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ON SOME QUASILINEAR WAVE EQUATIONS

WITH DISSIPATIVE TERMS

YOSHIO YAMADA

§ 1. Introduction

In this paper we consider the initial value problems for the following
quasilinear wave equations with dissipative terms

(1.1) utt - a(\ |grad u(x, t)\2dx)ju + λut = /, x e Rn, t e [0, oo),

with initial conditions

(1.2) u(x, 0) = uo(x), xeR\

(1.3) ut(x,0) = Uί(x), xeR\

where

du _ 92«
ot ut

du Λ Λ ^d2u
and Δu = ^j——.

Here Λ is a positive constant and a(r) is a C^O, oo)-function satisfying

α(r) ^ a0 > 0 for r ^ 0 .

For n = 1, Dickey [3] has treated (1.1) with Λ = 0 as the equation
describing the small amplitude vibration of a string in which the de-
pendence of the tension on the deformation cannot be neglected. He has
shown the existence and uniqueness of local solutions to (1.1)-(1.3) by
using a Galerkin procedure. For general n, Menzala [6], [7] has recently
extended Dickey's result. He has obtained the local existence and unique-
ness of classical solutions to (1.1)-(1.3) (with λ = 0) by using the theory
of Fourier transform. (See also the papers of Dickey [1], [2], Lions [4]
and Pohozaev [10], where the mixed problems in a bounded domain are
treated.)
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18 YOSHIO YAMADA

The main interest of the present paper is to examine whether there
exists a global solution u of (1.1)-(1.3) under the presence of the dissipative
term λut{λ > 0). Moreover, if such u does exist, we intend to investigate
its asymptotic behavior as t ~> oo. The proof of the local solvability of
the problem (1.1)-(1.3) is carried out by an iteration procedure (which is
different from Menzala's proof). The key point which enables us to extend
a local solution u to the interval [0, oo) lies in deriving some a priori
estimates of u. Roughly speaking, if the data (u0, ul9 f) are 'small', then
there exists a (unique) global solution u of (1.1)-(1.3). Furthermore, by
employing the weighted energy method we can obtain the rate of the decay
to zero of u as t -> oo.

The content of this paper is as follows. In § 2, we give our main
results: Theorem I (local existence), Theorem Π (global existence), Theorem
IΠ (regularity of solution) and Theorem IV (asymptotic behavior). § 3 is
devoted to the proofs of Theorems I, II and IΠ. In §4 we study the
asymptotic behavior of global solutions of (1.1)-(1.3). Finally, in § 5 some
results on the mixed problem are stated without proofs.

The author wishes to express his hearty thanks to Professor H. Tanabe,
K. Maruo and A. Yagi for stimulating conversations. Also, the hospitality
of Osaka University during the preparation of the manuscript is gratefully
acknowledged.

§2. Assumptions and results

We first introduce some notation which will be used throughout this
paper. In the usual way, let L2(B%) be the Hubert space of (complex valued)
square integrable functions on Rn

x. The inner product and norm in L2(Rχ)
are defined by

(/, g)LHRV = f f(xjg(x)dx for f,ge

and

*v f o r f^

respectively. If there is no confusion, we sometimes write ( , ) (resp.

in stead of ( , W S ) (resp. || lU^) .

For feU(Rϊ), define the Fourier transform feU(Rf) by
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QUASILINEAR WAVE EQUATIONS 19

f(ξ) = (2π)->"* f e-*"'f(x)dx, ί = v ^ I , x f = ± *,£, ,

= l i m(2π)-"/2f e-u's f(x)dx,
A-*™ J \x\£A

where l i m means "limit in mean'.

For any non-negative integer s, Hs(Rl) denotes the usual Sobolev

space of order s with the norm

where \ξ\ = (Σ?=ifi)1/2 It i s very convenient to introduce the following

semi-norms;

I/I* = l l l f l < / ( ) I U . ( Λ j ) , o ^ i ^ s ,

for /e i/s(i?ϊ). In particular, if fe L2(B$ = i/°(Λϊ), then

l/lo = ll/llo = II/IIL.(ΛS) (Parseval's equality).

Let J be any subinterval of [0, oo). For any Hubert space X, let

C(I; X) be the space of all functions u : I -+ X such that u is strongly

continuous on I. By Cj(I; X) we denote the space of all functions u e

C(I; X) such that u is j times strongly continuously differentiate on I.

In what follows, we make the following assumptions on the functions

α, u09 Uί and / appearing in (1.1)-(1.3).

(A.I) The function a(r) for r ^ 0 belongs to the class C![0, oo) and

satisfies

a(r) ^ α0 > 0 for r ^ 0 .

(A.2) u0 e H2(R$ and ux e

(A.3) /eC([0,oo);fΓ(β;)).

Now we shall give our main results. We begin with the local existence

theorem.

THEOREM I (local existence). There exists a positive constant To such

that the initial value problem (1.1)-(1.3) has a unique solution ue C\[0, TQ];

(i = 0,1, 2) on [0, To].

Remark 2.1. In general, the constant To in Theorem I depends on

\\UQ\\O, II MI 111 and ||/(s)||icίs, where T is any fixed positive number (see (3.2)
Jo

and (3.3) in § 3).
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20 YOSHIO YAMADA

Before stating the global existence theorem, we shall introduce the

following set of the data (u0, uuf):

r
JΊ(X\ — )(jj jj A p HHR71} v TΓWR*} v ΓYΓO 00V TTVff̂ Yl

(2 D r . -,
l l «o l l .^ ί , l l u i l l i ^ ί and HΛβ)!!,* ^ ί .

Jo J

We have

THEOREM II (global existence). There exists a positive number δ0 (which

depends on a, a' and X) with the following property: if (u0, uu f) e D(δ0),

then the initial value problem (1.1)-(1.3) has a unique solution u e <?*([(), oo);

(i = 0,1, 2) on [0, oo). Furthermore,

(2.2) sup||w(£)||2 < °° and sup || wt(ί) ̂  < oo .

When the data (uQ, uu f) are regular with respect to x, we have

THEOREM III (regularity of solutions). Let δ0 be the positive number in

Theorem II. Assume that the data (u0, ul9 f) belong to D(δ0) and satisfy

u0 e Hk+2(Rl), ux e Hk+\Bξ) and fe C([0, oo); Hk+1(I%))

for k 2> 1. Then the initial value problem (1.1)-(1.3) has a unique solution

u e C'([0, oo); H*+*-*(Ri)) (i = 0,1, 2). Furthermore, if fe U(0, oo Hk+1(Kϊ)),

then

(2.3) sup || u(£)||fc+2 < oo and sup || ut(t)\\k+1 < oo .

In particular, if ae Ck[0, oo) ami /e C*([0, oo); Hk+χ-\B^) (i = 0,1, 2,

. . . , * ) , ίΛen u € Cm oo); Hk+*-\R$) (i = 0,1, 2, . , k + 2).

COROLLARY 2.1 (existence of classical solutions). Let δ0 be the positive

number in Theorem Π. If the data (u0, uu f) 6 D(δ0) satisfy

u0 e Hs+%m, u, e Hs+i(I%) and fe C([0, oo); Hs+i(R*))

with s = [nj2] + 1, then the initial value problem (1.1)-(1.3) has a unique

classical solution ue C2(iζX[0, oo)).

In particular, ίfae C~[0, oo), (u0, uu f) e C?(R$X Co(I%)X C°=(iζx [0, oo))

and supp/( , t) is compact for each t e [0, oo), then the solution u is C°° with

respect to (x, t) e Rί X [0, oo).

Remark 2.2. In order to obtain the global existence of solutions in
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QUASILINEAR WAVE EQUATIONS 21

the class C*([0, oo); Hk+2-%Rt)) (i = 0,1, 2) for k ^ 1 as well as in the class

C*([0, oo); H2-\Rΐ)) (i = 0, 1, 2), we have only to put the same 'smallness'

condition (2.1) (with δ <L δ0) on the data (u0, uu /). This will be expected

from the form of the equation (1.1), in which the nonlinearity is caused

by the function α(||gradw(ί)||2).

However, there are different situations in the usual quasilinear wave

equations where the nonlinearity is caused by functions of the form

a(u, ut, ut) (ut = du/dXi). For details, see the paper of Matsumura [5].

Finally we shall investigate the asymptotic behavior of global solutions.

For simplicity, we assume that the data (uθ9 u^ belong to Co(R£) and that

/ = 0; we consider

(1.1)' utt - a{[ |grad u{x, t)fdoc\Δu + λut = 0, x e Rn, t ^ 0,

with initial conditions (1.2) and (1.3). Let (u0, uu 0) be in D(d0) (δ0 is the

positive number in Theorem II). As for the asymptotic behavior of a

solution u of (1.1)', (1.2) and (1.3) (which exists globally on [0, oo) by Theorem

III), we have the following result.

THEOREM IV (asymptotic behavior). Let u be a global solution o/(l.l)'

with initial conditions (1. 2) and (1.3). Then

oo,

^) as t -> oo ,

(2.4)

(2.5)

(2.6)

for every

If a

(2.7)

for every

j ^

eC2

0.

[0,

0.

\\u(t)

\u(t)\

\uιt(t

\utt{t

II2 = 0 ( 1 )
5 + i + !««(*) IJ
)i; = oit-'-K

then

as t-

= O(t~

) as

) as

As a consequence of Theorem IV, we can estimate the rate of the

decay to zero of global solutions in the supremum norm. Put

|| u |U = sup I u(x)I for ue BS(B§ ,
xeRn

where ^(JSJ) denotes the space of all bounded continuous functions on R%.

COROLLARY 2.2. Let u be a global solution of (1.1)' with initial con-

https://doi.org/10.1017/S0027763000019929 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019929


22 YOSHIO YAMADA

ditions (1.2) and (1.3). Then

(2.8)

(2.9) | | U i (t)\\-> \\u&)\U> \\U
(2.10) ||κ«(*)IL, \\ui3(t)\U =

as £-» oo, u &ere z^ = du/dxi9 uit — <Puldxtdt and uυ = d2ujdxidxj.

Remark 2.3. Let w be a global solution of (1.1)' with initial conditions
(1.2) and (1.3). If the data (uθ9 uϊ) are C;r(i®-functions, then it is easily
seen from Theorem IV that the support of u{ , t) is contained in the ball

{xeRn; \x\ £ at + Ca)

for some Cα. Here a is an arbitrary number such that a > α(0)1/2.

§ 3. Proofs of existence theorems

In this section we shall prove Theorems I, II and III. We first pre-
pare the following elementary lemma without proof.

LEMMA 3.1. Let F, G and H be non-negative continuous functions on
[0,T] (T>0). If

F(t)2 ^ Γ F(s)G(s)ds + H(i), 0 £ t£ T,
Jo

then

F(t) £ λ Γ G(s)ds + max #(s)1/2, 0 rg t £ T.
2 JO OίgS ί̂

3.1. Proof of Theorem I
Let an arbitrary T(> 0) be fixed. We denote by K the set of all

functions υ e C'([0, To]; H2-%Rn^) (i = 0,1, 2) such that

v(0) — UQ a n d u t(0) = Wi,

and

|| grad u(ί) 1<N and || ι;t(ί) |U ^ iV for 0 ^ t ^ Γ o ,

where iV is a positive constant satisfying

(3.1) 2\Γ^ — ^ - - J - — f | | M l | | ϊ + α(||graduo||
2) ||gradwo||

2

πnn{l, a0} I
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QUASILINEAR WAVE EQUATIONS 23

and T0(<L T) is a positive constant satisfying

(3.2) e x p f - 2 ^ 2 ^ 0 - ) ^ 2 (m = max \a'(r)\),

and

(3.3) 4mN2T0 < 1.

For each υ e K, we consider the initial value problem for

(3.4) utt - α(||grad v(t)\f)Δu + λut = /, x e Rn, t e [0, To],

with initial conditions (1.2) and (1.3). By (A.I) and the definition of K>

the function £->α(||gradz;(£)||2) is continuously differentiate on [0, To].

Therefore, it is easily seen that there exists a unique solution u e C'([0, To]

H2-%Ri)) (i = 0,1, 2) of (3.4) satisfying (1.2) and (1.3) (see e.g. Mizohata [8]).

We define a mapping S by u = Sv.

We shall show that S maps K into itself. To see this, we put

(3.5) ut(x, t) = (p.*u)(x, t) ΞΞ ί ps(x - y)u(y, t)dy ,

where p3* is Friedrichs' mollifier. (For the mollifier, see e.g. Mizohata [8].)

Note that uε e C*([0, To] HS(B$) (i = 0,1, 2) for any s ^ 0 . The application

of pε* to (3.4) gives

(3.6) ue>tt - a(\\gv8Ldv(t)\\2)Jus + λue>t =fε, xe R\ t e [0, To],

where fXx, t) — (ps*f)(x, t). Multiplying (3.6) by (1 — Δ)uStt and integrating

over Rn

x, we have

i(t(ί)) + (grad/.(ί), gradw.,,

α7(|| grad i#) ||2)Re (grad ι<ί), grad vt(t)) || grad κ.

£ λ || M.f t(ί) Ik2 + 4, WfXt) \\l + mN21| grad uχt) ||ϊ, 0 ^ ί ^ Γo4/

where we have used ParsevaΓs equality. Hence it follows that

IKXflllϊ + α(|| grad u(0||2)|| grad ί/e(0 II2

(3.7) £ \\u.M\\l + α(||graduo|i
2)||grad^(O)||2

^ IK d s + 2mN2 ΓI
Jo
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24 YOSHIO YAMADA

for 0 ̂  t <* To. Letting e I 0 in (3.7) and using (A.1) we easily obtain

ll».«)llϊ + αo||gradu«)||? < ||u,||i + αClgraduolDllgrad".!!!

(3.8) + 1 f!

 | | Λ β ) |K d g + 2mN2 C> u g m d M ( S ) | | ? rfS) o ̂  f ^ Γ o .
2/ Jo Jo

so that (3.8) implies, by virtue of GronwalΓs inequality, that

α(||grad u01|2)||grad u0\\\\\ ||/(β)||Jcfe}θxp(
2λ Jo J \ α0

for 0 ̂  ί ^ To.

Hence, noting (3.1) and (3.2) we see ueK: S maps K into itself.

Now we shall construct a local solution of the initial value problem

(1.1)-(1.3). Let u° be any element in K. Define {uμ}^0 by

uμ+1 = Suμ, μ = 0,1, 2, .

In other words, uμ is defined by

(3.9) uit - α(||grad α ' - W J J t f + ίwf = /, x e R\ t e [0, To],

Λvith initial conditions

uμ(x, 0) = WO(Λ:) and uμ(x, 0) = W^Λ:) , xeRn .

Since we already know that S maps K into itself,

(3.10) Wgraάu'φl^N and ||

for all μ ̂  0 and 0 <: ί <: Γo. If ^ is defined by wμ = uμ — uμ'\ it is

easy to verify that wμ satisfies

n ) wμ

t - α(\\grad uμ'\t)\f)Δwμ + λwμ

= Mil grad WWII8) - α(||grad ^

(x e i?w, ί e [0, TO]) with initial conditions

wμ(x9 0) = 0 and M;f(jc, 0) = 0, x e Rn .

Multiplying (3.11) by wμ and integrating over R%, we get

\ λ\\wμ

t(t)\\2

(3.12) l d t

= α/(||gradM'-1(ί)IΓ)Re(gradM'-1(ί)> graduΓ\t))\\gradi^(ί)
+ {α(||grad WWII*) - α(||grad WWIRK^WW, wμ(t))
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QUASILINEAR WAVE EQUATIONS 25

for 0 ^ £ <; To. Since, by (3.10) and Schwarz's inequality,

and

|{α(||gradu'-1(ί)||2) - a(\\gra.άu>'Xt)\\*)}(Ju'-\t\ u>ΐ(t))\

(3.12) leads us to the following inequality:

\\wu

t{t)\\2 + ao\\gY8iάwμ(t)\\2 + 2λ [' \\wμ(s)\\2ds
Jo

£ 2mN2{[t | |grad^(s)||2cί5 + 2 Γ ||gradM;'|-1(s)|||| wμ(s)\\ds)

(3.i3) O m Λ T ! J ; e

 J o J

(||^(s)||2 J

Jo

+ 2mN2a0 Γ ||grad wμ-ι(s)\\2ds , 0 ^ ί ^ To.
Jo

Therefore, applying GronwalΓs inequality to (3.13) we have

from which we deduce that {uμ}i& a. Cauchy sequence in C*([0, Γo];

£ == 0,1 (see (3.2) and (3.3)). Let u denote the limit of uμ in C*([0, Γo];

ίP-*(!©) (ί = 0,1). We can also see from (3.10) that uμ(t) -- u(t) (weak

convergence) in H2(R£) uniformly in t e [0, To] and Mf(ί) -- ut(i) in

uniformly in te[0,TQ]; so that, in view of (3.9), uμ

tt(t)--utt(t) in

uniformly in t e [0, To]. Thus letting μ -> oo in (3.9) we find that u satisfies

(3.14) (utt(t), φ) - α(||grad u(t)\f)(Δu(t\ φ) + λ(ut(t), φ) = (/(ί), φ)

for every ^ 6 L2(Rl) and ί e [0, To]. Note that the mappings t -> u(ί), ^ -> ut{t)

and ί -> Wίί(ί) are weakly continuous in H2(Rl), H\Rl) and L2(i?J), respec-

tively.

In order to prove u e C*([0, To]; H2~\R^) (ί = 0,1, 2), we consider the

initial value problem for

(3.15) u* - α ( | | g r a d u{t)\f)Δu* + λuf =f, xeRn,te [0, Γ o ] ,

with initial conditions (1.2) and (1.3). Since the function t -> α(||grad w(ί)l|2)
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is continuously differentiable on [0, To], the initial value problem (3.15),

(1.2) and (1.3) has a unique solution w* e C*([0, To]; H*-\R§\ i = 0,1, 2.

Put w = w — u*; then, by (3.14) and (3.15), w; satisfies the equation

(3.16) (wtt(t), φ) - a(\\ grad u(t) ||2) (Jw(*), φ) + λ(wt(t), φ) = 0,

for every 0 e L2(i® and £ 6 [0, To] with zero initial data. Hence, setting

φ = wt in (3.16) and integrating over [0, t] (0 <; £ ̂  To), we have

= 2 Γ α
Jo

α(||grada(0||2)||grad w(*)||2 + 2λ Γ ||w;,(s)||2€is
Jo

w(s)||2)Re(gradφ), grad^(s))||gradα;(s)||2cίs ,

which assures M Ξ O (i.e. u = w*) with the aid of GronwalΓs inequality.

Thus we have shown the existence of a function u 6 C f̂O, To]; H2'ι{R^)

(ί = 0,1, 2) satisfying (1.1)-(1.3).

Finally we shall prove the uniqueness of local solutions. Let u,υe

C%[0, To]; H2-%RtJ) (i = 0,1, 2) be two solutions of the initial value problem

(1.1)-(1.3). Put w* = u - v; then

(3.17) = α;(|| grad u(t) ||2)Re (grad u{t\ grad ut(t)) \\ grad ^*(ί) |

), w*(t)),

(cf. (3.12)). Since u,υe C%[0, TJ; H2-\Rt)) (i = 0,1, 2), by integrating (3.17)

over [0, t] and applying GronwalΓs inequality we may conclude w* = 0 on

[0, To], which completes the proof.

Remark 3.1. Our method of the proof of the local existence theorem

is different from that of Menzala [7]. His proof is based on the use of

Fourier transforms; the original problem (1.1)-(1.3) is equivalent to the

following problem

[ώ«(£, 0 + αflllfl ύ( , t)f)\ξ\2ύ(ξ, t) + λύt(ξ, t) = f(ξ, t), ξeR\t^09

(3.18) ώ(?,0)= ώo(f), ξeR\

[ύt(ξ,O)= ύ^ξ), ξeR\

where ύ denotes the Fourier transform of u (with respect to x). To

approach (3.18), Menzala defined approximate functions {vr(ξ, t)} (vr(ξ, t) =

0 for |f I ̂ > r) as a solution of the truncated problem
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vr,n{ξ, t) + a([ |f |'|ι;r(f, «)|'df)|f |ιυ,(f, t) + λvr,t(ξ, t) = f(ξ, t),

vr(ξ,O)= fio(f), \ξ\£r,

,ι; r f t(f,0)= β^f), I f l ^ r .

Then letting r-> oo, he has constructed a local solution of (3.18).

See also the paper of Dickey [3].

3.2. Proof of Theorem II

Since the local existence result (Theorem I) is obtained, it suffices to

get a priori bounds for any solution of (1.1)-(1.3) in order to show the

global existence.

Let T be any fixed positive number and let weC'([0, T]; iϊ2~'(i®)

(i = 0,1, 2) be a solution of (1.1)-(1.3) on [0, T\. Assume that the data

(z/o, uuf) belong to D(δ) (see (2.1)). We shall show that, if δ > 0 is suffi-

ciently small, then both || u(t)\\2 and || w4(0lli a r e bounded by a positive number

which is independent of T, so that u may be extended to the interval

[0, oo).

First multiplying (1.1) by Ut and integrating over Rl, we get

\ ^j {II ut(t) ||2 + Λ(|| grad u(t) ||2)} + λ \\ ut(t) \f = Re(/(ί), ut(f))

where A(r) = a(s)ds ( ^ aor for r ^ 0). Integration of (3.19) with respect
Jo

to t leads to
II "X*> IΓ + α 0 | |grada(0| | 2 + 2λ Γ | |^(s) | | 2 ds

(3.20) J°
^ || Ul II2 + A(|| grad uQ ||2) + 2 \\f(s) || || ut(s) \\ ds , 0 ^ t ^ T.

Jo

Consequently, applying Lemma 3.1 to (3.20) we have

(3.21) || ut(t) ||2 + α01| grad u(t) \f + 2λ Γ || ut(s) tfds ^ C^f ,
Jo

where d(3) = {<52 + A(^2)}1/2 + δ. Next we multiply (1.1) by u and integrate

over Rn

x. Then

( ^ ) , M(ί)) + α(| |grad^)| |2)| |grad^)| |2 + A - ^
at 2 at

= || ut(t)||2 + Re(/(ί), u(ί)), 0 £ t £ T,
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from which it follows that

λ\\u(t)\\2 + 2α0 Γ | |gradφ)|[2rfs ^ λ\\uQf + 2K|| | |wo|| + 2\\ut(t)\\\\u(t)\\
Jo

+ 2\t\\ut(s)fds + 2\t\\f(s)\\\\u(s)\\ds

(3.22) J° , J " 2

^ 0 + 2)s2 + A ||w(ί) ||2 + 4II M«(*)lla + 2 I M * ) I I 2 ^
2 λ Jo

+ 2[t\\f(s)\\\\u(s)\\ds.
Jo

Therefore, combining (3.21) and (3.22) we obtain

A || u(t)\f + 2α0 Γ ||grad φ ) | | 2 ds £ (λ + 2)δ2 + 1C,^) 2

2 Jo X

which implies, with the use of Lemma 3.1, the existence of a positive

constant C0(3) (independent of T) such that

(3.23) λ || u(t) ||2 + 4α0 Γ || grad M(S
Jo

for 0<Lt^>T. (Note that the estimates (3.21) and (3.23) hold for any

(iio, u» f) 6 H\m X L\m) x L'(0, oo L2(β£)).)

Now in order to estimate ||w(£)l|2 and ||Mί(ί)lli> it is convenient to em-

ploy Friedrichs' mollifier. If uε is defined by (3.5), then it satisfies

(3.24) uε>tt - σ(|| grad u(t)\\2)Juε + λuε>t = /., x e R\ t e [0, T],

where fε = (ps*f). Multiplying (3.24) by — Auε>t and integrating over i?£,

we get

{||gradMIft(ί)|| + α( | | g rad^) | | ) | | M(t)\\2}
Zi ctt

(3.25) = α'(||gradu(ί)||2)Re(gradu(t), gradut{t))\\Δu,{t)f

+ Re (grad/.(ί), grad «.,,(«)) .

Integration of (3.25) with respect to t gives

2λ Γ||gradu.,
<
(β)||

ϊ
dβ

Jo

= ||gradMs,t(0)||2 + a(\\graάuof)\\ΔuXO)\f
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+ 2 Re I (grad/e(s), grad u£ft(s))ds
Jo

+ 2Re Γ α'(|| grad u(s) ||2) (grad u(s), grad ut(s)) \\ Au£s) fds .
Jo

Hence by letting ε I 0 it easily follows that

||gradwt(ί)||2 + α(||gradu(t)\\2)\\Ju(t)\\2 + 2λ Γ | |grades)| |2cίs
Jo

(3.26) = || grad Uί||
2 + σ(||grad uQ||2)||ΔuQ||2 + 2Re Γ (grad/(s), grad ut(s))ds

Jo

+ 2Re Γ α'dlgrad φ)| | 2 )(grad u(s), grad ut(s))\\Ju(s)\\2ds
Jo

holds for 0 <: t ^ T. Using (A. 1) and (3.21) we rearrange (3.26); then

rt

\\graaut(t)\\ + α o | |^(£) | | 2 + 2Λ ||grad ut(s)\\2ds
Jo

(3.27) ^ ^2(1 + mo(^
2)) + 2 Γ 11grad/(s)||||grad ut(s)\\ds

Jo

+ —

(0 ^ ί ^ T7), where mo(r) = maxa(s) and m^r) = max\a'(s)\.

If we multiply (3.24) by — Δuε and integrate over i?J, we have

Mfiί(ί), gταάue(t)) + A

= ||grad uε>t(t)\\2 + Re(grad/.(ί), grad uε(t)\ O^t^T.

Integrating (3.28) over [0, t] and letting ε | 0 in the resulting expression

we get

Re(gradM,(f), graduφ) + A| | g radu(0| | 2 + Γ α
2 Jo

(3.29) = Re (grad u» grad u0) + A || g r a d uo\\2 + Γ || grad ut(s) fds
2 Jo

+ Re ί' (grad/(s), grad u(s))ds , 0 ^ ί ^ T .
Jo

By using (2.1) and (3.21) we rearrange (3.29); then
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••u((ί)||||grada(ί)|| + h\graάu(t)\f + a0 f \\Ju(s)\\2ds
2 Jo

(3.30)

for 0 < t^ T. Addition of (3.27) and (3.30) XΛ yields

J||gradu((ί)l|2 + ao\\Δu{t)\f + *(||gradut(t)\\ - λ||gradu(t)||)2

I grad ut(

(3.31)

+ mo(<S2)

+ 2 Γ || g r a d / ( s ) || || g r a d ut(s) \\ds , 0£t£T.
Jo

Now suppose that the inequality

(3.32) λaT ~ 2m1(C1(d)2la0)C1(d) \\ grad ut(t) || ^ 0

holds on [0, τ] (0 <: r <: T). Then applying Lemma 3.1 to (3.31) we have

(3.33) ^ ^δ%2 + 2mQ(δ>) + 2λ + ^ + -^gWLj 1 ^ + 2 £ ||grad/(s)||ds]2

^ C2(δ)\ for 0 ^ ί ^ τ ,

where C2(δ) = {̂ 2(2 + 2/no(<52) + 2^ + ^2) + 2^^C1(^)/Λ/O0"}I/2 + 2δ. Notice that

C/δ) (i = 1, 2) are increasing functions of δ satisfying Cj(O) = 0. Hence it

is possible to choose δ0 as a (unique) solution of

(3.34) λaT = 4m1(C1(^)2/αo)C1(5o)C2α).

Consequently, it is easily verified that, for (uQ, uί9 f) e D(δ) with δ ^ δ0,

u satisfies (3.32) and, therefore, (3.33) on [0, T]. Thus we have obtained

a priori bounds (3.21), (3.23) and (3.33). So we can conclude in the standard

way that the initial value problem (1.1)-(1.3) has a solution ue (^([0, oo);

H2-\R$), i = 0,1, 2, satisfying (2.2).

The uniqueness part is evident from Theorem I.

3.3. Proof of Theorem III

First we note the following result whose proof is essentially the same
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as that of Theorem I: for each uQ e Hk+\R% ux e Hk+1(R§ and fe C([0, <χ>);

Hk+1(R%)) with k"ϊ>l, there exists a positive constant To such that the ini-

tial value problem (1.1)-(1.3) has a unique solution u e C*([0, To]; Hk+2-%RtJ)

(i = 0,1, 2) on [0, Til- Hence, in order to prove the existence of a global

solution in the class <?*([(), oo); ίP+2-%β£)) (ί = 0,1, 2), it suffices to get a

priori bounds for ||w(ί)llfc+2 and || ẑ Xί)ll*+i

Let T be any fixed positive number and let u e C'([0, T]; Hk+2ί(Rϊ))

(ί = 0,1, 2) be a solution of (1.1)-(1.3) on [0, T\. Take δ0 as the positive

number in Theorem II and assume (u0, uu f) e D(δ0). (Recall that the esti-

mates (3.21), (3.23) and (3.33) hold true with δ = £0.)

As in 3.2, we multiply (3.24) by ( - J)%,t(2 ^ j < k + 1) and integrate

over Rl. Then, by ParsevaΓs equality,

ωi%i} + λ\uttt(t)\)

w(ί)||2)Re(grad u(t), grad ut(t))\ κ.(OI5+i

+ Re((-

(cf. (3.25)). Integrating the above equality over [0, t] and letting ε J, 0, we

deduce

\ut(t)\) + Co|a(ί)B+i + 2λ f \ut(s)\)ds
JO

(3.35) ^ IUl\) + a(\uo\ί)\ uo\)+1 + 2 Γ |/(s) |, | ^ ( β ) ! ^
JO

+ JoVα 0

where we have used (3.21) and (3.33).

If we multiply (3.24) by (— A)jΰe (2 <; j <; k + 1) and integrate over Rn

x,

we have

= |«.,t(ί)|J + Re((- Δ

(cf. (3.28)). Hence, it follows by integrating with respect to t and letting

s I 0 that

- \ut{t)\r\u{t)\} + 41"(01? + αo Γ \u(s)\)+1ds
& Jo

(3.36)

^ lu.lHu.1, + 4 l"°l' + Γ I"'(S)I2A + Γ l/(s)|r !«(s)L^
2 Jo Jo
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for 0 S t ^ T.

Addition of (3.35) and (3.36) X λ yields

±-\ut(t)\) + ao\u(t)\U ̂  |«,|J f
(3-37) ct

+ |/(β)|/2|««(«)!, + J|u(β)|,)dβ , 0 ^ ί ^ T,
Jo

(cf. (3.31)), where we have used (3.34). Therefore, with the aid of Lemma

3.1, (3.37) gives inductively

(3.38) \ut(t)\) + 2ao\u(t)\)+1 ^ Cj+ί, O ^ t ^ T ,

for some CJ+1. In particular, if feUφ, oo; Hk+1(R%)), then Cj+ί can be

taken independent of T; so that (2.3) holds. Thus the first half of Theorem

III is proved.

Finally we shall show the latter half. Assume a e Ck[0, oo) and

fe CXIO, oo); Hk+1-*(R$)(i = 0,1, 2, , k). Then, differentiating both sides

of (1.1) with respect to t, we may conclude that u belongs to the class

C m oo); H*+2-m)) (i = 0,1, 2, , * + 2).

3.4. Proof of Corollary 2.1.

By Sobolev's lemma, Hm(Rt) is imbedded in 36{β§ if m ^ [n/2] + 1

(see e.g. Sobolev [11] or Mizohata [8]). Therefore, all the conclusions of

this corollary are evident from Theorem III.

§4. Asymptotic behavior

In this section we shall consider the asymptotic behavior of solutions

to the equations

(LI/ utt - a(\\ grad u(t) \\2)Ju + λut = 0 , x e Rn , t e [0, oo),

with initial conditions (1.2) and (1.3). For simplicity, we assume that the

data (uo, Wi) are C^(i?ϊ)-functions. Moreover, assume that they satisfy

\\uo\\2^δo and Wu^^δo,

where d0 is the positive constant in Theorem II.

We already know by Theorems II and III that there exists a unique

solution u e C*([0, oo); HM-\R*i) (i = 0,1, 2) satisfying

sup||w(ί)||fc+2 < oo and sup\\ut{t)\\k+i < co ,
O
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for any k >̂ 0.

However, we shall show that, because of the presence of the dissipa-

tive term λut, both \u(t)\j+1 and |u,(£)lj decay to zero as ί-»oo for every

j ^ 0 (Theorem IV). (||u(ί)ll may not decay to zero as ί-> oo.) Hence, by

making use of Nirenberg's inequality (see (4.12)), we can prove that the

solution u itself also decays to zero in the supremum norm as t -> oo

(Corollary 2.2).

4.1. Proof of Theorem IV

By (3.23), it is easy to see (2.4). Moreover, by (3.21) and (3.23), there

exists a positive constant C such that

(4.1) \\u(t)\\2^C and \\ut(t)\\^ C

for all t ^ 0.

Now we shall prove the following stronger result than (2.5):

(4.2) * ' + W)I5 + M*)i;+i) + f/+ί\ut(s)\).ds + ^y\u(s)\)+1ds £ M),

t^ 0, j = 0,1, 2, . ,

with some Mj > 0.

In order to show (4.2) we employ the weighted energy method.

Multiplying (3.19) (with /ΞΞ 0) by t and integrating over [0, t] we have

(4#3) t\u&)\2 + tA(\u(t)\ϊ) + 2λ^s\ut(s)\2ds = JVXs)|8 + A(\u(s)\f))ds,

Note the following inequality

Col u(t)\l ^ A(\u(t)\ΐ) ^ mo\ u(t)\l, ί ^ 0 ,

where m0 = sup α(r). Hence, by virtue of (3.21) and (3.23), the right-hand

side of (4.3) is bounded by a positive constant; which shows (4.2) for j = 0.

In order to prove (4.2) for j = 1, we introduce a pair of two non-

negative functions {φχ(t), ψi(ί)}; Φι(t) € C3[0, oo) is a monotone increasing
function and ψ^t) e C3[0, oo) is an auxiliary function of φ^t).

Multiplying (l.l)7 by — φS})Δΰt and integrating over Rn

x X [tu t], we

have
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Φiw(\ut(t)\l + a(\u(t)\f)\u(t)\l) + 2λ φiis^u^llds
Jt!

(4,4) r«
+ 2 &(sM|φ)|DRe(gradw(s), gmdut(s))\u(s)\lds

Jti

+ Γ ̂ )(|^(s)|? + α(|φ)|DIΦ)|D^
Jίl

for t 2> U ̂  0. Next multiplying (1.1)' by — ψ^Au and integrating over

Ri X [ti, t], we get

+ 2 Γ ψ 1(β)α(|«(β)|O|u(β)|ϊcfe + Γ (ψί'(β) - ίψί(β))l«(β)|ίcfe
(4.5) J ί l Jtl

= 2ψ i(ίl)Rβ(graίl αXί,), grad w(ί,))

+ ϋψ.ft) - ψί(O)l«(ίi)lϊ + 2 Γ Hs)\ut(s)\lds
Jti

for ί ^ ί, ^ 0.

Addition of (4.4) and (4.5) leads to the following identity:

I D M ^ + Φi(t)\ut(t)\{ + 2ψ,(ί)Re(gradwi(0,

+ (λUt) - ΨM\u(t)\l + Γ (ψί'(β) - iψί
Jti

+ f (2^,(s) - φi(s) - 2ψ ,(β))|u,(β)gΛ

(4-6) f t

+ {(2^,(8) - <Sί(s))α(|u(s)|D

- 255,(5)0X1 M(s)|ORe(gradκ(s), grad««(β))}|«(β)|ί<iβ

= φ1(t1)α(\u(t1)\ί)\u(tί)\ί + φKtiMtdW

+ 2ψ1(t1)Ue(gtΆάut(t1), gradu(O) 4-

for ί ^ ί, ^ 0. Setting ^.(ί) = ί and ψ,(<) = <̂/2 in (4.6) and making ί,

large enough ( ί̂, > 1), we have, in view of (4.1) and (4.2) (j = 0),

αot)u(t)\ί + ±-t\ut(t)\l + l ί( |u ( (ί)l, - l\u(t)iy + Γ (λs - l)|u l(β)|ϊdβ

(4.7) f 2 Jίl

+ Γ {(is - ϊ)α0 - 2m1CMos
1/2}\u(s)\lds £Nl9 t^t^O,

Jt!

with some Nu where mx = sup ja^r)]. Consequently, (4.7), in particular,

implies
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(4.8) \ut(t)\l £ Nit-1, ί > 0 ,

with some N2 > 0.

We shall return to the identity (4.6) in order to derive a better esti-

mate than (4.7) by making use of (4.8). Reset φx{t) = t and ψι(t) = axt in

(4.6), where ax > 1 is a parameter. Then, (4.1), (4.2) (j = 0) and (4.8)

assure the existence of an Ns satisfying

t2(a0\u(t)\t + \ut(t)\l) ~ 2aιt\ut(t)\r\u(t)\1 + aMu(t)\\

+ 2 Γ {λs - {a, + l)}s\ut{s)lds
Jtl

+ 2 f {(a, - ί)aQ - m,M«N2}s\u(s)lds
Jtl

^ Nz f o r t^tl9

so that, by choosing α^O 1) such that {ax — l)α0 > mxMoN2 and taking a

sufficiently large tl9 we may conclude that (4.2) holds for j = 1.

In order to show (4.2) for jf ^ 2, we emply the following identity: for

any monotone increasing function φό e C3[0, oo) and a3 > 1/2,

φβ)(\ut{t)\) + a(\u(t)\d\u(t)\)+1) + 2

+ atflφM - φ%t))\u{t)\) + a, Γ (^(β) - ^

+ Γ {2^,(5) - (2ctj + l)φ'j(s)}\ut(s)\)ds
Jtj

(4.9) + Γ { ( 2 α _ i^(8)α(|iι(8)|D
Jtj

r(|w(s)|?)Re(grad M(S), grad ut(s))}\ u(s)\2

j+1 ds

+ α / ^ ; ( O - φ';(t>>)\u{t3)\), for ί ^ ί,-^ 0 ,

which is obtained by multiplying (1.1)' by (— jy(φjΰt + cxjφjU) and inte-

grating over Rn

x X [tj91]. Notice that

\a%uit)\f)Έίe(gr€Lάu(t)9 gradMt(ί))| ^ mMMj^2

holds for ί > 0 (by (4.2) (j = 0,1)). Hence, setting φά(t) = tj+1 in (4.9) and

taking a sufficiently large tj9 we can inductively prove (4.2) for j ^ 2.

Thus (2.5) is verified.

To see (2.6), it suffices to apply (2.5) to (1.1)'.
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Now we shall prove (2.7) when a e C2[0, oo). Set

b(t) = a(\u(t)\f).

Then it follows from (4.1), (4.2) and (2.6) that

(4.10) | 6 ' ( ί ) | ^ Kt~z/2 a n d \b"(t)\ ^ K t ~ 3 / 2 , t > 0 ,

with some K > 0. Differentiation of (1.1)' with respect to t leads to the

equation

(4.11) u t t t - b(t)Δut + λ u t t - V(t)Δut = 0 , x e R n , t^O.

Multiply (4.11) by ( - J)j{tj+2ΰtt + βs(j + 2)tj+1ΰt} with βj > 1/2 and integrate

the resulting expression over iϊj X [0, t]. Then as in the proof of (4.2),

we can show (with the use of (4.10)) that there exist positive constants

Lj such that

tj+\\utt(t)\) + \ut(t)\U) ^Lj9 t ^ 0, j = 0, 1, 2, . . . ,

which asserts (2.7). Thus the proof is complete.

Remark 4.1. Suppose that the data (u0, uj belong to ίf f c + 2(i^)χ Hk+1(B%)

for k JΞ> 0. As is easily seen from the proof of Theorem IV, it is possible

to show (2.4), (2.5) for 0 ^ j ^ k + 1 and (2.6) for 0 ^ j ^ k. Moreover,

if k ^ 1 and a e C2[0, oo), then (2.7) also holds true for 0<^j<:k.

4.2. Proof of Corollary 2.2.

Note the following well-known inequality due to Nirenberg [9];

(4.12) IlitlU ^ cQ\u\&

m\\u\rθ for ueHm(I%),

where m ^ [n/2] + 1 and 0 < θ = nβm < 1. Then it follows from (2.4),

(2.5) and (4.12) that

\\u(t)\U ^ Co\u(t)^\\u(t)\r^^ £ C'ot-
n»,

which implies (2.8). Other decay estimates (2.9) and (2.10) are derived from

(2.5), (2.6) and (4.12) in the same way.

Remark 4.2. In Corollary 2.2, decay estimates (2.8)-(2.10) still remain

true for the initial data (uϋ, ux)eHs+\Rt) X Hs+ί(Rl) with s = [n/2] + 1

(see Remark 4.1).
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§5. Some results on the mixed problem

Let Ω be a bounded domain in B% with C°° boundary Γ. We shall

consider the following mixed problem

(5.1) utt - a([ |grad u(x, t)\2dx\ήu + λut= f, x e Ω , £ e [0, oo),

(5.2) u(x,t) = 0, xeΓ, ίe[0,oo),

(5.3) w(#, 0) = uo(x) , x e Ω ,

(5.4) uXx, 0) = ux{x), JC € Ω ,

where a is a function satisfying (A.I) and λ is a positive constant (see

Dickey [1], [2] and Pohozaev [10]).

Let HS(Ω) be the usual Sobolev space of order s; the space of func-

tions u such that u and all its derivatives of order <̂  s belong to L\Ω).

The closure of CQ(Ω) in HS(Ω) is written by Hl(Ω). As in the preceding

sections, we denote by || ]|, (resp. || ||) ίP(β)-norm (resp. L2(£?)-norm).

We define a positive self-adjoint operator A in U{Ω) by Au — — Δu

with domain D(A) = H\Ω) Π H&Ω). It is well known that D(A1/2) = J?J(fl)

and ||A1/2w|| = ||gradw|| (ueD(A1/2). So the mixed problem (5.1)-(5.4) can

be written in an abstract form

utt(t) + α(|| A1/2u(t)\\2)Au(t) + λut(t) = f(t), t ^ 0 ,

Repeating the arguments in § 3 with a slight modification, we can

obtain the similar existence results on the mixed problem (5.1)-(5.4). We

shall state them without proofs.

THEOREM 5.1. Let u0 e H\Ω) (Ί H\{Ω\ ux e H\(Ω) and f e C([0, oo) H\ψ)).

Then there exists a positive constant To such that the mixed problem (5.1)-

(5.4) has a unique solution u on [0, To] satisfying

u e C([0, TQ] H\Ω) Π H\(Ω)) Π ̂ ([0, To] Hl(Ω)) Π C2([0, Γo] L\Ω)).

THEOREM 5.2. There exists a positive number δ0 (which depends on a,

a' and X) such that, if the data (u0, uuf) e H\Ω) Π H\ψ) X Hl(Ω) x C([0, oo);

Hl(Ω)) satisfy

(5.5) K | | 2 ^ o , ||wi||i^3o α^d
J
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then the mixed problem (5.1)-(5.4) has a unique solution u on [0, oo) such that

u e C([0, oo); Ή\Ω) Π Hlψ))Π C'tfO, oo); H](Ω))Π C2([0, oo); L2(β)).

Furthermore,

sup||w(ί)||2 < oo and sup||wf(ί)lli < °°

THEOREM 5.3. Let a belong to the class Cfc+1[0, oo) (k I> 1) and let δ0

be the positive number in Theorem 5.2. // the data (u0, uu f) satisfy

u0 e D(A(k~2)/2), ux e Z)(A<fc+1>/2), A<*+1-wf e C'([0, oo);L\Ω)),

(i = 0,1,2, . . - , * )

and (5.5), then the mixed problem (5.1)-(5.4) has a unique solution u on

[0, oo) satisfying

i = 0, 1, 2, . , Λ + 2 .

Remark 5.1. From A(fc+2"ί)/2w e C*([0, oo); L2(β)) for 0 ^ i ^ Jfe + 1, it is

easily seen that w belongs to the class C*([0, oo); J3"fc+2-*(β)Πί7o(β)) for

0 ^ £ ̂  Jfe + 1.

Remark 5.2. Pohozaev [10] has approached the mixed problem (5.1)-

(5.4) with λ = 0 via the Galerkin's method. He has shown that there

exists a global solution u of (5.1)-(5.4) if the data (u0, ul9 f) are contained

in some special classes of functions. See also Lions [4].

Finally we shall study the asymptotic behavior of global solutions.

For simplicity, we assume that αeC°°[0, oo), / Ξ 0 and that the initial

data (uo, Uι) e C^ψ) X CQ(Ω) satisfy (5.5). (Note that both u0 and ux are in

D(Am) for any k 2> 0.) Then making use of the weighted energy method

developed in § 4, we can obtain the following exponential decay of solutions.

(The key point of deriving the exponential decay lies in the use of

Poincare's inequality

|| Aί/2u\\ ^ Coll u|| for u e D(Aυ2) = H\ψ)

with some c0 > 0.) See also Yamada [12].

THEOREM 5.4. Let u be a solution o/(5.1)-(5.4) with f ~ 0. Then there

exists a positive constant a > 0 such that

W* + \\A»2ut(t)\\2 = O(e-at) as t -> oo

for every j ^ 0.
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