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We present a novel method that we call FAINE, fast artificial intelligence neutron detection system. FAINE automatically classifies
tracks of fast neutrons on CR-39 detectors using a deep learning model. 'is method was demonstrated using a LANDAUER
Neutrak® fast neutron dosimetry system, which is installed in the External Dosimetry Laboratory (EDL) at Soreq Nuclear
Research Center (SNRC). In modern fast neutron dosimetry systems, after the preliminary stages of etching and imaging of the
CR-39 detectors, the third stage uses various types of computer vision systems combined with a manual revision to count the CR-
39 tracks and then convert them to a dose in mSv units. Our method enhances these modern systems by introducing an innovative
algorithm, which uses deep learning to classify all CR-39 tracks as either real neutron tracks or any other sign such as dirt,
scratches, or even cleaning remainders.'is new algorithmmakes the third stage of manual CR-39 tracks revision superfluous and
provides a completely repeatable and accurate way of measuring either neutrons flux or dose.'e experimental results show a total
accuracy rate of 96.7% for the true positive tracks and true negative tracks detected by our new algorithm against the current
method, which uses computer vision followed by manual revision. 'is algorithm is now in the process of calibration for both
alpha-particles detection and fast neutron spectrometry classification and is expected to be very useful in analyzing results of
proton-boron11 fusion experiments. Being fully automatic, the new algorithmwill enhance the quality assurance and effectiveness
of external dosimetry, will lower the uncertainty for the reported dose measurements, and might also enable lowering the system’s
detection threshold.

1. Introduction

Much interest in the aneutronic fusion reaction of proton-
boron11 (p-B11) has risen lately due to the unexpectedly
large amount of reactions obtained in several high intensity
laser experiments (see, e.g., [1, 2]).

As the physical processes involved in the production of
such excess of reactions are not yet fully understood andmay
even involve nonlinear processes such as the avalanche
process [3, 4], intensive research programs are ongoing in
many academic institutes and private companies [5–7].

Moreover, a high flux of highly energetic particles such as
protons, heavy ions, and the desired fusion product of alpha-
particles accompany the harsh plasma environment that
characterizes laser-initiated p-B11 fusion experiments,
making the analysis of such experiments a nontrivial task.
'e most common diagnostics in such experiments are solid
state nuclear track detectors such as CR-39 [8, 9]. Although
the CR-39 are very reliable for the measurement of the
absolute alpha-particle flux, the analysis of the CR-39 passive
detector involves a long and tedious process which includes
chemical etching, a smart image analysis, and a manual
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revision, thus limiting the accuracy and efficiency of the data
analysis. For this reason, it is highly desirable to develop
automatic software tools to carry out analysis for a large
number of nuclear track detectors, hence enhancing the
overall outputs of future p-B11 experiments at various laser
facilities. 'at is the main goal behind our current research,
which uses deep learning to automate the classification of
neutron tracks on CR-39 detectors.

For fast neutron dosimetry, a CR-39 detector is added to
a standard TLD card dosimeter. 'e CR-39 detector is
composed of an organic polymer whose chemical name is
polyallyl diglycol carbonate (PADC) and its chemical for-
mula is C12H18O7. It is suitable for neutron personal
monitoring due to its high sensitivity to protons hit [10],
which has been recognized some decades ago as a basic
requirement for a fruitful neutron personal monitoring [11].

CR-39 detectors hold some important advantages for
serving as neutron dosimeters, among them are their low fast
neutron energy threshold, their insensitivity to photon and
beta irradiation, their high sensitivity over a wide range of
neutron energies [12, 13], and the low influence of envi-
ronmental effects [14] on its response as well as low signal
fading. Although other neutron detecting technologies, such
as the bubble detector [15], may have advantages in sensi-
tivity, angle, and energy response dependence, the CR-39
detector still remains the most versatile, easy to carry along
with a TLD card, and cheapest neutron dosimeter
alternative.

Nevertheless, the main drawback of CR-39 as a fast
neutrons dosimeter is its ability to accurately measure high
flux neutron fields due to the tedious task of counting the
neutron tracks. Other challenges for the CR-39 are dis-
tinguishing between different neutron energies and dis-
tinguishing between neutrons and alpha-particles.

2. Materials and Methods

'e External Dosimetry Lab (EDL) at Soreq Nuclear Re-
search Center (SNRC) provides dosimetry services to all
radiation workers around the country, most of them are
monitored monthly for X-rays and gamma and beta radi-
ation and some of them for both thermal and fast neutrons.

Since late 70’s [16] and until recently, SNRC fast neutron
dosimetry system has been an in-house system. In 2018, a
new personal neutron dosimetry system, LANDAUER
Neutrak ® system, has been adopted at SNRC [17]. 'is
system is designed to measure CR-39 detectors using a Zeiss
microscope, which is coupled to a CCD camera and to a
robotic arm that feeds the microscope’s moving tray with
plastic holders one at a time, each holder having six CR-39
detectors. 'e CR-39 detector dimensions are 9×19mm.

After the EDL receives the CR-39 detectors from the
customers, the first stage is the etching stage. 'e detectors
are inserted for 15 hours into an etching bath filled with
NaOH heated to 74°C at a concentration of 5.5mol/l in order
to enlarge the tracks size. After etching is finished, the CR-39
detectors are thoroughly rinsed to remove all etching resi-
dues, to achieve optimal optical reading conditions.

Following the rinsing stage, the second stage is imaging
the etched CR-39 detectors using the CCD camera. Ten
images of different areas of the CR-39 detector are taken for
the fast neutron counting. 'e images are then analyzed by
Landauer’s computer vision analysis software. Afterwards,
the EDL staff either adds undetected tracks (false negatives)
or deletes detected tracks (false positives) using Landauer’s
data review SW, according to a set of rules adopted by the
scientific lab team.

We developed for the first time to our knowledge a
method that detects fast neutron tracks on CR-39 detectors,
which is based on deep learning, and we name it FAINE, Fast
artificial intelligence neutron detection. FAINE uses an
artificial neural network of type U-Net and its development
consisted with three stages. 'e first stage is neutrons tracks
manual tagging, the second stage is neural network archi-
tecture setup and training, and the last stage was evaluating
the neural network performance on a test set of neutron
track images over CR-39 detectors. 'ese three stages are
discussed in detail in the following subsections. 'e first and
third stages were carried out using a designated SW written
for the user interface (UI) of the deep learning model as
shown in Figure 1.

2.1. Neutron Tracks Manual Tagging. 'e first stage was the
tagging stage, where we picked 23 dosimeters consisting of
230 images andmanually tagged all neutron tracks.'en, we
used classical image processing algorithms to automatically
detect all the objects in the images and match them to the
tagged neutron tracks. Inside the 230 images, 23,567 objects
were found and 2,615 of them were valid neutron tracks and
20,952 were not. 'e rules for deciding which signs are valid
neutron tracks were taken from the EDL’s work instruction
for developing CR-39 detectors for evaluation of fast neu-
trons, which was adopted from Landauer’s work instruction.
'is instruction relies on a worldwide knowledge and ex-
perience regarding the neutron tracks morphology. For
instance, neutron tracks need to be between certain size
limits, they need to have both inner bright circle and outer
dark crown and they need to be clear and distinct from their
surrounding background. Moreover, they also need to be
evenly scattered across the detector area when accumulating
large enough statistics. Of course, all the above rules for
classifying neutron tracks are somewhat arbitrary, and so is
the task of classifying them in every fast neutron dosimetry
system. 'e main important directives to the EDL staff to
follow for this classifying task were to obey the above rules
and to be as repeatable as a human can be, so the deep
learning algorithm described in the next step can learn the
neutron tracks features as accurately as possible.

2.2.NeuralNetworkArchitecture Setup andTraining. For the
neutron tracks classification, we chose a state-of-the-art
convolutional artificial neural network (ANN) of type
U-Net, which was first introduced in 2015 [18] and was fine-
tuned later [19]. 'is network’s name is due to both its
contracting (downsampling) and expansive (upsampling)
paths, which give it the u-shaped architecture (Figure 2).'e
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contracting path mainly serves as feature extraction for the
net, while the expansive path is more for the localization of
objects. U-Net architecture is commonly used for semantic
segmentation tasks, e.g., processes of linking each pixel in an
image to a class label, in our case either “track” or
“nontrack.”

In order to feed the U-Net training stage with good
quality images, we used dosimeter images that were taken
under different lighting and environment conditions. We
then manipulated the data with preprocessing techniques
using some classical image processing algorithms such as
canny edge detection, dilation, erosion, fill holes, and object
detection. For the training stage, we used 80% of the total

23, 567 tagged signs that were created out of the 23 do-
simeters, where each image containing such a sign is of
resolution of 128 ×128 pixels.

2.3. U-Net Performance Evaluation on Neutron Tracks.
After the training stage, we tested the U-Net classifier over
the remaining 20% of the 23,567 tagged signs. 'e metric we
used for evaluating the classifier’s performance is accuracy.
Accuracy is defined as the number of correct predictions
over the number of total predictions, so in terms of a binary
classification model as in our case, we have the following
definition:

Figure 1: An example for the user interface of FAINE. At the large right pane is the 1st out of 10 fields of dosimeter number 2965035 as noted
in the upper left pane. At the lower left pane, the statistics of this dosimeter are presented to the user, including predicted vs. real (input)
neutron tracks, the confusion matrix, and the algorithm accuracy. In the middle pane, all detected signs are presented in zoommode, so the
user can examine them if needed.

Figure 2: Basic schematics of the U-Net architecture. 'e model input is a raw image and its output is a segmented (masked) image of the
neutron tracks. 'e U-Net consists of a contracting path and an expansive path (encoder-decoder). 'e contracting path follows the typical
architecture of a convolutional network while the expansive path consists of an upsampling of the feature map followed by a 2× 2
convolution (“upconvolution”) and two 3× 3 convolutions, each followed by a rectified linear activation function (ReLU).
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accuracy �
TP + TN

TP + TN + FP + FN
, (1)

where TP stands for true positives and is defined as the
number of correctly predicted neutron tracks (seen as the
track signs inside the green squares in Figure 3), TN stands
for true negatives and is defined as the number of correctly
predicted signs that are not neutron tracks (seen as the track
signs inside the blue squares in Figure 3), FP stands for false
positives and is defined as the number of signs that are not
neutron tracks, which were falsely predicted as neutron
tracks (seen as the track signs inside the red squares in
Figure 3), and FN stands for false negatives and is defined as
the number of neutron tracks, which were falsely predicted
as signs that are not neutron tracks (seen as the track signs
inside the orange square in Figure 3).

3. Results and Discussion

As can be seen from Table 1, and using equation (1), when
choosing the segmentation threshold to be 0.4, we get an
accuracy of 96.7% on our test data.

'is accuracy was achieved with respect to 4,509 dif-
ferent tagged signs. We can achieve different true positive

rate (TPR) to false positive rate (FPR) ratios by applying
different classification thresholds over our models predic-
tion. We chose to apply a classification threshold of 0.4 in
order to gain a high enough TPR while still maintaining the
false negative rates small enough. Of course, this choice of
threshold is application-specific, and each model in any
scientific field will eventually need to take this choice in
order to apply a certain model.

'e effectiveness of measuring fast neutron dosimeters at
our EDL will dramatically improve, due to the automatic
nature of our new tool, which will make the lab technician
attendance redundant.

Figure 3: An example of FAINE tagging signs inside a CR-39 image. Green squares indicate true positives, blue squares indicate true
negatives, red squares indicate false positives, and orange squares indicate false negatives.

Table 1: Confusion matrix of our U-Net model. As can be seen
from the definition of accuracy, the two important quantities that
contribute to high accuracy are true positives (TP) and true
negatives (TN).

Real Predicted
Positives: 1,782 Negatives: 2,727

Positives: 1,697 TP: 1,665 FN: 32
Negatives: 2,812 FP: 117 TN: 2,695
'reshold: 0.4.
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Another advantage of our new tool is the fast neutrons
measurement uncertainty expected improvement. Since
some of this uncertainty contribution come from the ro-
bustness uncertainty, our tool should slightly improve the
overall measurement uncertainty by eliminating the worker
A vs. worker B robustness term [17].

'is measurement uncertainty improvement shall in
turn lower the system’s detection threshold. 'e fast neu-
trons detection threshold is defined in ISO 21909 : 2015 to be
“the minimum measured dose equivalent, which is signifi-
cantly higher (at the 95% confidence level) than the mean
dose equivalent of a sample of nonirradiated detectors.”
Needless to note that the mean dose equivalent of unirra-
diated detectors measured by our new tool is supposed to be
equal or lower than the one measured by the former method,
since the former method used an overshoot dose assessment
as a way to address the inherent computer vision problem to
detect all fast neutron tracks.

4. Conclusions and Future Work

To conclude, we developed a novel algorithm that uses a
deep learning U-Net model to accurately and repeatedly
classify fast neutron tracks on CR-39 detectors with a high
accuracy of 96.7%. 'is method can replace manual revision
of track counting by an automatic repeatable process that
will save a large amount of human time, especially as the
number of CR-39 detectors to analyze gets higher in high
neutron flux experiments.

It is worth mentioning that such deep learning methods
are not limited to detection of massive particles, similar
U-Net models can be also used for detection, imaging, and
classification tasks with visible, X-ray and gamma photons
(see, e.g., [20, 21]) which are now explored at SNRC as well.

In the near future, we plan to extend our U-Net model in
order to gain new capabilities for differentiating between
alpha-particles and protons and for fast neutrons and alpha-
particles spectrometry using machine learning classification.
For this extension of our model, we already started a process
of its calibration for both alpha-particles detection and for
fast neutron spectrometry classification, and we expect that
our model will be very useful in analyzing results of proton-
boron11 fusion experiments in the future.
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