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Abstract

The space of monic squarefree complex polynomials has a stratification according to the
multiplicities of the critical points. We introduce a method to study these strata by way
of the infinite-area translation surface associated to the logarithmic derivative df /f of the
polynomial. We determine the monodromy of these strata in the braid group, thus describing
which braidings of the roots are possible if the orders of the critical points are required to
stay fixed. Mirroring the story for holomorphic differentials on higher-genus surfaces, we
find the answer is governed by the framing of the punctured disk induced by the horizontal
foliation on the translation surface.

2020 Mathematics Subject Classification: 30F30 (Primary); 20F36 (Secondary)

1. Introduction

Let UConfn(C) denote the space of unordered configurations of n distinct points in C.
Equivalently, this is the space of monic squarefree polynomials of degree n, which will be
written as Polyn(C). From this point of view, Polyn(C) carries a natural equicritical stratifi-
cation {Polyn(C)[κ]} indexed by partitions κ of n − 1. A polynomial f ∈ Polyn(C) belongs
to Polyn(C)[κ] if and only if the roots of f ′ form the partition κ of n − 1. Thinking of f as
a mapping f : C→C, the partition κ describes the multiplicities of the critical (i.e. branch)
points.

Main Question. Understand the topology of Polyn(C)[κ]. What is the fundamental group
Bn[κ] := π1(Polyn(C)[κ]) (a “stratified braid group”)? Is Polyn(C)[κ] a K(π , 1) space?

The strata Polyn(C)[κ] admit descriptions as certain discriminant complements, and so
the Main Question is reminiscent of the conjecture of Arnol’d–Pham–Thom on the homo-
topy type of discriminant complements associated to isolated hypersurface singularities. As
we will see, Polyn(C)[κ] is also closely related to a certain stratum �κ of meromorphic
differentials on CP

1, and so the Main Question is a version of the conjecture posed by
Kontsevich–Zorich originally for strata of holomorphic differentials on higher-genus curves
[KZ97].

In this paper, we begin this project by answering a natural question about the groups
Bn[κ]. The inclusion map Polyn(C)[κ] ↪→ Polyn(C) induces a monodromy homomorphism
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260 NICK SALTER

into the braid group Bn := π1(Polyn(C))

ρ : Bn[κ] → Bn,

and we describe the image Bn[κ] := ρ(Bn[κ]). We find (cf. Section 4) that there is a crossed
homomorphism φκ : Bn → (Z/rZ)r, where r = gcd (κ) is the gcd of the parts of κ , which
characterises the monodromy image when n ≥ n0(r) is sufficiently large compared to r. The
precise bounds n0(r) are somewhat intricate and are stated in Section 6, but we note here
that if r = 1 then n0(1) = 2 (in which case φκ is trivial and Bn[κ] = Bn) and if r = 2 then
n0(2) = 8; in general, n0(r)�14r in the worst-case scenario.

THEOREM A. For any n ≥ 2 and any partition κ of n − 1 with gcd (κ) = r, there is a
containment

Bn[κ]� ker (φκ ).

If n ≥ n0(r), then this containment is an equality.

Remark 1·1. Theorem 6·10 gives a simple characterisation of ker (φκ ) (and hence Bn[κ]) in
the range n ≥ n0(r): it is the subgroup of Bn consisting of braids admitting representatives
where at each overcrossing, there are r strands passing underneath.

Remark 1·2. The containment Bn[κ]� ker (φκ ) is not always an equality. For κ = {n − 1},
the fundamental group π1(Polyn(C)[κ]) is cyclic, since the only polynomials in this stratum
are of the form f (z) = (z − z0)n − c, while the corresponding ker (φκ ) has finite index in
Bn. On the other hand, the braid-theoretic methods underlying the proof of Theorem A are
almost certainly not optimised, and it would be interesting to know exactly how small n0(r)
can be taken.

Remark 1·3 (The braided Gauss–Lucas theorem). The classical Gauss–Lucas theorem
asserts that the critical points lie inside the convex hull of the roots. There is a refinement
ρ : Bn[κ] → Bn,|κ| of ρ where one tracks both roots and critical points, and the study of ρ
can be viewed as a Gauss–Lucas theorem for families of polynomials. The classical theorem
implies that every braid in the image of ρ admits a representative where at each time t, the
critical points lie in the convex hull of the roots. Our study of the monodromy shows that
this is not sufficient. Figure 4 in Section 4·2 gives an example of a braid satisfying this con-
vexity condition which is not realisable as the braid of root and critical points of any family
of polynomials. Theorem A shows that when r ≥ 2, there are even certain braidings of the
roots alone (e.g. a half-twist) which cannot be realised by polynomial families. We plan to
return to a study of the refined monodromy ρ in future work.

Remark 1·4 (A finer stratification). The equicritical stratification {Polyn[κ]} is concerned
only with the multiplicities of the critical points; it can (and does) happen that distinct critical
points lie over the same critical value. Therefore, each equicritical stratum admits a further
stratification by the profile (multiplicities plus ramification) of the critical values. Let us call
this the “profile stratification”.

From one point of view, the profile stratification is perhaps more natural to investigate,
being built from more fundamental pieces. On the other hand, the Main Question posed
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Fig. 1. A strip decomposition of a differential df /f . The polynomial f has simple zeroes
z1, . . . , z5, and critical points w1, w2, w3 with w2 having multiplicity 2. On the left, the points
zi, wj are shown in C along with the prongs of the horizontal foliation. The strip decomposition
is shown on the right. Colours on the right indicate gluing instructions, and correspond to the
colourings of the prongs on the left. (Note: this figure is best viewed in colour).

above is strictly less interesting. This is because each stratum in the profile stratification
is very closely related to a certain Hurwitz space of branched covers of C∗ (they are not
exactly the same thing, since a point in a Hurwitz space only describes a polynomial up to
automorphisms of the domain). Therefore the fundamental group of a profile stratum can
be computed in terms of the fundamental group of the associated Hurwitz space, which
is nothing more than a finite-index subgroup of a braid group. At the space level, a profile
stratum fibers over the associated Hurwitz space with fiber given by the affine group C�C

∗;
as base and fiber are aspherical, so too is the total space. Thus only by passing to the coarser
equicritical stratum do we reach uncharted territory.

From polynomials to translation surfaces. Our method of study is built around a type of uni-
formisation map. Namely, we associate to f ∈ Polyn(C)[κ] its logarithmic derivative df /f .
This is a meromorphic differential on CP

1, with n simple poles of residue 2π i at the zeroes of
f and an additional simple pole of residue −2π in at infinity. Such an object can be viewed
as a translation surface - the poles give the surface infinite area, but it nevertheless has a
very simple global structure (see, e.g. Figure 1). Let �κ denote the moduli space of mero-
morphic differentials on CP

1 with n simple poles of residue 2π i, a simple pole at infinity
(necessarily of residue −2π in), and zeroes of multiplicity specified by κ . Some elementary
complex analysis (Lemma 2·1) shows that every such differential is of the form df /f for
f ∈ Polyn(C)[κ]. The assignment f �→ df /f therefore gives a classifying map

μ : Polyn(C)[κ] →�κ .

It is clear that if f (z) and g(z) are related by an affine change of variables g(z) = f (az + b),
then the associated differentials df /f and dg/g determine the same point in�κ . The converse
is not much harder, but this identification is fundamental to our approach, and we record it
here for good measure.
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THEOREM 1·5. The classifying map μ induces an isomorphism of complex orbifolds

Polyn(C)[κ]/Aff ∼=�κ .

The advantage in studying �κ is that its global structure is much more apparent. The
equations defining Polyn(C)[κ] as a discriminant complement are highly nonlinear, and it is
difficult to construct and analyse the behavior of explicit loops inside Polyn(C)[κ]. On the
other hand, in �κ the corresponding analysis is elementary via deformations of the asso-
ciated translation surfaces. Moreover, in Proposition 3·10, we use the combinatorics of the
translation surfaces to obtain an explicit finite cell structure on �κ , in principle reducing the
study of the topology of �κ to the combinatorics of the “labelling systems” that index the
cells.

The meromorphic differential df /f , and more precisely its incarnation as an infinite-area
translation surface, plays a fundamental role in our analysis of the monodromy. Theorem
A exactly parallels a result in the setting of strata of holomorphic differentials on higher-
genus surfaces. Here, the problem is to determine the image of the orbifold fundamental
group in the mapping class group of the surface. This was answered in [CS23], where it is
shown that the image is essentially characterised by the property that the monodromy must
preserve the framing of the surface (punctured at the locations of the zeros) associated to the
horizontal vector field specified by the translation surface structure. In the case where the
locations of the zeroes are not marked, the monodromy must preserve a certain distillate of
the framing known as an r-spin structure, c.f. [CS21]. Here, we find the exact same sort of
characterisation of the monodromy: the crossed homomorphism φκ measures a “change in
winding number” of arcs relative to the framing of the punctured surface induced from df /f .
In both of these settings, the integer r is given as the gcd of the orders of the zeroes of the
differential.

Related work. In [CW91], Catanese–Wajnryb study the space of what they call “generic
polynomials”, i.e. those possessing the maximal number of critical values (but with no con-
straint on simplicity of the roots). Their main result gives a description of the fundamental
group of this space. In the language of the profile stratification discussed above in Remark
1·4, the space of generic polynomials is very closely related to the top-dimensional stratum
in the profile stratification, the only difference being that here, one does not insist that 0 be
a regular value, so the Hurwitz space in question parametrizes branched covers over C and
not C∗.

In [TBY+20], W. Thurston and collaborators associate a “degree-d-invariant lamination”
to a complex polynomial of degree d. The combinatorics of this lamination record the mul-
tiplicities of the critical points, and moreover there is a space (“spine”) of such laminations
which they probe by means of deformations of the translation surface associated to df /f
(although stated in different language). See in particular [TBY+20, theorem 3·1].

The space �κ fits into the theory of the “isoresidual fibration” studied by Gendron–Tahar
[GT21, GT22]. They consider the map from the space of meromorphic differentials with
prescribed zero and pole orders to the vector space of residues, showing among other things
that in the case of a single zero, the map is a fibration away from a hyperplane arrangement.
Our �κ is the fiber of the isoresidual map of differentials on C over the vector of residues
(2π i, . . . , 2π i), where the zeroes have order specified by κ .

In [DM22], Dougherty–McCammond investigate various combinatorial structures
induced from polynomial maps. One of their key tools is a pair of transverse singular
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foliations on C with singularities at the zeroes and critical points of f . We obtain an equiv-
alent pair of foliations from the horizontal and vertical foliations of the translation surface
structure on C induced by df /f . See Remark 3·2.

Outline. In Section 2, we establish Theorem 1·5, showing that one can study polynomials
in a stratum Polyn(C)[κ] by instead studying the translation surfaces associated to their
logarithmic derivatives. In Section 3, we describe the structure of an individual df /f as
a translation surface, as well as the global structure of the stratum �κ . Our main results
here are the discussion in Section 3·2 of the “strip decomposition” of df /f , and the global
structure theorem Proposition 3·10, which exhibits a cell structure on �κ coming from the
combinatorics of this decomposition. The proof of Theorem A is carried out in Sections 4
to 6. In Section 4, we show how the translation surface structure associated to df /f constrains
the monodromy image Bn[κ], forcing it to preserve winding numbers of arcs on the disk. In
Section 5, we exhibit certain loops in �κ and analyse their monodromies in Bn. Finally in
Section 6, we show that this finite collection of elements is enough to generate the kernel of
φκ (when n is sufficiently large). The key tool here is to relate the winding number crossed
homomorphism φκ to an a priori totally different crossed homomorphism ϒr formulated
in terms of a count of “virtual undercrossings” on a braid diagram, and then to establish a
factorisation algorithm (Lemma 6·9) for expressing the kernel of ϒr in terms of elements
known to lie in the monodromy image.

2. Moduli spaces of polynomials, differentials and translation surfaces

We begin with a discussion of the space�κ , the stratum of translation surfaces associated
to the differentials df /f . We construct this here as a moduli space, by taking a quotient of the
space of differentials by the relevant automorphism group. The main result of this section
is Theorem 1·5, recorded here as Proposition 2·2, which amounts to little more than an
unpacking of the definitions, but lays the foundation for what is to follow, as it will allow us
to explore the space Polyn(C)[κ] by instead exploring the space �κ of translation surfaces.

Let κ = {k1, . . . , kp} be a partition of n − 1. Here and throughout, we write |κ| = p
to denote the number of parts of the partition. Let MD(κ) be the set of meromorphic
differential forms ω on CP

1 satisfying the following properties:

(i) there are exactly p zeroes of ω of orders k1, . . . , kp, and each zero lies in C⊂CP
1;

(ii) there are n simple poles each of residue 2π i contained in C, and an additional simple
pole at ∞ of residue −2π in.

The following is basic complex analysis; we include the argument for the sake of
completeness.

LEMMA 2·1. Let ω ∈MD(κ) be given. Then there is a unique f ∈ Polyn(C)[κ] such that
ω= df /f .

Proof. Let f ∈ Polyn(C) be the polynomial with simple roots at the n poles z1, . . . , zn of ω
contained in C. By the theory of partial fractions,

df

f
=
(

1

z − z1
+ · · · + 1

z − zn

)
dz,
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on C, showing that ω− df /f has no poles on C. By hypothesis, ω and df /f have simple
poles at ∞ of equal residue, so that ω− df /f is moreover holomorphic in a neighbourhood
of ∞. Thus ω− df /f is a holomorphic differential form on CP

1; the only such form is 0
(see, e.g. [Mir95, exercise IV·1·A]).

Observe that the affine group

Aff = {α ∈ Aut(CP1) | α(∞) = ∞} = {az + b | a ∈C
∗, b ∈C} ∼=C

∗
�C

acts via biholomorphisms on MD(κ) on the left via inverse-pullback:

α ·ω= (α−1)∗(ω).

Likewise, there is a left action of Aff on Polyn(C) ⊂C
n induced from the diagonal action

on C
n.

Note that for each of these actions, Aff is a Lie group acting properly by holomorphic
automorphisms with finite stabilisers. The orbit spaces Polyn(C)[κ]/Aff and MD(κ)/Aff
therefore carry complex orbifold structures. We observe that dimC (Polyn(C)[κ]) = |κ| +
1, since the roots of f ′ move in a configuration space of dimension |κ|, and the generic
antiderivative of f ′ has n distinct roots. Thus dimC (Polyn(C)[κ]/Aff) = |κ| − 1.

We define the κ-stratum of logarithmic derivatives as the second of the orbifolds discussed
above:

�κ := MD(κ)/Aff.

Observe that there is a natural map

μ : Polyn(C)[κ] →MD(κ)

f �→ df

f
.

PROPOSITION 2·2 (Theorem 1·5). The map μ is an Aff-equivariant biholomorphism,
inducing an isomorphism of complex orbifolds of dimension |κ| − 1.

Polyn(C)[κ]Aff ∼=�κ .

Proof. That μ is a bijection follows immediately from Lemma 2·1, and it is easy to see that
this respects the complex structures on the domain and codomain. Equivariance is also easily
verified, as

(α−1)∗ df

f
= d(f ◦ α−1)

f ◦ α−1
,

and the polynomial f ◦ α−1 has simple roots at the points α(z1), . . . , α(zn), where z1, . . . , zn

are the roots of f .

An exact sequence. To conclude this section, we study the relationship between the (orbifold)
fundamental groups of Polyn(C)[κ] and its quotient Polyn(C)[κ]/Aff ∼=�κ . Following the
discussion in [Loo08, introduction], we find that there is an exact sequence

π1(Aff) → π1(Polyn(C)[κ]) → πorb
1 (Polyn(C)[κ]/Aff) → π0(Aff) → 1.
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Recalling that π1(Aff) =Z and π0(Aff) = 1, and also recalling that π1(Polyn(C)[κ]) :=
Bn[κ], we obtain the exact sequence

Z→ Bn[κ] → πorb
1 (�κ ) → 1. (1)

In particular, we emphasise that the projection Bn[κ] → πorb
1 (�κ ) is surjective. It is not

hard to show that (1) is in fact short exact, but we do not need this fact here so we will not
elaborate.

3. �κ as a space of translation surfaces

The purpose of this section is to explain the structure of a differential df /f when realised
as a translation surface. In Section 3·1, we begin with a discussion of some generalities
of translation surfaces induced by meromorphic differentials and the induced horizontal
foliation. In Section 3·2, we discuss the notion of a strip decomposition of the translation
surface for df /f and some important related notions (strips, slits, fixed/free prongs). This
will give a combinatorial decomposition of �κ into cells; in Section 3·3, we discuss the
global structure of this decomposition. In the body of this paper, we will only make use of
the constructive aspects of the theory we establish here (as a technique for exploring the
space �κ and computing the monodromy of loops); in later work, we hope to make use of
the global structure theory obtained in Proposition 3·10.

3·1. Flat cone metrics and the horizontal foliation.

The integration map

z �→
∫ z

z0

df

f

provides a system of holomorphic charts on C away from the zeroes of f and f ′ for which the
transition functions are translations z �→ z + c. The horizontal foliation on C given by lines
of constant real part (equivalently determined as the kernel of the real 1-form dy = Im(dz))
pulls back to a singular foliation F on the domain.

Near a zero ζi of order ki, these charts realise ζi as a cone point with cone angle 2π(ki + 1).
At such a point F has a prong singularity of order 2ki + 2. In the flat coordinates, the prongs
alternate between pointing to the right and left and will be referred to as such. We also note
that there is a natural cyclic ordering on both the left and right prongs, and each set of prongs
carries the structure of a torsor over Z/(ki + 1)Z by measuring the counterclockwise angle
from one prong to the other.

The local structure near a simple pole is slightly less well-known, but is equally straight-
forward. First note that in the case of ω= dz/z, the integration map (i.e. the logarithm) sends
the punctured disk 0< |z|�1 to the half-infinite strip

SL = {a + bi | a�0, 0�b�2π}
with the top and bottom identified via the translation z �→ z + 2π i; likewise, for c ∈C

∗, the
integration map sends a neighbourhood of c dz/z near 0 to the rotated strip cSL. For a general
differential ω= g(z)dz/z with a simple pole at z = 0, the coordinate

w(z) = exp

(∫ z

z0

ω

)
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pulls ω back to dw/w, showing that in general, a neighbourhood of a simple pole of residue
c is realised on the translation surface via the rotated strip cSL (again with opposite edges
identified). At such a pole, F has an “infinite prong singularity”, where the foliation structure
is locally given by the set of rays emanating from a point.

Given a translation surface T represented as a finite collection of disjoint polygons {Pi} ⊂
C with edge identifications, a cut move is a subdivision of some Pi into P1

i , P2
i along with

the identification of the cut edges. To perform a paste move, take distinct polygons Pi, Pj

for which there is an edge of Pi identified to an edge of Pj, and translate Pj so that the
identified edges coincide. If Pi and Pj overlap only along this edge, then the paste move
can be performed by joining Pi and the translate of Pj into a single polygon, inheriting the
remaining edge identifications. It is a basic fact in the theory of translation surfaces that T
and T ′ determine the same point in their stratum (in this case, �κ ) if and only if they are
related by a sequence of cut/paste moves.
The horizontal foliation for df/f. The integration map

∫
df /f induces a translation surface

structure on an n-times punctured plane, for which the horizontal foliation has the local
features discussed above. Conversely, any “combinatorially suitable” translation surface
structure T on an n-times punctured plane determines a differential ω= df /f ∈�κ . Here,
by “combinatorially suitable”, we mean the following:

(i) T has n half-infinite cylindrical strips SL
1 , . . . , SL

n , each equivalent to SL via a
translation (each extends infinitely far to the left and has height 2π i);

(ii) T has one half-infinite cylindrical strip S∞ equivalent to −nSL via a translation (thus
extending infinitely far to the right and of height 2nπ i);

(iii) T has cone points p1, . . . , pm of orders k1, . . . , km, where κ = {k1, . . . , km};
(iv) the complement of the strips SL

1 , . . . , SL
n , S∞ has finite area.

That every such translation surface is induced by a differential df /f ∈�κ is immediate: T
induces a Riemann surface structure on an n-times punctured plane, equipped with a differ-
ential ω on which SL

1 , . . . , SL
n correspond to simple poles of residue 2π i, S∞ corresponds

to a simple pole of residue −2nπ i, and which has zeroes of multiplicity specified by κ; i.e.
ω ∈�κ .

The global structure of the horizontal foliation F on CP
1 induced by df /f is extremely

simple.

LEMMA 3·1. Let f ∈ Polyn(C)[κ] be given, and let F be the horizontal singular foliation
on CP

1 induced by df /f . Then F has the following properties:

(i) with the finitely many exceptions of leaves incident to a critical point of f, every leaf
connects a zero of f to ∞. In particular, F has no closed leaves;

(ii) let pj be a critical point of order kj, corresponding to a cone point of order kj on the
translation surface and inducing a 2kj + 2-pronged singularity of F . Then the prongs
alternate between terminating at a zero of f and at ∞. In particular, at most one prong
at pj terminates at each zero of f.

Proof. We first claim that F has no closed leaves. Integration of df /f along such a leaf
would yield a real period of df /f , but the periods of df /f are purely imaginary. If a leaf
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does not terminate at a singularity, it must accumulate somewhere on the compact space
CP

1. Such a nearly-closed leaf can be completed via a short vertical segment into a simple
closed curve whose period has positive real part, again a contradiction. Thus every leaf must
terminate at both ends at a singularity of F . At a critical point of order k, F has a 2k + 2-
pronged singularity, so that there are finitely many leaves terminating at a critical point as
claimed. Integrating df /f along a path terminating at a zero of f has real part tending to −∞,
so that at most one end of every leaf can terminate at such a point; likewise at most one end
can terminate at ∞.

This same observation proves the second assertion: when integrating along consecutive
prongs, the real part of

∫
df /f is monotonic, so that exactly one prong in each consecutive

pair terminates at a zero of f . If two prongs at pj terminate at the same zero, we consider the
bounded region of the plane enclosed by these leaves. By the above, there must be at least
one prong originating inside this region which must terminate at ∞, but it cannot escape the
region enclosed by the two prong leaves, showing a contradiction.

Remark 3·2. In [DM22], Dougherty and McCammond study a pair of transverse singular
foliations equivalent to those induced by the real and imaginary parts of df /f . Their point of
view is somewhat different: they induce F by pulling back the transverse foliations |z| = c
and arg (z) = c on C

∗ under the map f : C→C, but the result as unmeasured foliations is the
same. They equip their foliations with measures that are different from the ones coming here
from the flat structure, considering instead the measure induced by the Euclidean structure
on C

∗. Using this, they are able to obtain a detailed picture of various combinatorial struc-
tures associated to the polynomial f . It would be interesting to see if the translation surface
perspective has anything to add to the story they pursue.

3·2. Strip decomposition.

A translation surface T ∈�κ admits a finite number of combinatorially-determined stan-
dard forms which we call a strip decomposition. Assign a numbering SL

1 , . . . , SL
n to the n

left-infinite strips of height 2π i, or equivalently a numbering z1, . . . , zn of the zeroes of f .
The strips SL

i extend infinitely far to the left by hypothesis. Following the leaves of the hori-
zontal foliation in SL

i to the right (towards ∞), we observe that there must be at least one leaf
terminating at a critical point wj, for otherwise, this region would close up into a topological
cylinder, rendering the translation surface disconnected (except, of course, in the case n = 1
with differential dz/z). Choosing one such leaf, we fix an identification SL

i
∼= SL by identify-

ing wj with 0 ∼ 2π i in SL. We remark that we allow for the non-generic possibility that the
leaf connecting zi to wj passes through one or more additional cone point.

Define Si ⊂ T as the continuation to the right of the leaves of the horizontal foliation
passing through SL

i . This is then a bi-infinite strip of height 2π i, possibly containing addi-
tional cone points. The boundary of SL

i is determined by the prong of wj from which the
leaf terminating at zi emanates. We say that Si is bounded by the cone point wj, and call the
distinguished prong a fixed prong. By Lemma 3·1, all of the leaves of the horizontal folia-
tion not terminating at a cone point are contained in some strip Si, and so this produces a
decomposition of T as claimed.
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Strips Si and Sj are said to be vertically adjacent if the top right boundary of Si is identified
with the lower right boundary of Sj or vice versa. We will speak of the strips above and below
Si via this definition.
Strip coordinates. The strip decomposition of T of course depends on various non-canonical
choices. To track this, and moreover to understand the global structure of the space �κ , we
define

�ord
κ →�κ

as the covering space consisting of differentials df /f ∈�κ together with labellings z1, . . . , zn

and w1, . . . , wp of the zeroes and critical points of f , respectively. Note that the stabiliser of
a labelled configuration of two or more points in C under the affine group is trivial, so
that �ord

κ is a manifold cover of the orbifold �κ . For the ensuing discussion, we will lift
df /f ∈�κ to one of its preimages in �ord

κ .
Having fixed such data, one can then encode the combinatorial type of a strip decom-

position by tracking the prongs of the cone points. A cone point wj of order kj has 2kj + 2
prongs emanating from it, of which kj + 1 point to the left on the translation surface. Since∑p

j=1 kj = n − 1, there is a total of n − 1 + p left prongs. Of these, n are fixed prongs; we call
the remaining p − 1 free prongs. Generically, the leaf emanating from a free prong is con-
tained in the interior of a unique strip Si; exceptionally it may terminate at some other cone
point. Given a labeled differential df /f , a choice of strip decomposition yields the following
data:

(1) for each zero zi of f , a choice of some left prong to bound the strip Si;

(2) an assignment of the remaining p − 1 free prongs to one of the strips containing
it (generically, a free prong lies in a unique strip; exceptionally it may lie on the
boundary between two that are vertically adjacent);

(3) the p − 1 relative periods γj of the arcs connecting each free prong to the fixed prong
for its strip, each an element of R+ [0, 2π]i; if two free prongs belong to the same
strip, the relative periods must be distinct (so that the cone points do not collide).

Conversely, we can use the relative periods of the free prongs to put a system of coordi-
nates (“strip coordinates”) on�ord

κ . A strip coordinate chart is indexed by a labelling system
which includes the data specified by (1) and (2) above. Without further constraint, the rela-
tive periods of (3) do not yet induce a coordinate patch on �ord

κ : as two free prongs in the
same strip orbit around one another, one will pass through the slit associated to the other and
into a different strip. To prevent this, we additionally impose orderings on the imaginary
parts of the relative periods of the free prongs within a given strip.

Definition 3·3 (Labelling system). Fix a partition κ of n − 1 and consider the associated set
of left prongs Pκ of cardinality n + p − 1. A labelling system L is a choice of the following
data:

(1) for each 1�i�n, a choice of prong v ∈Pκ as the fixed prong for Si;

(2) an assignment of each of the remaining p − 1 prongs in Pκ to some strip Si;

(3) for each strip Si, a choice of ordering v1� . . .�vmi of the mi free prongs assigned
to Si.
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Not every labelling system is realised by some df /f ∈�ord
κ , since some choices of

labelling systems will cause the translation surface to be disconnected. Here we state the
combinatorial criterion for connectedness only; we prove that this encodes topological
connectedness in Lemma 3·6.

Definition 3·4 (Connected labelling system). Let L be a labelling system for some partition
κ = {k1, . . . , kp} of n − 1. Let 
L be the graph whose vertices are the parts ki of κ , and where
ki and kj are connected by an edge if there are prongs of ki and kj contained in the same strip
Si. Then L is said to be connected if 
L is.

Having specified a labelling system, we turn now to the problem of parametrising the
relative periods of the free prongs. For m ≥ 1, define the closed m-simplex via

�m = {(y1, . . . , ym) ∈R
m | 0�y1� . . .�ym�2π}.

Definition 3·5 (Strip coordinate domain). Let L be a labelling system of some partition κ of
n − 1; for 1�i�n, suppose there are mi free prongs assigned to the strip Si. The associated
strip coordinate domain is the set

�L :=
(

n∏
i=1

R
mi + i�mi

)
\D ⊂C

p−1,

where D is the union of the following sets:

(1) D1 the set of points where zj1 = zj2 for j1, j2 assigned to the same strip;

(2) D2 the set of points where xj1 = xj2 < 0 and yj2 = yj1 + 2π i for j1, j2 assigned to the
same strip;

(3) D3 the set of points where xj = xk > 0 and yj = 2π i, yk = 0, where j is assigned to the
strip below the strip containing k;

(4) D4 the set of points where zj = 0 or zj = 2π i.

LEMMA 3·6. Let L be a connected labelling system of the partition κ . Then there is a
realisation map

r :�L →�ord
κ .

The restriction of r to the interior of �L is a biholomorphism onto its image.

Proof. A point γ = (γ1, . . . , γp−1) ∈�L determines a translation surface Tγ as follows:
assemble n bi-infinite strips S1, . . . , Sn, and mark 0 ∼ 2π i ∈ Si with the prong specified by
L. Given a relative period γj, the labelling system specifies a free prong in a strip Si; place
the free prong at γj ∈ Si and introduce a slit running horizontally to the right from γj to ∞.
The cyclic ordering on the prongs at each cone point then specifies gluing instructions on
the slits as well as on the right halves of the top and bottom boundary components of each
Si (the top and bottom left halves of Si are identified to each other). The excision of the set
D from �L ensures that after gluing, no pair of free prongs are identified, and that no free
prong is placed at the location of a fixed prong.
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Fig. 2. Type 1: changing the fixed prong from v0 to v2.

We claim that Tγ is connected if and only if the labelling system L is connected in the
sense of Definition 3·4. Note that the vertices of 
L are canonically identified with the cone
points wj of Tγ . A first trivial observation is that Tγ will be connected if and only if there is a
path connecting each pair of strips Si, Sj. Suppose that Tγ is connected; we wish to find a path
in 
L connecting an arbitrary pair of vertices wj, wk. Choose prongs at wj and at wk; these live
in strips S, S′ respectively. If S = S′ then wj and wk are connected by definition; otherwise,
let c be a path in Tγ connecting S to S′, and one can use this to build a corresponding path
in 
L by moving through a sequence of cone points lying in the sequence of strips passed
through by c.

Conversely, suppose that 
L is connected. Given a strip Si, let wi be the corresponding
bounding cone point. Observe that it suffices to show that strips Sa and Sb are path-connected
in Tγ if the associated vertices wa, wb of 
L are either equal or adjacent. If wa = wb = w then
a path connecting Sa to Sb can be constructed by winding some number of times around
w. If wa and wb are adjacent, then there is some strip Sc containing a prong of both wa

and wb; a path connecting Sa to Sb can be constructed by concatenating a path between
neighbourhoods of wa and wb in Sc with paths winding around wa and wb between Sc and
Sa, resp. Sb.

At this point, we have shown that this construction process yields a well-defined map
r :�L →�ord

κ . We next observe that r is holomorphic - this is a simple consequence of
the fact that the relative period maps on �ord

κ are holomorphic. It remains to show that r
is injective on the interior of �L. To see this, observe that translation surfaces Tγ and Tδ
determine the same point in �ord

κ only if the sets of relative periods between cone points
are equal. The sets of relative periods between fixed cone points is a torsor on the group of
absolute periods; in this case the absolute periods is just the set 2π iZ⊂C. If γ , δ ∈ int(�L)
are distinct, then the corresponding relative periods all have imaginary part strictly between
0 and 2π , so that the relative periods of Tγ cannot be obtained from those of Tδ by translation
by some absolute period.

3·3. Change of coordinates; a cell structure on �ord
κ

We next consider the transition maps between strip coordinate domains with overlapping
image. There are two basic transitions to study: (1) changing which of the prongs in Si is
fixed, and (2) pushing the topmost (relative to the ordering) free prong out the top right side
of Si and into the bottom of the strip above (or in reverse, pushing the bottom free prong
through the bottom right side). All coordinate changes are compositions of these two, e.g.
pushing a free prong out the top left side is equivalent to changing the free prong to the fixed,
and pushing the new free prong (formerly the fixed) out the bottom right. The lemmas below
record the effects of these moves on strip coordinates; the proofs follow from inspection of
Figures 2 and 3.
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Fig. 3. Type 2: pushing v3 up from Si to Sj.

LEMMA 3·7 (Type 1: changing the fixed prong). Let L be a connected labelling system
for κ . Choose some strip Si; let v0 denote the fixed prong and let v1� · · ·�vmi denote the free
prongs in Si together with their cyclic ordering. Define L’ as the labelling system obtained
from L by choosing some vj as the new fixed prong for Si, and ordering the free prongs via

vj+1� . . .�vmi�v0�v1� . . .�vj−1.

The map on relative periods t :�L →�L′ is given by

t(γ1, . . . , γmi) = (γj+1 − γj, . . . , γmi − γj, 2π i − γj, γ1 + 2π i − γj, . . . , γj−1 + 2π i − γj).

LEMMA 3·8 (Type 2: pushing up/down). Let L be a connected labelling system for κ . Let
Si be a strip with fixed prong v0 and let v1� . . .�vmi denote the free prongs in Si together
with their cyclic ordering. Denote the relative periods by γ1, . . . , γmi , and suppose that
γmi = x + 2π i with x> 0. Let Sj be the strip whose bottom right boundary is identified with
the top right boundary of Si, and let v′

1� · · ·�v′
mj

denote the free prongs in Sj.

Changing the assignment of vmi from Si to Sj yields the labelling system L’ obtained from L
by reassigning vmi to Sj with ordering in Sj

vmi�v′
1� · · ·�v′

mj

and relative period x.
Conversely, if v1 has period x ∈R with x> 0, then we may reassign it to the strip Sj whose
top right boundary is identified with the bottom right on Si, assigning it to the maximal
position in Sj with period x + 2π i.

LEMMA 3·9. Let L, L’ be connected labelling systems for κ , and let

df /f ∈ r(�L) ∩ r(�L′)

be a differential (with zeroes and poles labeled) in the image of the strip coordinate domains
for both L and L’. Then L’ can be obtained from L by a sequence of moves of type 1 and 2.

Proof. By hypothesis, there are two translation surfaces T and T ′ coming from �L and
�L′ , respectively, that determine the same point in �ord

κ . Thus T and T ′ are equivalent via
a sequence of cut/paste moves that moreover preserve the labellings of each of the poles
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and zeroes of the associated differential df /f . Applying the strip decomposition to T and
T ′, it follows that each of the corresponding strips are individually cut/paste equivalent. A
cut/paste move applied to a given strip corresponds to a move of type 1 on the labelling sys-
tem. After applying a cut/paste isomorphism taking T to T ′ as labeled translation surfaces,
the only remaining choices in the assignment of a labelling system arises in assigning prongs
lying on the boundary of two strips to one or the other; this corresponds to moves of type 2.

Summary. We summarise the results of the section in the following result, describing the
global structure of �ord

κ obtained by gluing together strip coordinate patches according to
moves of types 1 and 2.

PROPOSITION 3·10. There is a biholomorphism

�ord
κ

∼=
∐

�L/∼,

where the union is taken over all connected labelling systems for κ and ∼ is the equivalence
relation generated by moves of types 1 and 2 as in Lemmas 3·7 and 3·8.

Proof. We claim that the topological space
∐
�L/∼ is a manifold under the system of

coordinates provided by �L. This is not quite immediate from what we have shown - the
strip coordinate domains are not open, and their interiors do not quite cover �ord

κ , missing
points where some free prong has period with imaginary part 0 or 2π i. But such points lie
in the interior of the union of two strip coordinate domains, e.g. as shown in Figure 3. By
Lemmas 3·7 and 3·8, the transition functions between overlapping �L,�L′ are holomorphic
(and indeed affine), and hence

∐
�L/∼ is a complex manifold.

By Lemma 3·6 and Lemma 3·9, the set of realisation maps r :�L →�ord
κ assemble into

a biholomorphism.

Remark 3·11. While one can exhibit a deformation retraction showing that an individual set
r(�L) is contractible, it is not the case that all intersections of sets r(�L) are contractible.
Specifically, if v lies on the top right of its strip, and v′ lies on the bottom right of the strip
above, then there is a three-fold intersection of labelling systems where at most one of v
or v′ has been moved up or down. This intersection has two components, arising from the
different linear orderings on the real parts. To compute the homotopy type of �ord

κ as the
nerve of a covering, it is therefore necessary to further subdivide the pieces �L (taking into
account the various orderings of the real parts) so as to account for this phenomenon.

4. Winding numbers

In this section, we begin our study of the monodromy of strata of polynomials
(Theorem A). Our ultimate objective is Lemma 4·7, which asserts that the monodromy
image Bn[κ] = ρ(Bn[κ]) lies in the kernel of a certain crossed homomorphism φr. This
will be constructed as a measure of “change of winding number” for arcs on a translation
surface; accordingly, we begin with a discussion of the theory of relative winding number
functions. In Section 4·2, we use the theory of winding number functions to give an example
of a braid which satisfies the convexity condition enforced by the Gauss–Lucas theorem, but
which nevertheless cannot be realised as the braid of root and critical points of any family
of polynomials.
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4·1. Winding number functions

To avoid a lengthy digression, we give here an abbreviated account of the theory of wind-
ing number functions which will suffice for our purposes; see [CS23, section 2] for a fuller
discussion.

Definition 4·1 (Relative winding number function). Let Cn,p denote the surface CP
1 with

three sets of marked points: n points Sr ⊂C which we call the roots, p points Sc ⊂C called
the critical points, and ∞. Let S = Sr ∪ Sc. We allow for the possibility of tracking only
roots, and not critical points, and hence we permit p = 0. We further endow Cn,p with a
weighting

w : S →Z

for which w(z) = −1 for each root, and w(z)> 0 for each critical point. In the context under
study, we think of w as the function that assigns to each point its order as a zero or a pole.

Let An,p denote the set of isotopy classes of properly-embedded smooth oriented arcs,
disjoint from all marked points on their interior, that connect some root in C to ∞ (in that
order, relative to the orientation). A Z/rZ relative winding number function is a set map

ψ : An,p →Z/rZ

that satisfies the twist-linearity condition

ψ(Tc(a)) =ψ(a) + 〈a, c〉||c||, (2)

where c ⊂Cn,p is a simple closed curve and ||c|| is determined by the formula

||c|| = 1 +
∑

z∈int(c)∩S

w(z), (3)

where the sum runs over the points of S in the interior of c (i.e. the component of CP1 \ c
not containing ∞). As usual, 〈a, c〉 denotes the algebraic intersection pairing, relative to the
specified orientation on a and the orientation on c for which ∞ lies to the left. When r = 0,
we call such an object an integral relative winding number function.

Example 4·2 (Horizontal winding number function ψT ). Let n ≥ 2 be given, let κ be a parti-
tion of n − 1, and let T ∈�κ be a translation surface structure on CP

1. Such T corresponds
to a differential df /f , and we let Cn,p(T) be the surface with the roots and critical points of
f marked. Let w be the weighting given by the order of the corresponding pole or zero of
df /f .

T endows Cn,p(T) with an integral relative winding number function ψT called the hori-
zontal winding number function. Let a ⊂Cn,p(T) be a properly-embedded smooth oriented
arc connecting a pole of df /f to ∞. We assign the value ψT (a) ∈Z as follows: realise a as
an arc on the translation surface T not passing through any of the cone points. As a connects
a zero of f to the pole at ∞, it runs from left to right on T , and as it is properly embedded, it
can be isotoped so that it follows a leaf of the horizontal foliation outside of some compact
region of T . Such a representative carries an integral winding number wnT (a) ∈Z by mea-
suring the winding of the forward-pointing tangent vector relative to the horizontal vector
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field (the winding number is integral because of the condition that the arc coincide with a
leaf of the horizontal foliation outside of a compact region).

LEMMA 4·3. The function

ψT (a) := wnT (a)

is a well-defined integral relative winding number function on Cn,p(T).
Setting r = gcd (κ), the mod-r reduction

ψT (a) := ψT (̃a) (mod r),

where a ∈Cn(T) is an arc and ã ∈Cn,p(T) is an arbitrary lift, is a well-defined Z/rZ relative
winding number function on Cn(T).

Proof. To see that ψT is well-defined, we must check (i) that wnT (a) is unchanged by an
isotopy of a, and (ii) that ψT (a) satisfies the twist-linearity condition (2). To see that ψT (a)
is well-defined, we must further check (iii) that wnT (̃a) is unchanged mod r by an isotopy of
ã across a cone point of T .

To establish (i), we recall that a is horizontal except on a compact set. As the winding
number of such an arc is integral (and hence discretely-valued), it follows that the winding
number is invariant under any compactly-supported isotopy. Under an isotopy with non-
compact support, a can wrap around a pole some number of times, potentially altering the
winding number. But this is in fact a special case of (ii): winding a around a pole of T is
equivalent to applying the Dehn twist around a curve c enclosing this single pole, i.e. for
which ||c|| = 0.

To establish (ii), let c ⊂Cn,p be a simple closed curve. It follows from the Poincaré–Hopf
theorem that the winding number of c on T is given by ||c|| as in (3), as the index of the
horizontal vector field at a root or critical point is given by w. Applying the Dehn twist Tc to
a, we see that

wnT (Tc(a)) = wnT (a) + 〈a, c〉||c||

holds, since at each intersection between a and c, the twist Tc(a) wraps once around c, con-
tributing ±||c|| to the winding number, the sign determined by the sign of the intersection.

For (iii), we again invoke the Poincaré–Hopf theorem to see that as a curve is isotoped
across a zero of index k on a vector field, the winding number changes by k. By hypothesis,
the order of each zero is divisible by r. Thus, after reducing mod r, the quantity wnT (̃a) is
independent of the choice of lift ã of a ⊂Cn(T) to Cn,p(T).

As Bn,p acts on the set An,p of arcs, there is an induced action

β ·ψ(a) =ψ(β−1a)

on the set of relative winding number functions, and hence there is an associated stabiliser
subgroup of Bn,p, which we call the framed braid group. In the case where we track roots
but not critical points, we call such groups r-spin braid groups, by analogy with the theory
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of “r-spin structures” and their associated “r-spin mapping class groups” in higher genus,
cf. [CS21].

Definition 4·4 (Framed braid group Bn,p(ψ), spin braid group Bn(ψ)). Let ψ be an integral
relative winding number function on Cn,p. The associated framed braid group Bn,p(ψ) is the
subgroup of Bn,p stabilizing ψ under the above action on the set of integral relative winding
number functions.

Likewise, if ψ is a Z/rZ relative winding number function on Cn, the associated r-spin
braid group Bn(ψ) is the stabiliser of ψ .

In Lemma 4·6, we will see that the monodromy of a stratum Polyn(C)[κ] is contained
in a certain framed braid group. To establish this, we must digress briefly to give a precise
construction of the monodromy homomorphism.

Definition 4·5 (Monodromy). Let κ be a partition of n − 1 with |κ| = p parts, and let
Bn,p be the subgroup of Bn+p preserving the division of the n + p strands into groups
of size n and p. Recalling the definition Bn[κ] := π1(Polyn(C)[κ]), the monodromy is a
homomorphism

ρ : Bn[κ] → Bn,p

constructed as follows. Let f ∈ Polyn(C)[κ] be chosen as a basepoint, and let T = df /f be
the associated translation surface in �κ . Fix a choice of marking (i.e. homeomorphism)
μ : Cn,p → T . Let β : [0, 1] → Polyn(C)[κ] be a loop based at f, which induces a loop in�κ ,
which we will also write β; we write the image of this latter loop as β(t) = Tt with T0 =
T1 = T . The family {Tt} of translation surfaces over [0,1] is topologically trivial, and hence
there is a well-defined isotopy class of identification ft : T0 → Tt for t ∈ [0, 1], which induces
a propagation μt : Cn,p → Tt of the marking map. The monodromy of β is the element

ρ(β) =μ−1
1 μ0 ∈ Mod(Cn,p),

where Mod(Cn,p) denotes the mapping class group of Cn,p. As the marking μ can be
enhanced to identify a tangent vector at ∞ ∈Cn,p with the canonical horizontal direction
on translation surfaces in �κ , we can identify Mod(Cn,p) with the mapping class group of
the n,p-times punctured disk Dn,p, i.e. the subgroup Bn,p�Bn+p preserving setwise the roots
and critical points.

That ρ : Bn[κ] → Bn,p is a homomorphism is a consequence of the fact that if β, γ
are loops for which the propagated markings at t = 1 are denoted μβ ,μγ : Cn,p → T , then
μγμ

−1
0 μβ gives a propagation of the marking along the composite path βγ .

Note that ρ is not completely canonical: it depends on a choice of marking μ0 : Cn,p → T
(and in particular depends on a choice of basepoint T ∈�κ ). However, it is easy to see that
different choices of marking lead to conjugate monodromy homomorphisms.

Note also that we obtain a reduction

ρ : Bn[κ] → Bn

by forgetting the braid of the critical points.
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Define

Bn,p[κ] := ρ(Bn[κ])

and

Bn[κ] := ρ(Bn[κ]).

LEMMA 4·6. Let T ∈�κ be a basepoint. Under the monodromy map ρ : Bn[κ] → Bn,p

based at T, there are containments

Bn,p[κ]�Bn,p(ψT )

and

Bn[κ]�Bn(ψT ).

Proof. We assume the notation of Definition 4·5, and consider the monodromy of a loop β
in Polyn(C)[κ]. As the marking is propagated along the loop, this induces an identification
of the sets An,p(Tt) of the arcs on the translation surfaces Tt. It follows that β induces a
continuously-varying family of winding number functions ψTt on the set An,p of arcs on the
reference surface Cn,p. As the set of winding number functions is a discrete set, it follows
that all such winding number functions coincide. In particular, ψT0 =ψT1 , but from the
definitions we have ψT1 = β ·ψT0 , showing that Bn,p[κ]�Bn,p(ψT ) as claimed.

The containment Bn[κ]�Bn(ψT ) is a straightforward consequence of the fact that the inte-
gral relative winding number function ψT on Cn,p(T) descends to the Z/rZ relative winding
number function ψT on Cn(T) under the forgetful map Cn,p(T) → Cn(T).

4·2. Convexity is not enough: the braided Gauss–Lucas theorem

To illustrate Lemma 4·6, we give here in Figure 4 an example of a braid in Bn,p that
admits a “convex representative”, i.e. where the p-stranded braid of critical points lies inside
the convex hull of the n-stranded braid of roots for all times t, and yet which does not arise
from any loop of polynomials.

4·3. Mod-r winding numbers as crossed homomorphisms

From here to the end of the paper, we will concentrate on the monodromy ρ of the roots
only, leaving a study of the refinement ρ for future work.

Here, we show that the r-spin braid group Bn(ψT ) can be identified with the kernel of
a certain crossed homomorphism φκ , and show that φκ has a very simple formula; as this
ultimately depends only on r = gcd (κ) and not κ itself, in the sequel we will work instead
with the equivalent crossed homomorphism φr with the simple formula.

LEMMA 4·7. Let T ∈�κ , and let S1, . . . , Sn be the strips in a strip decomposition for T. For
i = 1, . . . , n, let ai ⊂Cn be an arc corresponding to a horizontal leaf on T contained entirely
in Si. Then the function

φκ : Bn → (Z/rZ)n

β �→
∑

ψT (β−1ai)ei

https://doi.org/10.1017/S0305004125000131 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125000131


Stratified braid groups: monodromy 277

Fig. 4. A braid which cannot be realised by a family of polynomials in Poly4(C)[13]. The four
roots are illustrated in black, and the three simple critical points are coloured (appearing lighter in
grayscale). A choice of arcs connecting roots to infinity (depicted here as the entire boundary for
visual simplicity) are shown in gray. As the indicated (blue) point orbits the central root, it alters
the winding number of the corresponding arc (as can be seen from the twist-linearity formula),
and is thus not contained in the framed braid group B4,3(ψT ). By Lemma 4·6, it follows that this
braid cannot be realised by a loop in Poly4(C)[13].

is equal to the crossed homomorphism

φr : Bn → (Z/rZ)n

σi �→ ei+1,

(where Bn acts on (Z/rZ)n on the left via the coordinate-permutation action induced from
the quotient Bn → Sn, β �→ β).

In particular, there is a containment

Bn[κ]� ker (φκ ) = ker (φr).

Proof. To establish that φκ is a crossed homomorphism, we make the following observation.
If a and a′ are two arcs on T with the same beginning and end points, then a ∪ a′ is an
oriented closed curve. There are two cusps at the common endpoints, and otherwise a ∪ a′ is
smoothly immersed. By the Poincaré–Hopf theorem, the winding number of a ∪ a′ (reduced
mod r, as usual) counts the total number of poles on T enclosed by a ∪ a′ (up to a correction
factor of 1 coming from the change in winding number arising from smoothing out the
cusps). Thus this quantity is invariant under the action of the braid group:

ψT (βa) −ψT (βa′) =ψT (a) −ψT (a′).

Now given α, β ∈ Bn, we use this to compute

φκ (αβ) =
∑

ψT (β−1α−1ai)ei
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Fig. 5. The standard marking. At left, the reference translation surface Tκ for the stratum
κ = {k1, . . . , kp}. The top left and bottom left of each strip are identified. There are p blocks
of strips, each one corresponding to a given cone point (depicted as the coloured dots in the
middle of each strip). Within each block of strips of the same colour/greyscale value, the top
right segment of Si is identified to the bottom right on Si+1, with remaining gluing instructions
specified by colour/letter as in Figure 1. All but the bottom-most cone point (red in the figure)
have one free prong in the top strip of the block below. The horizontal lines running across each
strip equip Tκ with a marking. At right, the corresponding standard marking of the n-punctured
disk.

=
∑(

ψT (β−1α−1ai) −ψT (β−1a
α−1i

) +ψT (β−1a
α−1i

)
)

ei

=
∑(

ψT (α−1ai) −ψT (a
α−1i

) +ψT (β−1a
α−1i

)
)

ei.

Splitting into three vectors, we observe that the first is φκ (α), the second is identically zero
(each component ψT (ai) is zero since ai is a leaf of the horizontal foliation), and the third is
identified as α · φκ (β). Thus φκ is a crossed homomorphism as claimed.

To identify φκ with φr, it suffices to check equality on the standard generators σi. Under
the standard marking shown in Figure 5 below, we see that σ−1

i takes ai to ai+1 and ai+1

to Tciai, where ci is the boundary of the standard arc Ai,i+1 connecting marked points i and
i + 1 (cf. Definition 6·5 below). By the twist-linearity formula, it follows that

ψT (σ−1
i aj) =

{
0 j �= i + 1

1 j = i + 1

from which the claim follows.

5. Constructing monodromy elements

In this section, we “fill out” the monodromy image of Polyn(C)[κ], showing that the
image Bn[κ] contains the subgroup 
r

n of “basic (r + 1)st twists”. This group is defined in
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Definition 5·1 below; we exhibit some monodromy elements in Lemma 5·3, and after some
group theory carried out in Lemma 5·4, we show the containment 
r

n�Bn[κ] in Lemma 5·5.

Definition 5·1 (Basic (r + 1)st twist �a;r, subgroup 
r
n). For n ≥ a + r, the basic (r + 1)st

twist �a;r ∈ Bn is defined to be the element

�a;r = σa . . . σa+r−1.

The basic (r + 1)st twist group is the subgroup


r
n�Bn

generated by the set of basic (r + 1)st twists.

Remark 5·2. Pictorially, the basic twist �a;r is given by taking the strand in position a and
crossing it over the next r strands to the right, and the inverse �−1

a;r is the same but with
the strand crossing over r strands to the left. In particular, β ∈ 
r

n if and only if it admits a
diagram for which each overcrossing passes over a multiple of r strands below it.

LEMMA 5·3. Let

κ = {k1, . . . , kp}
be a partition of n − 1. Then Bn[κ] contains the elements

�1;k1 , �k1+1,k2 , . . . , �k1+...+kp−1+1;kp .

Proof. Consider the “standard marking” of the translation surface Tκ ∈�κ shown in
Figure 5. In Figure 6, we exhibit loops in�κ based at Tκ . By comparing markings of the sur-
face before and after, we compute their monodromy in Bn to be �−1

k1+...+ki−1+1;ki
. Recalling

from (1) that the projection Bn[κ] → πord
1 (�κ ) is surjective, we see that we can lift these

loops to Polyn(C)[κ], realising them as elements of the monodromy group Bn[κ].

LEMMA 5·4. Let a,b be integers, and let G�Ba+b+1 be the subgroup generated by�1;a and
�a+1,b. Then �1; gcd (a,b) ∈ G.

Proof. Observe that �1;a�a+1;b =�1;a+b, and that

�
j
1;a+b �p;q �

−j
1;a+b =�p+j;q (4)

so long as the indices p + j, . . . , p + j + q − 1 lie on the interval [1, a + b]. Thus by conju-
gating, we can shift the first index of any �p;q to any valid position, and by taking �−1

p;q�p;r

for q> r and conjugating, we obtain �p;r−q from �p;q and �p;r. By repeatedly shifting
and deleting initial segments in this way, we can perform the Euclidean algorithm on a,b,
eventually obtaining �1; gcd (a,b).

LEMMA 5·5. For any n ≥ 2 and any partition κ of n − 1, the group Bn[κ] contains the
elements �1;r and �1;n−1, and hence every basic (r + 1)st twist �k;r. Thus,


r
n�Bn[κ].
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Fig. 6. We depict the block of strips on Tκ between Sk1+...+ki−1+1 and Sk1+...+ki
. Gluing instruc-

tions are indicated with colours and with letters. Reading lexicographically, we first recut the
bottom strip Sk1+...+ki−1+1 so that it is bounded by the same cone point as the rest. Then we push
each of the free prongs down one strip. Next, we apply a cut/paste move to reorder the strips,
moving each one up one spot. Finally, we recut the bottom strip once again so that it is bounded
by the other cone point. Note that in the case of the bottom block, there is no free prong in the
bottom strip, in which case we skip the recutting steps, and in the case of the top block, there is
no free prong in the top strip, and there is a slightly different picture (omitted). The picture at
bottom right depicts the change of marking, i.e. the monodromy of the loop.

Proof. By Lemma 5·3, Bn[κ] contains the elements

�1;k1 , �k1+1,k2 , . . . , �k1+...+kp−1−1;kp .

https://doi.org/10.1017/S0305004125000131 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125000131


Stratified braid groups: monodromy 281

By repeated application of Lemma 5·4, one sees that �1;r ∈ Bn[κ], and also

�1;n−1 =�1;k1 �k1+1,k2 . . . �k1+...+kp−1−1;kp ∈ Bn[κ].

By (4), Bn[κ] thus contains all �k;r.

COROLLARY 5·6. Let n ≥ 2 be given, and let κ be a partition of n − 1 for which r =
gcd (κ) = 1. Then the monodromy map ρ : Bn[κ] → Bn is surjective.

Proof. By Lemma 5·5, the image of ρ contains all basic (r + 1)st twists �k;r, but for r = 1
these are just the standard half-twist generators of Bn.

6. Generating ker (φr)

In the previous two sections, we have seen how the monodromy image Bn[κ] is contained
in the kernel of a crossed homomorphism φr, and conversely contains the subgroup 
r

n of
basic (r + 1)st twists. Here, we complete the circle of containments, showing that when n is
sufficiently large compared to r, the kernel of φr is generated by basic (r + 1)st twists.

We must first specify what is meant by “sufficiently large”. Define

n0(r, d) =

⎧⎪⎨⎪⎩
8 r = 2

(6 + d)r r odd

(12 + d)r r ≥ 4 even.

(5)

THEOREM 6·1. Let n ≥ 3 and r ≥ 2 be given; let d ∈ {0, 1, 2} be the remainder of n/3. Then
for n ≥ n0(r, d), the kernel of φr is generated by σ1 . . . σr and σ1 . . . σn−1.

The material of this section is purely braid-theoretic and does not require any knowledge
e.g. of winding number functions. The outline is as follows. In Section 6·1, we discuss a
new crossed homomorphism ϒr, which can be computed graphically given a braid diagram
as a count of “virtual undercrossings”; we show in Lemma 6·3 that ϒr = φr. In Section 6·2,
we use this graphical reformulation to give an algorithm for factoring an element of ker (φr)
supported on a small number of strands into the group 
r

n of basic (r + 1)st twists. Finally in
Section 6·3, we exploit the factorisation algorithm to show the equality ker (φr) = 
r

n, first
in Lemma 6·8 on the level of the pure braid group, and finally in Theorem 6·10 in general.

6·1. φr as a count of virtual undercrossings

Definition 6·2 (Virtual undercrossing map.) Let r ≥ 1 be given. The virtual undercross-
ing map is the homomorphism1 ϒr : Bn → GLn+1(Z/rZ) � (Z/rZ)n+1 defined as fol-
lows. Number the components of (Z/rZ)n+1 from 0 to n, and, for 1�i�n − 1, let Pi ∈
GLn+1(Z/rZ) be the matrix obtained from In+1 by replacing the ith column with ei−1 −
ei + ei+1. Then define

ϒr(σi) = (Pi, ei+1 − ei)

for 1�i�n − 1. For β ∈ Bn, write

ϒr(β) = (M(β), v(β)).

1 That this is indeed a homomorphism is verified by a routine calculation.
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As is common to all homomorphisms into semi-direct products, the second factor v(β)
defines a crossed homomorphism v : Bn → (Z/rZ)n+1 under the action of Bn on (Z/rZ)n+1

via M.

Also note that ϒr defines an action of Bn on (Z/rZ)n+1 via

β · �x = M(β)�x + v(β). (6)

LEMMA 6·3. Let f : (Z/rZ)n → (Z/rZ)n+1 be given by

ei ∈ (Z/rZ)n �→ ei − ei−1 ∈ (Z/rZ)n+1.

Then f induces a map of Bn-modules, where (Z/rZ)n carries the standard permutation action
of Sn and (Z/rZ)n+1 carries the action via M. Under the induced map on homology,

f∗(φr) = v.

Moreover, ker (φr) = ker (v).

Proof. That f is a map of Bn-modules under the indicated actions is a routine calculation.
To see that f∗(φr) = v, it suffices to verify this on the standard generators σi. To that end, we
compute

f∗(φr)(σi) = f (φr(σi)) = f (ei+1) = ei+1 − ei = v(r).

As v = f∗(φr), there is a containment ker (φr)� ker (v), and as f is readily seen to be an
injection, it follows that this containment is an equality.

Virtual undercrossings. There is a graphical description of ϒr which provides the key tool
for expressing the kernel of these crossed homomorphisms in terms of (r + 1)st-twists. Let
β ∈ Bn be given. We imagine β (depicted in black) as sitting “on top of” a trivial braid (in
blue) with a very large number of strands, where the ends of the blue strands are not fully
fixed but are allowed to “slide” horizontally. Given �x ∈ (Z/rZ)n+1, we interpret the entries
x0, . . . , xn as a mod-r count of the number of strands in the bottom (blue) layer positioned
in between each pair of adjacent strands of β at the top of the figure. To compute the action
of β on �x via ϒr, we thread the strands in the bottom layer downwards, subject to the rule
that strands in the bottom layer never cross, and that at each crossing of β, the total number
of strands crossing under (counting both layers) is 0 mod r.

Figure 7 illustrates this procedure in the case of a single crossing σi, and shows that the
effect on the vector �x = (x0, . . . , xn) is exactly given by σi · �x as in (6). To compute this
action for a general braid, we simply repeat this process at each crossing, working from top
to bottom. In particular, the value v(β) is computed as the output of the virtual undercrossing
procedure applying the zero vector at the top of the braid diagram for β. For future reference,
we record the following characterisation of ker (φr).

LEMMA 6·4. A braid β ∈ Bn lies in ker (φr) if and only if the virtual undercrossing action
for β satisfies β · �0 = �0. If β is moreover a pure braid, then β · �x = �x for �x ∈ (Z/rZ)n+1

arbitrary.
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Fig. 7 The virtual undercrossing procedure for the braid σi. The blue (lighter) strands are imag-
ined as lying in a layer below the black strands of σi. Each blue (lighter) strand is actually
composed of a very large number of individual strands; the numbers of such strands mod r are
depicted above and below. By convention, all strands in the middle group (labeled xi at the top)
must cross in the same direction as the undercrossing in β. We then split the right strand (labeled
xi+1 at the top) so that altogether, the number of strands crossing under (both blue/lighter and
black) is 0 mod r. As all xi blue (lighter) strands in the middle group must cross under, and
σi itself contributes one, we must borrow −xi − 1 (mod r) from the right strand to satisfy this
condition.

Proof. As noted above, applying the virtual undercrossing procedure on a braid β to �0
yields v(β). By Lemma 6·3, v(β) = �0 if and only if φr(β) = �0. If β is any pure braid, then
M(β) = In+1, and so β · �x = M(β)�x + v(β) = �x + v(β). Thus if β ∈ ker (φr) is pure, β · �x = �x
as claimed.

6·2. The factorisation algorithm

As discussed in the section outline above, the factorisation algorithm in this section gives
a method for expressing an element of ker (φr) in 
r

n when it is supported on a small number
of strands. Our algorithm will require that the supporting subdisk have a particularly simple
form which we call a standard embedding; we begin with this definition.

Definition 6·5 (Standard arc). Let Dn denote the disk with n marked points. An embedded
arc α ⊂ Dn with endpoints at distinct marked points is standard if it is contained entirely
in the lower half-disk. For each pair of marked points i,j, there is a unique isotopy class of
standard arc connecting i and j, which is denoted αij.

Definition 6·6 (Standard embedding). Let Dn denote the disk with n marked points. An
embedding i : Ds → Dn sending marked points to marked points is standard if it can be
represented as a regular neighbourhood of a union of standard arcs which are disjoint except
at endpoints.

An example of a standard embedding is depicted in Figure 8.
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Fig. 8. The disk (shown in red) is a standard embedding of D5, as it is a regular neighbourhood
of the four standard arcs (shown in blue).

LEMMA 6·7 (Factorisation algorithm). Let n ≥ rs. Let i : Ds → Dn be a standard embed-
ding, and let i∗ : Bs → Bn denote the corresponding inclusion of braid groups. Then there is
a containment i∗(PBs) ∩ ker (φr)�
r

n.

Proof. We begin with an important special case, when Ds is the standard disk consisting of
the first s points. This will serve to illustrate all of the key ideas of the argument. Then we
will discuss the modifications necessary to apply in the general case.

Special case: first s strands. While reading this portion of the argument, the reader is invited
to consult the worked example demonstrated in Figure 9. Let β ∈ PBs ∩ ker (φr) be given.
We view this as a braid α on s strands juxtaposed with a trivial braid τ on n − s ≥ (r − 1)s
strands lying to the right. The key idea is to treat the strands of τ as the virtual strands in the
virtual undercrossing procedure. Accordingly, we will depict the strands of α as black, and
those of τ as blue, as in our discussion of virtual undercrossings above.

Recall (Remark 5·2) that a basic (r + 1)st twist �i;r consists of a single strand passing
over r strands, so that in order to exhibit β as an element of 
r

n, it suffices to factor β so that
all crossings have this form. To perform the factorisation, we will isotope the strands of τ ,
moving them to the left so that each overcrossing in α has 0 (mod r) total strands (black
and blue) passing underneath.

In carrying this factorisation out, we will make use of the following operation. Given a
braid β, obviously the product β�i;r lies in the same left coset of 
r

n as β. Graphically,
β�i;r is obtained from β by taking the packet of r consecutive strands from i + 1 to i + r
and passing them one unit to the left under the ith strand, the latter of which moves over r
units to the right. We call this procedure passing a packet to the left; evidently there is also
the analogous move of passing a packet to the right, corresponding to right-multiplication
by �−1

i;r . Likewise, we do not change the left coset by passing packets of r strands at the top
of the braid.

Before presenting the algorithm, we make one final observation. Suppose we are given a
particular braid diagram for β (not just its isotopy class). As usual, we think of the strands of
α as black and the strands of τ as blue. At any vertical level where no two strands of β (black
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0 0 0

0 1 1

1 0 1

1 1 0

0

0

0

Fig. 9. The factorisation algorithm applied in the case r = 2 to σ 4
1 . Reading left to right, we

work our way down through the crossings, borrowing blue (lighter) strands so that successive
crossings have a total of r = 2 strands crossing under. Since φ2(σ 4

1 ) = �0, after performing this
procedure at all four crossings, the number of blue (lighter) strands in each position is 0 (mod 2),
and they can be passed back under in pairs, preserving the property that every overcrossing
has an even number of strands passing underneath. Thus the algorithm produces the factorisa-
tion σ 4

1 = (σ1σ2)2(σ2σ3)2(σ1σ2)−1(σ2σ3)−1. The numbers indicate the counts of blue (lighter)
strands in the indicated positions at the indicated levels; notice that they record the values of
v(σ k

1 ) for k = 0, . . . , 4.

or blue) cross, we have a well-defined count of the number of blue strands in between each
adjacent pair of black strands, giving us an integer vector �v with s + 1 entries. We call the
space between strands i and i + 1 of α as the ith position. If the blue strands of τ are isotoped
so as to conform to the conventions of the virtual undercrossings procedure (as described in
Figure 7), the reduction of �v (mod r) is equal to v(α′), where α′ is the portion of α from the
top down to the specified vertical level.

We now explain the factorisation algorithm. Express α as a product of the standard gen-
erators of Bs, and suppose α begins with σεi with ε= ±1. To begin the factorisation, pass a
packet of the first r strands of τ to the left; in the case of ε= 1, pass these to the (i + 1)st

position, and if ε= −1, pass these to the (i − 1)st. Pass r − 1 of these under the overcross-
ing and the remaining strand straight down, exactly as illustrated in Figure 7. We call this
process resolving a crossing.

Now repeat this procedure for the remaining crossings of α: pass packets of r blue strands
from τ to the relevant position, and borrow the necessary number of strands so as to create
an undercrossing by r strands. If ever there are r or more blue strands in a single position
after resolving a crossing, pass them in multiples of r all the way back to the right.

We must verify that as long as there are at least (r − 1)s blue strands, it is always possible
to pass a packet of r strands from the right over to the location of the overcrossing so as
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Fig. 10. The factorisation algorithm as applied to a braid under a standard embedding (r = 2).
As before, the method is to work down from the top, resolving crossings so as to have r strands
crossing under each overcrossing. Note that after each crossing is resolved, the count of blue
(lighter) strands in each position is given by α′ · �x, where �x = (1, 1, 0) is the count of blue (lighter)
strands at the top of the diagram, α′ is the initial segment of α to the given level, and the action
is given by (6).

to facilitate a borrowing. Borrowing from the right is necessary only when the number of
blue strands in consecutive positions is strictly less than the r − 1 needed to ensure that r
strands pass under the given overcrossing, i.e. there are consecutive strand counts xi, xi+1

for which xi + xi+1�r − 2. Since we have passed packets of r strands to the right (i.e. to xn)
whenever possible, each of the remaining s − 2 components xj for 0�j�n − 1 has xj�r − 1.
Altogether then, in this situation, we have

n−1∑
i=0

xi�(s − 2)(r − 1) + r − 2 = (r − 1)s − r,

so that xn ≥ r as was to be shown.
By Lemma 6·4, at the conclusion of this process, the number of blue strands mod r in

each position is equal to the corresponding component of v(α) = �0. As we have methodically
passed packets of r blue strands to the right whenever possible, this shows that in fact there
are no blue strands in between the black strands of α. In other words, the resuling braid
diagram is isotopic to the original juxtaposition of α and τ . On the other hand, we have
isotoped the blue strands of τ so that at every overcrossing, there are 0 (mod r) strands
passing underneath, exhibiting β as a product of (r + 1)st twists as required.
General case: arbitrary standard embedding. The reader is now invited to consult Figure 10.
Let i : Ds → Dn be a standard embedding, and let β ∈ i∗(PBn) ∩ ker (φr) be given. As i is
standard, we can represent β as a juxtaposition of a braid i∗(α) for α ∈ PBs in black on top
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of a trivial braid of n − s strands in blue. In the language established above, the only differ-
ence between this setting and the special case above is that here we begin the factorisation
algorithm with blue strands in arbitrary positions, not with all n − s strands in position s
as above. We proceed as before, working our way down from the top, resolving crossings
by borrowing blue strands. The analysis above applies verbatim to show that when n ≥ rs,
there are sufficiently many blue strands available to make borrowing possible. It remains
to be shown that the blue strands return to their original positions after all of the crossings
of α are resolved. Recalling the hypothesis that β be a pure braid, this now follows from
Lemma 6·4.

6·3. Factoring general braids

In this section, we conclude the proof of Theorem A. The main technical result is Lemma
6·9, which establishes the containment ker (φr) ∩ PBn�
r

n. From there, the full containment
(Theorem 6·10) and the proof of Theorem A are relatively easy.

To begin the analysis of ker (φr) ∩ PBn, we investigate the restriction of φr to PBn.

LEMMA 6·8. The restriction of φr to PBn is a genuine homomorphism φr : PBn → (Z/rZ)n,
given on the standard generators Aij of PBn via

φr(Aij) = ei + ej.

Proof. Since the action of Bn on (Z/rZ)n factors through the quotient Bn → Sn, it follows
that the restriction of φr to PBn is a homomorphism. We evaluate

φr(A12) = φr(σ 2
1 ) = φr(σ1) + σ1 · φr(σ1) = (1 + (12)) · e2 = e1 + e2.

The formula

φr(ghg−1) = g · φr(h)

for g ∈ Bn and h ∈ PBn is readily seen to hold, from which the expression φr(Aij) = ei + ej

follows.

LEMMA 6·9. Let n ≥ 3 and r ≥ 2 be given, and let d ∈ {0, 1, 2} be the remainder of n/3.
Then for n ≥ n0(r, d) (where n0(r, d) is defined as in (5)), there is a containment PBn ∩
ker (φr)�
r

n.

Proof. Let

w =
m∏

k=1

Aεk
ikjk

∈ PBn ∩ ker (φr) (7)

be given. By hypothesis,

φr(w) =
m∑

k=1

εk(eik + ejk ) = �0 ∈ (Z/rZ)n.

To express w ∈ 
r
n, we will exploit the factorisation algorithm (Lemma 6·7) to rewrite the

initial segment of w as a product of commuting elements of small support which has the
same value under φr, removing initial segments that lie in ker (φr) whenever possible. This
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will take slightly different forms in the regimes r = 2, r odd, and r ≥ 4 even; we begin with
the case r = 2 since it is the simplest and will serve to illustrate the essential idea.
The case r = 2. Assume r = 2, and write

w = Aε1
i1j1

Aε2
i2j2

w′

with w′ given as the product defining w in (7) above but starting at k = 3.
There are three possibilities for the size of the set {i1, j1, i2, j2}. Suppose first that {i1, j1} =

{i2, j2} = {i, j}, in which case necessarily ε1 = ε2. Suppose for simplicity ε1 = ε2 = 1; the
argument in the other case is analogous. Here, A2

ij ∈ ker (φ2). We note that A2
ij is a pure braid

in ker (φ2) under a standard embedding of a disk with two marked points, and as n ≥ 8 by
hypothesis, we can apply the factorisation algorithm Lemma 6·7 to express A2

ij ∈ 
2
n . Thus

in this case, we can write w = γw′ with γ ∈ 
2
n , proceeding in turn to factorize w′.

Suppose next that i1 = i2 but j1 �= j2. In this case, we have that

φ2(A±1
i1j1

A±1
i2j2

) = ej1 + ej2 = φ2(Aj1j2),

so that

A±1
i1j1

A±1
i2j2

A−1
j1j2

∈ ker (φ2).

This element is again in the image of a standard embedding, so that we can apply the
factorisation algorithm (Lemma 6·7) to express A±1

i1j1
A±1

i2j2
A−1

j1j2
as an element of 
2

n ; the disk
is standard and has four marked points, and hence this is possible for n ≥ 8. Thus, by left-
multiplying by an element of 
2

n we can replace the initial segment A±1
i1j1

A±1
i2j2

with the initial
segment Aj1j2 , which has smaller support. Similar arguments apply to the various cases when
|{i1, j1, i2, j2}| = 3.

The remaining possibility is that |{i1, j1, i2, j2}| = 4. In this case, we replace the initial
segment A±1

i1j1
A±1

i2j2
with the segment Aa,bAc,d, where {i1, j1, i2, j2} = {a, b, c, d} and a< b<

c< d. Note in particular that the elements Aa,b, Ac,d of the initial segment commute, and that
the pair of elements Aa,dAb,c also commute; we say that the former pair is un-nested and the
latter nested.

We continue in this way, expressing

w = γA±1
ip,jp

m∏
k=p+1

Aεk
ikjk

with γ a product of pairwise un-nested commuting generators of PBn. The support of the
element A±1

ip,jp intersects the support of 0, 1, or 2 of the elements of γ . If it intersects zero,
it may be nested with up to one. This can be resolved by pulling these two commuting
elements to the front of γ and replacing them as above with their un-nested counterpart. If
it intersects one, these two elements can likewise be moved to the front of γ and resolved
into one or two basic elements as above. Finally suppose it intersects the support of two,
say Ai1,j1 and Ai2,j2 ; by the non-nestedness hypothesis, i1 < j1 < i2 < j2. For A±1

ip,jp to intersect
both, we must have

i1�ip�j1 and i2�jp�j2.

Thus the product Ai1,j1Ai2,j2Aipjp is supported on a standardly-embedded disk of up to six
elements. As we are only assuming n ≥ 8 and the factorisation algorithm (Lemma 6·7)
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requires n ≥ 2s = 12 strands to factor an element supported on six strands, we first rewrite
Ai1,j1Ai2,j2 = Ai1j2Ai2j1 . If i1 < ip < j1 < i2 < jp < j2, we can then rewrite Ai1j2A±

ipjp
as the un-

nested pair Ai1ipAjpj2 which is then un-nested with Aj1i2 . If i1 = ip, then the initial segment
Ai1j2Ai1jp can be replaced with Aj2jp ; the remaining cases where the total support is five

strands can be handled analogously. Finally, if A±1
ipjp

intersects both Ai1j1 and Ai2j2 but the total
number of strands is four, then this can be rewritten directly via the factorisation algorithm
without any need for initial re-writing.

Altogether then, this process converts an arbitrary word w ∈ PBn ∩ ker (φ2) into a prod-
uct of pairwise un-nested and commuting generators Aij. Since φ2(w) = 0 by hypothesis,
this implies that each Aij appears an even number of times; these can then be successively
removed from w by means of the factorisation algorithm (Lemma 6·7).
The case r ≥ 3 odd. In broad outline, we proceed in the same way as in the case r = 2. Given
w ∈ PBn ∩ ker (φr) as in (7), we rewrite the initial segment of w as a set of elements with
disjoint and small support. Whereas in the case r = 2 these elements were the generators Aij

of PBn, here we will use elements Ai;a,b,c which we proceed to define.
Let a, b, c ∈Z/rZ be given. Set p = (r + 1)/2, and define

Ai;a,b,c = Ap(a+b−c)
i,i+1 Ap(a−b+c)

i,i+2 Ap(−a+b+c)
i+1,i+2 .

Observe that

φr(Ai;a,b,c) = aei + bei+1 + cei+2.

Also note that Ai;a,b,c and Aj;a′,b′,c′ have disjoint support whenever |i − j| ≥ 3.
Divide the strands from 1 to n into groups of three; the last group will contain 3,4, or 5

depending on the value of d, i.e. the remainder of n (mod 3). We extend the definition of
A1+3k;a,b,c to this last group by taking A1+3k;a,b,c,d,e = A1+3k,a,b,cA3+3k,0,d,e in the case d = 2
and similarly for d = 1; to simplify notation we will tacitly understand that the last Ai;a,b,c

may be of this form. Suppose we have a partial factorisation

w = γA
εp
ip,jpw′,

where γ is a product of elements of the form A1+3k;a,b,c. Then A
εp
ip,jp intersects the support of

at most two such elements, and altogether the product of these three elements is supported
on a standardly-embedded disk with at most 6 + d punctures. Pulling these to the front of γ ,
since we assume n ≥ n0(r, d) = (6 + d)r, we apply the factorisation algorithm (Lemma 6·7)
and replace this with a product of up to two elements of the form A1+3k;a,b,c with the same
φr-value.

After completing this process, we have factored w = γ into a product of elements of the
form A1+3k;a,b,c. As φr(w) = �0 by hypothesis, it follows that each φr(A1+3k;a,b,c) = �0 as well.
Applying the factorisation algorithm to each of these in turn, we express w = γ as an element
of 
r

n.

The case r ≥ 4 even. In this last case, we combine the methods of the previous two. Again,
the objective is to factor initial segments of w into disjoint elements of small support with
the same value of φr. Like in the case of r odd, we partition the strands into groups of three
and attempt to factor the initial segment into elements supported on these groups. But unlike
this case, there is a parity phenomenon to keep track of, which will require us to link two
such groups if the parity of φr on each is odd.
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We define Ai;a,b,c analogously as above, this time subject to the requirement that a + b + c
be even; under this hypothesis, each of the integers ±a ± b ± c is even and so can be divided
by two in the exponent. As before, the last A1+3k;a,b,c may actually be supported on up to five
strands. Given an initial segment γ ∈ Bn of w, we say that a group of integers 1 + 3k, 2 +
3k, 3 + 3k is even if the sum of the coefficients of φr(γ ) on e1+3k, e2+3k, e3+3k is even, and
odd otherwise. Observe that there is always an even number of odd groups, since each A±1

ij
changes the parity of either zero or two groups.

We now describe the structure of the initial segment we will construct. We will express
w = γw′ where γ is a product of A1+3k;a,b,c over all even groups, along with products of the
form

A1+3k;a,b,cA1+3k′;a′,b′,c′Ai,j,

where the groups starting at 1 + 3k and 1 + 3k′ are odd, and where the first group contains
i and the second contains j. We moreover impose the condition that there are no odd groups
in between 1 + 3k and 1 + 3k′. In this way, the structure of the supports mimics that in the
case r = 2: they are disjoint, un-nested, and supported on standardly-embedded disks.

Given a partial factorisation

w = γA
εp
ipjp

w′

of this form, we consider the various possibilities for how the support of A
εp
ipjp

intersects the
supports of the elements in γ . This exactly mirrors the analysis carried out in the case r = 2,
but this time we apply the factorisation algorithm to elements supported on up to 12 + d
strands, in the case where we need to convert between nested and un-nested factorisations
on two pairs of odd groups, one of which contains the exceptional group of 3 + d elements.

THEOREM 6·10. Let n0(r, d) and d be given as in Lemma 6·9. Then for n ≥ n0(r, d), there
is an equality

ker (φr) = 
r
n,

i.e. ker (φr) is generated by the finite set of basic (r + 1)st twists.

Proof. The bulk of the work has been carried out above in Lemma 6·9, which establishes
the containment

PBn ∩ ker (φr)�
r
n

in the range n ≥ n0(r, d). Conversely, it is easy to verify that

φr(�i;r) = 0,

so that


r
n� ker (φr).

It remains only to show that the images of ker (φr) and 
r
n in Sn coincide; denote these

subgroups of Sn by ker (φr) and 
r
n, respectively.
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The basic (r + 1)st twists that generate 
r
n are sent to the r + 1-cycles

(1 . . . r + 1), (2 . . . r + 2), . . . , (n − r − 1 . . . n)

in Sn. Thus

(1 r + 1 r + 2) = (1 . . . r + 1)−1(2 . . . r + 2) ∈ 
r
n,

and hence also

(1 2 3) = (2 . . . r + 2)2(1 r + 1 r + 2)(2 . . . r + 2)−2 ∈ 
r
n.

As also 
r
n contains the element �1;n−1 = σ1 . . . σn−1, the image 
r

n contains the cyclic
permutation (1 . . . n). Conjugating (1 2 3) by this, it follows that 
r

n contains all 3-cycles of
the form (i i + 1 i + 2). This is well known to generate the alternating group An. We conclude
that

An�
r
n

for all n, r. For r odd, the r + 1-cycles are odd permutations and are even otherwise, from
which it follows that


r
n =

{
Sn r odd

An r even.

It remains only to show that ker (φr)�An when r is even. To see this, we recall that φr can
be viewed as the homomorphism

φr : Bn → Sn � (Z/rZ)n

which sends σi to the pair ((i i + 1), ei+1). Let sgn : Sn →Z/2Z denote the sign homomor-
phism, and let s : (Z/rZ)n →Z/2Z be the reduction mod 2 of the sum-of-coefficients map.
Then

sgn + s : Sn � (Z/rZ)n →Z/2Z

is a surjective homomorphism, and the composition (sgn + s) ◦ φr is identically zero (being
zero on each generator of Bn by above), from which it follows that ker (φr)�An as was to be
shown.

Proof of Theorem A. Lemma 4·7 establishes the containment

Bn[κ]� ker (φr),

Lemma 5·3 shows that


r
n�Bn[κ],

and Theorem 6·10 shows the equality


r
n = ker (φr)

in the range n ≥ n0(r, d).
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