond to the embeddingsJf(A) ÇX(p) Ç 
X(K). In particular, every standard module A(A) has a simple socle generated by /WA,A> 

and hence is isomorphic to S(X \ ). 
An immediate consequence of Lemma 3 is the fact that the standard modules A(A) 

remain unchanged under any refinement of the partial order of A. We shall therefore 
consider A = {1,2, . . . ,«} with its natural order, keeping in mind that X(J) C X(i) im­
plies / <j. Hence, we shall deal with the complete sequence (e\, ^2 , . . . , en) of primitive 
orthogonal idempotents: \x = H"=\ £/. Write et = ££=*£/ for 1 < t <n and en+\ = 0. 

To complete the proof of sufficiency, we are going to show that End^ (A(/)) is a divi­
sion algebra, for 1 < / < n, and that all factors AsjAei /AEj+\Aei of the trace filtration of 
Aet are direct sums of A(/)'s, i <j < n. The first statement is an instant consequence of 
Lemma 3: the multiplicity [A(z) : S(k)] = 1 if X(i) Ç X{k) and [A(Q : S(k)] = 0 other­
wise. Hence, there is no non-zero map from A(z') into rad A(z). The second statement is 
established in the following lemma. 

LEMMA4. IfX(j) Ç X{j), thenAejAei/A£j+\Aei ~ A(/). IfX(j) g X{î), thenAejAei = 
A£j+\Aei. 

PROOF. We know thatX(J) Ç X(i) if and only if there is a surjective 7?-homomorph-
ism f:X(i) —> X(j). Since the elements of AsjAet are of the form mcjypi with 4>:X(i) —> 
®n

t=jX(f) and m:®"=jX(i) —» X, and those of A£j+\Aei are of the same form, with <j> 
satisfying the additional condition that/T/wc/): X(i) —> X(J) is not surjective, it turns out 
immediately thatX(/) g ^(0 yields AtjAet — A£j+\Aet. 

On the other hand, ifX(j) Ç X(i\ denote by pjt the surjective i?-homomorphism from 
X(i) to X(j) which maps Xi into Xj — jc,r. Evidently, if/: X(i) —> Jf(/) is another sur­
jective ^-homomorphism, then there is an automorphism g ofX(J) such that/ = g/?,/. 
Now, if h:X(j) —> Jf(/V) is any monomorphism (for instance, m*y of Lemma 3), then 
hpji\X(i) —-> X(A:) cannot be factored through ©ÎL/+1 ^(0 since it cannot be factored 
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through £/GA(/)^(0
 = T2idX(j). Recall that such a factorization always exists if h is not 

a monomorphism. In view of Lemma 3, AejAei/Asj+\Aei ~ A(j). 

This completes the proof of sufficiency of the theorem. 

3. Proof of necessity. We have X = 0"=1 X(i), where the linear order of the in­
dex set is a refinement of the partial order given by mutual embeddings of the direct 
summands in R; thus X(J) Ç X(i) Ç R implies i < j . Recall that X(\) = R and 
A(i) = {j\X(f)CX(i)}. 

We assume that A = End/? X is quasi-hereditary with respect to the complete sequence 
(e\, ei> .-.,e„) of primitive orthogonal idempotents defined by the canonical projections 
Pi and embeddings /w, of the direct summands. Let us, however, point out that A is quasi-
hereditary with respect to the original partial order in the sense that A(/) is the maxi­
mal factor module of P(i) ~ Aet whose composition factors are only of the form S(k), 
where k satisfies the inclusion X(i) Ç X(k) Ç R. Thus trace(©?=/+1 P(j) —» P(i)) = 
tmce(®X(i)m)P(j) -> P(/)). 

We are going to prove the necessity of conditions (i) and (ii) of the theorem in Lemmas 
6 and 7. First, let us present an auxiliary result. 

LEMMA 5. Let f.X(i) —> X(k) be an R-homomorphism. Iff is a monomorphism, 
then mjfpi £ Aei+xAet. Iff is not a monomorphism, and A is quasi-hereditary, then 
mjjpi G Aej+\Aei. Thus, if A is quasi-hereditary, then the multiplicity [A(/) : S(k)] = 1 
forX(i) Ç X(k) and [A(/) : S(k)] = 0 otherwise. 

PROOF. The image Imf of a homomorphism/: X(i) —> X(k) which factors through 
©L/+1 X(j) is isomorphic to a submodule of radX(i). However, iff is a monomorphism 
then Imf ĉ  X(i), and thus mjfpi fi Aet+xAet. Now, if/ is not a monomorphism, then it 
induces a non-invertible endomorphism of X(i), and therefore, in the case that A is quasi-
hereditary, mjjpi must belong to Aei+xAei. Consequently, [A(/) : S(k)] ^ 0 if and only 
if ̂ (0 Ç X(k). In fact, in this case, [A(0 : S(k)] = 1. Indeed, any two monomorphisms 
fx ,f2'.X(i) —» X(k) are induced by multiplication by invertible elements and thus/ = af, 
with a G R invertible. Since m/c(Pfx)Pi G Ae^xAei for every non-invertible /? G R, we 
can write mjjipt — m^àf )pi G Ast+xAei with à E R/ mdR~K, and the lemma follows. 

LEMMA 6. If A is quasi-hereditary, then condition (i) of the theorem holds. 

PROOF. By Lemma 5, [A(0 : S(l)] = 1 for all 1 < i < n. In view of the duality D: A-
mod —•> ,4-mod satisfying D(S(/)) — S(i\ which has been mentioned in the Introduction, 
D(A(0) = V(0 satisfying [V(0 : 5(1)] = 1 for all 1 < i < n. Hence, the Bernstein-
Gelfand-Gelfand reciprocity law yields [P(\) : A(/)] = [V(0 : S(\)] = 1 for all 1 < i < 
n. Consequently, 

dimKR = [P(l) : 5(1)] = Ê[P(1) : A(/)][A(z) : 5(1)] = n. 
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LEMMA 7. If A is quasi-hereditary, then condition(ii) of the theorem holds. 

PROOF. Clearly, T,j£A(i)X(j) Q ™iX(i) for 1 < i < n. Recall that X(i) = xft. 
Thus, if x G radX(/), there is r G R such that x/r = x. Now, multiplication by r induces 
a non-invertible endomorphism ofX(i) which must factor through ®j^\(i)X{f), s o / = 
Zje/nofjgj with gy:X(0 -> X(/) for ally G A(i), and thus x <E Imf Ç E/eA<o *(/). W e 

conclude that mdX(i) = J2j£\(i)X(J). 

This completes the proof of the theorem. 

4. Final comments. Let us conclude the paper with a few observations and exam­
ples. 

First, it is immediate to see that the (ordered) quiver QA of the algebra A is given 
by the monomorphisms and epimorphisms between the direct summands of X. To be 
more explicit, let (1,2, . . . ,w) be the sequence of the vertices of Qj corresponding to 
a (linear) order of the direct summands X(\) = R,X(2\... ,X{n) = R/ mdR of the 
module X (which refines the partial order A of the theorem). Then, for / > j , there is 
an arrow / —> j in Qj if and only ifX(i) C X(j) Ç R and there is no X(k) satisfying 
X{i) C X(k) C X(j) Ç R for k ^ ij. Furthermore, in that case, there is an arrow i *— j 
corresponding to an epimorphism X(j) —> X(i) which cannot be factored through any 
X(k), k ^ ij. Thus, Qj is a connected quiver with single arrows which appear in pairs: 
either there are no arrows between two vertices / andy of Qj or there is a pair of arrows, 
/ ^1 j . From here, we can easily read the structure of the standard modules established 
earlier: each A(/) is given by the subquiver of Qj consisting of all sequences of arrows 

i =7o —>7i —> >jt-\ —*jt =j, i =7o >j\ > ' >Jt-\ >jt =j, 

and the respective vertices. 
Recall that the trace filtration of the projective-injective indecomposable module 

P(\) = Ae\ = As\Ae\ D Ae2Ae\ D • • • D AenAe\ D 0 

has the property that A£tAe\ /Ae^\Ae\ ~ A(/) for every 1 <i <n. Here, the extensions 

0 —»• A£i+\Ae\ —•* AsiAe\ —> A(/) —> 0 

are determined by the arrows of Qj corresponding to the epimorphisms. Observe that 
there is a (unique) embedding of P(i) in P(l), for every 1 <i<n. 

The following examples should serve as simple illustrations of the theorem, as well 
as indications of its limitations. 

1. R = K[x]/(xf)91 > 1. There is a unique choice of X (the direct sum of all inde­
composable jR-modules) and thus A is the respective Auslander algebra. The quiver Qj 
is as follows: 
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2. R = K[x,y]/{xy,xt — / ) , t > 2. Here, for / > 3, we have several choices for^f; 
for instance, we get the following forms of Qj: 

2 ^ 4 ^ • • • ^ 2s -£± 2s + 2 ^ 2^ + 4 ^ • • • ^ 1 2* 
îl ÎI ••• Ti ••• Î1 , 
1 j± 3 ^ • • • ^ 2s - 1 ;=> 25+1 ^± 2^ + 3 ^ • • • ^ 2 / - 1 

1 < s < t. 
3. R = K[x,y]/(x2 — y3, JC3 — y4

9 x4). Here, the algebra is 8-dimensional. Writep for 
the canonical image of/7 E K[x,y] in R, and consider 

X=R®xR ®yR®xyR ®/R®xfR®x1R®x1R 

(in that linear order). Then A = E n d ^ is a 159-dimensional algebra whose quiver Qj 
has the form 

4. Consider again the 4-dimensional algebra R = ^[JC, y] / (xy, x2 — y1 ) . Taking 

X=R®R/x1R®x1R 

(thus only 3 direct summands, not all local-colocal), or 

X* = R®(M@R/x1R)/(x1-(y + x1R))®xR®x1R 

(thus not all direct summands are local-colocal), the respective endomorphism algebras 
are still quasi-hereditary. The first one ,4 = End/? X is a 19-dimensional algebra (without 
duality) whose quiver fy is 

1 ^ 2 ^ 3 . 

The algebra^' = End/?^ is a 39-dimensional algebra with duality (and uniserial stan­
dard modules whose socles are isomorphic to 5(1), [A(4) : S(2)] = 2) with Qj' of the 
form 

1 ï± 2 t± 4 
îl 
3 
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