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Abstract

In studying the depth filtration on multiple zeta values, difficulties quickly arise due to a disparity between it and
the coradical filtration [9]. In particular, there are additional relations in the depth graded algebra coming from
period polynomials of cusp forms for SL;(Z). In contrast, a simple combinatorial filtration, the block filtration
[13, 28] is known to agree with the coradical filtration, and so there is no similar defect in the associated graded.
However, via an explicit evaluation of £(2,...,2,4,2,...,2) as a polynomial in double zeta values, we derive
these period polynomial relations as a consequence of an intrinsic symmetry of block graded multiple zeta values
in block degree 2. In deriving this evaluation, we find a Galois descent of certain alternating double zeta values to
classical double zeta values, which we then apply to give an evaluation of the multiple ¢ values [22] #(2¢, 2k) in
terms of classical double zeta values.
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1. Introduction

For any tuple (ki, k2, . . ., k;) of positive integers with k, > 2, we may define a multivariable analogue
of the Riemann zeta values, called a multiple zeta value (MZV) of weight k| + - - - + k, and depth r, by

1
g(kl,kz,...,kr) = Z Tk
0<n|<ny<---<n, n11n22 coeny”

These numbers arise naturally in many areas of mathematics and mathematical physics, including in
connection to associators [30, 34], Feynman amplitudes [3], and as periods of mixed Tate motives [5].
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Unlike single zeta values, multiple zeta values have a rich algebraic structure, the study of which goes
back to Euler 15. Many families of relations, such as the associator relations [30], the double shuffle
relations [35], and the confluence relations [22], are conjectured to exhaust all relations among MZVs.
However, this is incredibly challenging and encompasses still-open questions such as the transcendence
of £(2k + 1).

One approach to make this more manageable is to consider instead motivic multiple zeta values. Via
their connection to mixed Tate motives, MZVs may be lifted to formal, algebraic objects, only satisfying
relations coming from the geometry of P! \ {0, 1, co} [5]. In this setting, much more is known: the ring
‘H of motivic MZVs are known to be graded by weight, with weight graded dimensions d,, given by

1
S —
1-x2-x3
n>0

Motivic multiple zeta values have an explicit basis [5], given by the Hoffman zeta values

(ko k) ks Ky € {2,3)).

However, the question of providing a complete set of relations remains an open problem. One approach
to describing all (motivic) relations among MZVs is to consider the associated graded algebra with
respect to the depth filtration

D,H = <§m(k1,...,kr) | r < n)Q.

Relations in gr? H are much simpler, with the stuffle product reducing to a simple shuffle product.
However, this introduces additional relations [17],

14£™(3,9) + 75¢™(5,7) + 84¢™(7,5) =0  (mod lower depth)
and the associated Lie algebra of relations is no longer free [27]
{o3,09} —3{05,07} =0 (mod terms of higher depth).

In particular, there are a family of such quadratic relations, arising from period polynomials of
cusp forms [17]. Both the relations among multiple zeta values and among elements of the motivic
Lie algebra are commonly referred to as the period polynomial relations. It is conjectured that these
relations determine all additional relations among depth graded multiple zeta values — that is to say, the
the associated Lie algebra of relations is the quotient of a free Lie algebra by the idea generated by these
quadratic relations.

Conjecture 1.1 (Broadhurst-Kreimer, [3]). The generating series for the dimension of the depth graded
multiple zeta values is given by

1

BK(x,y) = 1-0(x)y+S(x)y? - S(x)y“’

where
3

o0 = s
(x) 2
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and

)C12

Sx)= ——F———
) (1=x%(1-x5)

is the generating function for the space of cusp forms of weight n for the full modular group. That is to
say, that the number of linearly independent depth graded multiple zeta values of weight n and depth d is
given by the coefficient of x"y? of BK (x, ), and that these dimensions are determined by the relations
coming from cusp forms.

However, a proof of this remains out of sight, and these additional relations make using the depth
graded Lie algebra to conclude statements about ungraded MZVs challenging.

An alternative approach, first explored in [28, 29] and based on results in [11, 13], is to consider
the so-called block filtration. This filtration provides a simple description of the coradical filtration
associated to the motivic coaction in terms of a combinatorial degree function. Specifically

BuH = (™ (w) | degg(w) < n)q,

where degz (w) counts the number of subsequences e;e; in egwej. In [29], we see that in the associated
graded algebra with respect to the block filtration, there are no additional relations, and furthermore
that a complete set of relations can be given in low block degree. One might then ask how the period
polynomial relations manifest in this setting.

Lemma 1.2. The depth filtration is a subfiltration of the block filtration:
DpH C ByH.

Proof. First note that the depth filtration is motivic:

ADHC Y DiA@DH.

i+j=n

As such, since the block filtration is equal to the coradical filtration, it suffices to show that D;H C B H.
This is an immediate consequence of Lemma 3.2 [5]. O

As depth is a subfiltration of the block filtration, it is clear that we should be able to express double
zeta values in terms of block degree 2 zeta values, and hence that all block graded relations among
them, modulo products, should be determined by relations describing bg, the associated Lie algebra
of relations among block graded MZVs. However, Lemmas 1.2 and 2.8 imply that, in block degree 2
and even weight, relations among multiple zeta values modulo terms of lower block degree are genuine
relations modulo products. Thus, the period polynomial relations, modulo products, should arise as a
consequence of the relations among block graded MZVs introduced in [29].

And indeed, this seems to be the case. The following is a consequence of Lemma 4.1 and allows us to
show that relations among double zeta values of even weight are encoded by certain explicit polynomials

in Q[xy, x2,x3].

Corollary 1.3. Modulo products, the following holds for any 0 < 2a < n,

ni ({24,217 =4(-)™! nf M2 +3,2n - 2i +1)

i=a i=a

=4(-1)""(2a +1,2n - 2a + 3).
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Proof. Letting n := a+ b in Lemma 4.1, we have

{234, 4,{2}0) = 4(-1)" [—{I(Za +2,2b+2) - ' (2a+3,2b+ 1)

g 2m+3-j\ (2m+3-j
2j=4=2n - N Go2n+4- ).
+; (( 2b+1 ) ( 2a+1 ))g(,, n4-J)

Noting that both £'(2a +2,2b + 2) and
2n+3—j 2n+3—-j
2b+1 2a +1
are antisymmetric in a and b, the result immediately follows. O

From this, it is possible to deduce that the dimension of double zeta values of weight 2n + 2 modulo
products is bounded above by | % |, which is precisely the dimension predicted by Conjecture 1.1. As
the modulo products version of Conjecture 1.1 is known to hold in depth 2 [36], we must have that all
period polynomial relations can be written in terms of the block relations, defined in Section 3, and thus
Proposition 3.5 holds.

Proposition 3.5. All relations among double zeta values of weight 2n+2 modulo products are determined
by (Relation 1) and (Relation 3) via Corollary 1.3.

Indeed, using a computer, one can easily write the period polynomial relations as linear combinations
of relations coming from the dihedral symmetry of Section 8 of [29]. A more explicit connection is
given in Proposition 3.7.

The structure of this paper is as follows. We first will briefly remind readers of the motivic formalism,
and in particular, the use of the motivic coaction to deduce relations. We then describe the block
filtration and review several of the results of [29]. In particular, we will introduce the block dihedral
symmetry and the necessary framework to discuss it.

In Section 3, we then apply these results, along with a number of new evaluations to conclude that
the period polynomial relations are a consequence of this block dihedral symmetry in block degree 2.
The remainder of the paper is then dedicated to the necessary technical results needed for this section.
Specifically, an evaluation of ¢({2}¢,4, {2}?)in terms of double zeta values', and a computation of
the dimension of the space cut out by the block dihedral symmetry. The latter is a straightforward
argument from representation theory, while the former is a trek through the world of MZV relations
and machinery, including: motivic cobracket calculations; multiple Euler sums (also called alternating
MZVs) and the octagon-relation-induced dihedral symmetries thereof [18, 19]; multiple zeta star values
and the stuffle-antipode [31, Equation 2.4],[24, Proposition 1]; Zhao’s generalised 2-1 theorem [41]
(and the first author’s block-decomposition description thereof [12]); (alternating) multiple zeta-half
values [39]; the explicit depth-parity theory for depth 3 alternating MZVs [21, 33]; and a vital (and
serendipitously unearthed) generalised doubling relation [42, Section 14.2.5]. We divide these results
between Section 4 and an appendix, according to how central they are to the main results of the article.

We end the main body of the paper with a short corollary of Proposition A.3 in relation to a variation
of multiple zeta values, called multiple ¢ values [23]

1
ek = ), T G T

O<ny<---<ng

!Computer readable versions of the full evaluations from Theorems A.6 and A.7 in Appendix A are included in the supple-
mentary materials, as plain text files in Mathematica syntax and in pari/gp syntax.
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In particular, we provide an evaluation of 7(2¢, 2k), when the arguments are even, via classical double
zeta values, improving upon the results of [32, Theorem 1] by giving an explicit formula for the Galois
descent in this case.

2. The motivic Lie algebra and block graded multiple zeta values

An essential observation in the study of multiple zeta values is that they may be lifted to motivic periods
— algebraic objects satisfying only relations coming from geometry. Because of this, motivic multiple
zeta values (mMZVs) are much simpler to study. They are known to be graded by weight, and they come
equipped with a coaction that encodes all motivic relations. We may consider their graded analogues
with respect to a number of filtrations, or consider the associated Lie coalgebra of mMZVs modulo
products, whose relations are encoded in a free Lie algebra. The theory of motivic periods is substantial
[71, so we give only an essential overview here and refer the reader to [6] for more details.

2.1. Motivic multiple zeta values

The formal definition of mMZVs relies on the Tannakian formalism for the category of mixed Tate
motives over Spec Z, and is intimately related to the motivic fundamental group of P! \ {0, 1, o0} [5].
In brief, letting MT(Z) denote the category of mixed Tate motives, and denoting by

wR,wqar : MT(Z) — Vecg

the Betti and de Rham realisation functors, the ring of motivic periods of MT(Z) is the ring of functions
on the scheme of tensor isomorphisms

’PI{ZT(Z) = (’)(IsomﬁT(Z) (war, WB)).
The results of Brown [5] tell us that this is isomorphic to H[L™!], where H will be the algebra of

motivic multiple zeta values, and L is a motivic analogue of 27i.
However, for our purposes, the reader need only keep in mind the following properties.

Properties 2.1. The algebra H of motivic multiple zeta values is the Q-algebra spanned by symbols
I™(ag;ay,...,a,;ans) where a; € {0, 1},

called motivic multiple zeta values or motivic iterated integrals, satisfying the following properties:

i) (Equal boundaries) I"™ (ag; ay, . .., dn;ap) = 6u.0,
ii) (Reversal of paths) I™(ag; ay, . .., an; ans1) = (=) T (ans1; an, . . -, ay; ao),
iii) (Functoriality) I™(ag; a1, ...,an;an+1) =1"(1 —ap; 1 —ayq, ..., 1 —ay; 1 —aps)

iv) (Shuffle product) For 1 < r < n, denote by Sh,. ,_, the set of permutations o~ on n satisfying
oc(l)<o@)<--<o(r)ando(r+1) <--- <o(n).
Then

™0 ay,...,a; DI™(0;a,41,...,a,;1) = Z Im(o;aa_—l(l),...,ao_—l(n);l).

oeShy,

v) (Period map) There is a ring homomorphism per : (,-) — (C, -), called the period map, sending
a motivic iterated integral to the corresponding complex iterated integral when it converges.
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For a tuple of positive integers (K1, ..., kq), and £ > 0, we write {™ = {" and
gtk ka) = (S0 {03 L {0Y T L {0y, @.1)

where {0}" denotes n repeated zeroes.

Remark 2.2. In the standard definition of motivic multiple zeta values, we have that
1"(0;0;1) =1"(0;1;1) = 0.

This, combined with compatibility with the shuffle product, uniquely determines the image of motivic
MZVs which do not correspond to convergent iterated integrals. This convention produces what are
called shuffle regularised MZVs. It is occasionally convenient to consider other regularisations, such as
stuffle regularised MZVs or MZVs regularised so that £ (1) is regularised to a nonzero constant [25].

Remark 2.3. The reversal of paths property and the functoriality property give an important relation
for motivic MZVs called the duality relation:

I™(0;ay,...,a,;1) = (=D"I"™(0;1 —ap,...,1—a;1).

Let A = H/({™(2)) be the quotient by the ideal generated by (™(2), and denote by
1%(ag;ai, ..., an; any1) the image of I (ag; ay, . . ., an; ans1). The formula given below equips H with
the structure of an A-comodule

ArH—-> AQH.
Explicitly, AT (ag; ai, . . ., an; ans1) is equal to
k
Z 1_[ I(ai; i1y - Qigy—15 aig,) | @ T (aos aiys -« - @iy Anan)- (2.2)

i0<i| < <ig41 \s=0
i0=0, ix+1=n+1

A linear combination R of motivic multiple zeta values vanishes in A if and only if

i) per(R) = 0, that is, R holds numerically

ii) per(R’) = O for all transforms R’ under the motivic coaction, that is, the relation is motivic. A
transform R’ of R under the motivic coaction is obtained by choosing a weight graded basis {a;};¢s
of A and writing

A(R):Zai@)Ri.

icl
Each R; is referred to as a transform of R.

As the coaction is quite combinatorially complicated, it is often convenient to instead consider the
infinitesimal coactions D,. Define the Lie coalgebra of indecomposables

L= A>0/~A>OA>O,
where A.o denotes the positive weight part of A. Denote by I'(ag;a,...,an;ans1) the image of
I%(ag; ay, ..., an; ane) in £, and similarly, denote by £'(ky, . . ., k,) the image of (™ (ky, ..., k,)in L.

Let £, be the weight » component of £. The infinitesimal coaction is then the composition

Ho>AQH > L, H
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of A — 1 ® id with the projection to £,. Explicitly, D, I (ag; ay, . . . , Gn; ans1) is given by
n—-r
Z 1'(ak; agets - - - s Apars Akare1) @ 1™(A03 A1, - - oy Ay Akrals - - - 5 Gn Ans)- (2.3)
k=0

These infinitesimal coactions are significantly easier to compute but still encode almost all essential
information surrounding motivic MZVs.

Theorem 2.4 (Brown [5, Theorem 3.3]). Let N > 2, and denote by Do = @3§2r+1<N Dy, 41. Then in
weight N, the kernel of D« is one dimensional:

kerDoy NHy = QL™ (N).
Brown proves this result by considering a particular choice of isomorphism of coalgebras

(A’ A) = (Q<f37 fs’ f7’ .. '>’ Adecon)s

which he lifts to an isomorphism of comodules over these coalgebras. We may instead consider the
corresponding vector spaces of indecomposables, equipped with the structure of Lie coalgebras by
defining the cobracket to be the natural cobracket coming from antisymmetrising the coproduct. We
then have an isomorphism

(‘C’ 0) = (Q<f3s .. ~>>0/Q<f3» .. ~>§fz» adecon)’

which we use to obtain the following standard proposition.

Proposition 2.5. Denote by
0 LoL, L
the ™" infinitesimal cobracket, given in weight N by
¢ =m,00=D,&-7Dn_, &,

where T(a®b) =bQ®a. Let O« = @3§2r+l<N 02r+1. Then, in weight N, the kernel of 0<n is at most
one dimensional:

kerdy N Ly = QL' (N),

where we note that {'(2n) = 0.

Proof. 1t is known L is isomorphic to L the Lie coalgebra of indecomposables of Q(f3, fs,,...) with
respect to the shuffle product, which is the cofree Lie coalgebra with cogenerators f3, fs, . ... Choosing
an isomorphism ¢, such that ¢({'(2n + 1)) = fo,1, it suffices to show that

kerd.y N Ly = QfN,

where we take f>, = 0.

As L is graded by f-degree, the vanishing of d<y is equivalent to the vanishing of the full cobracket
0 followed by projection onto odd weight in the first component. This composition is dual to the Lie
bracket

L\/

\% \%
odd® L — L7,
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where LV is the free Lie algebra on f3V, fSV, .. .. As this map is surjective onto the f-degree at least 2
part of LY, this implies that d- is injective on the f-degree at least 2 part of L, and hence the kernel is
spanned in weight N by fn. O

Remark 2.6. It is worth noting that this formalism for motivic multiple zeta values extends to
more general motivic iterated integrals, in particular, alternating motivic MZVs [19]. We will need
this extension for the results of Appendix B, and will introduce the necessary results and concepts
as needed.

2.2. The motivic Lie algebra

Elements of £ may be viewed as motivic multiple zeta values, modulo products. By considering the
weight graded dual, we obtain a Lie algebra g™, called the motivic Lie algebra. From the theory of mixed
Tate motives and Tannakian categories, this Lie algebra is equal to a subspace of Q(eg, ¢1), equipped
with the Ihara bracket {-, -} [5, 26]. Via the pairing

(I'N0za1,....ami 1),y .. €i,) = Smnbariy - - - Oapim»
elements of g™ may be viewed as encoding relations among elements of £. For example, in weight 5,
g™ is spanned by

9
05 = 6163 + 56]6(2)6160 + -
from which we can conclude that
m — 9 m
M(3,2) = 5{ (5) (mod products).

As such, describing relations among motivic MZVs (up to products) is equivalent to describing
the elements of g™. In particular, to describe all such relations, it would suffice to describe explicit
generators for g™. It is known [14] that the motivic Lie algebra is isomorphic to a free Lie algebra

g™ = Lie[o3,05,...],

with generators o»g+1 in every odd weight greater than 1. However, this isomorphism is noncanonical,
and there does not exist an explicit canonical choice of representatives of o»r.;. However, we can
somewhat remedy this by considering graded relations among motivic MZVs for a certain filtration.

2.3. The block filtration

In [4], Brown proposed a new filtration on the space of convergent motivic MZVs, based on the work
of the first author [13]. This was expanded to a filtration on all motivic MZVs by the second author in
[28, 29], in which the associated graded algebra - and relations therein - is investigated. In this section,
we provide a brief summary of this filtration and relations in the associated graded algebra.

Call a word in two letters {a, b} alternating if it contains no subword of the form aa or bb. As noted
in [13], every word in {a, b} then has a unique factorisation into alternating words of maximal length.
This allows us to uniquely determine a word w by its first letter and the lengths of the alternating blocks
in this factorisation (x;¢y,...,¢,), x € {a,b}. We call this sequence the block decomposition of the
word w.
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We define the block degree deg;z(w) of a word w to be the number of instances of subwords of the
form aa or bb in w. This allows us to define the block filtration on the vector space Q(a, b) by defining
the n'" part

B,Q(a, b) = (w | degg(w) < n)q

to be the vector subspace spanned by words of degree at most 7.
As motivic iterated integrals, and hence motivic MZVs, may be viewed as a quotient of Q{eg, ¢1)
via the map

my: .- ..
eioei] "‘ein+1 '_)I (109llv'~-’lnﬁln+1)7

the space of motivic MZVs inherits the block filtration. We may also define the block degree of an
iterated integral, by taking the block degree of the associated word. This turns out to be a very natural
filtration to consider, satisfying a number of nice properties, the proofs of which we shall either sketch
here, or may be found in [28, 29].

Proposition 2.7. The block filtration is equal to the coradical filtration induced by the motivic coaction.
Furthermore, when restricted to the Hoffman basis, it is the level filtration of Brown [5]. Hence, any
MZV of block degree N may be written as a linear combination of Hoffman MZVs with at most N threes.

Lemma 2.8 [13]. All MZVs of block degree b and weight N, with b and N of opposite parity, vanish.

Proof. If ™ (ip; i1, .. .,in;in+1) has block degree b, then the final letter of ¢, . .. ¢;,,,, must be equal
to the final letter of the alternating word of length N + 2 — b, beginning with ¢;,. In particular, we
must have that e;,,, , = e;, if N +2 — b is odd, that is, N and b are off opposite parity. Hence,
I™(igs i1, ..., insine1) = 0, as it has the same start and end points of the integral. O

Analogously to depth graded MZVs [9], we may consider the associated graded algebra
e M= D BH/BH
n>0

and consider relations among block graded multiple zeta values. Much like relations among motivic
MZVs, modulo products, in the motivic Lie algebra g™, relations among block graded MZVs, modulo
products, are encoded in the block Lie algebra

bg — @Bngm/Banm,
n>0

where the filtration on g™ is induced by the filtration

B"Q(eo. e1) = (w | degg(w) = n)q

via the embedding g™ < eoQ(eo, e1)e1. We denote by bg,, the block degree n part, via the embedding
into B"Q(eq, e1)/B""' Q(eq. e1).

Proposition 2.9. As Lie algebras g™ = bg. In particular, they are (noncanonically) isomorphic to
Lie[0'3,a'5, .. ]

Proposition 2.10. Let {03141}k >1 be a choice of generators for ™. Then the block degree 1 piece of the
image of {02x+1 }i>1 in Q{eg, e1) is independent of the choice of generators. In particular, we can make
a canonical identification between the image of bg in Q{eq, e1) and the free Lie algebra Lie[o3, 05, . . .].

Remark 2.11. It is in these two results that we see a stark contrast to the case of depth graded multiple
zeta values [9]. Analogously to the above, one can consider the associated graded Lie algebra for the
depth filtration, induced by the e|-degree of words in Q(eg, e;). As for the block graded case, the
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image of the generators {041 }x>1 in depth 1 is canonical. However, unlike the block graded case, the
depth graded Lie algebra dg is not free, having quadratic relations and extra generators in depth 4. These
quadratic relations are algebraically well understood [9, 36], and give a somewhat mysterious connection
to modular forms. Indeed, the quadratic relations are exactly encoded in the period polynomials of cusp
forms. This is a relationship that we can discuss in a new light using the approaches of this paper.

As the image of bg in Q(eq, e1) lies in egQ(ey, e1)e, the block decomposition gives an injection of
vector spaces

bg — @Q[xl,...,xn]

n>1

obtained by sending a word w = ¢g . . . to xf’ .. .xﬁ", where (eg; {1, . . .,{,) is the block decomposition

of w. The image of bg,, under this map lies in (x] — X,41)x1 - . . Xp41Q[x1, . . ., Xu41]. We denote by tbg,,
the image of bg,, divided by (x| — x;4+1)X] ... Xu+1, and let thg = @nz] tbg,,. Thus, we have reduced
the problem of describing relations among block graded MZV's modulo products to describing tbg as a

subspace of D), , Q[x1,...,x,].
In [29], a number of relations are found. In particular, elements of rbg satisfy a functional equation
coming from shuffle regularisation, a differential equation, and have a dihedral symmetry.

Proposition 2.12. If f(xy,...,x,) € tbg, then

Fxr, e x) = fxns e x) = (D" f(xa, oL X0, x1).

It turns out these three relations, along with Lemma 2.8, describe most relations among block graded
MZVs [29]. In block degree 1, the shuffle regularisation, the differential equation, and this dihedral
symmetry, along with Lemma 2.8, describe all relations among block graded motivic multiple zeta
values.

Proposition 2.13. The vector space tbg, is the subspace of Q[x1,x3] given by polynomials f(x1,x3),
such that

f(07x) = Zf(x, —)C),
f(=x1,=x2) = f(x1,%2),
fx1,x2) = f(x2,x1),

>f_of
(9x% axg

Unfortunately, even in block degree 2, this is insufficient, leaving degrees of freedom linear in weight.
While a remedy in block degree 2 was given in Proposition 2.8.7 of [28], it turns out that the failure of
space cut out by the dihedral symmetry, differential equation, and shuffle regularisation to encode all
relations in block degree 2 has an interesting connection to double zeta values, and gives an alternative
source of the relations between double zeta values coming from period polynomials. This connection is
explored in the next section.

3. Block graded relations among double zeta values

As noted above, relations among block graded motivic multiple zeta values, modulo products, are
determined by the coefficients of elements of bg. However, these relations are also genuine relations
among motivic multiple zeta values mod products for motivic MZVs of block degree at most 2. Observe
that

BoL =({(2n) | n > 1)g = {0} (mod products),
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and so, modulo products, B L/ByL = B L. Similarly, as MZVs of block degree 1 are necessarily of
odd weight, and MZVs of block degree 2 are necessarily of even weight, block graded relations among
motivic MZVs of block degree 2 are genuine relations, modulo products. As Corollary 1.3 defines an
explicit representation of double zeta values in terms of MZVs of block degree 2, relations among double
zeta values are determined, modulo products, by the coefficients of elements of bg. In this section, we
will make this precise, and show that all relations among double zeta values are determined by the below
relations.

Explicitly, following Remark 9.3 of [29], the weight 2n + 2, block degree 2 piece of bg can be
identified with a subspace of V;, € Q[x1,xp, x3], where V,, is spanned by polynomials satisfying the
following relations.

Theorem 3.1 [29]. Define V,, C Q[x1,x2,x3] to be the space spanned by polynomials satisfying the
block relations:

F(Ax1, Axp, Ax3) = A2 f(x1,x2,x3) forall A € Q, (Relation 0)
f(x1,x2,x3) = f(x2,x3,x1) = = f(x3, %2, 1), (Relation 1)

%(f 0,y,2) = £(0,,-2)) = f(=y,5,2) = f(y,~2,2), (Relation 2)
OF OL O , 0F 5, 0F 5, 8 _, (Relation 3)

2
6x‘1‘ ax;* 6x‘3‘ 6x%0x§ Oxgﬁxg 6x§6x%
Then tbQ; 5,42, the weight 2n + 2 component of tbg,, is a subspace of V.

As mentioned previously, this inclusion is strict. Additional relations are necessary in order to
completely describe tbg; 5,4, as a subspace of Q[x1,x2,x3]. A choice of such relations is given in

L _ J k
Proposition 2.8.7 of [28]. For any f(x1,x2,X3) = X4 jsk=on @i,j,kX|%5X3, define
. 2 2j 2k
Se(x1,x2,x3) = Z @227, 267 %, x5°.
i+j+k=n

One may easily check that if f(x1, x2, x3) € V,, then both f,(x, x2,x3) and f(x1, X2, x3) — fe(x1, X2, X3)
are elements of V,,. As such, the linear map f(x1, x2,x3) > f.(x1,x2,x3) defines a projection V,, — V,,.

Proposition 3.2 [28]. Let V, be as above, and let P, : Vy, — V, denote the projection f(x1,x2,x3) —
Sfe(x1,x2,x3). Then

n
dimim P, < H
1mim 3

dimker P, = VTJ = dim 9m2,2n+2,

where g™, 5,42 denotes the vector space spanned by {o, o¢} with k +{ =2n+2.

We delay the proof until the following section. Denote by

. bl 4 ¢, B
@p(X1,. .. Xns1) = Z Pl ) @ XX e e Lo QLx, . ]
01,025, ln41

the generating series of block degree n motivic MZVs modulo products. As a consequence of Lemma
7.4 [29],

D@y (X5 Xpr1) = X1 X1 (X1 = X))@ (X1, - o, Xa1)

https://doi.org/10.1017/fms.2024.16 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.16

12 S. Charlton and A. Keilthy

for some ¢,, € grff L ® Q[xy, ..., xu+1]. This series is then given by

k kn+
¢n(x1’-"’xn+])= Z F(kl"",kn+])®xll"‘x’,H_]Ia

where

Fkiseooikne) == 7 T+ Lkt Lk + Lk + +2),

i+j=ki
Conversely, we have that
Ul b)) = F( =26 =1, . by = 1 by = 1) = F(£y =1, .. Ly — 1, b1 = 2).
Via the pairing
gr, £xbg, = Q,
we can view ®,, as a linear map
by, — Q[xi, ..., x5l

the image of which is precisely the embedding described previously. We may similarly view ¢, as a
linear isomorphism bg,, — rbg,,.

Lemma 3.3. In block degree 2, the coefficients of ¢3..(x1, 0, x3) are equal to motivic double zeta values:

F(a,0,b) =4/Y(a+1,b+1)

for a, b even nonnegative integers.

Proof. We assume, without loss of generality, that a < b. From Lemma 4.1 and Corollary 1.3, we have
that

(_ )a+b

{'(2a+1,2b+3) = Zg ({2)°, 4, {2)9707),

The block decomposition of
gl({z}s’ 4, {2}a+b—S) - (_1)a+b+11[(0; {1, O}S, 1,0,0,0, {1, 0}a+b—s; 1)

is (€1,02,03) = (25 +3,1,2a +2b — 2s + 2). Hence

HQRa+1,2b+3) =- P25 +3,1,2a +2b — 25 +2)

FN -
,Mw

“u
]
Q

F(2s+1,0,2a+2b—-2s+1) - F(2s +2,0,2a + 2b — 2s).

||
e
M

N

]
Q

The dihedral symmetry of rbg, implies that

F(P’Qar)zF(‘Zar,P) =—F(",C],P),
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and so this sum reduces to
1
l2a+1,2b+3) = ZF(Zb +2,0,2a),

from which the claim follows. O
Lemma 3.4. For every tuple (a, b, c) of even, nonnegative integers,
F(a,b,c)=—4")(b+1,c+1),
where we denote by
b+ 1,c+1) :=1(0; {0}, 1,{0}>, 1, {0} 1)

the regularized iterated integral modulo products.

Proof. By viewing ¢, as a linear isomorphism bg, — rbg,, we see that we must have that the vector
space

(F(a,b,c) | a,b,c>20,a+b+c=2n)g
is dual to tbg; 5,42, and furthermore that
((F(a,b,c) | a,b,c >0andeven, a+b+c=2n)g
is dual to P.(rbg; 2,42)-
Following Brown’s conventions [9], gr%) g™ may be identified with the space of translation invariant

polynomials 52,41 (x0,X1) := (xo — x1)*". By the work of the second author [29], tbg; is spanned by
polynomials

(22— 1) (xo +x1)2 = (xo — x1) ™"
22}1 :

Pan+i(x0,x1) =
Denoting by f, (x¢,x]) the projection of a polynomial f(xg,x;) onto Q[xé,x%] , it is easy to see that
S2n+1,e (X0, X1) = 2P2ns1,e (X0, X1) -
The depth graded Ihara bracket
{7} erp g™ Agrp ™ — grp g™

is given by

{f> g} (x0,x1,x2) = f(x0,x1)(g(x0,x2) — g(x1,x2)) + f(x1,x2)(g(x0,x1) — g(x0,%2))
+ f(x2,x0) (g (x1,x2) — g(x0,x1)),

which is identical to the block graded Ihara bracket
{-,} : tbg; A tbg; — 1bg,.

Furthermore, as all the polynomials involved are of even total degree, this commutes with projection
onto polynomials even in each variable (where we have formally extended the Ihara bracket to all
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polynomials of even total degree). Thus, we obtain a surjective map

gr% g™ — P.(tbg,),
{52641, S2041} > HPoksl,es P2641,e}-

Dualising this, we obtain an injective map
(F(a,b,c)|a,b,c>0andeven)g — ngD L,
F(a,b,c) — 4.  (b+1,c+1).

Since this map is injective, and {¢'(b + 1, ¢ + 1) }pyc=2n SPans gr? L in weight 2n + 2, we must have that
if (a, b, c) are even nonnegative integers, such that

§Ia(b+l,C+l)= Z Uk,[fl(2k+1,2f+l),
2k+26=a+b+c
then, by Lemma 3.3,
F(a,b,c) = Z M. F(0,2k,20),
2k+26=a+b+c
and hence
_ 1 _ [
F(a,b,c) = Z Ak + 1,20+ 1) = =42 (b+1,c+1).
2k+2€=a+b+c

O

Proposition 3.5. All relations among double zeta values of weight 2n+2 modulo products are determined
by (Relation 1) and (Relation 3) via Corollary 1.3.

Proof. By corollary 4.2 of [36], we have that the dimension of the space of motivic multiple zeta values
of weight 2n + 2 modulo products is equal to the dimension of ngD 8™5 2042, Which is given by

n-1 .
{ 5 J —dim S2,42,
where S2,,42 is the space of cusp forms of weight 2n + 2. It is known that

-1 ifn=0 (mod 6)
ifn=1,2,3,4 (mod 6)
+1 ifn=5 (mod6).

dim S7,42 =

AT I a3

Checking each case, we see

n-—1 . n
\‘ 3 J —d1m52n+2 = \‘gJ
By Proposition 4.3,
dim PV, < [gJ

As gr? L is spanned by motivic double zetas, Lemma 3.4 implies that

(F(a,b,c) | a,b,c € 2Z)q = gl L.
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Hence, the surjection of Lemma 3.4 is an isomorphism

Petbg) 010 = 815 8™ 2040
for every n > 0. Following Theorem 3.1, we have that P,rbg; 5,,.» C P.V,. But

bj = dimgr? g™ 542 = dim Potbgy 2ps < dim PV, < bj

and hence
Petb8; 2040 = PeVn.
As such, all relations in
(F(a,b,c) | a,b,c € 2Z)q = gr2D£

are determined by the relations defining V,,. In fact, as (Relation 2) has no even part, all weight graded
relations among F (a, b, ¢) with a, b, ¢ even are determined by (Relation 1) and (Relation 3). m]

Notably, Proposition 3.5 tells us that the period polynomial relations among double zetas are a
consequence of the dihedral symmetry of the block graded motivic Lie algebra. Using the surjection of
Lemma 3.4, we can, in fact, make this quite explicit.

Remark 3.6. Note that this also shows that we can upgrade the results of Proposition 3.2 to
n
dimim P, = {_ J
imim 3

dimker P, = VTJ = dimg™; 5,42

with equalities in both cases.

3.1. An explicit connection to period polynomials

Recall that the space of even period polynomials W of degree 2n is defined as the subspace of Q[x1, x2]
consisting of polynomials that are homogeneous of degree 2, even in each variable, and satisfy

P()Cl,o) = P(O’XZ) = O’
P(x1,x2) + P(x2,x1) =0,
P(x1,x2) + P(x1,x1 +x2) + P(x1 +x2,%2) =0
See, for example, section 8 of [8] for more detail.

Proposition 3.7. Denote by eyi.+1 the projection of the image of the Lie algebra generator o+ in tbg;
to Q[x%,x%]. The kernel

K = ker ({', ) @ Qezrt1 A @ Qezey1 — @ PeVn)

k>1 >1 n>1

is isomorphic to the space of even period polynomials

K=Pw;,

nx1
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Proof. Define a pair of linear maps

o XZQ[XZ] — Q[x1,x2],
P(X) = Po(p(x1 —x2))

and

m s Q[X% Y20 — Qlx1, X2, x3],
P(X.Y) > P.(p(x1 —x2,x2 — x3)),

where we write Q[ X2, Y?].¢ for the subspace of polynomials of positive degree. We define a basis for
the space of antisymmetric polynomials in Q[ X2, ¥2]. given by

{Oa2e(X,Y) = XZky2t _ X2€sz}.
The first map 7| defines an isomorphism

X*Q[x*] —» @5 ez,

k>1

and it is not difficult to show that we have a commutative diagram

X2Q[X*] AY?Q[Y?] — Doy Qezist A Doy Qearn

| l

Q[X27Y2]>0 ) Q[xl’x29-x3]7

where the left vertical arrow is the map
XK AY = Qo0 (X,Y) + Qokpe (X, X +Y) + Qor 20 (X +Y.Y)

and the right vertical arrow is the map induced by the Ihara bracket. By construction, the image of the
right vertical arrow is contained in Eanl P.V,, and has kernel K. Note also that

P w3, = ker(x2QIX] A YQUY] - QIX, V)
n>1
via the identification

X*AY o Qo pe(X,Y),

again, by construction. Thus, we have a commutative diagram of short exact sequences

0 — W}, > Draron QXK AYH > O >0

I - o

0 > Kn > Drsicn Qerist A Qezpyy — 1bgs 200 — 0,

where we denote by

Ky = ker( @ Qeaps1 A Qenpyr — Pevn)-

k+l=n
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A short diagram chase shows that F is an injection and is G a surjection. Thus, we must have
dimK,, > dim W5, = dim S,.».

If dim K,, > dim W;n, then we must have

n—1 . .
({eaks1s €201} | k+L=n)g < l J —dim 82,42 = dim P, V,,.

But

({e2r+1,€2041} | k+ € =n)g = Petb@) 2,40

by definition, and by the previous theorem P.tbg; 5,.» = P.V,. Hence, dim K, = dim W for every
n > 0. O

This suggests that a possible approach to study depth graded motivic multiple zeta values and
exploring Conjecture 1.1 is to consider the Lie algebra generated by the {esr+1}x>1, Or equivalently,
the projection of tbg onto P, ., Q[x,x3, ..., x2]. Indeed, the results of this section show that this is
isomorphic to the depth graded motivic Lie algebra in depths 1 and 2, though this isomorphism cannot
extend to depth 4 as the projection of rbg, onto Q[x%, x%,x%,xﬁ, xg] is generated by the {eax+1}x>1, and
hence, we cannot find the ‘exceptional’ generators in depth 4 referred to in Remark 2.11 required to

generate the full depth graded Lie algebra [9, Section 1.4]

4. Proofs of the more technical results

We now explain the proofs of some of the more technical results used in the previous sections. It
is worth noting that determining the statement of Lemma 4.1 required computing the full evaluation
of {™({2}¢,4,{2}?) described in Appendices A and B. However, as we only use the evaluation of
ZY({2}4, 4, {2}?) in terms of double zetas modulo products, we have elected to give here a simpler
direct proof using the motivic formalism.

4.1. Evaluation of ['({2}%,4, {2}?)

Lemma 4.1. The following evaluation holds in the motivic coalgebra

{234, 4,{2)0) = (—1)“”’{—4(‘(2@ +2,2b+2) +47'2b +1,2a +3)

1(i+1 1(j+1 0.
= — 2,j+2)1.
+ (2! (2a+1)+ 2 (2b+1))§ (i+2.7+ )}
i+j=2a+2b
i,j>0
Proof. For Z a weight w combination of motivic MZVs, it is sufficient to check, by Proposition 2.5, that

O0cwZ =0

for all 1 < 2r +1 < w, as this would show that Z = a{™(w) + products. If the weight of Z is even,
we have that £'(w) = 0; this means checking that d.,, Z = 0 allows us to confirm that 7(Z) = 0 on the
nose, where 7: A — L is the natural projection.

Explicitly, it amounts to checking for 1 < 2r + 1 < w that

(id @) (D, Z) — 7(id ®71)(Dyy_r Z) = 0,
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where 7(a ® b) = b ® a. For the case under consideration, we need to check for3 < 2r+1 < 2a+2b+1
(id ®7) (Day41 Z) = 7(id ®7) (Dags2pe3-2r Z) = 0.
It is a straightforward calculation, as explained in Section B.2, to show the following.

(id ®7) Dot {™({21,4,{2}7) = =6, <o (2)7) ® £ ({21477, 3,{2}7)
+6, <51 (12)7) ® '({2}4,3,{2}° ™).

Recalling the motivic evaluations of £{"({2}") and {™({2}4, 3, {2}?) from [5], we have that

2y =2(=-D7@er+ 1,

225, 2)) = 2(_1)a+b+1((2a +2b+2) . 2_2u_2b_2)(2a+2b+2

1
2a+2 2+ 1 ))“2“2“3)'

Therefore

(id ®7) Days1 £™ ({214, 4, {2}7)

j— {46 < (_1)d+b((2a+2b+2_2r) _ (1 _22,_2a_2b_2)(2a+2b+2—2r))
- r=a

2a —2r +2 2b+1
20 +2b+2-2r 20 +2b+2-2r
—4 - -1 a+b —(1- 22r—2a—2b—2
Srsp(=1) (( 2a+2 ) ( N 2b-2r41

er+ )@ M2a+2b+3-2r).

Likewise from Section B.1

(id®n) Dari1 £ (py q) = ((52r+1:p + (—l)p( o ) - (—1)‘1( 2r ))
p-1 q-1

erv e Mp+g-2r-1).
So for the purpose of checking
(id®7)(Dor41 Z) — 7(id @) (D2g42p43-2r Z) = 0,

where Z is the purported evaluation of ¢'({2}¢,4,{2}”) via double zeta values ('(n1,n;), we can
project £ (2r + 1) ® £'(2a + 2b + 3 — 2r) + 1, and reduce to an identity among binomial coefficients.
After some straightforward simplification of the deltas and binomial coefficients in the expression for

((id ®7) Days1 —7(id ®7) Dags2p+3-2- ) (LHS Lemma 4.1 — RHS Lemma 4.1),

for the range 3 < 2r + 1 < 2a + 2b + 1, and using that 7, j have the same parity in the sum, we find the
claimed identity to be equivalent to the following purported identity
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i+1 _fj+1
2R )

i,j=>0

2r B 2r B 2a+2b+2-2r N 2a+2b+2-2r
i+1 j+1 i+1 j+1

2 H—(2a+2b+1-2r) 2a+2b+2-2r\ - (2a+2b+1-2r) 2a+2b+2-2r
2b+1 2a +1

2r 2r
_p-(2r-1) 40D )
2b+1 2a +1
This is seen to be an exact identity using the results from Lemma 4.2 below. )

Lemma 4.2. For3 < 2r + 1 < 2k + 2¢ — 3, the following identities hold

2k=2 o i+20-1 2r _—(rei20) 2r i
22 - =2 !
) 20-1 J\i+20—-1 2¢-1

26-2 2k-2
SR Bt WA YERTC ot Nt N

that is, the left-hand side is symmetric in k < £.

Proof. Given the restriction 2r + 1 < 2k + 2¢ — 3, the sum in (i) can be truncated toi = 2r + 1 — 2£. It
is then reduced to the binomial theorem after simplifying the summand.

For (ii), we show that the left-hand side is symmetric in k < ¢, to obtain the equality. We remark,
here, that the symmetry is not obvious, as even the number of nonzero therms differs between the two
sides. To show the symmetry, note that

& ik [i2k 2r
Z( ) ( 1)(25—;‘—1)

_ _icok [+ 2k — 2r
= -2 (Zk )(26’—1’—1)

——
=1

00

2k 2
_oy-i2k [Pt ’
,.:2[,]+;( 2 ( 2% -1 J\2e-i-1

2¢-1 in

since the second binomial vanishes for i > 2¢ — 1. The first term is equal to the coefficient of x
—(2+x)72k,

Likewise, the second term is the coefficient of x2¢~! in

(1+x)% (2 +x)7%.

Therefore, the left-hand side of (ii) is given by

[x%,l](a £x)¥ - 1) _ [xl]((l £x)¥ - 1).

(2 +x)% (2 + x)%x2t
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This is not obviously symmetric in k < ¢; it is, however, equal to the following contour integral around
0 (along a sufficiently small circle C(0)) by the residue theorem

1 ?{ (1+2)% -1
2mi C.(0) (2 + Z)ZkZ%

The only poles of the integrand

(1427 -1
- (2+Z)2k22€

f(2)
are at z = -2, and at z = 0. Since 2r + 1 < 2k + 2¢ — 3, we see that

_if(l) _ -+ | 2ks2l-2-2r
(1+2z)%

has no pole at z = 0, so that our original integrand f(z) has no pole (and hence no residue) at z = co.
We therefore find that the residues at z = 0 and at z = —2 must cancel, giving

1 1+ r _ 1 1 1+ , 2r _ 1
—f ( z) dz+ — LdZZO. 4.1)
2ni Je, 0 (24 7)%k 7%t 27i Je, (-2 (2+ )2k 2t
Now put z — —2 — w, with dz = —dw, in the second integral, and we find
1 (1+z)2’—1d 1 f (=1 —w)? —1
i T 2kt YT 5 w.
2mi Je, () (2+2)%k 2 L= o4 .0 (—w)2k(=2 —w)2l

Putting this back into Equation (4.1) shows that

! 1+ -1 1 (rw -1
oyt A L N2kof A — - aw =0,
271 Je. o) 2+ )% Sy o) W2+ w)
and so establishes the symmetry in k < ¢ that we claimed. O

4.2. Computing the dimension of im P,

Proposition 3.2 [28]. Let V,, be as above, and let P, : V,, — V,, denote the projection f(x1,x2,x3) >
Je(x1,x2,x3). Then

dimim P, < ng >
-1
dimker P, = lnTJ = dim9m2,2n+2’

where g™, 5,4 denotes the vector space spanned by {o,o¢} with k +{ =2n+2.

Proof. Suppose g(xi,x3,x3) € ker P,.. Then Equation (Relation 3) implies
q(x1,x2,x3) = Z @i j(x1 = x2)"(x2 = x3)7 + By j (x1 +x2)" (x2 = x3)’
i+j=2n

+yi 7 (x1 = x2) (x2 +x3)7 + 6 j(x1 +x2)" (x2 + x3)".
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Define gy (x1,x2,x3) = %(q(xl,xg,x3) — q(=x1,x2,x3) — q(x1,x2, —x3) + q(—x1,x2, —x3)); this is the
part of g that is odd in x; and x3, and even in x,. We can write

(1, x2,x3) = D pi (01 = x2) (¥ = x3)7 + (=) (1 +x2)" (32 = x3)
i+j=2n
i,j>0

— (x1 = x2) (X2 + x3)7 + (=1)" (x1 +x2) (x2 +x3)7),

where p; ; = a@; ; + (—l)”lﬁi,j -vij+ (—1)i6i,]-. As g(x1,x2,x3) = —q(x3, X2, x1), the same holds for
g« (x1,x2,x3), and thus p; j = —p; ;.
Then, as g, (x1,x2,x3) =0, and g(x1, x2,x3) = g(x2,x3,x1), we must have

q(x1,X2,%3) = gx(X1,X2,%3) + G (X2, X3, X1) + g (X3, X1, X3).

Thus, ¢ is uniquely determined by g,.. We currently have n — 1 free variables in g,, so in order for
dim ker P, to be equal to ["T_IJ, we need (Relation 2) to impose I'"T_l] independent constraints on the

Pi,j-
Writing (Relation 2) in terms of ¢, (x1, x2,x3), we find that we must have

gx(2,0,¥) =2g4(2,v,¥) — 24 (y.z,2).

Evaluating the coefficient of y¥z! in this equation, we obtain

i (i
PLk = Z (=2)/ (I)Pi,j - Z (=2)/ (k)Pi,j
0<j<k 0<j<l
i+j=2n i+j=2n

if kis odd, and O = O if k is even, or if k = [. As the coefficient of ylzk is just the negative of this, this
gives us I'”T_l] equations, so it suffices to show that they are independent. As we are solving for rational
pi,j»itis sufficient to show that these equations are independent modulo 2. But modulo 2, we obtain the
system of equations

{01k =0 (mod 2)},

which are clearly independent. Hence, we have L”T_lj free variables in g4 and dim ker P, = L"T_IJ.
Similarly, if ¢(xy, x2,x3) € im P,, then

q(x1,x0,x3) = > mi (01 = x2)" (62 = x3) + (1) (x1 +x2)" (32 = x3)/
i+j=2n
i,j>0

+ (x1 = x2) (x2 +x3)7 + (= 1) (x1 +x2)" (32 +x3)7).

Indeed, the set
Q = {(x1 —x2) (x2 = x3)” + (=1)! (x1 +x2)" (x2 — x3)’
+ (x1 = x2) (x2 +x3)7 + (1) (x1 +x2)" (32 +x3)j},~+j=2n

forms a basis for the space of totally even solutions of

64q 64q 64q 84q c’)4q 54q

4 7 4 242 252 242
(9x1 (9x2 8x3 (9x1(9x2 6x26x3 8x319x1
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Then, as 1(g(0,y.2) — ¢(0,y,-2)) = (-, ¥, 2) — q(y, -z, z) holds trivially for any totally even poly-
nomial satisfying the symmetry conditions, it is sufficient to compute the dimension of the subspace
of skew-symmetric polynomials spanned by Q. This is a simple representation theoretic argument: we
consider Span(Q) as a representation of the symmetric group Ss via the standard polynomial represen-
tation, and compute the dimension of the sign representation within this. In particular, representation
theory says that

dimim P, = [ Tr(id) - 3 Tr((13)) + 2 Tr((123))]

AN = OV =

[2n+1-3Tr((13)) +2Tr((123))].

Note that the vector space generated by {(x; — x2)" (x2 —x3)7 }:4 Jj=2n is invariant under the action of S3,
and there is a natural surjection onto Q, so it is sufficient to consider the trace of the action restricted to
{(x1 = x2) (x2 — x3) }is j=2n in order to get an upper bound.

Clearly, the trace of (13) is 1, as the only diagonal entry corresponds to (x; — x2)"(x2 — x3)"
(x3 = x2)"(x2 — x1)". Now, computing the trace of (12 3), we find that it is given by

2 i[2n—1i
S0

i=0
To compute this, we consider the generating series

>, Zn: (n : i)x[y" = (];)(xy)iy"

n>0 i=0 k>01i>0

= > (L+xy)kyt

k=0
1

Tloy—x?
Setting x = —1, we obtain

n Jn - . . 1
ZZ(—D (ni l)(—)’) = Toyey?

n>0 i=0

Thus,
on S 1 if2n =0 (mod 6)
Z(—l)"( ; ) ={-1 if2n=4 (mod6).
i=0 0 if2n=2 (mod 6)
Hence

1
dimim P, < g(2n+ 1-3+2x),
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where x is determined by 2n  (mod 6). A quick consideration of each case shows we obtain I_%"J
L5].

Remark 4.3. Recall that the weight 27 + 2 part of tbg; is a subspace of V}, of dimension dim g™, 5,,45-
In order to describe this subspace in terms of relations, we need to find nonzero linear maps {R; :
Vi — Witier, such that tbg; 5,,, C N ker R;. However, the projection tbg, 5,,0 — ker P, is an
isomorphism, and, as a consequence of Proposition 3.5, P.(rbg; 5,4+2) = im P,. As such, no such R
can impose any additional relations that restrict nontrivially to either the totally even or not-totally-
even parts. Equivalently, any such R must induce a map ker P, — Gr(kg,imP,) to the space of
kg-dimensional subspaces of im P, for some unique integer kr. From another perspective, if such a
description of tbg; 5,,., can be found, this would give an alternative proof of Conjecture 1.1 in depth 2.

(|

5. Applications to multiple 7 values

From [23], we recall the multiple ¢ value #(ny, ..., ng) is defined by restricting the denominators in the
series defining an MZV to be odd. Namely

t(ki,... kq) = Z !

0<n<---<ng (2”1 - l)kl s (an — 1)kd :

By inserting the factor % (1—(~1)¥) into the numerator, one may extend the sum to all denominators,
and obtain the following expression [23, Corollary 4.1] for t(ny, . .., ng4) in terms of alternating MZV's
(with various signs) of the same set of indices

1k, ka) = Zid L U R GV D

nkl .. .nkd

0<n|<~~'<nd 1 d

1

~2d Y, eieal(eioksaoka). (.1)
Elyeens eqe{xl}

Here, the operator ¢ is defined so that 1ox = x and —1 ox = X, where, as usual, 77; denotes the argument,
nj is accompanied with sign &; = —1 in the definition of an alternating MZV (giving character (—1)"/
in the numerator thereof).

From Murakami [32, Theorem 1], we know that every multiple ¢ value with all arguments > 2 — which
would a priori be a combination of alternating MZVs — satisfies a Galois descent, and is expressible as
a Q-linear combination of classical multiple zeta values. Murakami’s theorem is actually a statement
about motivic multiple ¢ values but gives the same descent for classical M#Vs after applying the period
map. However, Murakami’s result is purely existential and does not give an explicit formula, nor does
it put any limits on the depth of the resulting combination. Using the result of Proposition A.3 for
alternating double zeta values, we will give explicit formulae in terms of depth 2 classical MZVs for
any #(ev, ev) in Proposition 5.4.

Remark 5.1 (Galois descent of 7(od, ev) and ¢(ev, od)). Observe that the depth-parity theorem in depth
2 for alternating MZVs [33, Equation 3.5] implies that every multiple #(a, b) value of odd weight (with
a,b # 1) is a polynomial in single zeta values. This already gives an explicit formula for the Galois
descent of #(od,ev) and 7(ev, od). Equivalent formulae were derived in [38, Theorems 4.1, and 4.2]
using contour integral techniques (compare [16] for classical MZVs handled in a similar way), namely

t(2a + 1,2b) = t(2a + 1)t(2b) — %t(Za +2b+1)

Wb (g +2b—2s 2a+2b —2s\| £ (2a+2b+1 - 2s)
- Z 2a * 2b -1 22a+2b+1-2s t(2s),
s=1
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1
t(2a,2b+1) = —Et(Za +2b+1)

a+b
2a+2b —2s 2a +2b —25\|¢{(2a+2b +1 - 2s)
+ Z {( 2 ) + ( 20— 1 )} 22a+2b+1-2s 1(2s)

s=1

One has that t(a) = (1 -27%){(a), for a > 1, which can be applied to rewrite the above purely in terms
of Riemann zeta values.

Remark 5.2 (Galois descent of #(od, od)). On the other hand, the remaining case involving #(od, od) is
less tractable. Using the MZV Data Mine [ 1], one can check the following relation

9 1305 27 27

3131 321 3, 45 63 i

* 3048 S O B) = 15526 = 550(3)" = 2 LDE(NDEB) = 2L ()L (5)
9 81 , 353139

+ ﬁ§(4)§(5)§(3) + m{(6)§(3) + mg(u)_

In particular, the (conjecturally) irreducible depth 4 MZV (1, 1,4, 6) (or any equivalent choice) is nec-
essary to obtain an expression for the Galois descent of #(3, 9) to classical MZVs. This already suggests
describing the Galois descent explicitly (with the minimal necessary depth) would be challenging.

We can, conjecturally at least, say that depth 4 MZVs will be sufficient. Indeed, since we may write
t(a, b) as a sum of depth 2 alternating MZVs, the alternating analogue of Lemma 1.2 tells us that ¢(a, b)
lies in coradical degree at most 2. Hence, if a Galois descent to classical MZVs exists, it must also lie in
coradical degree at most 2. When depth 2 MZVss do not span this space in even weight, the homological
version of the Broadhurst-Kreimer Conjecture [9, Conjecture 5] tells us that depth 2 MZVs along with
irreducible depth 4 MZVs coming from cusp forms do.

More generally, if a depth d multiple ¢ value has a Galois descent to classical MZVs, the same line
of reasoning tells us that we should expect an expression in terms of MZVs of depth at most 2d.

By combining the usual expression for #(a, b) in terms of alternating MZVs [23, Corollary 4.1],
namely

t(a,b) = ~(L(a, b) + ¢ (a,b) + {(a,b) + {(a, b))

ENJI

with the distribution relation [20, Proposition 2.13]

— _ 1
é,(a’ b) + g(a’ b) + é’(a’ b) + é’(a’ b) = Wg(a’ b)’

we can write

1
sap(a:b) (5.2)

1 — 1
t(a,b) = =¢(a,b) + ={(a,b) —
(a.b) = 5£(@B) + 54 (a,b)
More generally, see the alternative expression given by Hoffman, using a sum which inserts only an
even number of bars into the argument string [23, Corollary 4.2].
Let us now note the following result from Section A.5, which gives an explicit form for the Galois
descent of £(2¢,2k) in terms of classical double MZVs.
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Proposition A.3 (Galois descent of £ (2¢,2k)). The alternating double zeta value ¢(2€,2k) enjoys a
Galois descent to classical depth 2 MZVs as follows

2k+26-2 .
(A3 = Y 2—i{(’ ){(2k+2£’ ”)+(

Z, 2k — )g’(z 2k+2{’—z)}

20 -

2k+26-2

—2(26,2k) + Z (=2)” (2k ){(r)((2k+2€—r)

_ 2_2k_2[{2(2k + 25 - 2) (2k +20—1

N N )}g(zmze). (A.10)

Proof sketch. We recall the notation ¢ (ky, ..., kg) is defined by inserting £ leading 0’s at the start of
the integral representation of £ (ky, ..., ky) (c.f. Equations (2.1) or (A.1) for alternating MZVs). Now
simultaneously solve the following equations: the dihedral symmetry Equation (A.8)

o (1,30) - €20 20) = (P2 ey
2k+26-2 r—1 p
- Z ((—1)’(2k_1)+(2€ ))g(r){(zmzf—r)
r=1

and the generalised doubling identity [1, Section 4], [42, Section 14.2.5]

(ED + (=) ¢n(1F)
:Zsl(s+;:§_ )2]” (i, s+t—l)+2(s+t )21+i_s_’§’(s+t—i,i)
)+ (D G (5 1) - Z(”t eerrncn - (T e

(here slightly rewritten, see Section A.5) in the case t = 2k, s = 2¢. O

Now substituting this Galois descent into Equation (5.2), we immediately have the following propo-
sition.

Proposition 5.3. The multiple t value t(2¢,2k) is expressed through classical double zeta values as

follows
2k+26-2
1(2¢,2k) = Z 2—i—1{(2k ){(2k+2€ u)+(2€ )g(z 2k +2¢ — z)}

i=2
2k+26-2

— 2722 (00 2k - Z (=2)7"" 1(2k ){(r)§(2k+2€—r)
r=2

orrt [o[2k+20-2\ (2k+20-1

-2 {2( 1 ) ( 1 )}§(2k+2£). (5.3)

A. Analytic evaluation of £ ({2}%, 4, {2}”) via double zeta values

The goal of this section is to give an explicit evaluation for £({2}%,4, {2}?) in terms of double zeta
values on the analytic (numerical) level. In Appendix B, we will then lift this to the corresponding
identity among motivic MZVs.
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For the numerical evaluation, we need to assemble a number of ingredients. In particular, we need to
use the stuffle antipode ([24], [31] or [18, 19]) to convert £ ({2}¢, 4, {2}?) to a corresponding multiple
zeta star value. Then we can apply Zhao’s generalised 2-1 Theorem [41] (in the block decomposition
form [12] for convenience) to rewrite the zeta star value as an alternating zeta-half value. By application
of the parity theorem ([33], or [21]), we reduce this to an explicit combination of depth 2 alternating
MZVs. It becomes convenient to write these (combinations of) alternating double zeta values as certain
shuffle-regularised alternating double zetas 'Z""’O(r, 5) with a number of initial zeros; this presentation
then manifests a dihedral symmetry modulo products and lower depth [18],[19], which we can describe
explicitly. Finally (perhaps surprisingly), by combining this dihedral symmetry with a generalised
doubling identity [1, 42], one can explicitly evaluate these alternating double zeta values in terms of
classical double zeta values (as opposed to higher depth MZVs which would certainly suffice by the
generalised 2-1 Theorem).

Alternating and interpolated MZVs:

Let us recall, again, the notions of alternating MZVs, and of multiple zeta star values and multiple zeta-

half values, which will be useful imminently. Given a tuple (ky, k2, . .., kgq) of positive integers, and a
tuple (&1, &2, ...,8q) € {£1}9, with (kg,£4) # (1, 1), we define the alternating MZV (or Euler sum)
with signs €1, . . ., &4 as follows,
(81,82,...,8d) o 8718;2'”‘9261
'_ "k ks ka®
ki,ko,... kg Ot < riany MM
One then streamlines the notation by suppressing the &;’s and writing k; if &; = —1, and just k; if &; = 1

otherwise. For example

1, -1
2, k3

(=11

ki ky k
npke s

_ 1, —
(ki ko, k3) = ¢ =
ki, k
O<ni<ny<nj 177273

An alternating MZV can be written as an iterated integral in the following way

E1,E2,..., & _ _ _
2 = (FDAM 0, {0Y T e, 0T L a, {0 ), (A1)
ki,ka, ... . ka

where n; = €;&141 - €4.
Next, we have the interpolated multiple zeta values ¢” (ky, . . ., k4) introduced by Yamamoto [39],

ki, ... kg) = Z r#{ilo‘:“w}{(kl o1 ko oy -+ 0,1 kg).

PrEETINRY
o;j="+0r,

For example, (" (a,b,c) = {(a,b,c)+ri(a+b,c)+r{(a,b+c)+r*l(a+b+c).Inthe case r = 0, only

the term with all o; = )’ survives, and so §O(k1, coskg)=2C¢(ki,...,kg). When r = 1, then we have
Nkyy .o kg) = C*(ky, . .., kg), where the multiple zeta star value (MZSV) is originally defined as
1
4*(k1,-~-,kd) = Z T e 5
O<ni<np<-+-<ng n11n22 o 'nrd

and arises by replacing the strict inequalities between n;, n;+; with a nonstrict inequality. For r = 1/2,
we then obtain a new variant ‘mid-way’ between ¢ and *, called the multiple zeta-half value.

This formalism can be extended to allow for alternating interpolated MZVs, by replacing ‘+’, above
with ‘@®’, where a ® b denotes addition of the absolute values and multiplication of the bars viewed
as signs (i.e. if k € Zo, we have|k| = [k| = k with sgn(k) = —1 and sgn(k) = 1). In particular, for
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a,B€Zso,wehavea ®f=a+B,a®Bf=a®f=a+panda@ @ f = a+ f. Then, for example, we
have the following interpolated alternating MZV
" (a,b,¢) =L(a, b, ) +r{(a® b, ) +ri(a,b®T)+r°{(@® b &T)
=(a,b,6)+rl(a+b,0)+ri(a,b+c)+r*(a+b+c).

The case r = 1/2 of alternating interpolated MZVs is a convenient way of formulating Zhao’s [41]
generalised 2-1 Theorem, as we will see below.

A.l. Stuffle antipode

We define G*, the generating series of (*({2}%,4,{2}?), G, a related generating series for
£({2}4,4,{2}"), and S* the generating series of {*({2}") as follows.

G*(x,y) = D M({2)% 4, {212y,
a,b=0
G(x,y) = D (=)™ L({2},4, {2}y,
a,b=0
S*(x) =

D2y,
n=0

Then from [31, Equation 2.4] (in the special case, a, = z4, a; = a3z = z2), we have that
G*(x,y) = G(y,x) * S (x) * S*(y). (A2)

This is an identity in the stuffle algebra; in particular, it automatically lifts to a motivic identity since
the stuffle product is known to be motivic (see [34] or [37]). Moreover, it is well-known (or readily
verifiable by factoring the generating series as a product, see, for example [2, Equation 36], and [40,
Equation 44]) that

S 2 = =T and 3 g2y = S,
n=0 =

 sin(7x) inx

By solving Equation (A.2) for G(y, x), and extracting the coefficient of x>¢y%?

explicit formula for £ ({2}¢, 4, {2}?) in terms of similar £* values,

, we obtain the following

a b
L)% 4, 2)7) = )0 DT (=)™ {21 4, 221 {21, (A3)

n=0 m=0

A similar identity holds for 4 replaced by any value k; these identities give the precise version of the
stuffle antipode result

{krseeka) = (DM (kg k)
considered in [18, Lemma 4.2.2]. Moreover, since the stuffle algebra identity and the evaluations of

({2}, £*({2}"™) are motivic ([5, Lemma 3.4], [18, Lemma 4.4.3]), Equation (A.3) lifts automatically
to a motivic version.
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A.2. Generalised 2-1 Theorem

We now recall the generalised 2-1 Theorem, established by Zhao [41], which evaluates each {* value
in terms of a certain alternating ¢'/? value. It is more convenient — and indeed has a closer connection
with the goal — to write the generalised 2-1 Theorem in the block decomposition form given in [12,
Lemma 3.1].

Lets = (s1,. .., Sk) be a sequence of MZV arguments, and let B = ({j, . .., {,) be the corresponding
block decomposition (see Section 2.3). Write

X

_Jx ifxodd,
" |x ifxeven

Recall: X denotes that the argument x in an alternating MZV has sign —1. Then
9 =e(8) 2¢O -2, b, b,

where €(s) = 1if 51 = 1 and &(s) = -1 if 51 > 2, and if £; — 2 = 0, one should neglect this argument.
This follows by combining Zhao’s generalised 2-1 Theorem [41], which involves a certain recursively
constructed sequence of indices s'”), with the description of the final such index string s'¥), given in
[12, Lemma 3.1], in terms of the block decomposition. This final string supplies the ¢!/ arguments in
Zhao’s formulation of the 2-1 Theorem.

In our case, we want to apply this to £*({2}¢, 4, {2}?). The block decomposition of ({2}¢,4, {2}?)
is given by (2a + 3,1,2b + 2), and we therefore have

({2}, 4,{2y0) = 23012 (2a +1,1,2b + 2).
Then expanding out, by definition of the interpolated ¢'/2, we have

({214, 4,{2}) == 2¢0(2a +2b +4) — 4L (2a + 1,2b + 3)
—47(2a+2,2b+2) - 8,(2a+1,1,2b +2). (A.4)

This reduces our task of evaluating /* ({2}, 4, {2}?) to understanding certain explicit depth 3 alternating
MZVs.

A.3. The parity theorem in depth 3

The parity theorem for MZVs states roughly that an MZV of weight w and depth d can be reduced to
a combination of lower depth MZVs and products, when w # d (mod 2). In particular, an MZV of
depth 3 and even weight is reducible. This claim actually also holds for alternating MZVs, via the parity
theorem for multiple polylogarithms [33], as —1 is its own multiplicative inverse.

An explicit version of the depth 3 parity theorem is given for the multiple polylogarithm functions
Lin, ny,ns (21, 22, 23) in [33, Equation 4.3]. By specialising to z; = +1, we recover the claimed reduction
of depth 3 alternating MZVs, for any choice of signs z; (encoded with a ‘bar’ over the corresponding
argument 7;, if z; = —1), as follows. Namely, if «+ S +7y iseven and y # 1 (although y = 1 is okay), then
with £(0) = £(0) = —% by convention, and stuffle-regularisation if necessary (see [25] for the notion of
regularisation, and Remark A.1 below for the behaviour in this case) when (1) appears, we have
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(e poy) = %4(@(4(/3, ) = (DRI (B, ) = (B, )L ()6 yeven
1 1
—5l@efy)+50(Fey.a)

+ Z (—1)‘ﬁlﬂy'w”{(sgn(aﬂy) 025) (_Lﬁ|)(—i}’|)§(ﬂ ® 1y oY)
2s+v+u=|a|

s, 1, v 20

+ ) (—1)7+"{(sgn(aﬁy)02S)(_Ly|)(_

2s+v+u=|B|
s,u1,v>0

+ Z §(Sgn(aﬁ)’)°2S)(_I'B|)(_|a|){(ﬁ®u,a69v)

v
2s+v+u=|y| H
s,u,v =0

||

v

)é(y@u)K(a@V)

To avoid abuse of notation, we define 1 o x = x, and —1 o x := X, to give the corresponding decoration
for signed arguments.

Now specialise to @ = 2a + 1, 8 = 1,y = 2b + 2. We can simplify various binomial coefficients and
powers of —1, using (}k ) =(=1)¢ ({’);’:1), and expand out the second summation into its two nontrivial
terms (s, 1, v) = (0, 1,0), (0,0, 1). After doing so, and inserting the result into Equation (A.4), we note
some simplifications. Firstly, the term —4¢(2a + 2,2b + 2) in the ¢ 172 cancels with one from the depth
3 reduction; secondly, the term —4¢(2a + 1,2b + 3) combines with one from the depth 3 reduction to
produce

—47Qa+1,2b+3) —4L(2b +3,2a + 1)
=—47QRa+1)(2b+3)+4.(2a+2b+4).

Overall, this produces the following evaluation for £({2}¢,4,{2}?), as the first main stepping stone,
with stuffle-regularisation applied where necessary

{24,120 =20Qa+2b+4) +8(1,2a + 1) (2b +2) — 82 (2a + 1)Z(1,2b +2)
+4Q2b+1)((2b+3).Ra+1) —4(2a+ 1)l (2b+2){(2a +2)

IS g(z_s)(”(va+1))g(1+#,zb+z+v) (A5)
B

— (v+(2a)
-8 Z {(ZS)( y ){(1+y,2a+1+v).

25+v+u=2b+2
s,u1,v>0

Remark A.1 (Independence of regularisation). Let us note here that the shuffle-regularised and stuffle-
regularised versions of this formula agree (and, indeed, also for the depth 3 reduction, with ¢ # 1), and
are independent of the regularisation parameter; we may therefore switch to the shuffle-regularisation
at T = 0O for later convenience. This is expected since we are reducing a convergent triple zeta value.

More precisely, this is because terms with a single trailing 1 are equal under either regularisation,
and in the case a = 0, the single term 8Z(2b + 1){(1, 1) with two trailing 1’s, which arises, arising
from (s, v, u) = (b + 1,0,0) in the last sum, cancels with the corresponding term on the second line.
Otherwise, when a = 1, the regularisation parameter 7 in terms arising from v = 0 in the last sum (with
T explicitly denoting the stuffle-regularised version with /%7 (1) = T),
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D, L@CTUrp )= Y @I +p) = (1 1+ ) = L2+ )

2s+u=2b+2 25+u=2b+2
§20,u>0 s>0,u>0

can be seen to cancel with that arising from the terms

85T (1)Z(1,2b+2) +4(2b + 1)Z(2b +3)"T (1)
=8T¢(1,2b +2) +4(2b + 1){ (26 +3)T.

In fact, this cancellation is equivalent to the following reduction which follows from the depth-parity
theorem in depth 2 (see [33, Equation 3.5]):

— — 2b+1  ———
£(1,2b+2) = - Z L(2s)L (k) + £(2b +3). (A.6)
2
2s+k=2b+3
520,k>2
A.4. Shuffle-regularisation and dihedral symmetries

Now let us take advantage of the shuffle-regularisation in earnest. Define {¢(k1, . .., kg) by inserting ¢
leading O’s at the start of the iterated integral representation of £ (ky, ..., kg) given in Equation (A.1)
(see also Equations (2.1) and (B.1)), and write g“(';""Tzo(kl , .., kg) for the shuffle regularisation thereof

(see Remark 2.2 above), with £**>T=0(1) = 0. Then we have the regularisation formula (see, for example
[10, Section 5.1 R2], and the obvious generalisation to alternating MZVs in [18, Equation 2.28])

Gk k) = (<D (’“*."‘1)---(k’+.i"1)4<k1@il,-.-,krmr)-

l 1
i+ tig=C 1 r

In particular, using this, we can write

+(2b+1 _ B
(V ( ))5(1+u,2b+2+y) = -1 (1,26 +2)
v+u=2a+1-2s v
u,v=0
2 -
(V+( a)){(1+,u,2a+l+v) =720 (1,2a + 1).
v
V+u=2b+2-2s
H,v=>0

Substituting these and Equation (A.6) into Equation (A.5) gives us the following

X219, 4,{2Y0) =20 (2a + 2b + 4) + 82(1,2a + 1) (2b +2) — 4(2a + 1) (26 + 2)¢ (2a +2)
b+1
+82(2a+1) Z L2k + 1) (2b +2 - 2k)
k=1

a b+1
-8 Z L(29) T (1,26 +2) - 8 Z L(29) ) (1,2a +1).
s=0 s=0

Let us finally note that the term 8 (1, 2a+1){(2b + 2) cancels with the s = b+ 1 term of the last sum.
In particular, we obtain the second stepping stone in our quest to evaluate ¢* ({2}¢, 4, {2}?). Namely
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({234, 4, {Z}b) =2{(2a+2b+4)—4Q2a+1){(2b+2){(2a +2)
b+l
+87(2a + 1)24(21” )¢ (2b +2 - 2k) (A7)
k=1

a b
- SZ (2980 (1,26 +2) - 8 Z 290 (1,2a + 1).
s=0 s=0

Henceforth, we shall always use the shuffle regularisation with /*7=0(1) = 0, and will therefore
drop the extraneous “7= from our notation. This regularisation is consistent with the regularisation
normally used in the motivic framework (c.f. Remark 2.2). Moreover, we will check in Section B.2 that
this reduction is indeed motivic.

Now, we recall from [18, Corollary 4.2.6] that depth p alternating zeta star values satisfy a dihedral
symmetry of order p + 1, modulo products and lower depth. More precisely therein, this symmetry is
phrased in terms of so-called multiple zeta star-star values, which incorporate the lower depth terms,
making the symmetry hold already modulo products. In particular, in our case, we claim that

Oo—1(1,26) = £(2¢,2k)  (mod products)
OHe(1,20+1) =220+ 1,2k +1)  (mod products)

The depth 1 terms in these cases are reducible, as the weight is even. We will not actually use the
implicit form of the dihedral symmetry established by Glanois which immediately produces the above;
instead, guided by the Glanois’s proof, we will establish an exact version in this depth 2 case. However,
let us point out some technical issue which apparently occurs when considering the octagon relation, in
an attempt to derive a so-called hybrid relation (Theorem 4.2.3 in [18]), a key part of the proof of the
dihedral symmetry.

Remark A.2 (Regularisation in the octagon relation). The octagon relation for level N = 2 multiple
zeta values (i.e. alternating MZVs) is obtained by integrating a word in eq, e, e_; around the following
closed loop.

N\ N\ 0\ RN

-1 0 1 oo

However, one must take into account the tangential base points, and how they are transformed under
the Mobius transformation which cyclically maps the segments (0, 1) — (—=1,0) + (o0, —1) (1, c0).
More precisely, the Mobius transformation

z—1
f(z2) = i1
transforms the segments as indicated, and therefore the integral f(_ 1.0) is related to the integral f(
via a suitable pullback. However, note that the straight line path

0,1)

dch: [0,1] — [0, 1]
t—t
— —
with tangential base points 0 and 1 _; is transformed into the path
(f*dch)(2): [0,1] — [-1,0]
t—1

t> —
t+1
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— —
with tangential base points —1, and 0 _;. In particular, the semicircular integrals evaluate in the

[N

following way

—

01 dr
‘L — =log(2) - in.
0, !

¥t

So the octagon relation actually takes the form

o (-5 +10g" @) O™ (eg, e_1, 61)6(7%“0‘%'“(2))60(1)"1(60, er,e_1)

. e(—¥+logm(2))el®m(6w,el’e_l)e(—%Hogm@))em@m(eoo’e_l’el) — 1’

where e, is defined, such that eg + ¢; + e + ¢_1 = 0.
This change should not render Glanois’s hybrid identity invalid, as the derivation of the hybrid identity
mainly requires the octagon relation modulo products, and these additional terms largely cancel out.

We now turn to the derivation of the exact identities which verify our earlier claim that

Oo-1(1,26) = £(2€,2k)  (mod products)
OHe(1,20+1) =420+ 1,2k +1)  (mod products).

We treat the first, as the second is exactly analogous; we will, nevertheless, give the full identity in each
case. Firstly, apply shuffle regularisation to

(z—l (5, ﬂ) + gz—l (ﬂ, 5)

to obtain

_ i+a-1\(j+B-1 - ) -
-t 3 (T e e p e c v pTr)
| 4 I J
i+j=z-1
Note, we have combined the two original sums by switching i <> j in the second sum. By the stuffle
product (switching to stuffle regularisation is okay, as there is at most a single trailing 1), we have

=0t 3 (T ey e per - e,

i+j=z-1
On the other hand, apply the shuffle antipode [21, Equation 29]
(-DNI(aixn,....x1:b) + I(a;x1, ..., xn3 b)

N-1
+ Z(—I)N_il(a;xl, o xpb)(asxn, ... ,xi4130) =0

i=1

which effectively reverses the differential forms in an iterated integral I(a,x,...,xn;b), modulo
explicit products terms, to

Lo (@, B) = 1(0; {0}, =1, {0}, 1, {0} 1),
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and we find

L1 (@, B) + (-1)F g (@)
= 1(0: {0}, —1. {0}, 1, {0} 1)
+ (=)0 0L 1 {03 1L {0FTh )

a-1 . .
=- Z(—l)““’”(Z T 1)(a+ﬁ 2T l)g(m)g(a +B—1-i).
i=0 ! B-1

Finally, take the difference of these two identities, and set @ = 2¢, 8 = 1,z = 2k, we then obtain the
dihedral symmetry we claimed

2%k=1 .
Ooi-1(1,20) = £(2€,2k) = — Z (l +20-1

i=0

; ){{(i +20){(2k = i) = £ (2k +20)}
2¢-1

-3 (—1)i(2k +Z_i - l)g(Zk Q20— 1),
i=0

A slightly more concise version of this is obtained by extending the sums to negative indices — where the
binomial coefficients vanish — in order to combine them into one, and explicitly summing the coefficient
of £(2k + 2¢). This puts the identity in a form closer to that which one could directly check/derive with
the motivic derivations, namely

er(1,30 - c20. 20 = (M1 2 e
2k+26-2 1 1
- > ((—1)’(2k B 1) + (25_ 1))g(7)g(2k+2f—r). (A8)
r=1

In an analogous way, we find the explicit form of the dihedral symmetry in the other case to be

Or(1,20+1) = Q20+ 1,2k + 1) = — £(2)6kepo — (2k2;i€1+1)4(2k+25+2)
2k+2¢ . r—1 P
" Z:; ((‘1) ( ok )+( o ))§(r)g(2k+zf+2-r) (A9)

Here, the term §x=¢=¢ accounts for the difference in shuffle- and stuffle-regularisation in the case £(1, 1).

Both of these identities are easily verified to be motivic, either by direct calculation via Dy, or by
noting that the ingredients — namely, the shuffle and stuffle products, and the regularisation /"% — are
themselves motivic in nature.

A.5. Generalised doubling identity

The final ingredient we require for our evaluation is one of the so-called generalised doubling identities,
as described in [ 1, Section 4], and [42, Section 14.2.5] (be aware these references use the opposite MZV
convention).
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In depth 2, the relevant relation is already given explicitly by Zhao, and states (with either shuffle or
stuffle regularisation) that

{5, +£(5.7)
=Z(”j:’f )2‘+‘”§(1s+t-1)+z(”t 1 1)2”"“4(s+t—i,i>
i=1

-5 (”;:"1" 1){(,“(s+t—i, D+l FI—10)) - (”ts" 1)21_“_t§(s+t).

i=

We then flip £(a, b) to (b, a) using the stuffle product, rewrite the double zeta sums that lack powers
of 2 using the shuffle regularisation as before, and simplify the resulting coefficient of (s + t) (The
power of 2 does indeed just disappear!) This gives the equivalent identity

(G0 + (=D)'41(1,5)
:Zs:(”;:i_ )21“ =1y, s+t—t)+Z(S+[ 1 1)21+i_5_’§(s+t—i,i)
~Cl5, )+ (1 G (5,1 - }S(s+’ Cearrnen - (1 e,
S

Finally, we note that upon substituting t = 2k, s = 2¢, we can solve this identity simultaneously with
Equation (A.8) to obtain expressions for both ¢(2¢,2k) and &y (1,2¢) individually as combinations
of classical depth 2 MZVs and products. In particular, we have established the following proposition
(after substituting an expression for (=1)"Z,_1(s, 1) = {or_1(2¢,1) = £(2k,2€) (mod products) using
the shuffle antipode, or via a further dihedral symmetry, and simplifying).

Proposition A.3 (Galois descent of (2€,2k)). The alternating double zeta value ¢ (2€,2k) enjoys a
Galois descent to classical depth 2 MZVs as follows

2k+26-2 i
(22K = 2"'{( )((2k+2€ 11)+( ){(z 2k +20 - z)}

£ 2% - 2 -
2k+26-2 . ro1
— 2(20,2k) + Z:; (-2) (2k_1)g(r)g(2k+2f-r) (A.10)
ke [ [2k 202\ (2k+26—1
vt T b | O

Moreover, by a direct calculation, since Dj,-11 is a tensor product of single-zeta values in this case,
we see Proposition A.3 (and the generalised doubling identity itself) lifts to the motivic level. This is
checked in detail in Section B.1.

Remark A.4. It is clear from the generalised 2-1 Theorem that (2¢,2k) descends to a combination of
classical MZVs; we can, in fact, easily give an explicit formula

(@ 3R) = 341,127, 3,2)4) - 522k +20),

However, it is certainly not clear from this expression that depth 2 classical MZVs suffice, and so
this would not help us in evaluating ¢ ({2}%,4, {2}?) in any useful manner. However, we do obtain an
evaluation for £* (1, {2}¢71, 3, {2}¥~1) by substituting Proposition A.3 into the above.
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Moreover, since £ (1, 1, 4, 6) is —according to the Data Mine [ 1] — a combination of depth 2 alternating
MZVs and products

£0,1,4,6) =5 2G.9) + T12(3,9) + X CB,T) + SWEG,5) - SO G)
+ DL ES)ET) + 10LQEMEB) + 22 Q)ES) = 3EWEB)E)

{(3)* 117713
12 132672

- %4(6)4(32 + £(12),

but apparently irreducible as a classical MZV, one cannot, in general, expect the Galois descent to
always respect the depth. However, as pointed out in Remark 5.2, one has — assuming the homological
version of the Broadhurst-Kreimer Conjecture [3] (see also Conjecture 1.1 above) — that the depth of an
alternating MZV after Galois descent should be at most twice the original; here, the Galois descent of
£(3,9) involving classical MZVs up to depth 4 corroborates this.

By substituting Proposition A.3 into Equation (A.8), and this result into Equation (A.7), we establish
that £*({2}4,4,{2}?) and (via Equation (A.3)) that £({2}¢, 4, {2}?) are both expressible in terms of
only classical double zeta values.

Theorem A.5 (Nonexplicit form). Both £*({2}4,4,{2}?) and £ ({2}¢, 4, {2}?) are expressible in terms
of classical double zeta values.

A.6. Generating series

In order to extract an explicit useable identity for £({2}¢,4,{2}?), we will convert everything to a
generating series identity as a route to simplifying the resulting combinations.

Let us introduce the following generating series, whose names originate from Zagier’s evaluation of
£({2}4,3,{2}?) [40], and some related generating series of even zeta values. The generating series of
odd MZVs, and alternating odd MZVs, are given by

AR = Y £@r+ D2 =p() - 30 (1 -9 - 2y (1 +2),
r=1

B(z) = ) (~(Qr+ 1) = ) (1-27")2r + 1) = A(z) - A3),
r=1 r=1

where ¢ (x) = ﬁ log I'(x) is the digamma function, the logarithmic derivative of the Gamma function.
We keep with the choice established by Zagier taking negatives in the series for alternating MZVs. The

generating series for even versions, using the convention that £(0) = ¢ (0) = -1, are given by
E@)=3,0n! = -3 cot(r2), F@) = 2 (4@ = 3 ese(r2).
E@z) = i (e = L Zeor(nn), Bl = i(—g(mz”-l =+ Zese(nz)
g 2x 2 ’ o 2x 2 '

The ‘e versions, which are missing the polar term, will be convenient later. Let us introduce the following
double zeta generating series
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De(x,y) = Y £(2a,26)> 7'y Dog(x, y) = Z {(Q2a+1,2b+ 1)Ky,
a,b=1 a,b=1

(o)

Dx,y)= > L(ab)x 'y = Doa(x, y) + Dey(x, ).
a,b=2
asb (mod 2)

As an intermediate step, let us also introduce the following generating series to capture the shuffle-
regularised zetas appearing in Equation (A.7), and in the dihedral symmetries in Equations (A.8) and
(A.9), as well as the alternating zeta values as part of the Galois descent result

Kalt(.x, y) = Z g(%’ﬁ)x2a_1y2b_l’ Kev(.x, y) = Z §2b_1(1’%)x2a_1y2b_1’

a,b=1 a,b=1

Koa(x, ) = Z (1,20 + 12y,

a,b=0

Note that we sum from a, b = 0 in K,q but will restrict this to start from a, b = 1 in Doq, on account of
the well-known reductions of £(1,2b + 1), and £ (2a + 1, 1).

Generating series for Equation (A.7).
To obtain the generating series G*(x, y), we sum the left-hand side of Equation (A.7) weighted by
2“yz” overall a,b > 0.
We find then that the generating series of the first term on the right-hand side is

o r
Z {Qa+2b+ 2y = 3 N pQr Ay
a,b=0 =0 5=0
= Z ((Zr +4) ZXZr—ZsyZS
r=0 s=0
> 242 _ 242
= 2r+4) -
DL+ d) —5—5

<
1l
(=]

yF(x) — xF(y)
xy(x% —y?)

Likewise, the second leads to

Z (2a + 1) (2a +2)£(2b + 2)x2y* Z(Za +1)¢(2a +2)x% . Z (2b +2)y%

a,b=0 a=0

_ldE(x) —~
=3 -F(y).

The third and fourth terms are readily summed to give

b+1

{Qa+1)- Zg(zm 1¢(2b +2 - 2k)x*y? = —iA(x)A(y)F(y)
0

8 8
HNgEEINgE

1
£(25) aari-25(1,2b + 2)x%9y?P —;F(x)Kev(y,x»
0 s=0
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The last term requires a little care, as the summand {y(1,2a + 1) does not appear, and so must be
discounted via Kq(x, 0), the constant-in-y term of Kyq(x, y). That is

Z Z§(23)§2b+2 (1,204 Dy = L F () (Koa(x,3) — Kaa(5,0)).
a,b=0 s=0 y

This gives us

G*(x.y) =§A(x>A<y>F(y) " ;F(x)Kev(y,x) " §F(y)(Kod(x, ¥) = Koa(x,0))

P —3F() | 4dEW

xy(x2—-y?) y dx FO).

Generating series for dihedral identities:
The generating series of the form given by summing 3’ ,_, (¢)y**~'x*~! (note the order of the
variables), over the left-hand side of Equation (A.8) is simply just Key (x, y) — Ky (x, y). Then

(2K 201\ iy a1 N e O (28 =1\ st 2r2kc
Z( ok — 1 ){(2k+2€)y X —VZ:;{(%);;f ok — 1 y X

k,t=1

-2 (N7 + 30—+ S+

- _l(f(y X))+ F(y+x) - 2f(y)).

2x
Similarly
oo 2k+26-2 r
>y Jemearaae-n e
k,t=1 r=1
o) k+€-2 2
= Z (— Z (2k )§(2r+1)§(2k+2z 2r —1)
k,t=1 r=0
k+€—

21,
* Z (ZZt 1)5(2")4(2/(+2€_2r))y2k—1x2[_1

r

2r 2r — —
( (Zk ) Qr+1)c(2s-1)+ ( " ){(2r)§(2s))ka_1x2S+2r_2k_l.
1
The sum over k can be evaluated explicitly, and (taking care with the r = O terms) one obtains

P

r,s=1

(=) = (y+x)*)C2r + 1){(25 — x>

l\)l'—‘

D) M= e e @

r,s=1

S (B0 = B+ 0)AG) 3 (F(s )+ F(y + 0) EC).

https://doi.org/10.1017/fms.2024.16 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.16

38 S. Charlton and A. Keilthy

Likewise, one finds

co  2k+2(-2

C(F)E(2k +26 —r) - y2K1 2!
sz11 rZ:‘ (25 )
%(B(y x) = B(y+x))A(Y)+%(f(y—x)—ﬁ'(wrx))g(y),

which essentially amounts to switching x < y, and switching the sign between the two terms.
Opverall, one obtains

Key(x,y) = Kan(x, y)
= J(AW) ~ AD(B(x ~ ) = B+ ) + 3 EQ)(Flx =) + Fle+3)

F(x+y) - F(x —y) = 2F(y)
2x '

~ 3B (F(x~y) - Flx+) -

In exactly the same way, one finds for the second dihedral identity Equation (A.9) — taking care with
the terms £(1,2b + 1) and £(2a + 1, 1) missing from Dyq(x, y) — that

Kod(-x7 y) - Dod(x7 y)
=20(2) + %(A(x) A (A(x) —A(x —y) + A(y) = A(x +))

+ 3 (E() = EO)(E(W) + E(3) - E(x =) + 3 () + EG)ECx+)

_E(x-y)+Ex+y) E@)
2x y

One may observe from this, that

K(x,0) = g(z) iz _ %A(x)z . (%2 +E(x)2)(% . sin(27rx)).

2nx

Generating series for Equation (A.10):

Now, we compute the generating series for the identity from Proposition A.3. Again, taking
ZZ"J,:] (o)yzk—lxz’? -1 note the variable order, we find the left-hand side to be just Kai¢(x, y). The bino-
mial times double zeta terms can be summed as follows

oo 2k+26-2 .
Z 2—’( ){(2k+2€—1 i) - yHko1y2e-

iz
i {{(Zr 2s) - 2—232 25 -1 x2r+2s—2k—1y2k—1
2k -1

r,s=1 k=

+2(2r+1,25+ 1) - 925~ 12 (2k 1)x2r+2s+1—2ky2k—1}
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B 41"1 i {é(zr,zs)x”-l{(’%)zs‘l (5 y)zs—l}

r,s=1

reeran 2 {(552) - (57) )

o) -0l 2)

The other terms may be handled similarly. Overall, we find the generating series identity

St = 0(e 13) Dl E52) 4 0(7500) b~ £ 7)) Bty

3BT - B(F5) B - gacla(3) - 4(52))

4jzcx_— y)E(x ; y) B 4jzcx-:yy) E(x;y) %E(Z)

A.7. Explicit evaluations for {* ({2}%,4,{2}?)

After substituting the previous generating series into the expression for G*(x, y) given via Equation
(A.7), performing a nontrivial amount of trigonometric manipulation, we find

G*(x,y)=2Fy(x)(—D(x_y,x) D(y,_x_)+D( x+y)+D(x+y,x))

2 2 2 2
8F(y)
y

_8F (x)

Dev(y,x)"' Dod(X,y)

2Fy(x){ AQy) - ( (x+y)_A(x_y))+2(A(x)_A(y))-(B(x+y)—B(x—Y))}

2 2
4F(y) {A( ) - (A(x) —24(y)) + (A(x) = A(Y)) - (A(x) + A(y) — A(x — y) —A(x+y))}

-34(2) -

4F (x)

1-yE(y) m(x—y) m(x+y)\y 2(xF(x) - yF(y))
2 - sec ( 5 ) sec ( 3 ) - ETEE—y
E(S(x+y)) N E(L(x —Y))}

xX+Yy X—Yy

{E( )( +E(x+y) - Fx =) -

F(y) { 2E(y) | xE(x) - YE()
y x2 — yz

2(2) + E(y)’ -

_(+YERx-y) - (x—y)f(xw)}
2xy '

If one so desires, the following explicit formula for the individual coefficient £*({2}¢, 4, {2}?) can be
extracted from the above.

Theorem A.6 (Evaluation of ¢*({2}%,4, {2}?) via double zeta values’) Write as shorthand {(n) =
—(1 = 2'"")¢(n), and employ the conventions that £(0) = £(0) = -3 L and ¢(1) = 0. However, no
further regularisation is necessary. Denote by E, the n-th Euler number given as the coefficients of

2Computer readable versions as plain text files in Mathematica syntax and in pari/gp syntax are included in the supplementary
materials.
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sech(r) = X7 n" t". Then for any a,b € Zs, the following evaluation holds, where we assume all
summation variables start from 0,

YA = ) 8CRDC(2b+2,2p+2) = ) 88,500 (29)4(2a +1,2r +3)

ptq=a r+s=b

- Z 2(%(i+1)+1( J*1 )){(2u){(z+21+2)

£ 2b+1 2a+1-
2u+i+j=2a+2b

+ Z (22q+2S§(2q+2s+3) 84(2s+2q+3))(

p+q=a
r+s=b-1

2+2g+2s

oy )4<2r +3)¢(2p)

oy 8(2w222+b1+ 2)5(2:4 +3)2(20)¢(2b+2w +3)

u+v+w=a-1

= DL 8Cp+3)(2q+3I(2b+2)+ Y. 8L(2a+1)(2r +3){(25)

p+qg=a-2 r+s=b

+ Z 46 40l (2u +3)2 (2v +3) (2w)

u+v+w=b-1

Y (ZqJ'zs)g(ﬂ)g(zp+3)§(2q+2s+1)
2s

p+q=a-1
r+s=b+1
2a+2 _
- > ( “; V)S{(Zu){(2w+3){(2a+2v+1)
u+v+w=b v
(1) Eisr E jus (im\2a+2b+2
- Z 3¢ (7)
i+j=2a
r+s=2b+2
(=1)"Ei4rEjug (im\2a+20-2t
o X Mo (E) e
i+j=2a
r+s+2t=2b
— 4 (2p+2b _
+20QRa+2b+4) + Z —22P+2b(2b+1 ){(2p+2b+2)§(2q)

p+q=a+l

£y 8(2“ +2b+ l)g(ﬁ)g(zv +2)¢(2u+2b+2)

u+v+w=a 2b+1
.y 4((2“222:;’ 1) - (zaztirr 1))5(254 +2r +2)¢(25)
- mzzb‘:l 4(2a+2r+2)0(25) = Y AGazol (2u+2)¢(2v +2){(2w)
+ Z’fl 86404 (2r +2)¢(25) - 8?::;(2)4(m>-

resb4l

A.8. Explicit evaluations for { ({2}¢,4, {2}?)
By substituting the expression for G*(x, y) into Equation (A.2), and finding G (x, y) via

Gx.y) = Z( 1) £((2)9, 4, {2}7)x20y% = G*(y, x) SR Sin(xy)

a.h=0 X Ty
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we obtain the following explicit expression for the generating series,

65) = 05 (- 252.0) - s 52 0 52) 5[ 50)

- D)+ 2 Doy
sin(7x) + —
- aw - (a(52) - A(FE) + 20400 - A0) - (B3 - Bx )

51;1;7?)7) {A(y) (2A(x) = A)) + (A(x) — A(Y)) - (A() + A(Y) — A(x —y) — A(x + y))}

~3¢(2)- X—E(x) sec (U2 s (X4 sinln) siniry)

2 X my

1 (sm(n’x) B sin(ny))

xX2(x2 -y nmx Ty
1 E(Lix -
ZSIHgﬂx){E( )( +E(x+y)+F(x—y)) E(Q(X+y)) +E(2()i y))}
X xX+Yy xX-=Yy

M{zam +E(x)? -

2E() |, xE(x) -~ yE(y)
x x% —y?

. (x+y)E(x—y)—(x—y)E(X+y)}
2xy ’

If one desires, the following explicit formula for the individual coefficient £ ({2}¢,4, {2}?) can be
extracted from the above.

Theorem A.7 (Evaluation of £({2}%,4,{2}") via double zeta values? ) Write as shorthand {(n) =
—(1 = 2™ ¢(n), and employ the conventions that £(0) = £(0) = -3 L and (1) = 0. However, no
further regularisation is necessary. Denote by E, the n-th Euler number given as the coefficients of
sech(?) = X7, ﬁ’} t". Then for any a,b € Zs, the following evaluation holds, where we assume all
summation variables start from 0,

({214, 4,{2}")
s (i) (i)™
= (=1) {— Z 4{(2p+2,2b+2)(2 o Z 47 (2r +3, 2a+3)(2 i

ptq=a s=b—
1 i+1 1(j+ (i)
- 2, j+2)
" Z (2‘(2a—2u+1)+21(2b+1))§(+ I+ ) G
2u+i+j=2a+2b

2w+2b+2\( —————  (2b+2w+3) (im)>«
Y 4( bl )(§(2b+2w+3)——22b+2W+3 )5(2”3)—(2“1)!

u+v+w=a-1

2p +2s — (in)%
_pga ( )g(z +3)§(2s+2p+1)—(2q+])!

r+s=b

3Computer readable versions as plain text files in Mathematica syntax and in pari/gp syntax are included in the supplementary
materials.
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o \2u
-y 4(2a+2v+2)§(2w+3){(2a+2v+3) (im)

2v Qu+1)!
u+v+w=b-1
2q+2r (iﬂ.)Zs
2 3)V(2g+2r+1)———
+P;a ( 2r ){( P+ +2r+ )(2s+1)!
r+s=b
(iﬂ')zb (in.)Zs
- 2002p+3)((2g +3) ——— — 472 + 3 (2r +3
Y, 2CpeNCa+N G- Y e e+ g
prq=a-l r+s=b-1
_ Z 32(2) (=DPEispEjiqg ( in )2a+2b+2 D2k42r
i+ K20+ iljlplgt 12 Qk+1)!(2r +1)!
p+q+2r=2b
(_l)pEi+pEj+q i\ 2a+2b-2¢ 22k+2r
S T ) 2 +2
i, O 2) @k Dir+ T2

i+j+2k+20=2a

p+q+2r=2b
(iﬂ)2a+2b+4 ( )2a+2 (iﬂ')zb
Y Qarapre) TECPH DG TR e D
1 2p +2b (im)%e
i p+§1+| 222l ( 2b+1 ){(Zp v2b+) (2g+1)!
2p+2r+1\ —mr— (im)2e
_,,;a ( N )§(2p+2r+2)§(2s+2)—(2q+1)!
r+s=b
2a+2r +3\  (2a+2r+3\\ (in)*
+H;b2{(2.9+21"+4)(( 2a+3 ) B ( 2 +1 )) (2s+ D!
+ ) 2UQa+ 2+ (i )2S S+ 2P+ DL(2g+2) (im)™
r+s=b (2 ptq=a (2b ) '

In particular, we obtain the following corollary on the reduction of £ ({2}¢, 4, {2}?) modulo products.
In essence, it extracts those double zeta terms above, which are not multiplied by a power of .

Corollary A.8. Modulo decomposables (i.e. products of MZVs), the following evaluation holds

Z({2}4,4,{2}") = (—1)a+”{—4g(2a +2,2b+2) +4.(2b +1,2a +3)

1({i+1 1{j+1 . .
+ Z (5(2a+1)+§(2b+1))§(l+2’]+2)} (mod products).

i+j=2a+2b
i,j=0

B. Motivic evaluation of /™ ({2}¢, 4, {2}?) via motivic double zeta values

In order to verify that the evaluation of £({2}%,4,{2}”) in Section A.8 (or at least, the evaluation in
Corollary A.8) is motivic, we only need to show that the various ingredients used in Appendix A are
motivic. More precisely, we need to show that Proposition A.3 and Equation (A.7) are motivic. All other
identities used in the derivation of Corollary A.8 and Theorems A.6 and A.7 were obtained from the
shuffle or stuffle product, and so are automatically motivic. The shuffle product is motivic by definition,
for the stuffle-product, see [34, 37].

https://doi.org/10.1017/fms.2024.16 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.16

Forum of Mathematics, Sigma 43

Framework of alternating motivic MZVs:

We note, here, that the motivic MZV framework of Section 2.1 generalises readily to the case of
alternating motivic MZVs. For the technical details of this, we refer to [18, 19]; the most important
points are the comodule of alternating motivic MZVs H(?) is obtained by extending Definition 2.1 to
allow a; € {0, =1} (although functoriality in a useful form only applies when all a; € {0, 1}). Then for
atuple (ki,...,kq) of positive integers, and (&1, ..., £q4) € {x1}¢ of signs, and £ > 0, we define the
motivic alternating MZV by

g B OB ™05 403, i, {0, 02T g, {OFRT 1), (BLD)
C\ky, ko, ... kg

where n; = €;€41 - - - €4, mimicking the integral representation of alternati&g MZVs in Equation (A.1).
One can again streamline the notation by dropping the ¢;’s and writing k; if &; = —1, and just k; if
g = 1. Then A® = HP /(™ (2)) and L? = A(z)/A(Z)A(Z) define the obvious extensions of the
Hopf algebra and the Lie coalgebra of irreducibles. The coaction A : H? — A @ H? is defined by
the same formula as in Equation (2.2), and the infinitesimal derivations D, : HO - E;z) @H® , with
Eﬁz) the weight » component of £, are given by the same formula as in Equation (2.3). B

For alternating motivic MZVs, D; plays a nontrivial role, as the weight 1 alternating MZV (™ (1) =
log™ (2) is nonzero. The analogue of Brown’s [5] characterisation of ker D in the alternating case is
given by Glanois as follows.

Theorem B.1 (Glanois, Corollary 2.4.5 [18]). Let N > 1, and denote by Doy = @, 5,1y D2r+1.
Then in weight N, the kernel of D <N on alternating motivic MZVs is one dimensional:

Q¢™(1) =Qlog™(2) ifN=1

2) _
kerDoy NHy = {ng(N) PN > 1.

Since the identities we wish to lift involve alternating MZV terms in a nontrivial way, we necessarily
have to use Glanois’s criterion to verify the motivic lift, even if, as it happens, D; = 0 in each case.

B.1. Motivic version of Proposition A.3
We prove the following proposition which claims that Proposition A.3 lifts to a motivic version.

Proposition B.2 (Motivic Galois descent of "(2£,2k)). The alternating motivic double zeta value
{™(2¢,2k) enjoys a Galois descent to classical depth 2 motivic MZVs as follows

2k+26-2 .
™(2¢,2k) = ; 2—"{(2’k_ )g (2k +2¢ - u')+(2£ )g (i, 2k+2€—z)}

2k+26-2

— ™24, 2K) + Z (=2)" (2k

2k+2€—2 2k +20—-1
_ A=2k=2¢ m
2 {2( 2k — 1 )+( 2k — 1 )}{ (2k +2¢0).

)g“ (M Q2k+26-r) (B.2)

Proof. We compute Dy,-41 of both sides, and verify they agree for | < r < k+ ¢ —2. Thecaser =0
does not play a role, since D is known to be exactly zero by the Galois descent property established
in [18]; alternatively, one can directly compute it and see there is no contribution since the sequences
0,1,-1),(0,-1,1),(-1,1,0), (1,—1,0) which give rise to logI(Z) are not present in the integral
representation of any term. In the case, r = k + € — 1, Dog42¢-1 is quickly checked to vanish, as only
{™(1) = 0 appears in the right-hand tensor factor. O
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Computation of D, ™ (2a,2b) and Dy, 7™ (2a, 2b)

We see that only the following subsequences can contribute to the motivic coaction. This is because
any subsequence must start or end one of the three nonzero entries; one then checks whether the length
2r + 1 subsequences which start/end at these points actually contribute

" (2a,28) = 1M (01} oy 1] 01 i),
]

We find

D2r+1 é’m(%’ﬂ)
= a<r oy 0a(2a) ® L(2a+2b = 2r = 1) + 8p <y &5, 10, (20) ® {™(2a +2b — 27 — 1)

= ((2(122 1) - (2b2i 1))(I(ﬁ) ®L(R2a+2b-2r-1)

The binomial factors should a prior retain the delta factors, but they can be removed as the binomials
vanish already for the complementary condition. The corresponding result holds for {™(2a,2b) by
removing all bars from the above result

2r

2
o maan= ([, ),

1)){1(2r +1)®(Q2a+2b-2r-1).

Computation of Dy, {™(2a+1,2b + 1)

We see that only the following subsequences can contribute to the motivic coaction. This is because any
subsequence must involve one of the three nonzero entries; one then checks whether the length 2r + 1
subsequences which start/end at these points actually contribute

M(2a+1,2b+1) = (0 ;, {0}2a,i, {0}2b,) .

We find

Doy {™Ra+ 1,26+ 1) = 60y ' 2r + 1) @ (™ (2a +2b + 1 = 2r)
4 (~Basrlly 2aa+ 1) +8pr8h, 5, b+ 1) ® " (2a+2b+1-2r)

B B 2r 2r\\ B
—(6a=, (2a)+(2b))§(2r+1)®§(2a+2b+1 2r).

Computation of Dy, {™(p, q), p + ¢ even
We note that the two cases above can be combined to give the following, for p + g even

Dari1 {™(p.q) = (62r+1=p + (—1)p(p2_r 1) - (—l)q(qz_rl))e“[@r +1)®l(p+q-2r-1).
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Verification of Proposition B.2
The claim that D;,.,; of both sides agree is equivalent to the following putative identity among binomial
coefficients, when 1 < r < k+£— 1, which arises after projecting ' (2r+1)® ™ (2k+20-2r—1) > 1.

2 Zor 2r 2r
0=(1-27 )((25—1)_(%—1))

2k+20-2 1

i i- ; 2r i 2r
" ; 2 (2k—1)(52"+”"':2’+1+(_1) (2k+2£—i—1)_(_1) (i—l))

HE L (i-1 2r 2r
+ 2 Sicars1 + (=1) —(=1)¢
; (25— 1)( i=2rs1 + (=1) (i— 1) =D (2k+2£—i— 1))

_ 2r 3 2r
20 -1 2k -1
2r 2k +26-2r -2
_n)—(2r+1) = (2k+26-2r—1)
+=2) (2k—1)+(2) ( 2%k - 1 )

After some simplification of the right-hand side, and reindexing the sums, we find that the claim is
equivalent to the following

o2 ([ )-(,))

o Y i+ 2k =1 2r 2r
+(=D7 ) () (2k—1 )((2€—i—1)_(2k+i—1))

i=0
2k=2

o fi+2k -1 2r 2r

This is verified to be exactly 0 from Lemma 4.2 of Section 4. With that, we have finished the proof
of Proposition B.2.

B.2. Motivic version of Equation (A.7)

We prove the following proposition, which claims that Equation (A.7) lifts to a motivic version.

Proposition B.3. The following identity holds among motivic multiple zeta (star) values

CF({2),4,{230) = 20™ (2a + 2b + 4) — 4(2a + )™ (2b + 2)¢™ (2a + 2)
b+1
+8/™(2a + 1)ng(2k+ ™2k +2 - 2k) (B.3)
k=1

a b
=8 ) L2 5y (1,25 +2) =8 )" E™(25) 10 15 o, (1,20 + 1),
s=0 s=0

Proof. We compute Dj,-; of both sides and will show that they agree. The analytic version of this
identity, which is given in Equation (A.7) then fixes the remaining coefficient of (™ (2a +2b +4) (which,
here, is expressed as a sum of two terms involving products of even zetas). Notice that the only place
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D; could contribute is from {;‘(‘l + (1,2b +2), but we will see momentarily that D; = 0, hence, we can
take r > 0. |

Computation of D, {2"; +1(1, 2b+2)

We see that only the following subsequences can contribute to the motivic coaction. This is because any
subsequence must start or end at one of the three nonzero entries; one then checks whether the length
2r + 1 subsequences which start/end at these points actually contribute

a1 (1,2652) = (0 {0}, (032411

Hence, we have

Dort1 §£,+1(1’2b + 2) = 6r£a§ér(1) ® gzn;+1_2r(2b + 2) - 6r5b§£r(l) ® 451:1_,_1 (2b +2- 27‘)
2a+2b+2-2 20 +2b+2-2
={er+he (—6m( v ’) 6@( areor ’))

2b+1 2a
MQ2a+2b+3-2r).
And, in particular, D; = 0.

Computation of D41 {3} ,(1,2a + 1)
Similarly, only the following subsequences can contribute to the motivic coaction

Lopia(1,2a+1) = I™(0; {0}2”+2,i,!, o1

Hence, we have

Doy §£,+2(1, 2a+1) = 5r$b+l{§r(1) ® (;nb+2_2r(za +1) - 6r$a—1§§r(1) ® 431174.2(2‘1 +1-2r)
2a +2b+2 - 2r 2a+2b+2-2r
=§[(2r+1)® (_6r§b+l( )+ rsa—l( ))

2a+1 2b+1
<™Q2a+2b+3-2r).

Computation of Dy, of right-hand side of Equation (B.3)

With the above two computations of the motivic coaction on the double zeta values in Equation
(B.3), we can readily compute the rest of the coaction using the derivation property of Dy, |, namely,
D41 XY = (1Y) Doyt X+ (1®X) Dayy Y, as well as the fact that Do,y {™(N) = dn=2r41LH(N) @ 1.
Note also the first two terms on the right-hand side of Equation (B.3) are products of even zetas, and so
do not contribute. So we find

D;,+1 (RHS Equation (B.3))
b+1
= 86,20 (2r +1)® ) {™(2k +1){™(2b +2 - 2K)
k=1

+86,<pi1 C'2r+1) @ ™ (2a+ 1)™(2b +2 - 2r)
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—824‘(2r+1)®

s=0
S ™(2a - 25 +2b +3 - 2r)™(2s)

s 2a+2b+2-2r —2s 2a+2b+2-2r —2s
reass 2b+1 T=PU 2b+1-2r

b
-8 Z d2r+)® (5rsb—s+l(
s=0

2a+2b+2-2r —2s 20 +2b+2-2r —2s
_61'3(/1—1
2a 2a - 2r

SC™(2a +2b - 25 +3 - 2r)™(2s).

Computation of Dy,.,; of left-hand side of Equation (B.3)
We compute the derivation Dy,,; £™* ({2}, 4, {2}?) by first applying the stuffle antipode to obtain an
expression involving only /™ ({2}/,4, {2}%), which has a simpler coaction.

We see that only the following subsequences can contribute to the motivic coaction of
Dy E™({2}4,4, {Z}h); all other subsequences will start and end at letters of the same parity

M2y 4 {28 = (D@05 {1,044, 1,0 ,j,O, {1,0",1).

Hence, we have

Dor1 ™({2}4,4,{2}7)
= =6, <al}({2}7) ® {M({2}97,3,{2)7) + 6, < ({2)7) ® C™ ({219, 3, {2}07).

Now, with the stuffle antipode formula extracted from Equation (A.2), we compute

Dor i I™* ({214, 4,{2}7)
a b

= D 2D Do CN(2ML 4, (21 (1 @ M (21 (217

i=0 j=0

a b
=221 ® ) D (-1 (= 6, (2P 73, (2) + 6,0 " (21,3, (2)7)

i=0 j=0

2PN ({21 ).

Here, we can apply the motivic evaluation of /™ ({2}, 3, {2}#) established by Brown [5]. Alternatively,
we can apply the stuffle antipode again to rewrite the result instead of involving £™*({2}¢, 3, {2}#)
and appeal to the motivic evaluation thereof, for a more direct formula (Glanois [18] claims that the
motivic evaluation of ™* ({2}¢, 3, {2}#) requires knowing exactly certain conjectural identities among
so-called £** values, however, it seems that the stuffle antipode formula allows one to automatically
transfer the /™ ({2} %, 3, {2}#) evaluation to a corresponding /™* ({2}£, 3, {2} %) evaluation).

After (separately) shifting i and j by r, which gives the factor (—1)" below (and taking care with the
signs; use the correspondence j <> b, i — a), we find

Daq1 é’m,*({z}a, 4, {z}b)
= (=D ({2)) @ (6, <ad™* ({27, 3.{2}") = 6, <pd™* ({2),3.{2}° 7).
We note that this is essentially the same expression as one obtains with Glanois’s setup involving the
motivic coaction on * values, after applying the dihedral symmetries to simplify terms in the coalgebra

on the left-hand side. One only needs to apply the result that (—1)" £} ({2}7) = 2£'(2r+1) = —{1[’*({2}’)
to obtain exactly the same formula.
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Now, apply the following motivic evaluations

aU2y) =2=-17¢'@2r+1)

a+b+1
m, % a by _ _ 2s _ _ _~=2s 2s *,m a+b+1-s\ »m
M ((2).3.42)7) = -2 S§:] [(ZQ) b=a = (1-2 >(2b+1)]§ ({2p1 )" 25+ 1)

along with £*™({2}") = —2™(2n). We find

a+b+1-r

Do (™ ({244, 2)7) =80 (2r 4 Do ) (Zaz—SZr) ~ O (1 2_23')(21925r 1)]
s=1

M™2a+2b+2-25—2r)M™(2s+ 1)

a+b+1-r 2 25
1 -2s
-8'2r+1)® E —0g=q — (1 =2
8» ( r ) - [(2 ) s=a ( )(ZE 2 1)

M QRa+2b+2-2s-2r)™(2s +1).

Comparison of left- and right-hand side of Equation (B.3)
Firstly, make the change of variables s > a+b+1—s—r in the sums for Dy, (RHS Equation (B.3)); after
considering the cases in each resulting delta term — and dropping terms ™ (1) = 0 by regularisation—

we find
b+1
D5,+1 (RHS Equation (B.3)) = 86r:a§[(2r +1)® Z M2k +1)M(2b +2 - 2k)
k=1

+86, <1 M 2r+ 1) @ ™ (2a+ 1)™(2b +2 - 2r)

a+b+1-r

-8 ), der+ne ("(21925r 1) " (Zb +21s— Zr))

s=max(1,b—r+1)

M2s+ DE™(2a +2b +2 = 2r — 25))

a+b+1-r

-8 > e ((;2) + 6,y — (2a2—SZr))

s=max(l,a—r+1)

M2s + D)™ (2a +2b +2 - 2r — 2s)).

Note, here, that the two terms involving 6,-, cancel. Then the sums over s may be extended to start at

s = 1. The first sum needs no correction term, as the numerators of each binomial are strictly greater

than the denominators in this case, however, the term (Zaz—SZr) in the second sum needs to be corrected

when s =a —r fora — r > 1. We obtain

Ds,1 (RHS Equation (B.3)) = 86, <p41 ' (2r + 1) ® {™(2a + 1)™(2b +2 - 2r)
— 86, <a1 M 2r+ 1) @™ (2a+1-2r)™(2b +2)

a+b+1-r 25 25
2: I
— 2 1 —
8 g Frs )®( (2b+1)+(2b+1—2r))

MR2s+ DEM™2a+2b +2 - 2r - 2s))
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a+b+1-r . 2 2
-8 Z; §(2r+1)®((2a)—(2a_2r))

M 2s+ 1) ™ (2a +2b +2 - 2r — 2s)).

Finally, write {™(2s+1) = —(1 — 2%)™(2s + 1). It is now straightforward to check that
Dj,4+1(LHS Equation (B.3)) = Dy,41(RHS Equation (B.3)); the two terms outside the sum
for Djy,+1 (RHS Equation (B.3)) above correspond to the deltas terms in the expression for
Dj,+1 (LHS Equation (B.3)).

This completes the proof of Proposition B.3, and shows the reduction of /*({2}%, 4, {2}?) to depth
3 alternating MZVs is motivic.

B.3. Motivic evaluation of '({2}%,4, {2}?)

Now that we have verified all of the ingredients for the evaluations of ¢({2}%,4,{2}?) and

*({2}4,4,{2}?) are motivic, we may conclude that the identities in Theorems A.6 and A.7 hold

for £*) replaced by their motivic counterparts, and iz replaced by %Lm = (im)™.

More importantly, the evaluation of ({2}¢,4, {2}?) modulo products from Corollary A.8 is also
motivic, and we obtain the result of Lemma 4.1 as an immediate corollary.

Corollary B.4. The following evaluation holds in the motivic coalgebra

{234, 4,{2}0) = (—1)“”’{—44‘(25, +2,2b+2) +4'(2b +1,2a +3)

1({i+1 1[(j+1 L. .
* Z (2i (2a+1)+2f (2b+1))§ (”2’”2)}
i+j=2a+2b
i,j>0
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