QUASI-DIFFERENTIABLE NORMS

J. H. M. WHITFIELD⁽¹⁾

Let E be a real Banach space with norm ρ . Let $S = \{x \in E : \rho(x) = 1\}$. A norm on E is admissible if it generates the same topology as ρ .

The norm ρ is Gateaux differentiable if for each $x \in S$ and $u \in E$,

$$G(x, u) = \lim_{h \to 0} \frac{\rho(x+hu) - \rho(x)}{h}$$

exists.

It is well-known that, if ρ is Gateaux differentiable, for each $x \in S$, $G(x, \cdot)$ is a norm one linear functional on E and the mapping $x \mapsto G(x, \cdot)$ is norm-to- w^* continuous. Also, each separable real Banach space has an admissible Gateaux differentiable norm [2, 3].

Let $U \subseteq E$, $V \subseteq F$ be open subsets of the Banach spaces E and F. $f: U \rightarrow V$ is said to be differentiable at $x \in U$ if there is $Df(x) \in L(E, F)$, the set of bounded linear transformations from E to F, such that

$$f(x+u) = f(x) + Df(x)(u) + \rho(x) \cdot r$$

where $\lim_{u\to 0} r=0$. f is said to be quasi-differentiable at $x\in U$ if there is $f'x\in L(E,F)$ such that for each continuous path $\alpha:(-1,1)\to U$, $\alpha(0)=x$, α differentiable at 0, then $f(\alpha(t))$ is differentiable at t=0 and $D_t f(\alpha(0))=(f'x)(D\alpha(0))$ where D_t is differentiation with respect to t. f is of class Q^1 on U if f is continuous and quasi-differentiable on $U, f': U\to L(E,F)$ is bounded in the L(E,F) norm and the mapping $(x,y)\mapsto (f'x)(y)$ is continuous on $U\times U$. We will say $f\in Q^1(U,V)$.

- V. Goodman considers quasi-differentiable functions in [4]. By characterizing quasi-differentiable norms as Gateaux differentiable norms, using the renorming result mentioned above and using the methods of Bonic and Frampton [1] we obtain some of Goodman's results together with an improved approximation theorem.
- 1. THEOREM. Let E be a Banach space and let σ be a continuous norm on E. Then $\sigma \in Q^1(E \setminus \{0\}, R)$ if and only if σ is Gateaux differentiable.

Proof. It is easily shown that if α is quasi-differentiable, σ is Gateaux differentiable and $G(x, u) = (\sigma' x)(u)$.

⁽¹⁾ Research supported in part by NRC Grant A-7232.

Now suppose σ is Gateaux differentiable. Let $\alpha: (-1, 1) \to E$, $\alpha(0) = x$, α differentiable at t=0. So $\alpha(h) = \alpha(0) + D\alpha(0)h + |h| \cdot r$ where $\lim_{h\to 0} r=0$. Hence we get the inequalities

$$\frac{\sigma(x+h\ D\alpha(0))-\sigma(x)}{h}-\frac{|h|}{h}\ \sigma(r)\leq \frac{\sigma(\alpha(h))-\sigma(\alpha(0))}{h}\leq \frac{\sigma(x+h\ D\alpha)(0)-\sigma(x)}{h}+\frac{|h|}{h}\ \sigma(r).$$

Thus σ is quasi-differentiable at x and $\sigma' x = G(x, \cdot)$.

 $\sigma': E \setminus \{0\} \rightarrow E^*$ is bounded since $\sigma' x = G(x, \cdot)$ and $G(x, \cdot)$ has norm one. Also $(x, y) \mapsto (\sigma' x)(y)$ is continuous since $x \mapsto \sigma' x$ is norm-to- w^* continuous and $\sigma' x$ is a continuous functional.

2. THEOREM. Let E be a real Banach space that admits a norm σ that is Gateaux differentiable. Then there is $f \in Q^1(E, R)$ such that f has bounded non-empty support.

Proof. Choose $h \in C^1(R, R)$ such that h' is bounded, h(0)=1, h(t)>0 if t>1. Then f is obtained by extending $h \cdot \sigma \in Q^1(E \setminus \{0\}, R)$ to E.

3. COROLLARY (Goodman). If E is separable then E admits Q^1 -partitions of unity.

Comment on Proof. Since E is separable, E admits a Gateaux differentiable norm. By Theorem 2 there is a non-trivial real valued Q^1 function on E with bounded support. Evidently Q^1 is not a smoothness category as defined by Bonic and Frampton [1] but the composition of a Q^1 function and C^1 function with bounded derivative is Q^1 , so their construction [1, Theorem 1] with minor modifications gives the desired partition of unity.

4. Theorem. If E is separable, then each real-valued continuous function on E can be uniformly approximated by a Q^1 -function.

Proof. Let $f \in C(E, R)$. Cover R with open intervals of radius $\varepsilon/2$. Let U be the open cover of E obtained by pulling the open intervals back by f. By Corollary 3 there is a Q^1 -partition of unity $\{\psi_{\alpha}\}$ subordinate to U. $g = \sum_{\alpha} f(x_{\alpha})\psi_{\alpha}$ is of class Q^1 , where x_{α} is chosen so that $\psi_{\alpha}(x_{\alpha}) > 0$. Then

$$|f(x)-g(x)|<\varepsilon$$
 for each $x\in E$.

REFERENCES

- 1. R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877-898.
- 2. D. F. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-314.
- 3. M. M. Day, Normed Linear Spaces, Academic Press, New York, 1962. (1964), 284-314.
- 4. V. Goodman, Quasi-differentiable functions on Banach spaces, Proc. Amer. Math. Soc. 30 (1971), 367-370.

LAKEHEAD UNIVERSITY