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Nutation is one of the most striking and ubiquitous example of the rhythmic
nature of plant development. Although the consensus is that this wide
oscillatory motion is driven by growth, its internal mechanisms remain to be
fully elucidated. In this work, we study the specific case of nutation in compound
leaves of the Averrhoa carambola plant. We quantify the macroscopic growth
kinematics with time lapse imaging, image analysis and modeling. Our results
highlight a distinct spatial region along the rachis—situated between the growth
and mature zones—where the differential growth driving nutation is localized.
This region coincides with the basal edge of the growth zone, where the average
growth rate drops. We further show that this specific spatiotemporal growth
pattern implies localized contraction events within the plant tissue.

Introduction

Plants move. This overlooked truth has come to light again thanks to the recent study of
spectacular ultra-fast motions (Forterre et al., 2016). For example, the snapping of the Venus
flytrap (Forterre et al., 2005; Sachse et al., 2020) and the catapulting of fern spores (Noblin et
al., 2012) both require high speed cameras to be recorded. At the opposite side of the
timescales spectrum, plants moves through their growth.
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The observation of these slow motions necessitate time-lapse imaging. After Darwin (Darwin,
1897), they started to be historically investigated with the development of photography
(Gaycken, 2012). But we are still evidencing nowadays a variety of exciting new motions
(Riviere et al.”, 2017, 2020; Derr et al., 2018). They can either be nastic motions, or tropisms,
depending on whether the direction of the motion is imposed by factors internal or external
to the plant respectively. The movement is defined as autonomic (respectively paratonic)
depending on whether the triggering signal is internal to the plant or not. They can finally be
reversible or linked to irreversible growth. These three dichotomies define the traditional
classification of slow plant motions (Riviere et al., 2017). Within this framework, the status of
one remarkable movement called nutation is still undecided (Riviere et al. , 2017; Stolarz, 2009;
Baskin, 2015; Mugnai et al., 2015)

Nutation is the phenomenon that causes the orientation of the long axis of an elongated
growing plant to vary over time in a pseudo-periodical way. It was already observed for
climbing plants by British botanists of the 17th century (Webster, 1966) and began to be
studied by Hugo von Mohl and Ludwig Palm in the first part of the 19th century (Baillaud,
1957). To the best of our knowledge, the term "nutation” was first mentioned by Charles
Bonnet (Bonnet, 1754) although he acknowledges that this term had been named before him,
by physicists who knew the phenomenon. They probably saw this motion as a botanical analog
to the astronomical nutation.

Darwin later introduced the idea that nutation had an endogenous origin and many plant
motions were actually modified nutations (Darwin, 1897). The very origin of nutation was a
source of debate at the time nonetheless (Baillaud, 1957), and it remains so up to this date
(Brown, 1993; Migliaccio et al., 2013; Mugnai et al., 2015). Part of the community backs up
Darwin’s idea of an internal oscillator (Brown et al., 1990; Johnsson et al., 1999). Others ascribe
this oscillating behaviour to inertial overshooting of the plant occurring during its straightening
process (Israelsson and Johnsson, 1967; Johnsson and Israelsson, 1968; Gradmann, 1922;
Agostinelli et al., 2020). Finally, the compromise solution calling for a combination of these two
hypotheses gathers more and more support (Johnsson et al., 1999; Johnsson, 1997; Orbovic
and Poff’, 1997; Stolarz, 2009; Agostinelli et al., 2021). The one thing making consensus is that
nutation is a macroscopic manifestation of multicellular microscopic growth.

Plant growth results from a subtle balance between the strong internal osmotic pressure
and the resisting rheology of the cell wall (Tomos et al., 1989). Although growth and plasticity
are very distinct processes, and growth doesn’t involve viscosity (Goriely, 2017), Lockhart used
an effective viscoplastic framework to formalize plant growth (Lockhart, 1965). Lockhart’s
model received good experimental support at the single cell level (Green et al., 1971; Cosgrove,
1985; Zhu and Boyer, 1992). Still, some shortcomings need to be addressed (Jordan and
Dumais, 2010), and the origin of the cell wall-loosening mechanism remains unclear (Palin and
Geitmann, 2012; Kroeger et al., 2011; Micheli, 2001; Hofte et al.,, 2012). The cell wall is
considered here to be an inactive gel but it was demonstrated that elements of the cell wall,



the homogalacturonans (HG) can transform chemical modification into mechanical expansion
through cell controlled enzymatic demethylesterification (Haas et al., 2020). The precise role
of elasticity that was added to Lockhart model later on by Ortega (Ortega, 1985) is then subject
to debate (Kierzkowski et al., 2012; Haas et al., 2020). Finally, The multi-cellular aspect of the
biophysics of growth remains to be understood (Boudon et al., 2015). In particular, dynamical
aspects related to water fluxes between cells have just started to be taken into account, either
numerically (Cheddadi et al., 2019) or even more recently theoretically with the development
of a hydromechanical field theory for plant morphogenesis (Oliveri and Cheddadi, 2025). These
new theoretical concepts will be key to understand the complex spatio-temporal behaviour
observed in plant nutations.

The seminal work on the spatio-temporal characterization of nutation has been performed
by Berg and Peacock (Berg and Peacock, 1992) where they evidenced strong fluctuations and
traveling waves of the axial elongation rate in the sunflower hypocotyl. They even measured
negative rates, suggesting local contractions. At the time, they acquired data with one single
camera, and their growth measurements were necessarily biased by strong projection artifacts
due to the three-dimensional nature of the motion.

Here, we aim to revisit in detail the phenomenon of nutation. By carefully quantifying the
motion of nutation (taking into account the 3D nature of the motion), we will gain knowledge
on the nature of this puzzling mechanism. In this article, we focus on the plant Averrhoa
carambola, a plant known for exhibiting ample nutation (see Fig. 1A-B) and other growth
motions (Riviere et al., 2017, 2020; Riviere , 2017).

The manuscript is organized as follows. We start by characterizing the kinematics of
nutation at the scale of the whole leaf, and emphasize the spatial organization of growth. Our
measurements allow to characterize the growth law of nutation and highlight a relationship
between mean growth and differential growth. We then zoom in on the bending zone and,
thanks to a kinematics model, analyze contraction events. Finally, we put our results in
perspective with the microscopic properties (elasticity and chemical content) of the plant cell
wall.

Materials and methods

Growth conditions of plants

Averrhoa carambola seeds were directly obtained from commercially available fruits and sown
into all-purpose compost. Young seedlings were first kept inside a small lab greenhouse. Older
plants (> 6 months) were then moved to the experimentation room. There, plants were
submitted to a 12/12 light cycle under ORTICA 200W 2700K culture lamps. The temperature
and relative humidity rate were monitored with a DHT22 sensor. Temperature was usually



comprised between 20 °C and 24 °C. The relative humidity rate was around 60%. All methods
were performed in accordance with the relevant guidelines and regulations.

Kinematics: sample preparation

The rachis of interest was carefully coated with fluorescent pigments with a brush. For
curvature and coarse elongation measurements, the top of the rachis was coated
homogeneously with orange pigments. Small blue fluorescent dots were added to mark the
nodes and the petiole. For fine measurements of local growth, the orange pigments were
deposited on the face of a few interfoliolar segments so that they form highly textured and
contrasted patterns. In both cases, because of growth, pigments needed to be added manually
on a regular basis to compensate the dilution of the signal over time.

Kinematics: image acquisition

The kinematics of nutation were captured using time-lapse photography with a DSLR camera
controlled with the open-source software gPhoto2. The camera was firmly fixed to a rigid
structure to avoid any displacement or rotation. The built-in flash of the camera was covered
with LEE Moss green filter and set to the lowest intensity to keep light input minimal during
nights. For curvature and coarse growth kinematics, top-views were taken every 2.5 min. For
local growth measurements, side-views were taken every minute.

Kinematics: data analysis

The midline, or skeleton, of the rachis was obtained by first thresholding the red channel of
the pictures. A cloud of points was obtained and then reduced to a smooth line with a moving
median filter. The curvature of the rachis k1 in the plane of interest was obtained by locally
fitting the midline to a circle. The position of the leaflets was retrieved by thresholding the blue
channel. Because of growth, blues dots dilated, lost intensity in time and sometimes even split.
The global unfurling motion of the rachis sometimes resulted in a temporary occlusion of some
blue dots. Simple rules on the conservation of these dots, distance between consecutive dots
and displacements values could overcome a majority of tracking failures. Manual correction
was still needed in some special cases. Finally, the presented spatiotemporal graphs were
smoothed with 2D averaging and median filters.



Kinematics: fine measurements

We obtain the skeleton of the rachis by a simple geometric transformation of the upper
contour which is less altered by leaflet motions. Then we measure the the elongation field
along the rachis by using a previously published image-to-image correlation (Bastien et al.,
2016). The time-frequency analysis of the elongation signals was done by using MATLAB's
continuous wavelet transform toolbox. We used the ‘cgau2’ mother wavelet (second order
derivative of the complex Gaussian). For each location of the rachis, &(t) was wavelet-
transformed. From the resulting complex coefficients C,» we extracted information on the
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weight of each scale/frequency in the signal by computing an ‘energy’:E(a) = Zb|Ca,b| /
ZaZb|Ca,b|2, where a and b are the scale and shift parameters of the wavelet transform. This

information was then re-aggregated and re-arranged to build kymographs displaying the
weight of frequencies in the elongation signal along the rachis.

Kinematic model of nutation

The rachis is modelled by a two-dimensional beam of width 2R (see Fig. S1) and of total length
Ltor. The geometry of the midline is then described with the same quantities than the actual
leaf (see Fig. 1C). The model contains only a few essential ingredients:

1. We define the elongation rate * as the relative local growth rate of an element. For
example, at arclength s, an element of size s as the following local relative growth rate:

1 dés

£(s) = == (1)
The lateral faces of the beam can have different elongation rates €; and €3, giving rise
to differential elongation 8. We assume that the profile of elongation is linear in the bulk
of the rachis:

{5’ = (g +¢1)/2 2)
§ = (er — £,)/2

2. An apical growth zone of length Ly, of constant length. The elongation rate of the midline
€ is thus independent of time and given by:

£(sa) = 2(1- tanh (%)) (3)

where s; is the arc length starting from the apex, and AL the typical length scale of
variation of €.



3. Differential elongation occurs where the mean elongation rate drops, within a bending
zone of length 2AL (for justification, see Results). Because nutation is a periodical
oscillatory motion, differential elongation is modulated by a sine of frequency 2m/w:

5(sgt) = 8, (1 — tanh? (%)) (4)

4. We assume differential elongation is the unique driver of the bending of the rachis. In
our case, since the period of nutation is much smaller than the typical time scale of
elongation, we furthermore neglect the advection of curvature. In this case, differential
elongation rates () and the rate of change of curvature (dk/dt) have been shown to be
equivalent (Silk, 1984; Jensen and Forterre, 2022). Their relationship is purely geometric
and can be simplified in the case R < 1 (for us, Rk ~ 10-2). We follow the kinematic
calculation provided by Bastien (equation A.43 in (Bastien, 2010)) with second order
correction in Rk.1to write:

dky _ 1-R*K?

at R

5 (5)

Interestingly, equation 5 does not display the dilution of curvature due to average
growth. Chavarria showed that the dilution effect is compensated by curvature creation
(Chavarr’ia-Krauser, 2006).

The model was implemented numerically with discretized versions of the kinematic
equations 3, 4 and 5. When and where ¢ < |§],local contractions will occur along the lateral
faces of the rachis—ie. either €5 < 0 or £, < 0 over a finite spatial extent (see Fig. S1). This
depends on the relative values of 80 and &y and the exact threshold depends on the spatial
functions chosen to describe ¢ and &. Here, a sufficient condition for contractions is &, < &, =
480. Finally, the apparent elongation &, observed by a camera is obtained by measuring the
orthogonal projection of the simulated rachis onto the plane of observation (see Fig. S2).

Results

Characterizing nutation

As they grow, Avherroa carambola compound leaves exhibit pronounced growth motions.
Putting aside the leaflets, the motion of the rachis can be broken down into two different



motions, depending on their plane of occurrence (for anatomical terms, see Fig. S3). The
unfurling motion of the rachis of Avherroa carambola mostly takes place
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Figure 1: Nutation movement of an Averrhoa carambola compound leaf. (A) Side view, 30
minutes between pictures from top to bottom. The hook shape gradually comes out of the
plane towards the observer (B) Top view, 15 min between pictures (nutation period usually
varies between 1.5 and 4 hours). The distal end of the leaf oscillates in a pendulum-like fashion,
orthogonal to the rachis’ axis. After a full period, the leaf has elongated. (C) Geometrical
parameters describing the rachis and nutation: arclengths s and s, (from the base or the apex
respectively), local angle ¢, local curvature k1 and radius R. The direction of motion defines the



outer and inner faces of the rachis. (D) Spatiotemporal diagram of the curvature7 k.(s, t) along

the rachis obtained from a top-view time lapse movie. Oscillations of k.(s, t) are visible close
to the apex.
Dashed white lines mark the position of leaflets.

in a principal plane (Riviere et al. , 2017). The rachis unfolds steadily while propagating a hook
shape (Riviere et al., 2020). This hook shape is visible in Fig. 1A. This motion is also
accompanied by out-of-plane curvature variations. The rachis bends and unbends in a pseudo-
periodical way, as if it were oscillating around a rectilinear state. The oscillations can already
be seen in Fig. 1A. In Fig. 1B, we see the same motion from the top and on a slightly longer
time range. The period of oscillation varies greatly between 1.5 and 4 hours, typically between
2 and 3 hours, while the typical amplitude is of the order of 25 degrees. Supporting movie 1
shows a time-lapse movie of a typical nutation motion, seen from both sides. To properly
describe the nutation motion, we define: the base-to-apex arc length s, and s, its apex-to-base
counterpart ; ¢ the local angle with respect to the average direction of the rachis ; and the
curvature k. (see Fig. 1C). Fig. 1D shows the quantification of k. in both time and space.

Elongation and bending are localized

We measured the average elongation rate E of each of the successive interfoliolar segments
by tracking the position of the successive nodes. The spatiotemporal diagram of E shows that
only the apical-most region of the rachis elongates, defining a growth zone near the apex (see
Fig. 2A).

We then estimated the profile of differential elongation ) along the rachis from the
transverse curvature k1 measurement, thanks to the several hypotheses described in the
Material and Methods section. Its envelope was estimated via a method based on the Hilbert
transform (Kincaid, 1966) (for more details, see supplementary text). The evolution in time and
space of the envelope of Sis displayed in Fig. 2B. We see that the differential growth—hence
the bending—is spatially limited to a zone downstream of the apex. Similarly to what is done
for the elongation, it is thus possible to define a bending zone.

This bending zone is at a roughly constant distance from the apex, similarly to the constant
length of elongation zone from the apex (see Fig. 2B). Finally, going a step further in the
description of nutation, we notice that the amplitude of the differential elongation—or of the
bending—varies in time, reaching a maximum of 3 x 10-2 h-l. These slow amplitude
modulations of nutation are, however, not in the scope of the present study.



Differential elongation peaks where elongation drops

Because the growth spatial profile is almost steady in the frame of reference of the apex, we

can average the measured quantities in time. The averaged quantities E and D corresponding

to mean elongation and differential elongation rates of interfoliolar segments are plotted on
Fig. 3. Both profiles confirm the existence of a localized
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Figure 2: Elongation and estimated differential elongation during nutation. (A)
Spatiotemporal diagram of the elongation rate E of each interfoliolar segment estimated from
the leaflets’ trajectories (white dotted lines). The black crosses show the position of the leaf
apex estimated from side-view pictures. The red dashed line is a linear fit of the apex position.
(B) Spatiotemporal diagram of the envelope of differential elongation 8 estimated from the
curvature diagram (nutation amplitude).

growth zone. The typical length scale is about 50 mm, and beyond 100 mm growth is not
detectable at all. The mean elongation rate looks like a sigmoid function. In the growth zone
the typical elongation rate is of the order of 10-2 h-1, consistently to typical averaged values
found in the literature (Poorter and Remkes, 1990; Lambers and Poorter, 1992), and then
decays to zero. Interestingly, the differential elongation rate behaves differently. It is non-
monotonic and its maximum coincides with the edge of the growing zone, where the mean
elongation rate drops. A simple mathematical description of these sigmoid and peaked shapes
is well fitted with the hyperbolic functions similar to Eq. 3 and 4. The results are displayed Fig.
3. In this case the derivative of the fit of the longitudinal elongation rate matches well our
experimental measurements of the differential elongation rate, with its amplitude remaining
a free parameter (see supplementary text).

The elongation profile in the growth zone is compatible with local
contractions

We used techniques inspired from digital image correlation (see Materials and Methods) to
quantify the elongation profile within the bending zone. However, as the nutation moves the
rachis towards or away from the camera, we can only measure an apparent elongation rate
(see Fig. S4 and associated supplementary text). Strong projection artifacts indeed affect our
measurements: we see oscillations and even negative values of £, (see Fig. 4A).

Strikingly, the period of oscillation depends on position (see Fig. 4A). Oscillations are faster
at the apical end of the sample (top on graph), and slower at its basal end (bottom on graph).
A wavelet transform evidences two distinct dominant modes with periods in a 2:1 ratio (see
Fig. 4B). We measured 1% 2.1 h at the basal end— corresponding to the nutation period—and
T2r~ 1.2 h at the apical end. In an attempt to rationalize these artifacts, and to work around
them, we built a simple model based on the experimental kinematic features of nutation and
also accounting for projection effects (see Materials and Methods). This model first provides
an order of magnitude for differential growth. Indeed, it can be shown that:

— oL
' A¢p = 2AL o (6)
This can be understood as §,/w being the total differential growth over one period of
nutation, which divided by the radius R gives the local curvature of the rachis, and integrated
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over the bending zone length 2AL, gives the final deviation of the apex (see supplementary text
for formal derivation). By injecting estimations in this relationship

(Ap~ /6, 21/w ~ 2 h, R ~ 0.25 mm and AL ~ 50 mm), we find §,~ 7.5 x 10-3h-1 ~ 10-2h-1
matching the order of magnitude of the measured averaged growth, thus
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Figure 3: Average spatial profiles of elongation rate and differential elongation rate. The two
profiles were fitted respectively to a sigmoid (red line) and to its derivative (green line). The
complete profiles cannot be measured from a top-view because of the hook shape of the leaf.

confirming the possibility of contractions.

Second, simulations our model reproduce the observed pattern of £, (see Fig. 4C— D). Our
model indeed shows that the two main oscillating contributions to &, are brought by: (i)
projection (geometrical) effects, with frequency double that of nutation, maximum at the
apical end of the rachis ; and (ii) the differential elongation itself, with frequency equal to that
of nutation, peaking around s; = Lg (see supplementary text for more details). While
oscillations of €, at T2rare expected in any case (see Fig. S4), oscillations with period trare a
direct signature of differential elongation.
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Finally, we fit the wavelet transform spatiotemporal diagram as a way to estimate the
unknown experimental parameters. The best fit is presented in Fig. 4C and D. The
corresponding parameters 8,=4.5 x 10->h-1and &, = 1.4 x 10-h-indicate that the rachis must
locally contract to explain our experimental measurements.

Discussion

The nutation zone is spatially linked to the growing zone and undergoes
“stop and go” phenomena

The kinematics of nutation presented here are consistent with our previous study on the
same system and confirm the presence of a steady growth zone, extending from the apex over
a constant length (Riviere et al., 2020). This is also in agreement with growth spatial profiles
observed in roots (Silk et al., 1989; Walter et al., 2002; Chavarria-Krauser et al., 2008; Quiros
et al., 2022), and several cylindrical aerial organs (Silk, 1992; Peters and Tomos, 2000; Bastien
et al.,, 2018).

We also show that the basal end of the growth zone coincides with the nutation zone —
ie.fluctuations of the differential elongation rate . The spatial coincidence of the maximum of
the differential elongation rate with the region of steepest decrease of the average elongation
rate is consistent with previous observations on Arabidopsis thaliana roots (Chavarria-Krauser
et al., 2008). This phenomenon could be compatible with the existence of a maximum value
for the elongation rate, likely set by a combination of environmental factors and inner
physiological constraints. Close to the apex, growth-regulating signals could be so strong that
the elongation saturates by far. Small perturbations of these signals in space or time would not
affect the saturated elongation rate and would get edged out. Conversely, when and where
they are not strong enough to saturate elongation anymore, any perturbation on the growth-
regulating signals could directly affect the elongation rate and would eventually translate into
oscillations. The basal end of the growth zone would then be the location most prone to such
variations. The same interpretation could apply to oscillations during the gravit-
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Figure 4: (A) Spatiotemporal diagram showing an experimental measurement of the apparent
local elongation rate € in the bending zone from a side-view time lapse movie. Because of the
oscillatory motion of the rachis, the elongation rate measured is affected by projection effects.
(B) Wavelet decomposition of the experimental spatiotemporal diagram of apparent
elongation rate. The decomposition shows that two dominant modes in the signal: T~ 1.2 h
and 7r= 2.1 h respectively close to the apical and basal ends of the observed section of the
rachis. (C) and (D): Best fit of the kinematics model to the experimental data; A¢ = 8°, Ly =
20.6 mm, AL = 12.2mm, 8, = 4.5 x 10-3h-!

(€o=1.4 x 102h-1, R = 0.26mm were measured and fixed before fitting). This set of parameters

allows local contractions.

ropic straightening of wheat coleoptiles (Bastien et al., 2018): as the coleoptile bends towards
the vertical, the differential growth signal is at its maximum, and no oscillation is observed. On
the contrary, when the coleoptile approaches a vertical posture, the signal decreases, and
nutation of the tip becomes visible again.
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Quantitatively, when and where the differential elongation rate is maximum, its amplitude
is also comparable to the local average elongation rate (see Fig. 3) making the total growth of
one side close to zero or even possibly negative. This could be schematized as a “stop and go”
phenomenon, where each side of the rachis grows alternately, before growth and motions
cease altogether. This alternate growth behavior was already apparent in pea’s epicotyls
observation(Baskin, 1986).

Contraction events during plant growth

In all generality, the spatial arrangement of the average elongation rate £ and the differential
elongation rate 8 can lead to local contractions within the bending zone depending on their
relative amplitudes (see Fig. 3D). Our local measurements of € in the bending zone (see Fig.
4A-B), interpreted by taking projection effects into account, indirectly revealed that nutation
in Averrhoa carambola rachis is compatible with local contraction events—ie. negative
elongation rates over finite spatial extent—(see Fig. 4). These results are in line with previous
reports of contraction events in the circumnutating stems of several other species (Baskin,
1986; Berg and Peacock, 1992; Caré et al., 1998; Stolarz et al., 2008), both at the cell and tissue
levels. It was also observed that contractions are circumscribed to either the basal end of the
growth zone—where the average elongation rate decays— (Berg and Peacock, 1992), or to the
bending zone (Caré et al., 1998), consistently with our findings.

Reports of contractions and negative growth rates go beyond the sole context of nutation.
They have indeed been observed during shoot apical meristem morphogenesis (Kwiatkowska
and Dumais, 2003; Kwiatkowska, 2006; Kwiatkowska and Routier-Kierzkowska, 2009; Long et
al., 2020) and simple leaf growth (Armon et al., 2021), both at the cellular and organ scales.

The interpretation of negative growth rates is still a matter of debate in the community. In
1992, Berg and Peacock, attributed tissue contractions to a purely elastic behaviour (Berg and
Peacock, 1992). In 1998, Care et al. showed that tissue contractions were not artifacts but
instead due to local cell contraction driven by osmotic changes (Caré et al. , 1998). Only
recently, theories describing both elasticity and osmotic water fluxes between cells in plants
(Cheddadi et al., 2019; Oliveri and Cheddadi, 2025) have shown that water motion effects are
central in plant morphogenesis: a growing tissue acts as a sink and extract water from
neighbouring cells which acts like source. In our case, during the nutation movement, the
growing side could get water from the opposite side, leading to contractions of the latter.

A window on the physiological implications of nutation and growth

We believe that growth motions, and nutation in particular, offer an experimental
framework to probe growth at the microscopic scales. Its oscillatory nature combined with a
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clear spatial pattern allow to probe a variety of cell-wall mechanics, cell-wall chemical status
and macroscopic growth rates combinations. A full microscopic investigation goes beyond the
scope of this paper but we provide in supplemental material, a set of preliminary experiments
constituting a proof of concept.

First possible experiment is to use our nutating system to probe cell wall elasticity in growing
or not growing tissue. Our preliminary experiments seem to indicate a strong correlation
between elasticity and growth: the growing side is found softer than the nongrowing side (see
Fig. S4, and corresponding text). This belongs to a long series of observations correlating
growth with changes in cell wall elasticity, by suggesting that growth is faster where the Young’s
modulus is lower. This phenomenon was evidenced in growing pollen tips (Zerzour et al., 2009),
maize roots elongation zone (Abeysekera and McCully, 1994; Kozlova et al., 2019), Arabidopsis
shoot meristem before primordia formation (Milani et al., 2011; Peaucelle et al., 2011).
Similarly, we can probe the changes in chemical status during growth, and our preliminary
experiments seem to indicate a change in methylesterification status of the pectins if the tissue
is growing or not (see Fig. S5 and associated text).

In our system it is difficult to disentangle the reversible and irreversible contributions to
growth as it was done by Proseus et al. for the single-cell algae Chara (Proseus et al., 1999). It
has also been shown in the case of the shoot apical meristem that elastic inhomogeneities (or
differences in stress stiffening) could lead to differential growth (Kierzkowski et al., 2012).
Therefore, to discuss the missing link between the observed microscopic properties and the
macroscopic contractions, we propose two different hypothetic scenarios.

First, one should consider the reversible processes as they have already been found to be
involved in nutation and growth. As mentioned before, Cheddadi et al. recently formalized the
water fluxes coupling in multicellular organs. They showed in particular that new types of
lateral inhibitory mechanisms could amplify growth heterogeneities (Cheddadi et al., 2019):
Tthe softer tissues are favored to become sinks for water at the expense of the neighbouring
cells. In order to investigate this scenario further, one will need to extend the model to
incorporate mechanical aspects. Recently, Moulton et al. generalized the analytical results of
Timoshenko about the growth of 2D bimetallic strips(Timoshenko, 1925) to filaments in 3D
(Moulton et al., 2020a). This new framework which already proved successful to reproduce
plant tropism(Moulton et al., 2020b) is an exciting new line of investigation for nutation.

From our preliminary observations, one could also propose a second hypothetical scenario
for the temporal events: on the growing side, HG are actively addressed to the cell wall in their
native methylated way. Then growth turns to the other side of the rachis following an external
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or internal signal, and HG are sparsely degraded or recycled by endoglucanase explaining the
reduction in staining observed in methylated and demethylated pectins. Here we can indicate
that the time scale could be as fast as 30 minutes. Haas et al. (Haas et al., 2020) proposed that
the expansion part could be solely due to HG filament expansion following the de-
methylesterification. In addition, the partial removal of the highly charged polymer following
their recycling could as well lead to cell wall compaction in link with the observed tissue
contraction.

Conclusion

To sum up, we provided on a new biological model case (Averrhoa carambola), a complete
kinematic description of the nutation motion paying especially attention to the 3D effects.
Thanks to a kinematic model we could disentangle the projection artifacts, and prove that
contractions really happen during nutation. Nutation is found to occur as a steady propagation
spatial growth pattern showing co-localization of the peak of differential growth with the onset
of the growing region. Finally, we showed that this macroscopic behavior can be used as a tool
to investigate microscopic properties of the dynamically alternating growing tissues.
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