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ON INTERPRETING THE SUMS OF ASYMPTOTIC SERIES
OF POSITIVE TERMS

J. E. DRUMMOND1

(Received 29 June 1981; revised 10 September 1981)

Abstract

Four different kinds of positive asymptotic series are identified by the limiting ratio of
successive terms. When the limiting ratio is 1 the series is unsummable. When the ratio
tends rapidly to a constant, whether greater or less than 1, the series is easily summed.
When the ratio tends slowly to a constant not equal to 1 the series is compared with a
binomial model which is then used to speed the convergence. When the ratio increases
linearly, a limiting binomial and an exponential integral model are both used to speed
convergence. The two resulting model sums are consistent and in this case are complex
numbers. Truncation at the smallest term is found to be unreliable in the second case,
invalid in the third case, and the exponential integral is used to produce a significantly
improved truncation in the third case. A divergent series from quantum mechanics is also
examined.

1. Introduction

Asymptotic series of positive terms occur in a number of perturbation expansions
in quantum mechanics and other branches of physics. It may be possible to
reformulate these calculations as has been described in the introduction to
Drummond's [4] paper on the anharmonic oscillator, but it is the purpose of this
paper to show that the existing series may also be transformed or interpreted to
give the required answer.

There are in use a number of rational transformations of series, most of which
have been reviewed by Smith and Ford [9], which effectively speed the conver-
gence of both slowly convergent and divergent alternating series. However, when
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[21 Sums of positive asymptotic series 29

they are applied to series of positive terms they are found to have singularities
within the operating range. An example of this is the Aitken 82 transformation [2]
also called by several other names including Shanks ex [7] and Pade [0,1] (see, for
example, [3,6]). This estimates the tail of a series 1%n ur as u\/{un — un+l) but
fails by going singular when un = un+]. Furthermore the Aitken S2 transforma-
tion fails to sum 22"/n to -ln(-l) or ±in. Other rational transformations have
similar difficulties.

To overcome these difficulties two new methods are proposed for use in
summing asymptotic series of positive terms. These are in addition to a sequence
transformation with an imaginary parameter which gives comparable accuracy
and has been recently published by Vanden Broeck and Schwartz [10].

The basic principle used in summing these series is to construct a model
asymptotic series whose sum is known and whose terms behave in a manner
similar to those of the unknown series. If the difference between the model and
the series is convergent then the model sum of the series is defined as the sum for
the model plus the difference between the series and the model. In doing this it
has been found necessary to classify series according to the limiting behaviour of
their term ratio Rn (where Rn = un+l/un and un is a term of a series 5 = 2M,,).

An appropriate model is then assigned to each class of series.
This modelling technique is also used to find an improved truncation formula

near the smallest term of a series.

2. General considerations

In the following we shall be mainly concerned with series of positive terms
which either decrease in size from the start to a minimum then increase thereafter,
or which increase throughout the series.

2.1 Approximations to the remainder of an asymptotic series far from the smallest
term

Let Sn = 2"=o ur> let S be the asymptotic sum, let uk be the smallest term and
suppose there exists an a such that Sk + auk = S. Then, if n > k, the remainder
after n terms is (S — Sn) where

n - l

S~SH = auk- 2 ur = -un_x - « n _ 2 - « B _ 3 - . . . . (1)
r=k
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30 J. E. Drummond 13]

If the terms increase rapidly in size while n is greater than both (k + a) and k
then the remainder is approximately -un_}. Furthermore, if « n _ , > « n _ 2 >
wn_3... and the series is approximately geometric, then a better approximation is

Similarly, if n < k and (k + a), then

S~ Sn= 2 "r + ««*=?= "* + «„+! + " n + 2 + ---- (2)

This remainder is approximately un or more accurately «„_,!/„/(«„_, — un) or
«n/("n ~ "«+]) when «„ decreases rapidly with n and /?„ changes slowly along
the series.

2.2 Early truncation and the truncated sum

THEOREM. If an asymptotic series of positive terms has a non-zero smallest term
uk and an asymptotic sum S which is greater than the first term of the series, then
there exists an n such that Sn < S < Sn+,.

PROOF. If every term ur > uk > 0 then Sn, where Sn = 2"=d un increases
monotonically with n without limit. Also 5, is less than S. Hence there exists an n
such that Sn < S < Sn+,. Q.E.D.

If uk is the smallest term, this does not necessarily mean that k = n or (« 4- 1)
or that | « | < 1. Section 3.2 contains a counterexample where \a\= 3.5.

However, if S exists and a is small but unknown, we may use equation (2) to
carry out early truncation. Hence the error in Sn, where n < k, will be as given
just below equation (2), even though the series may later diverge.

2.3 Modelling and term splitting to estimate the model error
Let Zn — un + un+1 + un+2 + • • • be the tail of a series and let Tn be the sum

of the corresponding tail of a series which models the given series. Then, if the
model coincides exactly with the series, Tr = Zr and ur + Tr+, = Tr.

If the model is not exact we may still split each term ur of the series into two
parts Tr and (wr — Tr), then pair off the second part of each term with the first
part of the next to form a new series,

ZB = (Tn + «„- Tn) + (Tn+] + un+l - Tn+i) + . . .

= Tn + (un -Tn + Tn+l) + ( « n + 1 - Tn+l + Tn+2) + . . .

- Tn + 1 u* where u* = ur-Tr+Tr+i. (3)
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If the original series is asymptotic and the early terms of the model are close to
the early terms of the series, the new series will also be asymptotic and its smallest
terms will enable us to estimate the accuracy of the model.

We now proceed to look at several asymptotic series, how they may be
classified and suitable models for summing them.

3. Modelling asymptotic series

3.1 The geometric series
This is the basic series that all transformations must sum. The series

S(x) = 1 + x + x2 + ...
has an analytic continuation -\/{x — 1) if * > 1, which serves as a model for
many divergent asymptotic series.

3.2 The double exponential series
This illustrates the minimum term, summability by the Shanks e2 transforma-

tion [7] and the dangers of truncation.
Consider the series

00

S= 2 (Aa" + Bt>r) wherev4, B > 0, a > 1 and 0 < b < 1.
r=0

This series is divergent and asymptotic but summable in the same sense as the
geometric series. Also, if A(a — 1) < B(l — b) the series has a smallest term,
which is a feature exhibited by a number of asymptotic series.

If we wish to sum this series by truncation then we first use the Shanks e2 [7]
transformation to express the remainder of the series, Zn = 2%n(Aar + Bbr), as
a function of the first four terms of the remainder,

z (Un+\Un+2 ~ un»n+i)un + {unUn+1 ~ »^+ 1)(»n + Un+])

{un+iun+3 - u2
n+2) + (un+xun+2 - unun+3) + (unun+2 - u2

n+l)

This is also the [1,2] Pade approximant (see, for example, [3,6]).
This formula may be simplified, if ab is retained, to a three term formula for

the remainder

z

Equations (4) and (5) may be verified by direct substitution.
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32 J. E. Drummond [5]

Equation (5) may now be used to find the best place to truncate an asymptotic
series which behaves like a double exponential. Thus Sn = S when Zn = 0 or
abun_] — un. This means that we should truncate a double exponential series just
after «„_, where abun_x — un. This is only at the smallest term when ab — 1 or
when the terms of the series are symmetric about the two equal smallest terms.

As a numerical example we sum the series

$= 2 [0.2)r+ 8(0.6)r] = 9 + 6 + 4.32 + ....
r = 0

The sum of the two G.Ps. is 15. In equation (5), ab — 0.72 and u2 = abut. Hence
Z2 = 0 and the sum of the first two terms is equal to the geometric model sum,
namely 15. The equal smallest terms are the fifth and sixth, and the sum of five
terms is 25.8864 which overestimates the model sum. The quantity « for equations
(1) a^d (2) is -3.5. The Aitken S2 transformation is singular at the fifth term but,
if started at the sixth term and repeated three times using eleven terms, the first
terms of the successive transformations are approximately 25.8864 — 38.88 +
24.83939 + 3.15843, adding to 15.00422 but thereafter developing an initial
instability. This instability can be avoided by starting the transformation later.
Thus, if we use fifteen terms and transform four times starting with the eighth
term, we obtain the sum 14.999977... correct to four decimal places. Some other
rational formulae were tested and gave the same sum with comparable accuracies,
while the Shanks e2 and higher order Pade approximants sum the double
exponential exactly.

4. Slimming a multiple exponential series

Let S = 2%0(Aar + Bbr + Ccr) where a > b > c. Such a series is identified by
the fact that the ratio Rn tends to a limit a with exponentially small error as
n -» oo, it is divergent if a > 1 and unsummable if a, b or c — 1.

These series are summable by any one of a number of rational transformations.
For instance, if we split each term ur in the ratio {-ur: ur+,) and recombine, then
the new terms are u* where

M* ur+l(u,ur+2-uf+i)

(-U,+ Ur + I)(-Mr + I + Ur+2)'

SO

u* ~(a- b)2Bbr/(a- I)2.
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This method of term splitting is again the Aitken 52, Shanks e, or Pade [0,1]
transformation. It is singular if ur = ur+, but if the transformation is started after
the smallest term and used repeatedly on each previous transformation of the
series, it rapidly sums any multiple exponential series in which a, b and c ¥= I.
The same applies to any of the other non-linear convergence speeding processes
which approximate to a series by the ratio of two polynomials, provided we avoid
the singularities of the process.

The Pade [2,3] and higher order Pade approximations sum the triple exponen-
tial exactly. Even the constant weighted Euler transformation sums the series
exactly in three steps if we know a, b and c and transform using the weights a, b
and c successively in any order.

5. Summing a polynomial series

For a series whose general term is a polynomial of degree k in n, Rn ~ 1 + k/n
where k is a non-negative integer. Such series may be slowly divergent but their
sums are unbounded. To justify this, we note that any polynomial of degree k can
be expressed as a sum of factorials up to degree k, then we take as a model

k\ (1 - xYk~x = f (" + 0 ( « + 2) • • • ( / ! + * ) x " .
n = 0

If we set x = 1 then the left hand side is unbounded.

00

.-. 2 (« + 1)(" + 2) • • • (n + fc) is unbounded.

6. Binomial and logarithmic series

These series are identified by Rn ~ a + b/n where a > 1. The binomial and
logarithmic functions have asymptotic series

(P~ I ) ' " ' ( / > - l)!«!^o (1 - / ) " + " + 1
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and

\ - t n Jo (i - /
-t)ndt

The binomial series diverges if x > 1 and has a smallest term if px < 1 while
the log series diverges if x > 1 and has a smallest term if x < 2. Again the sum to
the smallest term is unreliable because it is a real number and overestimates the
sum of the series. On the other hand the binomial function can be recovered
exactly, as follows, using any four adjacent terms of the series.

Let Zo = u0 + u, + u2 + «3 + .. . and

A(l-x)->= 2 »„

where

v =Ap(p+l)--- (/> + * - ! ) „ „

and

Then

To = A(l - xyp - 2 e, = 1 vn+r = 2 ur. (6a,6b, 6c)
r = 0 r=0 r=0

If we match the first four terms of the two series in equation (6c) and solve for
n, x,p and A, we obtain

„ = (-3*2 + 4*, - Ro)/ (R2 - 2RX + Ro),

x = (n + 2)Rt-(n+\)R0,

p = -„ + („+ l)R0/x,

A = uon\(p-\)\/((p + n-l)\x"),

where Rn = un+x/un.
If n is a positive integer we use equation (6a) to calculate To and if x > 1 we

must use the analytic continuation from small x round the branch point at x = 1,
so

(\ — x\~p — (x — \\~pp-'Pv

If p is a non-positive integer then 2un terminates, so we replace (1 — x)~p by
(1 — x)~p\n(l — x) in the above analysis.

If n is not a positive integer we may still use the binomial model and
interpolate or extrapolate to n as follows. We first choose several integral values
of n near the calculated value of n then for each value of n calculate x, p and A,
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which use the first three terms of the series. Hence we obtain several values of To

from equation (6a). Finally, we interpolate or extrapolate to the value of TQ

corresponding to the calculated value of n or corresponding to zero difference in
the values of vn+3 and «3.

If Tx, T2, T3>... are calculated similarly, the series for Z o is transformed as in
equation (3) in Section 2.3. Apart from the first term, To, this will be an
asymptotic series with smaller terms than the original series if the model is close
to the original series.

7. The exponential integral type series

Asymptotic series for which Rn increases linearly without limit are modelled by
the exponential integral

2 3x xl xi x J-x tn+l

which is tabulated by Abramowitz and Stegun [1]. To find an approximate
truncation formula we proceed as follows. If x > 1 the smallest term of the series
is (n — \)\/x" where n — 1 *£ x =£ n. If n is close to x we may choose the path of
integration for the remainder integral to go from -x to -n then round a semicircle
in the complex plane to +n then to oo. Hence the remainder is

- -^ re~x+ncose[sinn(e - sin0) + icosn(6 - sin0)] dO
n Jo

If n is close to x, if un = n\/xn+x and if e~2x « 1, then the first integral is
approximately (x — n)un, the second integral is approximately
un(- l /3 ± iy/nn/2) and the third integral is small.

If uk_t equals (k - \)\/xk, uk equals k\/xk+\ uk+l equals (k + \)\/xk+2 and
x is between k and (k + 1) then uk_uuk and uk+l are the three smallest terms of
the series. Furthermore, the function (uk_] — uk)/(uk_] — 2uk + uk+l) equals
x{x — k)/[(x — k)2 + k] and this varies almost linearly from 0 to 1 as x varies
from k to (k + 1). The function uk/(

uk-\ ~ ^uk + MA+I) equals kx/[{x — k)2

+ k]. This equals k when x equals k or (k + 1) and uk_xuk/(uk_xuk+x — u\)
equals x.
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We may now evaluate the exponential integral by summing the series to the
term uk_x just before the smallest term then substitute for (x — k) and k or x
( = k) from the three term expressions above. This gives us a three term
expression for the remainder and hence a truncation formula with a correction
term,

C ., -L .. -L , , . J- .. -1- V_ ' ' T 1 , Hj * 1 ;,
o — I»Q i i»i i i <*k— 1 ' T _|_ 3 k

, " ^ „• (7)

As a more precise alternative to equation (7) I wish to show in the following
theorem that the limiting form of the truncated binomial as n -» oo and the
truncated exponential integral series are equivalent. Hence the truncated binomial
may be used as a model for the exponential integral.

THEOREM. / / the rth terms of a truncated binomial series and an exponential
integral series, truncated by starting at the nth and kth terms respectively, are

= p ( p l ) - - (p + n + r l ) =

( + )\ ' r k+r(n + r)\ r z

and uo = vo,ul = t>,, u2 = v2 then for every k and r

lim (vr — ur) = 0.
n-* oo

PROOF. If ux/uQ = vx/v0 then k{n + 1) = {p + n)zx.
If u2/u, = v2/vi then (k + 1)(« + 2)-(p + n+ \)zx.

:.zx = k + n + 2and/> + n = k(n + l)/(k + n + 2).

•••(«r+l/«r) - (»,+ ,/»,.) = (* + 0(» + »• + 0 / ((/> + « + 0 « )
= (A: + r)(n + r + 1)/ (nA: + nr + kr + 2r + k).

This tends to 1 as n -* oo for fixed k and r. The constant A may be chosen to
make M0 = v0 hence

lim (or - ur) - 0. Q.E.D.
n-»oo

Note that as n -» oo, x -» oo and/? -» -oo.
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As a numerical test of the rate of convergence of this result we use equations (6)
to sum 2r!. If n = 2, then x = 5,p = -7 /5 and (1 - 5)7/5 = 1 - 7 + ff(l + | +
H + W +• • • ) • Hence l + l + 2 + f + - - - = 4 ( 7 - 1 - 47/5e±7w//5) ^
.549697 ± .946220/. Similarly, with n = 4, 8 and 16 the estimates are .598896 ±
1.020908/, .638154 ± 1.077026/, .664351 ± 1.112779/. If this sequence behaves
like a + b/n + c/n2 + d/n* then

a- .6960 ± 1.1548/

while

- .697175 ± 1.155727/.

Using more terms and larger values of n will give closer agreement.
If we move one term along the same series and fit the second, third and fourth

terms to a binomial with n = 3, then x = 7, p = -13/7 and

1 [/. ~\13/7 . . ,„ 13.6
1 + 2 + 6 + 22 + ••• = —1(1 - 7 ) 1 V - 1 + 1 3 -

= -0.145380 ±0.930182/.

If n = 3, 4, 5, 6 and 7 the real parts of the sums are -0.145380, -0.168122,
-0.185185, -0.198439, -0.209020. If these estimates behave like a + b/n + c/n1

+ d/n3 + e/n4 then a = -0.30075, hence (1 + a) = 0.699.... Again, more and
larger values of n will improve the calculation.

In order to compare the truncation formula (7) and the binomial model for a
series with a minimum we sum the series 2H/5 r + 1 .
Sum of five terms with zero a = 0.273280
Truncation with correction (Eq. 7) = 0.270720 ± 0.02152/
Extrapolated binomial from

n = 4,5,6,7 and 8 = 0.2707657 + 0.0211682/
e"5Ei(5) = 0.2707662 ± 0.0211678/

Simple truncation is least accurate and gives no imaginary component while the
four term binomial is most accurate.

8. Series for the Stark effect

H. J. Silverstone [8] carried out some calculations on the Stark effect using a
direct perturbation series. The terms of one of his series for the perturbed energy
are

(-5000 - 225 - 56 - 49 - 79 - 195 - 663 - 2992 - 17347) X 10~4 a.u.
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where -0.5 atomic units (a.u.) is the normalised unperturbed energy, while the
energy as given by Hehenberger et al. [5] is -0.5275 ± 0.00725/ a.u. The ratio of
successive terms increases without apparent limit, so the series appears to be of
the type described in Section 7. If we truncate before the smallest term the sum is
-0.5281 while the truncation and interpolation formula (7) gives -0.5275 ± 0.0071/
and the binomial model using the four smallest terms gives the value -0.5276 ±
0.0073/.

Similar but more detailed calculations have been carried out by Drummond [4]
for the anharmonic oscillator.

9. Conclusion

If one wishes to sum an asymptotic series of positive terms or say that the series
represents a finite number, the first step should be to identify the type of series.
The four different types of series described here must be treated differently and
may be identified by the behaviour of the ratio Rn (= "„+]/"„)•

If Rn -> 1 from above or the terms are polynomials, no finite sum can be
ascribed to the series.

If Rn tends to a constant greater than 1 with exponentially small differences the
tail may be summed by a number of non-linear convergence speeding processes
before the instabilities of the smallest terms swamp the process.

If Rn tends to a constant greater than 1 but converges slowly, fitting a binomial
to three or four terms, and if necessary, using this for term splitting or interpola-
tion may be successful.

The next case is of some use in quantum mechanics.
If Rn increases linearly we may truncate just before the smallest term to obtain

a rough estimate of the real part of S or truncate with a correction to obtain a
better estimate or match four terms of the series to a binomial series with large
index.

In the first case truncation at the smallest term is invalid and in the second and
third cases truncation at the smallest term can lead to serious errors.
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