
Can. J. Math., Vol. X X I I , No. 4, 1970, pp. 863-874 

AN ABSTRACT CONCEPT OF THE SUM OF A 
NUMERICAL SERIES 

WILLIAM H. RUCKLE 

1. Introduction, Our aim in this paper, generally stated, is to formulate 
an abstract concept of the notion of the sum of a numerical series. More 
particularly, it is a study of the type of sequence space called "sum space". 
The idea of sum space arose in connection with two distinct problems. 

1.1 The Kôthe-Toeplitz dual of a sequence space T consists of all sequences 
t such that st Ç I1 (absolutely summable sequences) for each s £ T. It is 
known that if cs or bs is used in place of Z1, an analogous theory of duality 
for sequence spaces can be developed (cf. [2]). What other spaces of sequences 
can play a rôle analogous to Z1? This problem is treated in [6]. 

1.2. Let {xn,fn} be a complete biorthogonal sequence in (X, X*), where X 
is a locally convex linear topological space and X* is its topological dual 
space. For x G X and / in X* the formal series corresponding to f(x) is 

oo 

/(*)~£/n(*)/(*n). 
7 1 = 1 

Is there a topological sequence space 5 and a continuous linear functional 
E on S such that the sequence (fn(x)f(xn)) is in 5 for each x Ç X a n d / £ X* 
and E((fn(x)f(xn))) = / ( # ) ? This problem will be treated for X a Banach 
space in [7]. 

The definitions of sum space and the related concept of abstract series 
method are given in § 2. 

Most of the results in this paper are directed toward the construction of 
sum spaces or criteria under which a given type of sequence space is a sum 
space. For instance, the processes of permuting and mixing sum spaces to 
obtain new sum spaces is given at the end of § 2. In § 4, conditions are given 
under which the sum and intersection of sum spaces is a sum space. 

Previous formulations of a generalized concept of sum have been given in 
terms of series-sequence and series-series summability matrices. An account 
of what is known about such matrices can be found in [1, Chapter 4]. In § 5, 
criteria are developed under which certain matrices determine a sum space, 
and the series-sequence method of the arithmetic mean is shown to be such 
a matrix. 
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One of the implicit results of this paper is that the concept of sum space 
is in a sense dual to the concept of multiplier algebra. Multiplier algebras 
of sequence spaces were studied in [4] and the definition is repeated preceding 
Definition 2.4. Concepts allied with that of multiplier algebra are those of 
^-invariance and solidity studied by Garling in [2]. 

A very simple illustration of the utility of the abstract notion of sum is 
the following. Let {xn} be a conditional Schauder basis of a Banach space 
and let {fn} be the biorthogonal coordinate functionals. Let -K be a permutation 
on the integers such that {x^)} is no longer a basis. It is easy to verify that 
there is no regular matrix which takes the partial sums of each sequence 
of the form 

{/(^r(n))/r(n) W ) , / € X*, X G X, 

into its "correct" sum, i.e., f(x). However, each such sequence is in the sum 
space csT (see Example 3.2 and the end of § 2), and the sum E on es* takes 
each such sequence into its correct sum. 

Acknowledgement. I am indebted to the referee for several constructive 
suggestions. 

2. Sum spaces and abstract series methods. The letters s, t, u, and v 
with or without subscripts will denote sequences. If 5 is the sequence 
{ait

 a2, . . •}, then s (J) denotes the j th coordinate of s, namely ajt A K-space 
is a locally convex linear space of sequences upon which each functional Ej, 
given by Ej(s) = s(j), is continuous. An FK-(BK-)space is a K-space which 
is a Fréchet (Banach) space. 

2.1. Definition. A sum is a continuous linear functional E defined on a 
K-space S containing 4> (finitely non-zero sequences) such that 

E(s) = 2>( j ) 
for s in <f). J 

The following facts about sums follow very quickly from the definition, 
and their proof is omitted. 

2.2. PROPOSITION, (a) Suppose that S and T are K-spaces containing <t> such 
that S C T and the inclusion is continuous. {This occurs, for instance, when S 
and T are FK-spaces.) If E is a sum on T, then E restricted to S is a sum. 

(b) A sum defined on a Y^-space S is unique if and only if <j> is dense in S. 

The definition of "sum" as given by 2.1 is very inclusive. In fact, if 5 is 
any BK-space, it is easy to find a sequence t such that t(j) ^ 0 for each j 
and tS = {ts: s G S} is contained in I1 (absolutely summable sequences). 
Here, ts is the sequence whose j th coordinate is t(j)s(j). Then tS is a BK-space 
equivalent to S and the usual sum on I1 is a sum when restricted to tS. 
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For a K-space S containing <j>, S° denotes the closure of <j> in S, and Sf 

denotes the space of all sequences (xf (ef)) as x' ranges over S*. Here ej denotes 
the jth coordinate vector, the sequence with 1 in the j th place and Os elsewhere. 

Let 5 be a K-space containing <j> on which the sum E is defined. Roughly 
speaking, the most natural set arising in connection with S on which a sum 
is required is the set SSf. If s £ S and t — (x/(ej)) is in Sf, it would be 
desirable that the following conditions hold (see 1.2): 

(2-1) st e S, 

(2-2) E(st) = x/(s). 

The first condition requires that st be in the domain of the sum E. The second 
condition requires that E gives st its "correct" value. It cannot be expected 
that (2-2) will be valid unless s £ S° because of Proposition 2.2 (b). On the 
other hand, if s G 0, it is easy to see that (2-1) and (2-2) are valid for each 
t € S'. 

Definition 2.1 is not sufficient to yield condition (2-1) even when 5 = 5°. 
For example, let S = tco, where t(J) — 2~j for each j and Co consists of all 
sequences which converge to zero. Then Sf = si1, where s (J) = 2j for each j . 
The sequence (2~J/j2) is in S and (2J/j2) is in Sf, but their coordinate wise 
product (1/i4) is not in 5. 

The multiplier algebra M(S) of a sequence space 5 is the set of all sequences 
u such that us 6 5 whenever 5 Ç 5. Multiplier algebras are studied in [4]. 

2.3. PROPOSITION, (a) For S a Y^-space containing 0, SSf QS if and only if 
SfC M(S). 

(b) A sum is defined upon S, and FK-space, if and only if M(S) C Sf. 

Proof, (a) is obvious. 
(b) If M(S) C Sf, then e = (1, 1 ,1 , . . . ) G Sf since e is always contained 

in M(S). Thus there is a continuous linear functional E defined on 5 such 
that E(Ej) = 1 for each j . 

If a sum is defined on 5, then e 6 Sf, and so M(Sf) C Sf, and by 
[4, Proposition 3.5], M(S) C M(S*). 

2.4. Definition. A K-space S is called a sum space if and only if S contains 
<t> and Sf = MÇS). 

If 5 is a sum space, then a sum E is defined upon S because of 
Proposition 2.3 (b) and (2-1) is satisfied by Proposition 2.3 (a). However, 
the sum is not unique nor is (2-2) satisfied for all s in S and t G Sf unless 
S = S° (i.e., 5 has AD). 

2.5 PROPOSITION. / / 5 is an FK-sum space, then so is S°. 

Proof. By an easy application of the Hahn-Banach theorem, Sof = Sf. 
By [4, Propositions 3.2 (a) and 3.4], M(S) C M(S°). Thus 

50/ = S' = MÇS) C M(S°) 
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because S is a sum space. On the other hand, S° has a sum defined upon it, 
namely the restriction to it of any sum on 5. Thus M(S°) C Sof by 
Proposition 2.3 (b). 

The condition that 5 have AD is not required in Definition 2.4 since certain 
spaces without AD, e.g. bs, are useful in constructing a Kôthe-Toeplitz type 
duality theory such as discussed in 1.1. 

The BK-spaces I1 and cs (summable series) as well as the space </> with 
either its weak or Mackey topologies are examples of sum spaces. In 
[4, following Theorem 5.6] it is noted that for the space X of all real sequences 
s for which 

Pz(s)=Z\s(J)\ki <™, k = l,2,..., 
3 

it is true that Xs = M(S). Thus X is also a sum space. Two processes will now 
be described by which a proliferation of sum spaces can be generated. 

If 5 is a K-space and ir is any permutation on the integers, denote by Sx 

the space of all sequences sT = {s(7r(l)), S(W(2)), . . .} as 5 ranges over 5 
with the topology generated by the seminorms p o TT~1 as p ranges over the 
continuous seminorms on S. It is clear that (Sv)

f = (Sf)Ta,nd M(SW) = (M(S))T 

so that if S is a sum space, then so is ST. 
Let Si and S2 be two K-spaces, and let N± and N2 be two disjoint 

complementary sets of indices, say Ni = {ki, k2l . . .}, N2 = \n\, n2, . . .} . 
Denote by Si ® S2(Ni, N2) the space of all sequences 5 such that 

(s(ki), s(k2), . . .) G. 5i and OOi) , s(n2), . . .) € S2. 

Determine a topology on this space by means of the seminorms 

P 0 Q(s) = £((*(*i), s(k2), . . . ) ) + q((s(th), s(n2), . . .)) 

as p ranges over the continuous seminorms on Si and q ranges over the 
continuous seminorms on S2. It is not hard to calculate that 

(Si ®S2(Ni,N2)y = 5 / 0 S2'(NU N2) 

and Af (Si 0 S2(Ni, N2)) = M (Si) 0 M(S2) (Nu N2). Hence, if Si and S2 are 
sum spaces, so are Si 0 S2(NU N2). This process can be extended to any 
finite number of summands. 

2.6. Definition. An abstract series method is a pair {S, £ } , where 5 is a sum 
space and £ is a sum on S. The abstract sum of a sequence 5. G -5 is E(s). 

If 5 is an FK-space, {5, £} is called an FK-abstract series method. 

2.7. Definition. An abstract series method is said to apply to the K-space T 
containing </> if TTf C «5. It is said to apply correctly to S if for each t (z T 
and u £ Tf, tu £ S and £(/w) = / w (0 , where /M 6 S* if any function such 
that fu(e[j]) = u(j) for each 7. 
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2.8. PROPOSITION. Let {S, E] be an abstract FK-series method. For T an 
YK-space with AD, the following statements are equivalent: 

(a) {S, E] applies to T; 
(b) {5, E} applies correctly to T; 
(c) Tf = {u: us G S for each t G T}. 

Proof, (a) => (b). Since {5, E} applies to T, TTf C S. For each u G T' 
the mapping defined by Fut = ut is linear and closed, hence continuous from 
T into 5. For each t G <£, FJ G 0 so that for £ G r ° , 

Eiut) = 2 « ( / W ) = E/«(« i ) ' i = /«(0 

since the sum is finite. But <f> is dense in 5 so that E{ut) — fu(t) for each 
/ G S. 

(b) => (c). Denote the set on the right-hand side of (c) by Ts. Since 
{S, E) applies to T, Tf C Ts. On the other hand, if u G Ts, the mapping 
Fw is continuous from T into 5 so that fu(t) = E(ut) is continuous on 5. 
Since fu(ej) = u(j) for each j , u G r7 . 

(c) => (a). If 7 ' = T s , then 7 T ' = TTS C S by definition of T s . 

3. Lattice properties of Sf. If 5 and T are K-spaces, S H T is a K-space 
with the topology generated by all continuous seminorms on S or T. With 
the topology generated by all seminorms of the form 

(3-1) r(u) = inî{p(s) + q(t)\ s G 5, t G 7\ s + t = w} 

as p ranges over all continuous seminorms on 6* and q ranges over all continuous 
seminorms on T, S + T ( = {s + t: s G S, t G 2"}) is also a K-space. Some 
properties of such intersections and sums were derived in [5]. 

In this section, additional properties concerning the sum and intersection 
of K-spaces will be developed. These properties have some interest in 
themselves, but they are given here primarily so that they can be applied in 
the following section. 

3.1. THEOREM. For K-spaces S and T: 
(a) ( 5 + T)'CSfn Tf; 
(b) 7/ <t> is dense in S H T, then (S + T)f = Sf H Tf; 
(c) ( S n r ) ' = S'+ Tf. 

Proof, (a) This follows immediately since the inclusions of 5 and T into 
5 + T are continuous. 

(b) Suppose that S H T has AD, i.e., <f> is dense in S C\ T. If u G Sf C\ Tf, 
there is / i in S* and/ 2 in T* such t h a t / i ( ^ ) = fî(et) = u(i) for each i. Define 
/ on 5 + T by 

f(s + t) = / i W + / 2 W , ^ € 5 , ^G T. 

To see t h a t / is well-defined, let s + / = sf + /', where 5, 5' G 5 and /, t' G r . 
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Then s — sf = t' — t, and so this vector is in S C\ T Both / i and f2 are 
continuous on S C\ T and fi(v) = f2(v) for v £ $. Since S C\ T has AD, 
/ i ( s -s ' ) =Mf-t). 

To see t h a t / is continuous, let /> and g be continuous seminorms on S and 7\ 
respectively, such that \fi(s)\ ^ p(s), s G 5, and |/2(0I ^ 5(0» * £ T- Then 
if r is given by (3-1), r is a continuous seminorm on S + T such that 
\f(v)\ g r(v) for » G S + T. Since f(et) = u(i) for each i, # G (5 + T)f. 

(c) The fact that Sf + Tf C (S C\ T)f follows from the fact that the 
inclusions from S f~\ T into S and J1 are continuous. 

If u G ( S H ? y , there i s / G ( 5 H T)* such tha t / (* , ) = «(f) for each i. 
There are continuous seminorms p on S and q on T such that for each 
u G 5 H T , 

|/(w)| g max{£(w),£ (*/)}. 

By [3, § 19, p. 229, 6 (3)], there are linear functionals /1 and / 2 on S C\ T 
such that /1 + / 2 = / , and 

| / i («) | ^ />(«)• \ft(u)\ è q(u), 

for each u (i S C\ T. By the Hahn-Banach theorem, /1 has an extension Fi 
to all of S such that |.Fi(s)| g £(s) for each s, and there is an analogous 
extension F2 of/2 to all of T. If Ui = (/^(e*)) and 2/2 = (F2(et)), then wi G Sf, 
u2 G r ' , and u = «1 + «2. Thus (5 H 7 y C 5 / + r ' . 

3.2. Example. H s £ cs — I1, there is a permutation on the positive integers 
such that sr G es but 

Ë *(;) ^ Ë *(/)• 
It was noted in § 2 that csT is a sum space so that e £ csf C\ csT

f. But e is not 
in (cs + csv)

f. If there were a continuous linear functional E on cs + csT 

such that E(ej) = 1 for each j , it would be continuous when restricted to 
both cs and csT. Since « and csr have AD, £( / ) would be uniquely defined on 
cs and on csT. Thus E(t) = 2™=i ^(j) f° r * in cs and £( / ) = 27= 1 t(X~lU)) 
for / in c v But sT is in cs C\ csT and 

Thus no such E can exist. 
Therefore (cs + a ^ is strictly contained in csf + csT

f, and cs P\ csT does 
not have AD even though both cs and csT do. An alternative proof that 
cs r\ CS-JT does not have AD would note that the continuous linear functional 

00 00 

/(*) = E s(j) - E s^-'m 
i=i 3=1 

is 0 on each ej but non-zero on cs P\ csr. 
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Problem. Is the converse of Theorem 3.1 (b) true if both 5 and T have AD? 

4. Lattice properties of sum spaces. Our aim in this section is to 
determine conditions under which the sum and intersection of FK-sum spaces 
are sum spaces. Theorem 4.2 provides a rather complete solution in the case 
of the sum. In the case of the intersection we have Proposition 4.3 in which 
one of the spaces need not be a sum space. Although this proposition is 
somewhat contrived, it yields many examples of sum spaces as evidenced 
by its Corollary 4.4 which is widely applicable. See also the statement preceding 
Proposition 5.4. 

The following lemma has a trivial proof which is omitted. 

4.1. LEMMA. For sequence spaces S and T, 

M(S) H M(T) C M(S + T) C\ M(S r\ T). 

4.2. THEOREM. Let S and T be FFL-sum spaces. The space S + T is a sum 
space if and only if there is a sum defined on it. 

Proof. The necessity that a sum be defined on 5 + T in order that it be a 
sum space is clear. 

If a sum is defined on S + T} then e Ç (S + T)f so that 

M«S+T)')C (S+T)'. 

But by [4, Proposition 3.5], M (S + T) C M((S + T)f) so that 

M(S+ T) C (S + T)'. 
On the other hand, 

M (S + T) D M(S) r\ M(T) = Sf H T* 

by Lemma 4.1 and the fact that S and T are sum spaces. By Theorem 3.1 (a), 

sfnr'D (s+ ry so that M{S + T) D (S + ry. 
4.3. PROPOSITION. If S is an ¥YL-sum space and T is an FK-space such that 

M(S) C M{T) and TTf C (SHT), then S C\ T is a sum space. 

Proof. By Theorem 3.1 (c), (S (^ T)f = S'+ Tf and since e £ Sf, 
M(Sf + Tf) CSf+ T'. By [4, Proposition 3.5], M(S H T) C M((S H T)*). 
Since M(S) C M(T)y 

Sf = M(S) = M(S) r\ M(T) C M (S H T) 

because of Lemma 4.1. And TTf C ( 5 H T) implies T' C M(S (^ T). In 
view of these conclusions, it follows that 

M(S n r ) c M((S n ry) csf+rfc M(S n T) 
so that equality holds throughout. 

4.4. COROLLARY. / / 5 is an ¥¥L-sum space with I1 (Z S and T is an FK-space 
in which {ei, e2, . . •} is an unconditional basis, then S P\ T is a sum space. 
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Proof. Since eu e2, . . . is an unconditional basis for T, it easily follows 
that TTf CllCS. Since Z1 C 5, M(5) = S ' C m and since K e2, . . .} is 
an unconditional basis for T, m C M(T). Thus Proposition 4.3 is applicable. 

4.5. Example. For 1 < p < co , cs P\ lp is a sum space because of Corollary 4.4. 
This furnishes a positive answer to the question in [4, the end of § 6]. Every 
7-perfect BK-algebra in the smallest class containing m, bv, and closed under 
finite application of [4, Theorem 6.2] is either m or contains a coordinate 
subspace equal to bv. In fact, any finite number of reapplications of 
[4, Theorem 6.2] is equivalent to a single application. The BK-space cs P\ lp 

for 1 < p < oo has ê as a basis by. [4, Theorem 5.4]. By Theorem 3.1 (c), 
(cs C\lv)f = bv + lq, where 1/p + 1/q = 1 and bv is the set of all sequences 
5 such that 

' S \s(j) - s(j + 1)\ <oo. 

Thus /ff + bv for 1 < a < oo is a multiplier algebra of a Schauder basis and it 
clearly does not contain a coordinate subspace equal to bv. Thus the collection 
of multiplier algebras of bases in Banach spaces is not exhausted by the 
smallest class of BK-algebras containing m, bv, and being closed under the 
mixing operations described in [4, Theorem 6.2]. 

5. Criteria for a matrix to determine a s u m space. Let {tn} be a 
sequence in <f> such that 

(5-1) l im4(j) = l 
n 

for each j . Let J be the infinite matrix whose rows are tu t2, . . . , i.e., {tn(j)}, 
1 ^ n,j ^ oo. Let 5> consist of all s in co such that 

(5-2) p(s) = [sup | (4 ,5) | < o o . 
n 

Here (t, s) = ^j t(j)s(j) for / in <f> and s in co. In the terminology of Wilansky 
[9, p. 227], Sj = m>.-

Suppose that J has an inverse ^ whose columns are \s\, $2, • . •} C</>, 
i.e., y = {sn(k)}1 1 ^ k, n ^ oo. Also assume that the correspondence of s 
in 5 to 

J s = {(h, s), (h, s),...} 

in m is an isomorphism of Sj? onto m. It then follows that 

p(s) = \\Js\\m. 

In this case, S^ is a BK-space with norm p. Because of (5-1), 

Z.s(j) = lim (s,t„) g p(s) 
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for 5 G <t>. Thus by the Hahn-Banach theorem there are sums defined on Sj. 
Whenever the space Sj is mentioned in this section it will be assumed to 
have the properties mentioned above. 

5.1. PROPOSITION. The closure of <£ in S#, i.e., S^°, consists of all s Ç u> such 
that lim^s, tn) exists. 

Proof. The space of all 5 such that limw(s, tn) exists is called cj in 
[9, Chapter 12, § 4]. It is a closed subspace of Sj by [9, p. 229, Lemma 3], 
and by the same lemma, every continuous linear functional / of c<? has the 
form 

(5-3) f(s) = a lim (s, tn) +•]£ aj(s, tj), 
n j 

where X ; \aj\ < °° • Since (snj tf) = ônj} it follows that aù = f{sf) for each j . 
Suppose that f(ej) = 0 for each j . Then/ (s ; ) = 0 for each j since each Sj £ <f> 
by our permanent hypothesis. Also, \imn(s, ef) = 1 because of (5-1) so that 
a = 0. Hence / is the zero functional so that c# — J^V0. 

The space Sjr = (S^)f is a BK-space with the norm 

W = ll/.ll*. 
where || ||* is the norm on (S/0)* and t(j) = ft{e3) for each j . If / Ç 0, 

II/.II* = S i/«(̂ )i = £ia^)i. 
For if J"1 is the inverse of J considered as an operator, the equation 

F(u) = fti^^u), u 6 Co, 

determines a continuous linear functional on c0 whose norm is 

oo oo 

El*M=£l/.(**)l-
3=1 3=1 

5.2. THEOREM. When ~JP has an inverse £/ as above, the following conditions 
are equivalent: 

(a) S j is a sum space; 
(b) Sj° is a sum space; 
(c) {tjs: j = 1, 2, . . .} is bounded in Sj° for each s in SJF°; 

(d) limw tj-s = s for each s in S^°; 
(e) {tjt: j = 1, 2, . . .} is bounded in S^ffor each t £ Sjf; 
(f) s u p ^ \\tktn\\''•= sup*,n L ; 10;, hk)\ < °°, wAere {s,} and 11 ||' ere as 

above. 

Proof, (a) => (b). This results from Proposition 2.5. 
(b) =» (c). If SV° is a sum space, then the topologies generated by the 

norms 
||/||' = sup{|(/, s ) | : s G <t>,p(s) S 1} 
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and 

\\t\\" = sap{p(ts):seSAP(s) £ 1} 

are equivalent on Sjf ( = Sjof) since they both make it a BK-space. Here p is 
the norm on Sj given by (5-2). Since | |^ | | ' ^ 1 for each j , sup ; | | ^ | | " < oo. 
Thus 

Pit?) £\\t,\\"P(s) g sup \\tt\\"p(s) 

i 

for each 5 in 5. 
(c) => (d). Since lim„ tn(J) — 1 for each j , it follows that 

lim tnej = ê  
n 

for each j . If (c) is valid, (d) holds by the Banach-Steinhaus theorem since 
the span of {e0\ is dense in Sj°. 

(d) => (c). This is a result of the uniform boundedness principle. 
(c) => (e). This follows from the fact that the conjugate of the operator 

determined by 5 —•> tjS on Sj° is the operator on Sjf determined by t —» tjt. 
(e) =» (f). Obvious. 
(f) =» (c). If j 6 6>°, then for each j , 

p(tjs) = sup \(tk,tjs)\ 
k 

= sup \(tkts,s)\ 

k 

^ S U P | | W , | | ^ ( 5 ) . 

Thus if (f) is valid, 

sup£(^s) < 00. 

(e) =» (a). It has already been noted that a sum is defined on Sj. Hence 
Sjf contains M(Sjf) and thus M(Sf) by [4, Proposition 3.5]. 

If t 6 Sjf and s 6 Ss, 

sup J (/y, fo) I = sup I {tjt, s) I < co 

since {/̂ } is bounded in Sjf. Thus /s Ç 5> so that 2 G ikf (KSJT). 

5.3. PROPOSITION. For J>', the series-sequence matrix of the arithmetic mean 
whose rows are 

4(i) = \—~n— ' ' * * ' 

5jr, awd hence Ss°, is a sum space. 
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Proof. A direct calculation shows that the inverse of J has the columns 

sn(n) = n, 

sn(n + 1) = -2n, 

sn(n + 2) = n, 
sn(j) — 0, otherwise. 

Now for k S n, 

tkU 

((k-j+l\(n-j+l\ 
„(j) = <\ k A n J ' 3 = 

U>, oth. 
so that 

(Wn, SS) = jhtn(j) - 2jtktn(J + 1) +jtktn(j + 2) 

k, 

otherwise, 

kn 
{(k-j+l)(n-j+l)- 2(k-j)(n -j) +(k-j-l) 

X(n-j-l)} = 2£ 
kn 

IV / \ * v / \ lb / Klb 

•j + i)_ 
n / 

n-k + l 

Thus 
10 

iij + 2^k, 

i f i + 1 = k, 

if j = k, 

if j > k. 

(* 
j=o &tt 

l)fe n-k + l 
1. 

Therefore 5^ is a sum space by Theorem 5.2 (f). 
If a matrix is known to determine a sum space, various summability criteria 

can be stated using Proposition 4.3 or Corollary 4.4. For example, by combining 
Corollary 4.4 and Proposition 5.3 one obtains the following. 

5.4. PROPOSITION. Let J be the series-sequence matrix of the arithmetic mean 
and let p and q be numbers greater than one for which l/p + l/q = I. If s is a 
sequence in lv which is mean series summable, then st is a mean series summable 
sequence in lv if and only if t 6 lq + Sf. In other words, t is of the form h + h, 
where h £ lQ and t2 has the property that t2s £ Sj° whenever s Ç 5^°. 
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