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TOWARDS THE FIXED POINT PROPERTY
FOR SUPERREFLEXIVE SPACES

ANDRZEJ WISNICKI

A Banach space X is said to have property (Sy,) if every metrically convex set A € X
which lies on the unit sphere and has diameter not greater than one can be (weakly)
separated from zero by a functional. We show that this geometrical condition is closely
connected with the fixed point property for nonexpansive mappings in superreflexive
spaces.

1. INTRODUCTION

Let C be a nonempty, bounded, closed and convex subset of a Banach space X and
let T: C — C be a nonexpansive mapping, that is, ||Tz —Ty|| < ||z —y|| for all z,y € C.
We say that X has the fixed point property (FPP in short) if every such mapping has a
fixed point.

Fixed point theory for nonexpansive mappings has its origins in 1965, when Browder
(3] proved that a Hilbert space has FPP. In the same year Browder [4] and Géhde [11]
showed that all uniformly convex spaces have FPP and Kirk [16] proved more general
result stating that all Banach spaces with the so-called normal structure have the fixed
point property for weakly compact, convex sets. In particular, all reflexive spaces with
normal structure have FPP. The problem whether reflexivity implies the fixed point
property and the converse question, in spite of many investigations in this direction, are
both still open.

However, there are some partial results concerning this problem. In [18] Maurey
used the Banach space ultraproduct construction to prove the fixed point property for
all reflexive subspaces of L, [0, 1]. He also showed that isometries in superreflexive spaces
always have FPP. Note that quite recently Dowling and Lennard [6] have proved that
every nonreflexive subspace of L,[0, 1] fails FPP.

The ultrapower techniques of Maurey have been extended by many authors and a
lot of strong and deep results in metric fixed point theory have been obtained in this way
(see for instance (1, 7, 9, 17, 19, 20}).
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In the present paper we use these techniques together with other “nonstandard”
facts about Banach spaces to propose a new approach to FPP problem in the case of
superreflexive spaces. We start with the following

DEFINITION 1.1. We say that a Banach space X has property (5) if for every subset
A of the unit sphere Sx with diam A < 1 there exists a functional F in the dual space
X* such that F(z) > 0 for all z € A.

In Section 4 we show that all separable spaces as well as all strictly convex spaces
have the (S) property. On the other hand, there exist superreflexive spaces, which do
not possess that property.

For our purpose we shall need a slightly weaker property. Recall that a closed set
A is said to be metrically convex if for every z,y € A there exists z € A such that
|z — 2| = ||z — ¥||/2 and |ly — 2|| = ||z — y||/2. Note that in the case of strictly convex
spaces this notion is equivalent to convexity.

DEFINITION 1.2. We say that a Banach space X has property (S,,) if for every
metrically convex set A C Sx with diam A < 1 there exists F' € X* such that F(z) > 0
for all z € A.

We point out that the related property obtained by replacing the words “metrically
convex” by “convex” is satisfied by every Banach space (by the Hahn-Banach Theorem).
It is not known whether there exists a Banach space without property (S,,).

The following two open questions are of central importance to our paper:

1. Does every superreflexive space have property (S,,)?
2. Does every space isomorphic to a Hilbert space have property (Sp,)?

It will follow from Theorem 3.1 in Section 3 that positive answers to these questions
yield positive solutions to FPP problem in these cases.

Further applications of Theorem 3.1 in fixed point theory are given in Section 4. In
particular, we show that all uniformly noncreasy spaces, a large class of superreflexive
spaces introduced by Prus in [19], have property (Sp).

2. PRELIMINARIES

We shall briefly recall the construction of Banach ultrapowers. For more details we
refer the reader to [1, 10, 20]. Let U be a countably incomplete ultrafilter defined on a
set I. The ultrapower (X )y of a Banach space X is the quotient space of

loo(X) = {(zn) :2, € X foralln €I and || (z,) ||=sup || z» ||< oo}
n

by ker ={(:c,.) € loo(X) : lién I zn ||= 0}. Here lién denotes the ultralimit over U.
One can prove that the quotient norm on (X)y is given by ||(z.)u|| = lilr]n | 5 ||, where

(zn)u is the equivalence class of (z,). It is also clear that X is isometric to a subspace
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of (X)y by the mapping z — (z)y. Therefore, we shall assume that X is a subspace of
(X)u.
Let us now recall two characterisations of superreflexive spaces.
THEOREM 2.1. (James [15] and Enflo [8].) For a Banach space X the following
are equivalent:
1. X is superreflexive.
2. X hasan equivalent uniformly convex norm.

3. X has an equivalent uniformly nonsquare norm.

THEOREM 2.2 (Henson-Moore [13, 14].. Let U be a countably incomplete ultra-
filter on a set I. The following conditions are equivalent:
1. X is superreflexive.
2. (X)y is reflexive.
3. (X)u is superreflexive.
4. (X*)y is isometric onto ((X)y)" by the canonical isometric isomorphism.

We shall heavily use the last statement in the next section so let us give some
explanations. The canonical isometric isomorphism is defined as

(Jf) (I) = lilrjn fa (xn) )

where f = (fu)v € (X*)v and z = (z,)y € (X)y. It is not very difficult to prove that
J is a well defined linear operator and [|Jf|| = ||f||- In general J is only an isometric
embedding of (X*)y into ((X)U)'. Theorem 2.2 states that in the case of superreflexive
spaces we may identify the ultrapower (X*)y with the dual ((X)y)". Thus, in this
case, each element F € ((X)y)" is represented by (f,)u € (X*)y (see [12, 20] for more

details).

3. MaAIN REsuLT

In this section we shall prove our main Theorem 3.1. To make the proof self-contained
we shall briefly recall some facts from metric fixed point theory.

Let C be a nonempty weakly compact, convex subset of a Banach space X and
assume that there exists a nonexpansive mapping T : C — C without fixed points.
Then, by Zorn’s Lemma, there exists a minimal (in the sense of inclusion) convex and
weakly compact set K C C which is invariant under T" and which is not a singleton. Let
us recall basic properties of such sets:

(a) convT(K) =K,
(b) K is diametral, that is, suE |z — y|| = diam K for all z € K,
ye
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(c) if (zn) C K is an approximate fixed point sequence (that is, lim ||Tz, —
Za|| = 0), then nll»rglo ||zn — z|| = diam K for all z € K. e
The last property is known as the Goebel-Karlovitz Lemma. We shall also need a
certain generalisation of this result:
(¢') if (z,) C K satisfies the condition li&n 1Tz, — z.|| = 0, then lién |z —z|l =
diam K for all z € K.

To translate these properties into ultraproduct language, take a free ultrafilter on N
and consider the set K = (K)y C (X)y defined by

K = {(zn)v € (X)y :za € K for all n € N},
and the mapping T : K — {? by setting T((zn)u) = (Tz,)y. It is easy to see that Fix T,
the set of fixed points of T, is nonempty and is characterised as those points from K
represented by sequences (z,) in K for which liLrIn |Tz, — z.|| = 0. Using (c'), we obtain
the following properties:

(i) diam FixT = diam K = diamK,

(ii) K, K, FixT are diametral,

(iii) || £ — 7 ||= diam K for every z € K and § € FixT.
Moreover, it was proved by Maurey [18] (see also [1, 20]) that

(iv) FixT is metrically convex.

We can now use the whole machinery described above to prove

THEOREM 3.1. Let X be a superreflexive space and assume that there exists a
free ultrafilter U on N such that(X)y has property (Sy,). Then X has FPP,

PROOF: Assume conversely that there exists a minimal, closed, convex and bounded
set K and a nonexpansive mapping T : K — K without fixed points. Let (z,) be an
approximate fixed point sequence. There is no loss of generality in assuming that (z,,)
tends weakly to 0 € K and diam K = 1. Hence, FixT is a metrically convex subset of
the unit sphere and has diameter 1.

Since (X)u has property (S,,), there exists F € ((X)y)” such that F(z) > 0 for all
7z € FixT. By Theorem 2.2, F is represented by an element (f,)y € (X*)y. Since (z,)
tends weakly to zero, we can obtain a subsequence (z,,) of () such that | fx(za,)| < 1/k
for all £ € N. But (z,) is an approximate fixed point sequence so kl:rgo | Tzn, —

Zn, {|= 0 and consequently (z,, )u € FixT. Hence F ((zn,)u) > 0. On the other hand.
F((zn)u) = lilgn fe(zn,) = 0 and we obtain a contradiction. D

Since Banach ultrapowers preserve superreflexivity as well as the isomorphism to a
Hilbert space we obtain the following consequences of Theorem 3.1.

COROLLARY 3.2. If all superreflexive spaces have property (Sy,), then all super-
reflexive spaces have FPP.
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CoROLLARY 3.3. Ifall spaces isomorphic to a Hilbert space have property (S,,),
then all such spaces have FPP.

4. APPLICATIONS

We shall first study Banach spaces with property (S). Recall that £o(X) = sup{e >
0: 6x(e) = 0}, where 6x is the modulus of convexity of a Banach space X. It is well
known that the condition €o(X) < 2 implies superreflexivity of X.
PROPOSITION 4.1. The following classes of Banach spaces have property (S5):
(i) all separable Banach spaces,
(if) all strictly convex spaces,
(iii) all Banach spaces X with eo(X) < 1.

PROOF: (i) Let A be a subset of the unit sphere Sx with diam A < 1. Assume first
that A is countable. For each z; € A,i=1,2,..., take a supporting functional f; € Sx-
with f;(z;} = 1 and notice that |f,'(l‘,‘ —zj)l < |lzi — 5]l € 1,4,5 € Ny, Hence fi(z;) 20
for all 4,7 € N;. It is sufficient to put

The general case of A follows easily from the separability of X.

(ii) Fixz € A and consider a supporting functional F' € Sx- with F(z) = 1. If
F(y) = 0 for some y € A we would have y € B(z,1) which contradicts the strict
convexity of X.

The proof of (iii) is similar. 0
REMARK 4.2. Tt is not difficult to see that in the case (iii) we can strengthen our result:
if £9(X) < 1, then there exists ¢ > 0 such that for every A C Sy with diam A < 1 there
exists F' € X* with F(z) > cfor all z € A.

Unfortunately, neither separable, nor strictly convex Banach spaces are not stable
under passing to Banach ultrapowers. On the other hand, €o(X) = €o((X),) and we
obtain another proof of the well known result that spaces with £9(X) < 1 have FPP.

The first example of a Banach space without property (S) is due to K. Bolibok. He
observed (private communication) that /. (R,) does not have property (S). The following
example shows that even a superreflexive space need not possess the (S) property.

ExAMPLE 4.3. Let X 5(T') be the space l5(I") with the following equivalent norm:
llz]| = max{|izll2, V2|l },

where z € [,(T). Let T be an uncountable set and take A = {(1/v/2)e, : @ € T'}, where
{ea : @ € T'} is an orthonormal basis for l5(T'). It is not difficult to see that A C Sx and
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that diam A = 1. But clearly there is no continuous linear functional which is strictly
positive on A. Note that X 5(I") is v/2-isomorphic to a non-separable Hilbert space.
Though X (") does not have property (S), it will follow from Theorem 4.7 that it
has, however, property (Sp).
Let us recall that a Banach space X is uniformly noncreasy (UNC in short) provided
that for every € > 0 there is § > 0 such that if z*,y* € Sx- and ||z* — y*|| 2 ¢, then
diam S(z*,y*,6) < €. Here

Sy 8)={z€Bx:2*(x) 21-6 A y*(z) 21 -4}

and diam = —oo.
The following facts are known ([19]):
(i) X is UNC if and only if X* is UNC,
(i) X is UNC if and only if (X), is UNC,
(iii) if X is UNC, then X is superreflexive,
(iv) all uniformly convex spaces are UNC,
(v) all uniformly smooth spaces are UNC.
The paper [19] provides us with some other examples of uniformly noncreasy spaces.
We mention a few.
The Bynum space [, (see [5]) is the space l; endowed with the equivalent norm
given by the formula
lzllzn = llz*liz + Iz~ 2,
where = € I, 27,2~ denote the positive and negative parts of z, respectively. Similarly,
l.00 is the space l; with the norm

lzll2.00 = max{llz*|l2, llz~ 2}

It is proved in [19] that the Bynum spaces are UNC. It is also proved there that
X 3(N) is UNC and an easy generalisation gives that X 5(I") is UNC for any set . Note
that both I3 o and X 5(I') do not have normal structure (see [2, 5]).

The following theorem shows that the concept of uniformly noncreasy spaces yields
a class of superreflexive spaces with the fixed point property.

THEOREM 4.4. ([19]) Ifa Banach space X is UNC, then X has FPP.

Unfortunately, there exist “very simple” superreflexive spaces with FPP which are
not uniformly noncreasy.
EXAMPLE 4.5. Consider the space R? with the norm “maximum”. It is easy to see that
this is not a uniformly noncreasy space. An easy modification of the norm provides us
with the example of a Banach space with £¢(X) < 1 which is not UNC.

We shall show that all uniformly noncreasy spaces have property (S,,).
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LEMMA 4.6. Let X be a reflexive space and assume that there exists A C Sx
with diam A < 1 which cannot be separated from zero:

VF € X*3z € A (F(z) =0).
Then, for every € > 0, there exist z,y € A and f,g € Sx- such that
flz)=1,9()=10< f(y) <e, 0< g(X) <e.

PROOF: Let A% be the weak closure of A. For each z € A take a supporting
functional f, € Sx- with f;(z) = 1. Let us notice that f,(y) > 0 for all z € A and
y € A% Assume first that

A c | J{yve X fay) > 0}.

€A

Then, from the weak compactness of A*, we have

A c | H{yveX: f,(9) > 0}
k=1

for some zi,...,z, € A. Putting F(y) =1/n Y. f.,(y) we obtain F(y) > 0 for y € A%,
k=1

a contradiction.

Thus, we may assume that f;(w) = 0 for some w € A* and all z € A. Then, there
exists a sequence {z,} of points in A tending weakly to w. From the weak compactness
of Bx- we may assume that a sequence of supporting functionals {f,,} tends weakly to
some fo € Bx. and hence fo(w) = 0. Fixe > 0 and take ng € N such that fo(z,) < ¢ for
n 2 ng. Then, there exists mg € N such that f; (zn,) < € for m > my. Since {z,} tends
weakly to w we have also fz, (Tm) < fo(zm) + €/2 < € for sufficiently large m > m,. It
is enough to consider the elements z,,, z,, and the corresponding functionals. 0

THEOREM 4.7. If X is UNC, then X has property (Sy,).

PROOF: We shall follow the ideas from [19] but we have to deal more delicate. Let
us assume that, there exists a metrically convex set A C Sy with diam A = 1 which
cannot be separated from zero. Fixe € (0,1/3) and take § € (0,1/3) such that

diam S(z*,y*,6) € ¢
whenever z*,y* € Sx- and ||z* — y*|| > €. Then there exists §; € (0,1/3) such that
(4.1) diam S(z*,y",6,) < ¢

whenever z*,y* € Sx- and ||z* — y*|| = 6.
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From Lemma 4.6, there exist z,y € A and f,g € Sx- such that f(z) = 1,¢(y) =
1,0 < f(y) < (6:/2),0 < g(X) < §;/2. Since A is metrically convex we have ||lw — z|| = -
llw = yll = llz — yl|/2 for some w € A. Then

41
2

Do) =
+
|

% < flw) < %llx -yl + fy) <

and similarly

B —

Let us notice that 2{(z — w), 2(w — y) € S(f,—g,61). Moreover ||f +g|| = (f +g)(z) >
1 > ¢ and we deduce from (4.1) that

1 1
|z +y—2w| = §||2(:1:—w) — 2(w —y)“S 56 < 6.

Put h € Sx. with h(w) = [lwll = 1. Then |h(z + y — 2w)| < & and consequently
h(z +y) = 2— 4. Hence h(z) 21— 4 and h(y) = 1 — 4. Since A is not separated from
zero, there exists z € A such that f(z) = 0 and h(2) = 0 (if not, we put F = (f + h)/2
which separates A from zero). Therefore z,z—2z € S(f,h,6) and |h—f|| > (h— f) (y) =
1—6—-26/2 > 1/3 >¢. Consequently [z = ||z — (z - z)|| < € and we obtain a
contradiction. 0

Let ut notice that Theorem 4.4 is now an immediate consequence of Theorems 3.1,
4.7 and the fact that uniformly noncreasy spaces are stable under passing to Banach
ultrapowers.

DEFINITION 4.8. A Banach space is said to have the (SY) property (respectively
the (SY) property) if there exists a free ultrafilter U defined on N such that (X)y has
property (S) ((Sw) respectively).

We can summarise our considerations given above in the following.

PROPOSITION 4.9.

(i) All finite dimensional Banach spaces have property (SY).
(ii) All Banach spaces X with €o(X) < 1 have property (SY).
(iii) Al uniformly noncreasy spaces have (SY) property.
(iv) If a superreflexive space X has property (SY), then X has FPP.

To give further examples of superreflexive spaces with property (SY), denote by
(X1®...80 X,)oo the product X; x ... x X, of Banach spaces X1,..., X, with the norm
given by the formula ||(zy,... ,xn)Hoo = max{||z1]|,...,[|zal|}. It was proved in {19]
that if Banach spaces X;, X; are uniformly convex and uniformly smooth, then the space
(X1 ® X3)e is uniformly noncreasy. Note that it is not the case for (X, ® X2 & X3)o
(see Example 4.5). However we have the following.

https://doi.org/10.1017/50004972700019900 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700019900

9] Superreflexive Spaces 443

PropoSITION 4.10. Let Xi,...,X, be Banach spaces with go(X;) < 1,1 =
1,2,....n. Then (X, ®...® Xn)oo has property (SY).
PRrRoOOF:Let us first notice that

(X1®..8Xn)o)y = ((X)u @ ... & (Xa)v)

and therefore it is sufficient to prove that (X; @ ...® X,)w has the (S) property. Let

A C Sx, diam A = 1. Denote by P;,i = 1,...,n, the projections Pi(z;,...,z,) = z;

and put 4; = {2 = (z1,... ,2,) € A: ||Pz|| =1}. Let I = {i € {1,...,n}: A; #0}.

Obviously A = |J A4;. For each A;,i € I, fix y* = (4i,... ,4}) € A; and take f; € Sx:
i€l

with fi(y!) = 1. Then

|filz:) — fiw)] < Nz — vl < o — villoo €1

for every £ = (x1,... ,Zn) € A and hence f;(z;) 2 0,i € I,z € A. Moreover f;(z;) > 0
for z € A;. It is enough to put F(zy,...,z,) =Y, fi(z:). 0
i€l

REMARK 4.11. In Sections 3 and 4 we only consider free ultrafilters defined on the set
natural numbers N. But we can extend our results without much effort for arbitrary
countably incomplete ultrafilters defined on a certain set I (see also [21]).

REFERENCES
(1] A.G. Aksoy and M.A. Khamsi, Nonstandard methods in fized point theory, Universitext
(Springer-Verlag, Berlin, Heidelberg, New York, 1990).

(2] L.P. Belluce, W.A. Kirk and E.F. Steiner, ‘Normal structure in Banach spaces’, Pacific
J. Math. 26 (1968), 433-440.

(3] F.E. Browder, ‘Fixed point theorems for noncompact mappings in Hilbert space’, Proc.
Nat. Acad. Sci. U.S.A. 43 (1965), 1272-1276.

(4] F.E. Browder, ‘Nonexpansive nonlinear operators in a Banach space’, Proc. Nat. Acad.
Sci. U.S.A. 54 (1965), 1041-1044.

L. Bynum, class of Banach spaces lacking normal structure’, Compositio Math.
5 W.L.B ‘A cl fB h lacki 1 ", C itio Math. 25
(1972), 233-236.

[6] P.N. Dowling and C.J. Lennard ‘Every nonreflexive subspace of L,[0,1] fails the fixed
point property’, Proc. Amer. Math. Soc. 125 (1997), 443-446.

[7] 3. Elton, PK. Lin, E. Odell and S. Szarek, ‘Remarks on the fixed point problem for
nonexpansive maps’, Contemp. Math. 18 (1983), 87-120.

[8] P. Enflo, ‘Banach spaces which can be given an equivalent uniformly convex norm’, Israel
J. Math. 13 (1972), 281-288.

[9] J. Garcia Falset, ‘The fixed point property in Banach spaces with NUS-property’, J.
Math. Anal. Appl. 215 (1997), 532-542.

[10] K. Goebel and W.A. Kirk, Topics in metric fized point theory (Cambridge University
Press, Cambridge, 1990).

(11] D. Gohde, ‘Zum Prinzip der kontraktiven abbildung’, Math. Nachr. 30 (1965), 251-258.

https://doi.org/10.1017/50004972700019900 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700019900

444

(12]
(13]
(14]

(15]
[16)

(17)
(18]
(19]
(20]

(21]

A. Wisnicki (10]

S. Heinrich, ‘Ultraproducts in Banach space theory’, J. Reine Angew. Math. 313 (1980),
72-104.

C.W. Henson and L.C. Moore, Jr., “The nonstandard theory of topological vector spaces’,
Trans. Amer. Math. Soc. 172 (1972), 405-435.

C.W. Henson and L.C. Moore, Jr., ‘Subspaces of the nonstandard hull of a normed space’,
Trans. Amer. Math. Soc. 197 (1974), 131-143.

R.C. James, ‘Super-reflexive Banach spaces’, Canad. J. Math. 24 (1972), 896-904.

W.A. Kirk, ‘A fixed point theorem for mappings which do not increase distances’, Amer.
Math. Monthly 72 (1965), 1004-1006.

P.K. Lin, ‘Unconditional basis and fixed points of nonexpansive mappings’, Pacific J.
Math. 116 (1985), 69-76.

B. Maurey, Points fizes des contractions de certains faiblement compact de L !, Seminaire
d’Analyse Fonctionelle 1980-81 (Ecole Polytechnique, Palaiseau, 1981).

S. Prus, ‘Banach spaces which are uniformly noncreasy’, Proc. 2nd World Congress of
Nonlinear Analysts (Athens, 1996), Nonlin. Anal. 30 (1997), 2317-2324.

B. Sims, Ultra-techniques in Banach space theory, Queen’s Papers in Pure and Applied
Math. 60 (Queens University, Ontario, 1982).

A. Wisnicki, ‘Neocompact sets and the fixed point property’, J. Math. Anal. Appl. (to
appear).

Department of Mathematics

Maria Curie -Sklodowska University
20-031 Lublin

Poland

e-mail: awisnic@golem.umcs.lublin.pl

https://doi.org/10.1017/50004972700019900 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700019900

