
SOME GENERATING-FUNCTION EQUIVALENCES!

by H. M. SRIVASTAVA

(Received 15 April, 1974)

A generalization is given of a theorem of F. Brafman [1] on the equivalence of generating
relations for a certain sequence of functions. The main result, contained in Theorem 2 below,
may be applied to several special functions including the classical orthogonal polynomials
such as Hermite, Jacobi (and, of course, Legendre and ultraspherical), and Laguerre poly-
nomials.

1. Let a sequence of functions /„(*), n = 0, 1, 2 , . . . , be defined by the Rodrigues
formula

Ux) = ^ D»{(ax + b)«F(x)}, Dx = d/dx, (1)

where a and b are constants, not both zero, and F(x) is independent of n and differentiable
an arbitrary number of times. The following result is due to F. Brafman [1].

THEOREM 1. If a generating function

E aJJ,x)f (2)
n = O

is known for either

-n, ccu ...,«„;

«. = p+i*1, y (3)

or

an =

?Ae« z7 is automatically known for the other.
Also a further result holds connecting a generating function of the set fn(x) with one of the

setfln(x).
Brafman's proof of Theorem 1 involves contour integration and makes use of Cauchy's

integral formula and two known generating relations for certain hypergeometric polynomials
(cf. [1], pp. 156-158). It may be of interest to observe that a substantially more general
generating-function equivalence than what is contained in Theorem 1 would follow fairly
easily from Lagrange's theorem [3, p. 133]
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/ ( z k = f z;D" {WWT/W).z = *+<#*)• (5)

Indeed we first obtain the following

LEMMA. For every sequence {/,(*)} defined by (I), the generating relation

holds when m = 0, 1, 2 , . . . .
To prove this lemma we notice from (1) and (5) that

1 * f

' m\ *n=o n\

m ! *LV

D?{(az+b)mF(z)},
ml

since z = (x+bt)l(l — at), and the generating relation (6) follows by appealing to the definition
(1) once again.

We now state our main result given by

THEOREM 2. For arbitrary coefficients An, n = 0, 1, 2,..., and integer N ^ I, if we let a
generating function

t AnU*Y (7)
11 = 0

be known for either

or
^ n = ln and r = JV,

//ie« // is automatically known for the other.

Proof. From (7) and (8) we have
oo oo [n/iV] / „ \

n = 0 n = 0 * = 0 \lylK/

oo oo

I 40"T Z
c = O n = 0
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by inverting the order of summations. This process may be justified when the series involved
converge absolutely. However, the series need not converge, and in such cases a divergent
generating function is formally obtained.

Now apply the lemma with m = Nk, where AM, k = 0,1,2,..., in order to sum the
inner series, and we find that

whose second member involves a generating function of the type given by (7) and (9).
This evidently completes the proof of Theorem 2, which provides an elegant connection

between a generating function of the set/„(>:) with one of the setfNn(x), where TV is an arbitrary
positive integer.

Alternatively, to prove Theorem 2, the principle illustrated in [1] may be applied mutatis
mutandis. Indeed, if C denotes a simple closed contour about z = x, then from (1) and
Cauchy's integral formula we readily have

* . » = « . ' , 2 (11)
(z-xf

whence

00

** — ZJ "njiiv*/*

= ~̂7 —— Z I - r — I Z ( xr,_ ) **/ ^Z

2711 J cZ-Xn =

F(z) J(az + QtV /n+Nfc\r(fl£+&)ff
^ L J M ** JL -̂J

>- (x + 6t)/(l-flO>

by the familiar binomial expansion, and the generating-function equivalence (10) follows,
since the pole at z = (x+bt)l(l — at) can always be placed inside C by taking t sufficiently small
and then the result extended by analytic continuation on t.

We remark in passing that Theorem 2 will yield the generating-function equivalences
contained in Theorem 1 when the arbitrary coefficients Xn are specialized by

_
n -( P i ) n •••

y is repla'eed-by —y, and the arbitrary positive integer JV is set equal to 1 or 2.
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2. Applications. Since a fairly large number of special functions satisfy a Rodrigues
formula of type (1), the generating-function equivalences given by Theorem 2 are widely
applicable. We content ourselves by noting the familiar instances

„(*) = x°e-*L<°>(x) = i D°x{x»+*e-x}, (14)

/n(x) = x*-ne-xL<-rnXx) = ^ D"x{x"e-X}, (15)

/„(*) = 2n(x-l)I(x+l)"-nP^-'|-")(x)

= 1 D ; { ( X - 1 ) ' + ' ( X + 1 / } , (16)

D ; { ( x + i ) ( x i r } , (17)

/n(x) = 2n(x-l)'"-'1

= ±Dx{(x-mx+m> (18)

involving the classical orthogonal polynomials of Hermite, Laguerre, and Jacobi. The
results of the preceding section would apply also to the ultraspherical polynomials P*(x),
the Legendre polynomials Pn(x), and the Bessel polynomials yn(x, a—n, /?), since we have

= ±Dx{(x2-ir}, (19)

Pn(x) = F*(x), (20)

and (cf. [2], p. 111, Equation (47))

.. , p x e .
U*) = -{ yJ(x, a-nj)

= - , Dn
x{xtt+"-2e-^x}. (21)
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Thus, in each of the aforementioned cases, one can easily apply the lemma as well as Theorem
2 to derive a (known) generating relation of type (6) and a new class of generating-function
equivalences of type (10). We omit the details.

On the other hand, for the sequence of hypergeometric functions

^ ; /?; x], n = 0,1, 2, ..., (22)

it is easily verified that

Z (w*")&&*Y - (i-O--«&* ( ( 1qp). » - o, i, 2,.... (23)
11 = 0

which is of type (6). Thus, as an analogue of the generating-function equivalence (10), we
have

00 00

n —O n = O \ /

where the An are given by (8).

In view of the familiar Gaussian transformation

2iM>, jS; y; z] = (l-zy-^Ffy-a, y-j8; y; z], \z\ < 1, (25)

it follows from (22) that

rt£ M. »,k=0,1, 2,.... (26)

since P*(JC) may be defined by

PR*) ^^f-iFtl-in, - i i i + i ; a + i ; ( j c a - l ) / x 3 ] . (27)

Now the An given by (8) can evidently be reduced in terms of the ultraspherical poly-
nomials Pf(x) if in (8) we set N = 2, kn = (i)B/0?+i)«, and replace y by (y2 - \)ly2. Hence, by
interpreting the first member of (24) with the help of (26), and the second member by means of
(22), we shall arrive at the bilinear generating relation

00

E
o

•F4|^a+ifc,a+i/c+i;a+i, ^ i ^ - i l l L / ^ ^ J , (28)

where /: = 0,1, 2 , . . . , and F4 denotes the fourth type of AppelPs functions defined by

'*>>*«**-Xrmfrxx- (29)
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