QUASI-HEREDITARY ENDOMORPHISM ALGEBRAS

V. DLAB, P. HEATH AND F. MARKO

ABSTRACT. Quasi-hereditary algebras were introduced by Cline-Parshall-Scott (see [CPS] or [PS]) to deal with highest weight categories which occur in the study of semi-simple complex Lie algebras and algebraic groups. In fact, the quasi-hereditary algebras which appear in these applications enjoy a number of additional properties. The objective of this brief note is to describe a class of lean quasi-hereditary algebras [ADL] which possess such typical characteristics. A study of these questions originated in collaboration with C. M. Ringel (see [DR]).

1. **Introduction.** Throughout the paper, R denotes a (finite dimensional) commutative local self-injective K-algebra with a splitting field K, and A the endomorphism algebra of a (finite) direct sum $X = \bigoplus_{\lambda \in \Lambda} X(\lambda)$ of pair-wise non-isomorphic (finite dimensional) local-colocal R-modules $X(\lambda)$, i.e. such that both $X(\lambda)$ and $X(\lambda)$ and soc $X(\lambda)$ are simple. Write, for each $X(\lambda)$, $X(\lambda)$, where $X(\lambda)$, where $X(\lambda)$ and $X(\lambda)$ and $X(\lambda)$ are the canonical projection and embedding, respectively. Thus, for all $X(\lambda)$ and $X(\lambda)$ are the (pair-wise non-isomorphic) left simple $X(\lambda)$ -modules, $X(\lambda)$ and their projective covers and $X(\lambda)$ and $X(\lambda)$ their injective hulls.

Observe that, for each $X(\lambda)$, there is a (unique) embedding into R and that every R-homomorphism $f: X(\lambda) \to X(\kappa)$ is induced by multiplication by an element $r \in R$: Given f, there is an extension $\bar{f}: R \to R$ and every endomorphism of R_R is given by multiplication,

Thus, in particular the image Im f is isomorphic to a submodule of $X(\lambda)$. As a result, the following three statements which will be used repeatedly, are equivalent:

- (a) $R \supseteq X(\kappa) \supseteq X(\lambda)$;
- (b) there is a monomorphism from $X(\lambda)$ to $X(\kappa)$;
- (c) there is an epimorphism from $X(\kappa)$ to $X(\lambda)$.

Furthermore, each $X(\lambda)$ is a factor module of R and as such has a natural structure of a local commutative self-injective K-algebra; thus $\operatorname{Hom}_K(X(\lambda),K) \simeq X(\lambda)$. As a consequence, $A = \operatorname{End}_R X$ is an algebra with involution and thus there is a duality functor

This research was supported in part by NSERC of Canada.

Received by the editors August 5, 1994.

AMS subject classification: 16D99, 16P99, 16S99.

[©] Canadian Mathematical Society 1995.

 $D: A\operatorname{-mod} \to A\operatorname{-mod}$ satisfying $D(S) \simeq S$ for all simple A-modules S. Indeed, the map $*: A \to A$ defined for

$$f: X \xrightarrow{p_{\lambda}} X(\lambda) \xrightarrow{f_{\kappa\lambda}} X(\kappa) \xrightarrow{m_{\kappa}} X$$

by

$$f^*: X \xrightarrow{p_{\kappa}} X(\kappa) \simeq \operatorname{Hom}_K(X(\kappa), K) \xrightarrow{\operatorname{Hom}(f_{\kappa\lambda}, K)} \operatorname{Hom}_K(X(\lambda), K) \simeq X(\lambda) \xrightarrow{m_{\lambda}} X$$

is an involution. In addition to the relations $(ab)^* = b^*a^*$ and $(a^*)^* = a$, we have also $e_{\lambda}^* = e_{\lambda}$ for all $\lambda \in \Lambda$. Hence, we get a duality functor D if, for every right A-module Y_A we define the left module Y_A by putting $Y^* = Y$ and $Y_A = yA^*$, and set $Y_A = yA^*$. Thus $Y_A = yA^*$, and $Y_A = yA^*$,

The main result of this paper is the following theorem.

THEOREM. Let R be a commutative local self-injective K-algebra over a splitting field K; $\dim_K R = n$. Let $X = \{X(\lambda) \mid \lambda \in \Lambda\}$ be a set of local ideals of R indexed by a finite partially ordered set Λ reflecting inclusions: $X(\lambda') \subset X(\lambda'')$ if and only if $\lambda' > \lambda''$. Let $R = X(\lambda_1)$ belong to X. Then $A = \operatorname{End}(\bigoplus_{\lambda \in \Lambda} X(\lambda))$ is a quasi-hereditary algebra with respect to Λ if and only if

- (i) $card(\Lambda) = n$ and
- (ii) $\operatorname{rad} X(\lambda) = \sum_{\lambda < \kappa} X(\kappa)$.

Let us add that under the conditions of the theorem, we can easily verify the following facts:

- (a) as mentioned earlier, there is a duality functor on the category of A-modules which fixes the simple modules $S(\lambda)$, $\lambda \in \Lambda$;
- (b) the algebra A is lean (see [ADL]) and every standard module $\Delta(\lambda)$ has a simple socle isomorphic to $S(\lambda_1)$;
- (c) $[\Delta(\lambda): S(\kappa)] \le 1$ for all $\lambda, \kappa \in \Lambda$; in fact, $[\Delta(\lambda): S(\kappa)] = 1$ if and only if $\kappa \le \lambda$, and thus $\dim_K \Delta(\lambda) = \operatorname{card}\{\kappa \mid \kappa \le \lambda\}$;
- (d) $R/\operatorname{rad} R \simeq X(\lambda_n) \in X$, $\dim_K P(\lambda_n) = n$ and generally

$$\dim_K P(\kappa) = \sum_{\lambda \le \kappa} \dim_K \Delta(\lambda);$$

thus $\dim_K A = \sum_{\lambda \in \Lambda} (\dim_K \Delta(\lambda))^2$;

- (e) the dominant dimension of A is ≥ 2 (see [T]).
- 2. **Proof of sufficiency.** Let A be a finite dimensional (associative) algebra. Let $\{S(\lambda) \mid \lambda \in \Lambda\}$ be the set of all non-isomorphic (left) simple A-modules indexed by a partially ordered set Λ . For every λ , denote by $P(\lambda)$ the projective cover of $S(\lambda)$ and by $\Delta(\lambda)$ the corresponding standard module, *i.e.* the maximal factor module of $P(\lambda)$ with composition factors of the form $S(\kappa)$ for $\kappa \leq \lambda$.

We say that A is quasi-hereditary with respect to Λ if there is a linear order $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ on Λ refining the given partial order and satisfying the following conditions: for each $1 \le i \le n$,

(i) the standard module defined above equals

$$\Delta(\lambda_i) = P(\lambda_i) / \operatorname{trace} \left(\bigoplus_{j>i} P(\lambda_j) \to P(\lambda_i) \right),$$

- (ii) the endomorphism algebra of $\Delta(\lambda_i)$ is a division algebra and
- (iii) $P(\lambda_i)$ can be filtered by $\Delta(\lambda_i)$'s, $j \ge i$.

Here, $\operatorname{trace}(X \to Y)$ denotes the submodule of Y generated by all homomorphic images of X in Y. The latter condition is equivalent to the fact that the factors

$$\operatorname{trace}\left(\bigoplus_{j=k}^{n} P(\lambda_{j}) \to P(\lambda_{i})\right) / \operatorname{trace}\left(\bigoplus_{j=k+1}^{n} P(\lambda_{j}) \to P(\lambda_{i})\right)$$

of the trace filtration of $P(\lambda_i)$ are direct sums of $\Delta(\lambda_k)$'s $(i \le k \le n)$ [D].

The endomorphisms of $X=\bigoplus_{\lambda\in\Lambda}X(\lambda)$ will operate on the module from the left; thus we shall deal with the left regular representation ${}_{A}A$ of the (basic) K-algebra $A=\operatorname{End}_R(X)$. Denote by e_{λ} the canonical idempotent $X\stackrel{p_{\lambda}}{\longrightarrow}X(\lambda)\stackrel{m_{\lambda}}{\longrightarrow}X$, $\lambda\in\Lambda$, and note that the set $\{S(\lambda)\mid\lambda\in\Lambda\}$ of all (left) simple A-modules is indexed by the partially ordered set Λ . Put, for every $\lambda\in\Lambda$, $\Lambda(\lambda)=\{\mu\in\Lambda\mid X(\mu)\subset X(\lambda)\}$. Furthermore, since every $X(\lambda)$ is local, there is $x_{\lambda}\in R$ such that $X(\lambda)=x_{\lambda}R$.

Now, for the remaining portion of this section assume that conditions (i) and (ii) of the theorem hold. Let us remark that condition (ii) can be expressed in the form rad $X(\lambda) = \sum_{\mu \in \Lambda(\lambda)} X(\mu)$, $\lambda \in \Lambda$. It follows that there is the largest element $\lambda_n \in \Lambda$ (i.e. $\lambda \leq \lambda_n$ for all $\lambda \in \Lambda$) and $X(\lambda_n)$ is the (unique) simple R-module.

First, establish the following three lemmas.

LEMMA 1. The set $\{x_{\lambda} \mid \lambda \in \Lambda\}$ is a K-basis of the vector space R_K , and the set of all ideals $X(I) \subseteq R$ generated by $\{x_{\lambda} \mid \lambda \in I\}$, for every subset I of Λ , forms a distributive lattice with respect to addition and intersection.

PROOF. In view of (ii), $\{x_{\lambda} \mid \lambda \in \Lambda\}$ generates the K-space R_K . Furthermore, (i) implies that this set is a K-basis. The rest then follows immediately.

LEMMA 2. Every R-homomorphism $f: X(\lambda) \to \sum_{\mu \in I} X(\mu) \subseteq R$ for some $I \subseteq \Lambda$, factors through the canonical (summation) map $p: \bigoplus_{\mu \in I} X(\mu) \to \sum_{\mu \in I} X(\mu)$. In particular, every R-homomorphism $f: X(\lambda) \to \operatorname{rad} X(\kappa)$ factors through the canonical map $\bigoplus_{\mu \in \Lambda(\kappa)} X(\mu) \to \operatorname{rad} X(\kappa)$.

PROOF. The R-homomorphism f is induced by multiplication; thus

$$f(x_{\lambda}) = x_{\lambda}r \in \left[\sum_{\mu \in I} X(\mu)\right] \cap X(\lambda) = \sum_{\mu \in I} [X(\mu) \cap X(\lambda)]$$

by Lemma 1. Hence $x_{\lambda}r = \sum_{\mu \in I} x_{\lambda}r_{\mu}$ with $x_{\lambda}r_{\mu} \in X(\mu) \cap X(\lambda)$. Consequently, f = pg, where $g: X(\lambda) \to \bigoplus_{\mu \in I} X(\mu)$ is given by $g(x_{\mu}) = (x_{\lambda}r_{\mu} \mid \mu \in I)$, as required.

LEMMA 3. For every $\lambda \in \Lambda$.

$$\{m_{\kappa}m_{\kappa\lambda}p_{\lambda}\mid X(\lambda)\subseteq X(\kappa)\},$$

where $m_{\kappa\lambda}$ denotes the embedding $X(\lambda)\subseteq X(\kappa)$, is a K-basis for the (left) standard module $\Delta(\lambda)$. In fact,

(**)
$$\Delta(\lambda) = P(\lambda) / \operatorname{trace} \left(\bigoplus_{\mu \in \Lambda(\lambda)} P(\mu) \to P(\lambda) \right).$$

PROOF. By definition, $\Delta(\lambda) = P(\lambda) / \operatorname{trace} \left(\bigoplus_{X(\mu) \not\supseteq X(\lambda)} P(\mu) \to P(\lambda) \right)$. Thus to prove (**), it is sufficient to show that every R-homomorphism $f: X(\lambda) \to X(\mu)$ with incomparable λ, μ can be factored through a direct sum $\bigoplus_{\rho \in \Lambda(\lambda)} X(\rho)$. However, this follows readily from Lemma 2, since f cannot be a monomorphism and thus f factors through $\operatorname{rad} X(\lambda) = \sum_{\rho \in \Lambda(\lambda)} X(\rho)$.

Now, since no monomorphism $f: X(\lambda) \to X(\kappa)$ can be factored through $\bigoplus_{\rho \in \Lambda(\lambda)} X(\rho)$, (*) can be seen easily to be a K-basis of $\Delta(\lambda)$.

REMARK. Let us point out that Lemma 3 describes the structure of the standard modules: the factorizations $m_{\kappa\lambda}=m_{\kappa\rho}m_{\rho\lambda}$ correspond to the embeddings $X(\lambda)\subseteq X(\rho)\subseteq X(\kappa)$. In particular, every standard module $\Delta(\lambda)$ has a simple socle generated by $m_{\lambda_1\lambda}$, and hence is isomorphic to $S(\lambda_1)$.

An immediate consequence of Lemma 3 is the fact that the standard modules $\Delta(\lambda)$ remain unchanged under any refinement of the partial order of Λ . We shall therefore consider $\Lambda = \{1, 2, ..., n\}$ with its natural order, keeping in mind that $X(j) \subset X(i)$ implies i < j. Hence, we shall deal with the complete sequence $(e_1, e_2, ..., e_n)$ of primitive orthogonal idempotents: $1_X = \sum_{i=1}^n e_i$. Write $\varepsilon_t = \sum_{i=1}^n e_i$ for $1 \le t \le n$ and $\varepsilon_{n+1} = 0$.

To complete the proof of sufficiency, we are going to show that $\operatorname{End}_A(\Delta(i))$ is a division algebra, for $1 \le i \le n$, and that all factors $A\varepsilon_j Ae_i / A\varepsilon_{j+1} Ae_i$ of the trace filtration of Ae_i are direct sums of $\Delta(j)$'s, $i \le j \le n$. The first statement is an instant consequence of Lemma 3: the multiplicity $[\Delta(i):S(k)]=1$ if $X(i)\subseteq X(k)$ and $[\Delta(i):S(k)]=0$ otherwise. Hence, there is no non-zero map from $\Delta(i)$ into rad $\Delta(i)$. The second statement is established in the following lemma.

LEMMA 4. If $X(j) \subseteq X(i)$, then $A\varepsilon_j Ae_i / A\varepsilon_{j+1} Ae_i \simeq \Delta(j)$. If $X(j) \nsubseteq X(i)$, then $A\varepsilon_j Ae_i = A\varepsilon_{j+1} Ae_i$.

PROOF. We know that $X(j) \subseteq X(i)$ if and only if there is a surjective R-homomorphism $f: X(i) \to X(j)$. Since the elements of $A\varepsilon_j A e_i$ are of the form $m\phi p_i$ with $\phi: X(i) \to \bigoplus_{l=j}^n X(t)$ and $m: \bigoplus_{l=j}^n X(t) \to X$, and those of $A\varepsilon_{j+1}A e_i$ are of the same form, with ϕ satisfying the additional condition that $p_j m\phi: X(i) \to X(j)$ is not surjective, it turns out immediately that $X(j) \not\subseteq X(i)$ yields $A\varepsilon_j A e_i = A\varepsilon_{j+1}A e_i$.

On the other hand, if $X(j) \subseteq X(i)$, denote by p_{ji} the surjective R-homomorphism from X(i) to X(j) which maps x_i into $x_j = x_i r$. Evidently, if $f: X(i) \to X(j)$ is another surjective R-homomorphism, then there is an automorphism g of X(j) such that $f = gp_{ji}$. Now, if $h: X(j) \to X(k)$ is any monomorphism (for instance, m_{kj} of Lemma 3), then $hp_{ji}: X(i) \to X(k)$ cannot be factored through $\bigoplus_{t=j+1}^n X(t)$ since it cannot be factored

through $\sum_{t \in \Lambda(j)} X(t) = \operatorname{rad} X(j)$. Recall that such a factorization always exists if h is not a monomorphism. In view of Lemma 3, $A\varepsilon_i Ae_i / A\varepsilon_{i+1} Ae_i \simeq \Delta(j)$.

This completes the proof of sufficiency of the theorem.

3. **Proof of necessity.** We have $X = \bigoplus_{i=1}^n X(i)$, where the linear order of the index set is a refinement of the partial order given by mutual embeddings of the direct summands in R; thus $X(j) \subseteq X(i) \subseteq R$ implies $i \le j$. Recall that X(1) = R and $\Lambda(i) = \{j \mid X(j) \subseteq X(i)\}$.

We assume that $A = \operatorname{End}_R X$ is quasi-hereditary with respect to the complete sequence (e_1, e_2, \dots, e_n) of primitive orthogonal idempotents defined by the canonical projections p_i and embeddings m_i of the direct summands. Let us, however, point out that A is quasi-hereditary with respect to the original partial order in the sense that $\Delta(i)$ is the maximal factor module of $P(i) \simeq Ae_i$ whose composition factors are only of the form S(k), where k satisfies the inclusion $X(i) \subseteq X(k) \subseteq R$. Thus $\operatorname{trace}\left(\bigoplus_{j=i+1}^n P(j) \to P(i)\right) = \operatorname{trace}\left(\bigoplus_{X(i) \in X(i)} P(j) \to P(i)\right)$.

We are going to prove the necessity of conditions (i) and (ii) of the theorem in Lemmas 6 and 7. First, let us present an auxiliary result.

LEMMA 5. Let $f:X(i) \to X(k)$ be an R-homomorphism. If f is a monomorphism, then $m_k f p_i \notin A\varepsilon_{i+1}Ae_i$. If f is not a monomorphism, and A is quasi-hereditary, then $m_k f p_i \in A\varepsilon_{i+1}Ae_i$. Thus, if A is quasi-hereditary, then the multiplicity $[\Delta(i):S(k)]=1$ for $X(i)\subseteq X(k)$ and $[\Delta(i):S(k)]=0$ otherwise.

PROOF. The image Im f of a homomorphism $f: X(i) \to X(k)$ which factors through $\bigoplus_{j=i+1}^n X(j)$ is isomorphic to a submodule of rad X(i). However, if f is a monomorphism then Im $f \simeq X(i)$, and thus $m_k f p_i \notin A \varepsilon_{i+1} A e_i$. Now, if f is not a monomorphism, then it induces a non-invertible endomorphism of X(i), and therefore, in the case that A is quasi-hereditary, $m_k f p_i$ must belong to $A \varepsilon_{i+1} A e_i$. Consequently, $[\Delta(i):S(k)] \neq 0$ if and only if $X(i) \subseteq X(k)$. In fact, in this case, $[\Delta(i):S(k)] = 1$. Indeed, any two monomorphisms $f_1, f_2: X(i) \to X(k)$ are induced by multiplication by invertible elements and thus $f_2 = \alpha f_1$, with $\alpha \in R$ invertible. Since $m_k (\beta f_1) p_i \in A \varepsilon_{i+1} A e_i$ for every non-invertible $\beta \in R$, we can write $m_k f_2 p_i - m_k (\tilde{\alpha} f_1) p_i \in A \varepsilon_{i+1} A e_i$ with $\tilde{\alpha} \in R / \text{rad } R \simeq K$, and the lemma follows.

LEMMA 6. If A is quasi-hereditary, then condition (i) of the theorem holds.

PROOF. By Lemma 5, $[\Delta(i):S(1)]=1$ for all $1 \le i \le n$. In view of the duality D:A-mod $\to A$ -mod satisfying $D(S(i)) \simeq S(i)$, which has been mentioned in the Introduction, $D(\Delta(i)) = \nabla(i)$ satisfying $[\nabla(i):S(1)]=1$ for all $1 \le i \le n$. Hence, the Bernstein-Gelfand-Gelfand reciprocity law yields $[P(1):\Delta(i)]=[\nabla(i):S(1)]=1$ for all $1 \le i \le n$. Consequently,

$$\dim_K R = [P(1) : S(1)] = \sum_{i=1}^n [P(1) : \Delta(i)][\Delta(i) : S(1)] = n.$$

LEMMA 7. If A is quasi-hereditary, then condition(ii) of the theorem holds.

PROOF. Clearly, $\sum_{j\in\Lambda(i)}X(j)\subseteq \operatorname{rad}X(i)$ for $1\leq i\leq n$. Recall that $X(i)=x_iR$. Thus, if $x\in\operatorname{rad}X(i)$, there is $r\in R$ such that $x_ir=x$. Now, multiplication by r induces a non-invertible endomorphism of X(i) which must factor through $\bigoplus_{j\in\Lambda(i)}X(j)$, so $f=\sum_{j\in\Lambda(i)}f_jg_j$ with $g_j\colon X(i)\to X(j)$ for all $j\in\Lambda(i)$, and thus $x\in\operatorname{Im} f\subseteq\sum_{j\in\Lambda(i)}X(j)$. We conclude that $\operatorname{rad}X(i)=\sum_{j\in\Lambda(i)}X(j)$.

This completes the proof of the theorem.

4. **Final comments.** Let us conclude the paper with a few observations and examples.

First, it is immediate to see that the (ordered) quiver Q_A of the algebra A is given by the monomorphisms and epimorphisms between the direct summands of X. To be more explicit, let (1, 2, ..., n) be the sequence of the vertices of Q_A corresponding to a (linear) order of the direct summands $X(1) = R, X(2), ..., X(n) = R/\operatorname{rad} R$ of the module X (which refines the partial order Λ of the theorem). Then, for i > j, there is an arrow $i \to j$ in Q_A if and only if $X(i) \subset X(j) \subseteq R$ and there is no X(k) satisfying $X(i) \subset X(k) \subset X(j) \subseteq R$ for $k \neq i, j$. Furthermore, in that case, there is an arrow $i \leftarrow j$ corresponding to an epimorphism $X(j) \to X(i)$ which cannot be factored through any $X(k), k \neq i, j$. Thus, Q_A is a connected quiver with single arrows which appear in pairs: either there are no arrows between two vertices i and j of Q_A or there is a pair of arrows, $i \rightleftharpoons j$. From here, we can easily read the structure of the standard modules established earlier: each $\Delta(i)$ is given by the subquiver of Q_A consisting of all sequences of arrows

$$i = j_0 \rightarrow j_1 \rightarrow \cdots \rightarrow j_{t-1} \rightarrow j_t = j, \quad i = j_0 > j_1 > \cdots > j_{t-1} > j_t = j,$$

and the respective vertices.

Recall that the trace filtration of the projective-injective indecomposable module

$$P(1) = Ae_1 = A\varepsilon_1 Ae_1 \supset A\varepsilon_2 Ae_1 \supset \cdots \supset A\varepsilon_n Ae_1 \supset 0$$

has the property that $A\varepsilon_i Ae_1 / A\varepsilon_{i+1} Ae_1 \simeq \Delta(i)$ for every $1 \le i \le n$. Here, the extensions

$$0 \rightarrow A\varepsilon_{i+1}Ae_1 \rightarrow A\varepsilon_iAe_1 \rightarrow \Delta(i) \rightarrow 0$$

are determined by the arrows of Q_i corresponding to the epimorphisms. Observe that there is a (unique) embedding of P(i) in P(1), for every $1 \le i \le n$.

The following examples should serve as simple illustrations of the theorem, as well as indications of its limitations.

1. $R = K[x]/\langle x^t \rangle$, $t \ge 1$. There is a unique choice of X (the direct sum of all indecomposable R-modules) and thus A is the respective Auslander algebra. The quiver Q_A is as follows:

$$1 \rightleftarrows 2 \rightleftarrows \cdots \rightleftarrows t - 1 \rightleftarrows t$$
.

2. $R = K[x,y]/\langle xy, x^t - y^t \rangle$, $t \ge 2$. Here, for $t \ge 3$, we have several choices for X; for instance, we get the following forms of Q_4 :

 $1 \le s \le t$.

3. $R = K[x,y]/\langle x^2 - y^3, x^3 - y^4, x^4 \rangle$. Here, the algebra is 8-dimensional. Write \bar{p} for the canonical image of $p \in K[x,y]$ in R, and consider

$$X = R \oplus \bar{x}R \oplus \bar{y}R \oplus \overline{xy}R \oplus \overline{y^2}R \oplus \overline{xy^2}R \oplus \overline{x^2}R \oplus \overline{x^3}R$$

(in that linear order). Then $A = \operatorname{End}_R X$ is a 159-dimensional algebra whose quiver Q_A has the form

4. Consider again the 4-dimensional algebra $R = K[x,y]/\langle xy, x^2 - y^2 \rangle$. Taking

$$X = R \oplus R/\overline{x^2}R \oplus \overline{x^2}R$$

(thus only 3 direct summands, not all local-colocal), or

$$X' = R \oplus (\bar{x}R \oplus R/\bar{x^2}R)/\langle \bar{x^2} - (\bar{v} + \bar{x^2}R) \rangle \oplus \bar{x}R \oplus \bar{x^2}R$$

(thus not all direct summands are local-colocal), the respective endomorphism algebras are still quasi-hereditary. The first one $A = \operatorname{End}_R X$ is a 19-dimensional algebra (without duality) whose quiver Q_A is

$$1 \rightleftarrows 2 \rightleftarrows 3$$
.

The algebra $A' = \operatorname{End}_R X'$ is a 39-dimensional algebra with duality (and uniserial standard modules whose socles are isomorphic to S(1), $[\Delta(4) : S(2)] = 2$) with $Q_{A'}$ of the form

REFERENCES

[ADL] I. Ágoston, V. Dlab and E. Lukács, Lean quasi-hereditary algebras, CMS Conf. Proc. 13(1993), 1–14.
[CPS] E. Cline, B. J. Parshall and L. L. Scott, Finite dimensional algebras and highest weight categories,
J. Reine Angew. Math. 391(1988), 85–99.

[D] V. Dlab, Quasi-hereditary algebras, Appendix to Y. A. Drozd and V. V. Kirichenko, Finite dimensional algebras, Springer-Verlag, 1993.

[DR] V. Dlab and C. M. Ringel, *Quasi-hereditary endomorphism algebras*, Abstracts Amer. Math. Soc., January 1991, 58.

[PS] B. J. Parshall and L. L. Scott, *Derived categories, quasi-hereditary algebras and algebraic groups,* Proc. Ottawa-Moosonee Workshop, Carleton-Ottawa Math. Lecture Note Ser. 3(1988), 1–105.

[T] H. Tachikawa, Quasi-Frobenius Rings and Generalizations. In: Lecture Notes in Math. 351, Springer-Verlag, 1973.

Department of Mathematics and Statistics Carleton University Ottawa, Ontario K1S 5B6 e-mail: vdlab@math.carleton.ca

Department of Mathematics and Statistics Carleton University Ottawa, Ontario K1S 5B6 e-mail: pheath@math.carleton.ca

Department of Mathematics and Statistics Carleton University Ottawa, Ontario K1S 5B6

 $e\hbox{-mail: } \textit{fmarko@math.carleton.ca}$