Y. Yamada
Nagoya Math. J.
Vol. 87 (1982), 17-39

ON SOME QUASILINEAR WAVE EQUATIONS
WITH DISSIPATIVE TERMS

YOSHIO YAMADA

§1. Introduction

In this paper we consider the initial value problems for the following
quasilinear wave equations with dissipative terms

(1.1) u, — a(J‘ |grad u(x, t)|2dx)Au +Au, =f, xe R", te]0, ),
Rn

with initial conditions

(1'2) u(x, 0) = uo(x) ’ X € Rn ’
(1.3) u(x,0) = u(x), xeR",
where
v . _Tu 2 _ 3| 0u _ 3 du
u, = at,u“—(,nz,]gradul _—;:_;a—xi and Au_zZ:]laxg.

Here 1 is a positive constant and a(r) is a C'[0, oo)-function satisfying
a(r)=a,>0 for r=0.

For n =1, Dickey [3] has treated (1.1) with 2 = 0 as the equation
describing the small amplitude vibration of a string in which the de-
pendence of the tension on the deformation cannot be neglected. He has
shown the existence and uniqueness of local solutions to (1.1)-(1.3) by
using a Galerkin procedure. For general n, Menzala [6], [7] has recently
extended Dickey’s result. He has obtained the local existence and unique-
ness of classical solutions to (1.1)-(1.3) (with 2 = 0) by using the theory
of Fourier transform. (See also the papers of Dickey [1], [2], Lions [4]
and Pohozaev [10], where the mixed problems in a bounded domain are
treated.)
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The main interest of the present paper is to examine whether there
exists a global solution u of (1.1)-(1.3) under the presence of the dissipative
term Au, (2 > 0). Moreover, if such u does exist, we intend to investigate
its asymptotic behavior as £ -— c. The proof of the local solvability of
the problem (1.1)-(1.3) is carried out by an iteration procedure (which is
different from Menzala’s proof). The key point which enables us to extend
a local solution u to the interval [0, co) lies in deriving some a priori
estimates of u. Roughly speaking, if the data (u,, u,, f) are ‘small’, then
there exists a (unique) global solution u of (1.1)~(1.3). Furthermore, by
employing the weighted energy method we can obtain the rate of the decay
to zero of u as t— oo.

The content of this paper is as follows. In §2, we give our main
results: Theorem I (local existence), Theorem II (global existence), Theorem
I (regularity of solution) and Theorem IV (asymptotic behavior). §3 is
devoted to the proofs of Theorems I, II and III. In §4 we study the
asymptotic behavior of global solutions of (1.1)-(1.3). Finally, in §5 some
results on the mixed problem are stated without proofs.

The author wishes to express his hearty thanks to Professor H. Tanabe,
K. Maruo and A. Yagi for stimulating conversations. Also, the hospitality
of Osaka University during the preparation of the manuscript is gratefully
acknowledged.

§2. Assumptions and results

We first introduce some notation which will be used throughout this
paper. In the usual way, let L*(R”) be the Hilbert space of (complex valued)
square integrable functions on R?. The inner product and norm in L*R7)
are defined by

(f, Oy = | fg@dx  for fge L(EY,
and

[fllsaw = (F, FYfimy ~ for fe L(R3),

respectively. If there is no confusion, we sometimes write (-,-) (resp. ||-])
in stead of (‘,’)Lﬂ(ﬂg) (resp. ”‘”Lz(R:))-
For fe LXR"), define the Fourier transform fe L*R2) by
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FO =@ | ewifedr, i=v=1, x¢=3 xd,

=Lim@) | e f@ds,
lzj=4

Ao
where 1-1-m means ‘limit in mean’.

For any non-negative integer s, H®(R") denotes the usual Sobolev
space of order s with the norm

17l = {5 e )

where |&] = O 7., &)Y, It is very convenient to introduce the following

semi-norms;
=118 Ollsay, 0= i<s,
for fe H(RY). In particular, if fe LA(R") = H°(R"), then
[flo=lfll = Ifllsany (Parseval’s equality).

Let I be any subinterval of [0, o). For any Hilbert space X, let
C(I; X) be the space of all functions u:I— X such that u is strongly
continuous on I. By C/(I; X) we denote the space of all functions ue
C(I; X) such that u is j times strongly continuously differentiable on L

In what follows, we make the following assumptions on the functions
a, u, u, and f appearing in (1.1)—(1.3).

(A.1) The function a(r) for r = 0 belongs to the class C![0, c0) and
satisfies

ar)=a, >0 for r = 0.

(A2 u,ceH*(RY) and u,cH'(R).

(A.3) fe ([0, 0); H(Rz).

Now we shall give our main results. We begin with the local existence
theorem.

TueEOREM I (local existence). There exists a positive constant T, such
that the initial value problem (1.1)~(1.3) has a unique solution u ¢ C*([0, T,];
H**Rm)) (i=0,1,2) on [0, T,.

Remark 2.1. In general, the constant 7, in Theorem I depends on
| 6olly {l24]ly and T||f(s)i|1ds, where T is any fixed positive number (see (3.2)
and (3.3) in § 3).
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Before stating the global existence theorem, we shall introduce the
following set of the data (u,, u,, f):

D) = {(uo, u, f) € H(R3) X H'(R) X C([0, o0); H'(RY)) ;
2.1

lwle <8, luli <6 and [ If9)lds < o} .
We have

TureoreM II (global existence). There exists a positive number 8, (which
depends on a, @’ and 2) with the following property: if (u, u,f) e D(5,),
then the initial value problem (1.1)-(1.3) has a unique solution u ¢ C*([0, oo);
H*>(RY) (i =0,1,2) on [0, ). Furthermore, '

(2.2) sup [u@®)], < oo and supfu()], < oo.
20 620

When the data (u, u, f) are regular with respect to x, we have

THEOREM III (regularity of solutions). Let 8, be the positive number in
Theorem 11. Assume that the data (u, u,, f) belong to D(5,) and satisfy

u, e H***(Ry) , u,e H**'(Ry) and fe C([0, o0); H**'(Ry))

for k = 1. Then the initial value problem (1.1)-(1.3) has a unique solution

ue C{[0, o0); H***"(R") (i = 0,1, 2). Furthermore, if fe L0, co; H**'(RY)),
then

(2.3) sup | U@l < oo and sup Dl < o0
In particular, if ae C*0, o0) and fe C{[0, o0); H**'"Y(R)) (i =0, 1, 2,
] k)’ then ue Ci([Oi OO); Hk+2—i(Rz)) (" = Ov 1) 27 Ty k + 2)-

CoroLLARY 2.1 (existence of classical solutions). Let 8, be the positive
number in Theorem II. If the data (u, u,, f) e D(5,) satisfy
Uy € H*"XRy), u,e H**(R;) and fe ([0, ); H*(Ry)

with s = [n2] 4+ 1, then the initial value problem (1.1)-(1.3) has a unique
classical solution uc C(R2X[0, =0)).

In particular, if a € C~[0, o), (w, u;, f) € C7(R3) X Ci(R;) X C=(R; X [0, 00))
and supp f(-, t) is compact for each t e [0, o), then the solution u is C* with
respect to (x, 1) € R% X [0, o0).

Remark 2.2. In order to obtain the global existence of solutions in
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the class C¥[0, oo0); H***"(R")) (@ = 0,1, 2) for £ = 1 as well as in the class
C¥[0, c0); H**(RY)) (i = 0, 1, 2), we have only to put the same ‘smallness’
condition (2.1) (with 0 < §,) on the data (u, u,,f). This will be expected
from the form of the equation (1.1), in which the nonlinearity is caused
by the function a(||grad u(t)|f).

However, there are different situations in the usual quasilinear wave
equations where the nonlinearity is caused by functions of the form
ao(u, u,, 1) (u, = dufox,). For details, see the paper of Matsumura [5].

Finally we shall investigate the asymptotic behavior of global solutions.
For simplicity, we assume that the data (u,, u,) belong to Cy(R?) and that
f = 0; we consider

1.1y U, — a(‘[ |grad u(x, t)]zdx>Au +u, =0, xeR, t=0,
Rn

with initial conditions (1.2) and (1.3). Let (u,, u;, 0) be in D(5,) (5, is the
positive number in Theorem II). As for the asymptotic behavior of a
solution u of (1.1), (1.2) and (1.3) (which exists globally on [0, co) by Theorem
IIT), we have the following result.

THEOREM IV (asymptotic behavior). Let u be a global solution of (1.1Y
with initial conditions (1.2) and (1.3). Then

2.4) lu@®F = OQ) as t— oo,
(2.5) @ + [w@f = 07 ast— oo,
(2.6) lu (D = 0@’ as t— oo,

for every j = O.
If ac C*0, ), then

2.7 . =07 ast— oo,
for every j = 0.

As a consequence of Theorem IV, we can estimate the rate of the
decay to zero of global solutions in the supremum norm. Put

lull.. = sulglu(x)l for ue Z(R),

where #(R?) denotes the space of all bounded continuous functions on R}.

COROLLARY 2.2. Let u be a global solution of (1.1Y with initial con-
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ditions (1.2) and (1.3). Then

28 u®].. = 0@,
(2.9) 2@ lles 8Dl 12Dl = OE "2, 1<i<n,
(2.10) 2@l @D = O "), 1<4i,j<n,

as t— oo, where u; = dujox,;, u, = d°u[oxdt and u,; = "uldxdx;.

Remark 2.3. Let u be a global solution of (1.1)’ with initial conditions
(1.2) and (1.3). If the data (u, u,) are Cy(R:)-functions, then it is easily
seen from Theorem IV that the support of u(-,?) is contained in the ball

{xeR"; |x| < at + C.}

for some C,. Here « is an arbitrary number such that « > a(0)"2.

§3. Proofs of existence theorems

In this section we shall prove Theorems I, II and III. We first pre-
pare the following elementary lemma without proof.

LEmMmMA 3.1. Let F, G and H be non-negative continuous functions on
0,TI(T>0. If
F@y < [ FOGEds + HO, 0<t=T,
0

then

Fi) < .%j G(s)ds + max H(s)*, 0<t<T.
0

0=<s=<t

3.1. Proof of Theorem I
Let an arbitrary T(>0) be fixed. We denote by K the set of all
functions ve C¥([0, Ty]; H* '(RY) (i = 0, 1, 2) such that
v(0) = u, and v,(0) = u,,
and

lgradv@)|, £ N and v, N for 05t T,

where N is a positive constant satisfying

6D Nz 2 Lt + allgradwl) [graduwlt + [T 176 ds)

min {1, ao}
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and TW(<Z T) is a positive constant satisfying

(32) exp( 2P0 ) <2 (n = max|a)),
a, 0<r<N?

and

(3.3) AmN*T, < 1.

For each ve K, we consider the initial value problem for
3.4) u, — a(lgradv(®)|)du 4 u, =f, xe R", te[0, T],

with initial conditions (1.2) and (1.3). By (A.1) and the definition of K,
the function ¢—a(|gradv(®)|?) is continuously differentiable on [0, 7¢].
Therefore, it is easily seen that there exists a unique solution u e C[0, T}];
H*(R?)) (i = 0,1, 2) of (3.4) satisfying (1.2) and (1.3) (see e.g. Mizohata [8]).
We define a mapping S by u = Sv.

We shall show that S maps K into itself. To see this, we put

(35) u, ) = (o)) = | o — Duly, vy,

where p,x is Friedrichs’ mollifier. (For the mollifier, see e.g. Mizohata [8].)
Note that u, € Ci([0, T,]; H*(R®)) ( = 0,1, 2) for any s > 0. The application
of p,x to (3.4) gives

(3.6) U, — o|gradv(®)[Ndu, + Au,, =f., xe R*, te[0, T(],

where f.(x, t) = (o.xf)(x, t). Multiplying (3.6) by (1 — 4)u,, and integrating
over R, we have

1

L9 {0l + o gradv® Pl grad w1} + 2, (OIF

= Re{(/.(2), u..{?)) + (gradf.(?), grad u. ()}
+ a'(|grad v(®)|")Re (grad v(?), grad v,(?))[|grad u.() |

< Alu. O + —le—llﬂ(t)ll% + mN¥||grad u@)f, 0<t<Th,

where we have used Parseval’s equality. Hence it follows that

1w, DI + a(lgrad v(®)|[)] grad u.(2) |l
(3.7 < llu.,0)[i + a(|grad u,|F)||grad «.(0)|}

¢ 13
+ o[ 1@ ds + 2mN [ gradu o)t ds,
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for 0 <t < T, Letting ¢} 0 in (3.7) and using (A.1) we easily obtain

e @I + allgrad u@®)|l} < llwli + a(lgrad w[) [ grad wf

38) + o [ @I ds + 2mN* [ |erad u(s) i ds, 0< ¢ < T;

so that (3.8) implies, by virtue of Gronwall’s inequality, that
DI + allgrad u(@®)|}
T
< {Iult + allgrad P grad wli + - || 17 ds}exp(

for 0t T,.

2mN 2t)

0

Hence, noting (3.1) and (3.2) we see ue K: S maps K into itself.
Now we shall construct a local solution of the initial value problem
(1.1)—«(1.3). Let u’ be any element in K. Define {u*};., by

u**t = Su*, ©p=012-.-.
In other words, u* is defined by
3.9) ut, — a(||grad u*~'@)|Pdu* + ut =f, xe R", te |0, Ty],
with initial conditions
u*(x, 0) = u(x) and ui(x,0) = u(x), xeR".
Since we already know that S maps K into itself,
(3.10) [graduw @, =N and [u@). =N

for all 4 =0 and 0t < T,. If w* is defined by w* = uw* — u*?, it is
easy to verify that w* satisfies
3.11) wt, — af||grad u~ '@ |)dw" + w;
= {a(|grad v '®)|) — a(|grad w* () [)}duw ",
(xe R*, te[0, T;]) with initial conditions
w(x,0) =0 and wi(x,0) =0, xeR".

Multiplying (3.11) by w* and integrating over R, we get
% gf{!' wi(@®)|F + a(grad u*~'(@)|F)||grad w @[} + 2| wi@) |}
= d/(| grad u*~'()) ") Re(grad u*~'(¢), grad u;~'(#)) | grad w*@® |
+ {a(lgrad u*~ () |F) — a(|grad w**(&) )} (du"~'®), wi(?))

(3.12)
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for 0 < t < T,. Since, by (38.10) and Schwarz’s inequality,
la’(| grad u*~'(8)|")Re (grad u*~'(?), grad u;~'(#))| = mN
and
Ha(lgrad w=*(®)[) — a(l|grad u*~*(#) )} (4w '), wi®)|
< 2mN*| grad w* ' @) |||lwi@ |,

(8.12) leads us to the following inequality:
@) + aullgrad wr)F + 22 [ i) ds

< 2m{[[grad wr)lds + 2 [ grad w@)] | wr(s)ds)

(3.13) o

= 22 [ (lwr@IF + aollgrad wio) s

+ 2mN%q, J lgrad wr-'(s)|tds, O0<t<T,.
0

Therefore, applying Gronwall’s inequality to (3.13) we have

Jwr@)|F + aullgrad wH@) [ < 2mN°T,-max {ao] grad we(s) [} exp( 2L

0

0=¢t=<T,

from which we deduce that {u*}is a Cauchy sequence in C*([0, T,]; H' {(R%)),
i1=0,1 (see (3.2) and (3.3)). Let u denote the limit of w* in C%([0, T%];
H"-YR") i =0,1. We can also see from (3.10) that u*(f) — u(f) (weak
convergence) in H*R?) uniformly in ¢¢ [0, T;] and ui() — u,(f) in H'(RY)
uniformly in £e€ [0, T,]; so that, in view of (3.9), u/(f) — u,(f) in L*R")
uniformly in t€ [0, T;]. Thus letting g — oo in (3.9) we find that u satisfies

(3.14) (w(®), ) — a(grad u(®) ") (4u(®), ¢) + Auld), §) = (f(?), 9)

for every ¢ € L*(R?) and t ¢ [0, T;). Note that the mappings ¢ — u(?), t — u,(¢)
and t — u,(tf) are weakly continuous in H*R"), H'(R?) and L*(R?), respec-
tively.

In order to prove ue CX[0, Ty); H*"*(R?) (i = 0, 1, 2), we consider the
initial value problem for

(3.15) ul — a(|grad u(®)|PHdu* + Auf =f, xe R", te[0, Ty,

with initial conditions (1.2) and (1.3). Since the function ¢ — a(|| grad u(¢)|]*)

https://doi.org/10.1017/50027763000019929 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019929

26 YOSHIO YAMADA

is continuously differentiable on [0, 7], the initial value problem (3.15),
(1.2) and (1.3) has a unique solution u* e C([0, T}]; H*'(RY), i = 0,1, 2.
Put w = u — u*; then, by (8.14) and (3.15), w satisfies the equation

(3.16) (w:), ¢) — a(|grad u(®)[) (dw(®), ¢) + Aw(?), ¢) = 0,

for every ¢ e L*(RY) and te ([0, T;] with zero initial data. Hence, setting
¢ = w, in (3.16) and integrating over [0,£] (0 < ¢t < T,), we have

lw@®)|* + a(|grad u®)|?)||grad w(@)|* + 22 J‘: |w(s)|F ds
=2 J: /(| grad u(s) |*) Re(grad u(s), grad u(s))||grad w(s) | ds,

which assures w = 0 (i.e. u = u*) with the aid of Gronwall’s inequality.
Thus we have shown the existence of a function u e CY[0, T,]; H*-Y(R%)
@@ = 0,1, 2) satisfying (1.1)-(1.3).

Finally we shall prove the uniqueness of local solutions. Let u,ve
C«[0, T,]; H*"Y(RY) (i = 0, 1, 2) be two solutions of the initial value problem
(1.1)-(1.3). Put w* = u — v; then

%gt-{nwr(onz + o) grad u()) [P grad w* @)} + 2| wF@)|?

(3.17) = a/(|grad u(®)|")Re (grad u(?), grad u?))||grad w*(@) |
+ {a(lgrad u@®)[) — a(lgrad v(®)[")}(4v(®), wi @),

(cf. (8.12)). Since u, ve C«([0, T,]; H**(R?) (i = 0, 1, 2), by integrating (3.17)
over [0, ] and applying Gronwall’s inequality we may conclude w* = 0 on
[0, T\], which completes the proof.

Remark 3.1. Our method of the proof of the local existence theorem
is different from that of Menzala [7]. His proof is based on the use of
Fourier transforms; the original problem (1.1)-(1.3) is equivalent to the
following problem

28, O + a(l|€1aC, OPIEPAE, ©) + 2248, 1) = f(&, 1), €eR", t=0,
(8.18) qu(&, 0) = a(d), geR",
u,(&, 0) = ﬁl(&) ’ e R,

where # denotes the Fourier transform of u (with respect to x). To
approach (3.18), Menzala defined approximate functions {v,(§, H)} (v.(§, ¥ =
0 for |&| = r) as a solution of the truncated problem
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vole )+ a [ 16PIv& OFdE) g0, (6 ) + 20,060 = & 9,
lsr, t20,
v, 0) = 4($), gl=r,
v, (&, 0) = 4,8, gl=r.
Then letting r — oo, he has constructed a local solution of (3.18).
See also the paper of Dickey [3].

3.2. Proof of Theorem II

Since the local existence result (Theorem I) is obtained, it suffices to
get a priori bounds for any solution of (1.1)-(1.3) in order to show the
global existence.

Let T be any fixed positive number and let ue C'([0, T]; H* YR%)
(i=0,1,2) be a solution of (1.1)-(1.3) on [0, 7]. Assume that the data
(o, uy, f) belong to D(0) (see (2.1)). We shall show that, if 6 > 0 is suffi-
ciently small, then both ||u(¢)|. and || «.(£)|, are bounded by a positive number
which is independent of T, so that u may be extended to the interval
[0, o).

First multiplying (1.1) by @, and integrating over R?, we get

—;—g;{tlut(t)llz + A(llgrad u(@®) ")} + [ w @I = Re(f(®), ul?))

< If@Illw®ll,

where A(r) = jr a(s)ds (= a,r for r = 0). Integration of (3.19) with respect
0
to ¢ leads to

lu®F + allgrad u)F + 22 | o) ds

(3.19)

(3.20) t
< wlf + AQgradw ) + 2 @) |u)lds, 0=¢<T.

Consequently, applying Lemma 3.1 to (3.20) we have

(G2 u®F + af gradu@lf + 22 | |us)lFds < CF,

where C,(9) = {8* + A(6)}”* + 6. Next we multiply (1.1) by & and integrate
over R?. Then

d 2 2 2 d 2
RGE (u(®), u®) + a(llgrad u(®)|f)| grad u(@)| + o dr lu@®)]]

= [u® + Re(f(®),u(®), 0=<t=<T,
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from which it follows that
M@ + 2a, [ llgrad uls) fds < Alul? + 2zl + 2 @lu@)]

+ 2 [ ju©ds + 2 [ 1@ u(s) 1 ds
(3.22) 2 9 t
<+ 27 + L1udr + Zjur + 2 [ juords

+ 2 If@ s ds

Therefore, combining (3.21) and (3.22) we obtain
2w + 20, [l grad u(@) P ds < 2 + 97 + 2 oy
t
+2[ If@lluelds, 0<t=T,

which implies, with the use of Lemma 3.1, the existence of a positive
constant Cy(d) (independent of 7') such that

(3.23) Au@F + 4, [| lgrad u(s) 'ds < Co)

for 0t < T. (Note that the estimates (3.21) and (3.23) hold for any
(@, us, ) € H(R3) X LA(R3) X L0, oo ; LA(RY)).)

Now in order to estimate ||u(?)|, and ||u,(?)|;, it is convenient to em-
ploy Friedrichs’ mollifier. If u, is defined by (3.5), then it satisfies

(3.24) u... — a(lgrad u@®)|Ndu, + 2u,, =f, xeR*, tel0, 1],

where f, = (p.#f). Multiplying (8.24) by — 4u,, and integrating over R,

we get

a

dt

(3.25) = a/(| grad u(?)|*) Re (grad u(?), grad u(2)|| du.() |
+ Re (gradf,(t), grad u,,(?)) .

% {llgrad w., (I + a(lgrad u@®)[") | du )|} + 2lgrad u, ()"

Integration of (3.25) with respect to ¢ gives

I grad w, O + allgrad w® )| 4u)F + 22 [ |grad v, () fds
= llgrad u, (O)If + allgrad w[) | 4 (O)IF
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+ 2Re f : (grad f.(s), grad u, (s))ds
+ 2Re [ a'(lgrad u(s) ) (grad u(s), grad u(s)) | du(s) Fds -
Hence by letting ¢ | 0 it easily follows that
lerad w®IF + allgrad w® ]| u®F + 22 || lgrad us)|Fds
(3.2 =|gradu | + a(|grad u || Ju,|* + 2Re L (grad f(s), grad u,(s))ds

+ 2Re || @/(lgrad u(s)|P) (grad u(s), grad u/(s)| duls) rds
holds for 0 < ¢t < T. Using (A.1) and (3.21) we rearrange (3.26); then

lerad u @ + a 4u®)[ + 24 [ lgrad u(s) Fds

(327 < F(L+ mi@) + 2 | grad (9 grad w.(s) | ds
+ ZnlCOICO). (") grad u, (o)) dute) s,
a, 0

(0Lt < T), where my(r) = maxa(s) and m,(r) = max|a'(s)|.
0ss=sr 0sssr

If we multiply (3.24) by — Ju, and integrate over R?, we have

;‘é— {Re (grad u,(t), grad u®) + 2 Jgradu I}

(3.28) + a(|grad ut) ||| du(t) |

= ||grad u, ,(£)|} + Re(gradf.(¢¥), gradu.(f)), 0t T.

Integrating (3.28) over [0, #] and letting ¢ | 0 in the resulting expression
we get

Re (grad u (1), grad u(t) + 2 |grad u@)|f + [ allgrad u(s) Pl 4u(s) Pds
(329)  =Re(gradu, graduwy) + 2 grad st + | “lgrad u()|rds
+ Re ﬂ (grad f(s), grad u(s))ds , 0t T.

By using (2.1) and (3.21) we rearrange (3.29); then
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~ llgrad u (Ol grad w®)| + 2l erad u®)F + ao [ || 4u(s) Fds
(3.30)

(1 + )5" 60 (5) + I llgrad u.(s)|’ds

for 0 <t < T. Addition of (3.27) and (3.30) X2 yields

$llgrad u,@)|* + aol|du@® | + 3(grad u ()| — 2| grad u(t)|)
+ 2| lgrad ue)ds

t _ 2my(C\(9)|as)Cy(9) .
a1 + [ {1 DV 12ICO) | grad e} | du)Fds
<o(1+m@) + 2+ L)+ 200

+ 2| lgradf@llgradus)|ds, 0<t<T.

Now suppose that the inequality
(3.32) Aay® — 2m(Cy(6)*/a,)Cy(d)| grad u(t)|| = 0
holds on [0,7] (0 < ¢ < T). Then applying Lemma 3.1 to (3.31) we have
llgrad u ()| + 2a0|| du@®) |

13 2
(39 = [{re+ @ + 2+ 1)+ 223‘3;(5) } 4 2 grad s ds]
<Gy, for0=tZr,
where Cy(8) = {32 + 2m(®) + 22 + 2) + 240C(5)/va, }* + 26. Notice that
C0) (i = 1, 2) are increasing functions of ¢ satisfying C,(0) = 0. Hence it
is possible to choose 8, as a (unique) solution of

(3.34) a3’ = 4m,(Cy(3,)*/a0)Ci(36) C(d)

Consequently, it is easily verified that, for (u, u,, f) € D) with é < 4,,
u satisfies (3.32) and, therefore, (3.33) on [0, T]. Thus we have obtained
a priori bounds (3.21), (3.23) and (3.33). So we can conclude in the standard
way that the initial value problem (1.1)-(1.3) has a solution u e C*[0, );
H*-YR?), i = 0, 1, 2, satisfying (2.2).

The uniqueness part is evident from Theorem I

3.3. Proof of Theorem III
First we note the following result whose proof is essentially the same
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as that of Theorem I: for each u, ¢ H***(R"), u, ¢ H**'(R?) and fe C([0, o0);
H**Y(R7) with k > 1, there exists a positive constant T}, such that the ini-
tial value problem (1.1)-(1.3) has a unique solution u ¢ C*([0, T;]; H***~*(R%)
(:=0,1,2) on [0, ;). Hence, in order to prove the existence of a global
solution in the class C([0, 0); H***"¥(R?)) (i = 0, 1, 2), it suffices to get a
priori bounds for ||u(®)|;.. and ||z, (&)1

Let T be any fixed positive number and let ue C¥[0, T']; H***~{(RY)
(i=0,1,2) be a solution of (1.1)-(1.3) on [0, T]l. Take J, as the positive
number in Theorem II and assume (u,, u, f) € D(5,). (Recall that the esti-
mates (3.21), (3.23) and (3.33) hold true with § = 4,.)

As in 3.2, we multiply (8.24) by (— 4)'a.,(2 £j < k + 1) and integrate
over R Then, by Parseval’s equality,

18 (O + allgrad u® IO} + A O

= d/(|grad w(?)|) Re (grad u(?), grad u,(2))|u.(?)[; .1

+ Re((— 4)"*£.@t), (— 4)"u., D))

(cf. (3.25)). Integrating the above equality over [0, 7] and letting ¢ | 0, we

deduce
O + alu®b + 22 [ [uE) ds
(3.35) <l + ool wha + 2 [ 16 |ud)]ds
+ ZRACOHCGICE) [ \uie).ds,

where we have used (3.21) and (3.33).
If we multiply (3.24) by (— 4)'z, (2 < j < k + 1) and integrate over R?,
we have

& {Re((— 27,0, (— ") + 218} + allgrad w®I) . OF

dt
= |u., (D} + Re((— NH"*f(), (— 4)"u2))

(cf. (3.28)). Hence, it follows by integrating with respect to ¢ and letting
e} 0 that

— (Ol 1@, + 2@l + a [ [u)p. ds
(3.36) \ .
< July-fuly + 2wl + [ [u@lds + [[ 16 1uo)lds
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for 0t T,
Addition of (8.35) and (8.36) X 2 yields

2
—;—Iuc(t)li + aolu(t)l:}ﬂ = [uxlﬁ + a([uolf)[uoig‘n + zluxlj'luob + %Iuoli
(3.37) t
+ [JfLErE], + Au@lds, 0<t<T,

(cf. (3.31)), where we have used (3.34). Therefore, with the aid of Lemma
3.1, (38.37) gives inductively

(3.38) [u O + 2a0|u@®f}: < Cyis, 0t T,

for some C;,,. In particular, if fe L0, oo; H**'(R), then C,,, can be
taken independent of T’; so that (2.3) holds. Thus the first half of Theorem
III is proved.

Finally we shall show the latter half. Assume ae C*[0, ) and
fe CY[0, o0); H**'"Y(R")(i = 0,1,2, ---, k). Then, differentiating both sides
of (1.1) with respect to f, we may conclude that u belongs to the class
CY[0, 00); H***"R»)) (i =0,1,2, -- -, k + 2).

3.4. Proof of Corollary 2.1.

By Sobolev’s lemma, H™(R?) is imbedded in #(R2) if m > [n/2] + 1
(see e.g. Sobolev [11] or Mizohata [8]). Therefore, all the conclusions of
this corollary are evident from Theorem III.

§4. Asymptotic behavior

In this section we shall consider the asymptotic behavior of solutions
to the equations

1.1y u,, — a(|grad u(®)|HDdu + Au, =0, xeR", tel0,co),

with initial conditions (1.2) and (1.3). For simplicity, we assume that the

data (u,, u,) are Cy(Rr)-functions. Moreover, assume that they satisfy
ltole < 00 and |wll < 6o,

where 0, is the positive constant in Theorem II.
We already know by Theorems II and III that there exists a unique
solution u e C([0, oo); H***"*(RY) (i = 0, 1, 2) satisfying

supl|u@® s < oo and sup|u,@)|. < oo,
t20 20
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for any k= 0.

However, we shall show that, because of the presence of the dissipa-
tive term Au,, both |u(?)|;,, and |u(f)|; decay to zero as t— oo for every
J = 0 (Theorem IV). (|u(?)| may not decay to zero as ¢ — o.) Hence, by
making use of Nirenberg’s inequality (see (4.12)), we can prove that the

solution u itself also decays to zero in the supremum norm as ¢{— o
(Corollary 2.2).

4.1. Proof of Theorem IV

By (3.23), it is easy to see (2.4). Moreover, by (3.21) and (3.23), there
exists a positive constant C such that

(4.1) lu@l. < C and |uw@,<C

for all £ > 0.

Now we shall prove the following stronger result than (2.5):

@ OO+ @k + [ s lu@ds + [ olu@n.ds < M3,
t=0,j=012,.--,

with some M, > 0.

In order to show (4.2) we employ the weighted energy method.
Multiplying (3.19) (with f = 0) by ¢ and integrating over [0, {] we have

@ HwOF + tAGuOD + 2 [ slu@rds = [ (uOF + A(us)Dds,

t=0.
Note the following inequality
olu@l < A(u®)) < mlu@®)i, =0,

where m, = sup a(r). Hence, by virtue of (8.21) and (3.23), the right-hand
side of (4.3)0§§§lc)2ounded by a positive constant; which shows (4.2) for j = 0.
In order to prove (4.2) for j = 1, we introduce a pair of two non-
negative functions {¢,(?), ¥,(D)}; ¢.(¢) € C°[0, 0) is a monotone increasing
function and +,(¢) € C*[0, o0) is an auxiliary function of ¢(?).
Multiplying (1.1 by — ¢,(t)4u@, and integrating over R; X [t,t], we
have
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#O (O + aQuOD|uOB + 22 4@ |uo)tds
— B (B + ou®DIuE)D

4.9 ‘
+2 L $i(s)a’(u(s)f) Re (grad u(s), grad u(s)){u(s)f; ds

+ | #OO! + alu@DluEds

for t > t, = 0. Next multiplying (1.1Y by — ¥,()4u and integrating over
R; X [t, t], we get

29 () Re(grad u,(2), grad u(®)) + (2.(&) — Vi) | u®L
+ 2 v@a(ueDuekds + [ () — i) u)kds
= 2¢,(t)Re(grad u,(t,), grad u(t,))
+ (G (®) — O] + 2 [ (@)t ds

(.5)

for t =t = 0.
Addition of (4.4) and (4.5) leads to the following identity:

SO DL + 61wk + 24 )Re(grad u ), grad u()
+ Qi) — HONOR + [ @16 — Wl ds
+ [ @) - #16) — 20Dl ds

(4.6) ;
+ f , @vis) — gileNa(u))

— 2¢.(s)a’(|u(s) ) Re(grad u(s), grad u,(s))}| w(s)|; ds
= ¢1(t1)a(l u(t)Dlut)l; + ()| ut)R
+ 2¢(t)Re(grad u,(t,), grad w(ty)) 4+ (At — ¥ u)
for t >t = 0. Setting ¢,(f) =¢ and ¥,(f) = /2 in (4.6) and making ¢,
large enough (¢, > 1), we have, in view of (4.1) and (4.2) (j = 0),

at|u®l + 4 tuOF + 5 O — 2u®L + [ Gs — Diulds
@7 L
+ [ {0 — Vay — emCHS oA < N, t2 20,

with some N,, where m, = sup |a'(r)]. Consequently, (4.7), in particular,
0srsC2
implies
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(4.8) W@ <N, >0,

with some N, > 0.

We shall return to the identity (4.6) in order to derive a better esti-
mate than (4.7) by making use of (4.8). Reset ¢,(f) = ¢* and V,(f) = a;f in
(4.6), where «, > 1 is a parameter. Then, (4.1), (4.2) (j = 0) and (4.8)
assure the existence of an N, satisfying

tg(aolu(t)lg + lut(t),f) — 2“1”“5(0’1']“0)’1 + a'llt]u(t)lf
+2 {5 — (@ + Djslulds

+2 j " @ — Day — mM,N,)s|u(s)[2 ds
<N, for t = ¢,

so that, by choosing «,(> 1) such that (x, — 1)a, > mM,N, and taking a
sufficiently large ¢, we may conclude that (4.2) holds for j = 1.

In order to show (4.2) for j > 2, we emply the following identity: for
any monotone increasing function ¢, € C*[0, o) and «; > 1/2,

3@ (u®); + a(u@D)|u@®;n) + 20,6 ()Re((— )" ult), (— )" u(®))
+ a0 — FHONUO + [, @76 — 2/ Iu@ ds

+ [ 220 — @, + DN ds

(4.9) n f :.{(20{, — D(s)a(uls))

— 2¢ (s)a’(u(s))Re(grad u(s), grad u(s))} u(s)[;., ds
= ¢, (ult)l; + a(u) ) u)l.n)
+ 2a,97(t)Re((— "u i), (— 4)"ut)))
+ a,(Ag(t;) — ¢7(t;))|u(t1)]§ , fort>t¢, =20,
which is obtained by multiplying (1.1Y by (— 4)(¢;u, + «a,4;7) and inte-
grating over R: X [t;,#]. Notice that

la’(|(u())[) Re(grad u(?), grad u,(t))| < mMM;t*"

holds for ¢t > 0 (by (4.2) (j = 0,1)). Hence, setting ¢,¢) = t/*' in (4.9) and
taking a sufficiently large ¢;, we can inductively prove (4.2) for j > 2.
Thus (2.5) is verified.

To see (2.6), it suffices to apply (2.5) to (1.1).
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Now we shall prove (2.7) when a e C*[0, ). Set
b(?) = a(u®)f) .
Then it follows from (4.1), (4.2) and (2.6) that
(4.10) 1@ < Kt¥* and |b"(t)| < Kt**, t>0,

with some K > 0. Differentiation of (1.1) with respect to ¢ leads to the
equation

4.11) u,, — b(®)4du, + Au,, — b@®4u, =0, xeR", t=0.

Multiply (4.11) by (— 4){t’**a,, + B,(j + 2)t'*'u,} with 8, > 1/2 and integrate
the resulting expression over R” X [0,¢]. Then as in the proof of (4.2),
we can show (with the use of (4.10)) that there exist positive constants
L, such that

tjnqutt(t)li‘ + ’ut(t)liﬂ) _-g_ Lj ’ t __2_ 0, j = 0’ 1’ 2’ Sty
which asserts (2.7). Thus the proof is complete.

Remark 4.1. Suppose that the data (u,, u;) belong to H*+*(R") X H**'(R%)
for £ > 0. As is easily seen from the proof of Theorem IV, it is possible
to show (2.4), 25) for 0<j<k+1 and (26) for 0 <j < k. Moreover,
if k=1 and a € C*[0, ), then (2.7) also holds true for 0 < j < k.

4.2. Proof of Corollary 2.2.
Note the following well-known inequality due to Nirenberg [9];

(4.12) lull. < colulnllul~*  for ue HMR;),

where m = [n/2] + 1 and 0 < & = n/2m < 1. Then it follows from (2.4),
(2.5) and (4.12) that

@)l < colu@®l " lu@]'- "™ < et~

which implies (2.8). Other decay estimates (2.9) and (2.10) are derived from
(2.5), (2.6) and (4.12) in the same way.

Remark 4.2. In Corollary 2.2, decay estimates (2.8)—(2.10) still remain
true for the initial data (w,, w;) € H***(R") X H**'(R%) with s = [n/2] + 1
(see Remark 4.1).
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§5. Some results on the mixed problem

Let 2 be a bounded domain in R with C~ boundary I". We shall
consider the following mixed problem

(5.1) u, — a(j |grad u(x, t)lzdx)du +u,=f, xe2, tel0, ),
Q2

(5.2) ulx,t) =0, xel', tel0, o),
(5.3) u(x, 0) = uy(x), xe,
(5.4 ulx,0) = u(x), xel,

where a is a function satisfying (A.1) and 2 is a positive constant (see
Dickey [1], [2] and Pohozaev [10]).

Let H*(2) be the usual Sobolev space of order s; the space of func-
tions u such that u and all its derivatives of order < s belong to L*).
The closure of Cy(2) in H*(2) is written by H{(£2). As in the preceding
sections, we denote by ||-||, (resp. ||-]) H(2)-norm (resp. L*(£2)-norm).

We define a positive self-adjoint operator A in L*(92) by Au = — du
with domain D(A) = H*(Q)NHy(2). It is well known that D(AY?) = HYQ)
and ||A%u| = ||grad u|| (u € D(A?). So the mixed problem (5.1)-(5.4) can
be written in an abstract form

u,(8) + a(| A" u@® )Au®) + (@) =f@), t=0,
u(O) = U ’
u,0) = u,.
Repeating the arguments in § 3 with a slight modification, we can

obtain the similar existence results on the mixed problem (5.1)-(5.4). We
shall state them without proofs.

THEOREM 5.1. Let u, e H(Q)N HYQ), u, e H(R) and f e C([0, co); HY(D)).
Then there exists a positive constant T, such that the mixed problem (5.1)-
(5.4) has a unique solution u on [0, T,] satisfying

ue C([0, Tol; H*(Q)N Hy(2) N CX([0, Tol; Hy(2)) N CX([0, To]; LK) .

THEOREM 5.2. There exists a positive number 6, (which depends on a,
a’ and 2) such that, if the data (w, u,, ) € H*(2)N Hy(2) X Hy(2) X C([0, «0);
Hy(9Q)) satisfy

55) lwl < a0, Jwl <5 and [ IfE@)ds < 5,
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then the mixed problem (5.1)~(5.4) has a unique solution u on [0, co) such that
u e C([0, 00); HX(2) N Hy(2)) N C'([0, 00); HY(D) N C*([0, o0); LH(R)) .
Furthermore,
sup |u(®)ll, < e and  sup|u ], < oo.

THEOREM 5.3. Let a belong to the class C**'[0, o) (k = 1) and let 5,
be the positive number in Theorem 5.2. If the data (u, u,, f) satisfy

U, € D(AY->1%) y, e D(A®N2) AGH-D2f e CY]0, o0); LX(2)),
(i=0a192’ ’k)

and (5.5), then the mixed problem (5.1)-(5.4) has a unique solution u on
[0, o0) satisfying

Asiry e ([0, 00); INQ),  i=0,1,2 - k+2.

Remark 5.1. From A®+*-92y ¢ C¥([0, o0); L*(R2)) for 0 < i< k 4+ 1, it is
easily seen that u belongs to the class C¥([0, oo0); H***~4(2)N HY2)) for
0<i<k+1

Remark 5.2. Pohozaev [10] has approached the mixed problem (5.1)-
(5.4) with 1 =0 via the Galerkin’s method. He has shown that there
exists a global solution u of (5.1)-(5.4) if the data (u,, u,, f) are contained
in some special classes of functions. See also Lions [4].

Finally we shall study the asymptotic behavior of global solutions.
For simplicity, we assume that ae C~[0, ), f=0 and that the initial
data (u,, u) € Cy(2) X Cy(2) satisfy (5.5). (Note that both u, and u, are in
D(A*?) for any k= 0.) Then making use of the weighted energy method
developed in § 4, we can obtain the following exponential decay of solutions.
(The key point of deriving the exponential decay lies in the wuse of
Poincaré’s inequality

TAY u|| = o ul| for ue D(AY*) = HY9)
with some ¢, > 0.) See also Yamada [12].

THEOREM 5.4. Let u be a solution of (5.1)~(5.4) with f = 0. Then there
exists a positive constant « > 0 such that

| AT U + AU = OE™) as t— oo,

for every j = 0.
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