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Abstract

We present new exact solutions for the flow of liquid during constant-rate expres-
sion from a finite thickness of liquid-saturated porous material with nonlinear prop-
erties. By varying a single nonlinearity parameter and a dimensionless expression
rate, we systematically investigate the effect of nonlinearity and of an impermeable
barrier (e.g. a piston). We illustrate the water profile shape and the water ratio
deficit at the expression surface (e.g. a filter membrane) as a function of time.

1. Introduction

It has proved to be a difficult task to predict, analytically, the external pres-
sure required to maintain constant-rate expression of liquid from a porous
material undergoing steady piston compression. The practical importance of
this problem has been discussed by Banks [1] and by Banks and Burton [2].
Here, we consider a finite undimensional prism of a liquid-saturated porous
material bounded at one end by a permeable membrane and at the other end
by an impermeable piston. If we were able to predict the water content at
the membrane, then this would yield the applied external pressure via the
nonlinear stress-strain relationship for the porous material. However, the
water content at one particular location could be predicted only by solving
the nonlinear equation for flow throughout the entire material depth. It has
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[2] Constant-rate expression: exact solution 431

been shown that, at least for very wet slurries, the distribution of water may
be predicted well even after neglecting both side-wall friction and irreversible
rheological properties of the solid-liquid mixture [20]. After neglecting both
of these complications, as shown previously [1], the liquid flow may be mod-
elled by a nonlinear diffusion equation

dt dm L 'dm\

subject to uniform initial conditions

e = et (constant), t = 0, 0 < m < M, (2)

constant-rate expression at the membrane boundary,

de
E{e)-~— = Q (constant), m = 0, t > 0, (3)

and no flow at the piston boundary,

| ^ 0, m = M, t>0. (4)

As denned previously [1],

e is the void ratio (equal to water ratio, in saturated materials),
m is a material distance coordinate,

t is the time,
E is the expression coefficient (or Lagrangian liquid diffusivity [20]),
q is the expression rate, and

M is the total volume of solid component per unit cross section area.

The same description would apply if the piston as well as the membrane were
permeable. In that case, the position m = M of no flow would represent the
midpoint between the two boundaries.

Solutions of the linear (constant- E) model, presented in [1] and [2], may
approximate the liquid flow in a limited class of materials, but for many other
materials the expression coefficient depends strongly on the void ratio e, so
that the flow equation (1) and the boundary condition (3) are both highly
nonlinear. Here, we solve analytically a nonlinear liquid-flow model. We
examine systematically the effect of the degree of nonlinearity on the flow
pattern, by varying a single parameter of the model. The crucial value of
the membrane water ratio, at any particular time, may be obtained directly
from the analytic solution, without first obtaining preliminary estimates of
the flow profile after many successive time increments, which is a necessary
disadvantage of approximate numerical solution schemes. Previously, ana-
lytic and approximate analytic solutions ([4], [19] and [20]) have neglected
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432 P. Broadbridge and P. J. Banks [3]

finite-column end effects. These earlier semi-infinite column solutions ap-
ply to constant-rate expression only in the early stage, before the water ratio
begins to reduce significantly near the piston.

2. The exactly-solvable model

We assume that the expression coefficient has been represented by a func-
tion of the type

E = y/(b-e)2, (5)

with y and b constant. We assume that the representation (5) holds in a
range of the void ratio et > e > e,, where ei is the initial water ratio and
ej- is a minimum water ratio. We define the normalized void ratio

g=(e-ef)/(ei-ef) (6)

and the dimensionless expression coefficient Er(g) = E{e)fE, where £ is
the arithmetic mean,

For the model (5), we have

where c = (b - ej)/{ei - e.).
Hence,

c{c-\){ei-ef)
2

Em(g) = c(c-l)/(c-g)2. (8)

With g always normalised to vary between 0 and 1, the parameter c provides
a comparison of the degree of nonlinearity of different materials over possibly
different ranges of water ratio. For highly nonlinear materials, c is close to
one.

The two independent parameters in (5) may be taken to be the nonlinearity
parameter c and the sorptivity S of Philip [19], a convenient choice since
the latter may be measured directly in a constant-pressure experiment. In a
nonlinear diffusion (1) in a semi-infinite column subject to uniform initial
condition (2) and constant-concentration boundary condition

e = ef, m = 0, (9)

(which, in the context of expression, is equivalent to a constant-pressure
condition), the depth of the separated liquid will be

l = S(ei,ef)t
l/2. (10)
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[4] Constant-rate expression: exact solution 433

In general heterogeneous media, at sufficiently early times, (10) remains valid
[3] (neglecting higher order corrections) when S refers to the local environ-
ment at m = 0. In particular, at sufficiently early times, the effect of a
finite macroscopic column length will be negligible and S may be measured
directly. The parameter y of (5) may be expressed, in terms of c and S, as

y = h_{c)S2, (11)

where h_ is a function of c alone. The function h_(c), appropriate for
an increasing expression coefficient Et(g), is different from the function
h{c) of Broadbridge and White [6] which applies in the case of decreasing
Et(g). From the analytic solution of Fujita [9], which satisfies the boundary
condition (9), we obtain the one-to-one relation

(i/T1) .- I* !* ) exp ( i /T 1 ) . (12)

From (7) and (11), the mean expression coefficient may be expressed in terms
of c and S, as

- h (c) s2

E= , . j . (13)
c{c-\){ei-ef)

2

If the nonlinearity parameter c is close to 1, the dimensionless expression
coefficient Et depends strongly on normalised void ratio g, whereas Et re-
mains close to 1 if c is much larger than 1. In Figure 1 (page 434), we show
least-squares fits of (5) to data from two materials. The first is a sample of as-
mined Loy Yang brown coal [2], and the second is a filter cake formed from
ground and slurried brown coal from the same location [17]. The filter cake
from ground coal is seen to be a weakly nonlinear material, with c = 2.07.
The as-mined coal is a moderately nonlinear material, with c = 1.15. How-
ever, for the latter material, as g approaches 0, Et decreases more rapidly
than the inverse square law model (5) would indicate. As a consequence of
the analytic model being only an approximation to real materials, the fitted
value of c will in practice depend on the range of e considered.

3. Exact solutions of the nonlinear model

Full technical details of the method of solution are given in the Appendix.
Here, we outline the new features of this solution.

In the special case that the expression coefficient E(e) takes the form (5),
the nonlinear diffusion equation (1) may be reduced to a linear convection-
diffusion equation by a nonlinear transformation of both the dependent (con-
centration) variable and the independent spatial coordinate. For the case of
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FIGURE 1. Experimental values of dimensionless expression coefficient Em plotted against
normalised water ratio g , for a sample of as-mined Loy Yang coal (ei = 2.34 , e, = 0.67 ,

E = 9.7 x 10~8/n2s~') [2], and for a sample of filter cake from ground Loy Yang coal (et =
3.11 , ef = 0.25 , £ = 3.8 x 10~5m2s~l) [17]. The lines are the respective least squares fits of
the model (8).

an idealised semi-infinite region (M = oo), an exact solution, satisfying a
constant-concentration boundary condition, was obtained by Fujita [9]. The
exact solution on a semi-infinite domain, satisfying a constant-flux boundary
condition, was given by Knight and Philip [14].

After a simple transformation e = 1 — e of the dependent variable, the
analytic solution for the supply of liquid at constant rate, in a medium with
increasing expression coefficient E(e), becomes a solution for extraction of
liquid at constant rate, from a medium with decreasing expression coefficient
E(e) = E{e). This analytic solution agrees very well with water content
profiles observed experimentally in very wet slurries, at least until water be-
gins to deplete significantly at the impervious boundary [4]. At this later
stage, finite-column end effects will become important and the semi-infinite
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domain model will cease to be applicable. So far, the finite-column imper-
vious boundary condition (4) has defied exact analysis. Following the usual
change of independent variables [ 14] which is used to transform (1) to a linear
equation, because of the time dependence of the new spatial coordinate, the
two transformed boundaries are in uniform relative motion. Thus, we may
transform the nonlinear diifusion problem on a fixed finite region to a linear
diffusion problem on a uniformly expanding region. Boundary conditions on
an expanding medium cannot be treated algebraically by standard Laplace-
transform techniques. However, one key to unlocking this class of problems
has been provided by King's theory of Laplace transform boosts [12]. The
boundary conditions may be treated by solving difference equations, rather
than algebraic equations. So far, this new technique has been applied to non-
linear diffusion-convection problems on finite domains [12, 5]. However, it
is not a trivial matter to obtain a limiting solution for the case of zero con-
vection and pure nonlinear diffusion, as the latter problem is quite different
in character. The pure nonlinear diffusion problem is equivalent to a linear
convection-diffusion problem with one linear radiation boundary condition,
whereas after transforming the nonlinear diffusion-convection problem, the
radiation boundary condition is replaced by a simpler concentration bound-
ary condition [12].

Another difference between the model developed here, and its related
precedents, is that we concentrate here on expression from media for which
E(e) is an increasing function. By general arguments [4], this is expected to
be the case in moderately wet saturated porous media, as opposed to very wet
slurries, in which E(e) is usually decreasing. Although a model expression
coefficient (5) may represent either a decreasing function or an increasing
function, the analytic solutions require distinct mathematical techniques in
the two cases. For constant-rate extraction with E(e) decreasing, or for
constant-rate supply with E(e) increasing, the nonlinear diffusion problem
transforms to a linear convection-diffusion problem on a uniformly shrinking
domain. In transformed coordinates, the domain shrinks to nothing in some
finite time tmax . In the nonlinear convection-diffusion problem solved so far
[12, 5], tmax is the radius of convergence of a series solution. This is suffi-
cient for practical purposes, since tmax is larger than the time required either
to remove all initial liquid or to fill all initially unoccupied pores. In the
class of constant-rate extraction problems with E(e) increasing, considered
here, or for constant-rate supply problems with E(e) decreasing, the nonlin-
ear diffusion problem transforms to a linear convection-diffusion problem on
an expanding, rather than shrinking medium. The series solution, obtained
here, converges for all t, even though for our particular purposes we do not
require a solution beyond the time for the minimum value of e to reach ef.
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In terms of dimensionless variables, the nonlinear diffusion equation (1)
becomes

\E ( j r i l (14)
dT~ di[ *[8)dt\' [ }

where Et(g) = g ^ - , g = ^ , f = m/M and T = Et/M2 . The bound-
ary and initial conditions are

E,(g)dg/d£ = R, £ = 0. (15)

where R = Mg/(ej — e^E,

dg/dt = O, £ = 1 , (16)

and
g = U T = 0. (17)

The exact parametric solution of the boundary-value problem (14)—(17) is
given in (A41), (A42) and (A48) of the Appendix. In Figure 2a, we compare
the exact water ratio profile in a weakly nonlinear model (c = 2.0) to that in
a linear model (c — oo), during expression at constant rate R = 0.5. Profiles
are plotted at times for which RT = 0.2, 0.35 and 0.5. The variable RT is
closely related to the time, to the mean strain u and to the mean normalised
water ratio ~g, as follows:

e{-ef)M e{-ef

At the membrane boundary £, = 0, the gradient dg/d£ of the water ratio
profile is given by

§§=*/*.<*)
(nonlinear model) <18)

= R (linear model).

At early times during nonlinear diffusion, when the normalised expression
coefficient Et(g) is everywhere greater than 1, the gradient of the water
ratio profile will be smaller than in the linear model. For example, this is
apparent in Figure 2a when RT = 0.2. When the membrane normalised
water ratio, g at £ — 0 , decreases to c - y/c{c- 1), the value of dg/d^, at
^ = 0, will be the same as that in the linear model. From Figure 2a, when
RT = 0.35 , the membrane water ratio is already less than the critical value
2 - \/2=0.59, and the nonlinear model predicts dg/d£, to be slightly greater
than in the linear model. At later times, water depletion at the membrane
causes a significant reduction in the expression coefficient and consequently,
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(a)

0.2

FIGURE 2. (a) Profiles of normalised water ratio #(£, T) at times given by RT = 0.2 ,
0.35 and 0.5, during constant-rate expression at dimensionless expression rate R = 0.5 . The
full lines represent a weakly nonlinear model (c = 2.0) and the dashed lines represent a linear
model (c = oo); (b) As in Figure 2a, but there the full lines represent a moderately model
(c = 1.2); (c) As in Figure 2a, but there the dimensionless expression rate is lower {R = 0.1)
and the full lines represent a highly nonlinear model (c = 1.05).

constant-rate expression can only be maintained by larger gradients in the
water ratio profile. This is evident in the profile of Figure 2a when RT = 0.5 .

The departure from the linear model will become more pronounced as
c approaches 1. Figure 2b (page 438) predicts the water ratio profile in a
moderately nonlinear (c = 1.2) model material undergoing expression at the
same dimensionless rate R = 0.5 as in Figure 2a. In this case, the gradient
dg/d£ at £, = 0 may first exceed that predicted by the linear model when
g(0, T) decreases to c - y/c(c - l)=0.71. At later times, the nonlinear
model develops water ratio profiles which are much steeper than those of the
linear model.

In Figure 2c (page 438), we plot the water ratio profiles of the highly
nonlinear model (c — 1.05) during expression at a lower dimensionless rate,
R — 0.1. In this case the linear model predicts that dg/dE, < 0.1 for all
£ and all T. This is true also in the nonlinear model until g(0, T) >
c - \/c{c - l)=0.82. Up until this time, g(£,, T) is nowhere far from its
mean value ~g = 1 - RT, so that the finite column may be viewed as a
small sample and the function E(g) may be estimated from column-averaged
values. This uniformity of the water ratio profile has been observed also in a
more sophisticated model, analysed numerically by Landman [15]. However,
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even at a low expression rate, at later times, a highly nonlinear model (c=l)
may depart radically from the linear model, as may be seen in Figure 2c at
the last time depicted (RT = 0.5).

4. Water ratio at the boundaries

As discussed by Banks [1], at any time during expression, the applied
external pressure may be deduced from the water ratio at the permeable
membrane. Hence, the prediction of water ratio at the membrane is crucial
when a prediction of applied pressure is required. The normalised water
ratio gm at the membrane may be obtained from the analytic solution by
substituting z = s in (A42) and (A41). Hence

where

\ f ( - « ( « + \)R/c) [exp(-i[2(« + l)R/c + s]2/s)
n=Q L

x j - 2 ( i ) 1 / 2 + (2(« + l)2s + (n + l)[2(n + l)R/c

-{2ns + n[2{n + l)R/c + s] + \)f Q

{-2 (£)'/2 - (2n2s + npnJl/c - ,] + 1)/ Q ^ £ + („ _

2 */c - J] + 1)/ {j

with 5 = R2T/[c(c - 1)] and the function / denned by ^ '

f(x) = exp(jc2)erfc(x). (20)

Similarly, the normalised water ratio gp at the piston boundary is obtained
by substituting z = -R/c in (A42) and (A41). Therefore,

c- 1
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where

Hp = 1 + f > x p (-n(n + l)R/c - i[(2« + l)R/c]2/s)
n=0 ^ '

f /S\1/2 7

x | - 2 ( - J + (2(n + 1)5 + (n + l)(2n + l)R/c + 1)

-(2n2s + B(2n + l)*/c + 1)/ Q

(21)

From the exact solution of the linear model [1], the water ratio profile ap-
proaches a steady shape in which the normalised membrane water ratio deficit
~£—%m *s -R/3. The dimensionless time taken for the steady profile to develop
is approximately T = 1/3. Thereafter, water depletes at an approximately
uniform rate dg/dt = —R, at all locations. For example, in Figure 2a, pro-
files of the linear model, at times RT — 0.35 and RT = 0.5, appear to be
successive images of the profile at time RT — 0.2 under translations

In contrast, the nonlinear model predicts no such asymptotic approach to
a steady profile shape. As the normalised expression coefficient Et(g) de-
creases, the profile gradient dg/d£ must increase if the dimensionless flux
—Etdg/d£ at the membrane surface, £, = 0 , is to maintain its prescribed
steady value —R. This effect may be partially accounted for by scaling down
the water ratio deficit by a representative normalised expression coefficient
E*(g) — c(c ~ l ) / ( c - If)2 > which decreases in time. In Figure 3, we plot
3(g - gm)Em(g)/R against time, during expression at constant rate R = 0.2,
predicted by the linear model, a moderately nonlinear model (c = 1.15) and
a strongly nonlinear model (c = 1.05). When RT = 0.5, the strongly non-
linear model has a membrane water deficit g~-gm approximately five times
that of the linear model, but the respective values of the renormalised water
ratio deficit 3(g - gm)Et(g)/R are comparable. At higher expression rates,
the value of the membrane water ratio depends more strongly on the degree
of nonlinearity of the porous medium.

The value g = 0 represents a physical lower bound for the water ra-
tio. In practice, the analytic solution for constant-rate expression ceases
to be relevant at a maximum time Tmax when the analytic model predicts
g( 0, T ) = 0 . We have inverted this equation numerically, to obtain T
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FIGURE 3. Normalised membrane water ratio deficit 3(g — gm)Et(g)/R versus time variable
RT during expression at constant dimensionless rate R = 0.2 .
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FIGURE 4. The maximum fraction of total initial water volume expressed at constant rate,
RTmax , is plotted against dimensionless expression rate R , for various values of c .
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for various values of R and c. The product RTmax, which approaches 1 as
R approaches 0, is shown in Figure 4 as a function of R, for various values
of c.

5. Conclusions

A model expression coefficient E — y{b - e)~2 , where e is the void ratio
and b and y are parameters, has the advantage that the associated non-
linear diffusion equation, representing the flow of liquid during constant-rate
expression from a shrinking porous material, admits exact solutions. We have
extended previous analytic solutions, to take account of both nonlinearity and
finite-column end effects. The effect of nonlinearity has been investigated sys-
tematically through the variation of a single nonlinearity parameter c. Both
the finite-column thickness and the expression rate are incorporated in the
definition of the dimensionless expression rate R. As R decreases below
0.1, finite samples of moderately nonlinear materials (c > 1.15) show little
spatial variation in water ratio and they may be treated, with increasing con-
fidence, as small samples, for example, for the experimental determination
of E(e).

Unlike in the linear model, water ratio profiles in the nonlinear model do
not approach a constant shape. If E{e) is an increasing function, then at
the membrane surface, the gradient of water ratio must increase, in order to
maintain the prescribed expression rate.

The analytic solution predicts the membrane water ratio explicitly as a
function of time. This offers a computational advantage over numerical so-
lution schemes, in which, even to estimate the water ratio at one location,
iterative solution over a large grid is required at many earlier times. The
large departure of the membrane water deficit from the value predicted by
the linear model, may be approximately compensated for by multiplying by
the dimensionless expression coefficient, evaluated at the column-averaged
water ratio. However, at very high dimensionless extraction rates of the or-
der R = 0.5, this compensation is not enough. At such high extraction rates,
the value of water ratio, at the membrane surface, depends very sensitively
on the degree of nonlinearity of the material.
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Appendix: Solution of the nonlinear boundary-value problem

We are required to solve

with
Dt(g) = c(c-l)/(c-g)2, (A2)

subject to initial conditions

* = 1, 0 < { < 1, T = 0 (A3)

and flux boundary conditions

and
Dtdg/d£ = R, £ = 0, 0<T<R~l. (A5)

We define a new set of coordinates

R \ RT 1 (* i /]
Z~ c - l [ c + cJo g ' J ' (A6)
s = R2T/c(c- 1).

Apart from an additional linear transformation, (A6) is the Storm transfor-
mation [21], previously applied to nonlinear diffusion problems by Knight
and Philip [14]. From (Al) and (A5), it follows that

ds = . R ..dT
c(c-l)

and

dz = -^jd^-fdT, (A7)

where

(c - gy cfi
With a change of independent variables (£,, T) —> (z, s), derivatives trans-
form as

d -Rc-g d
d£ c c-ldz

and
_ 9 _ _ _ d_ R2 d
dT~ Jdz + c(c- l)ds'

(A9)
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We now define a new dependent variable,

H = ^ - (A10)
c-g

Dt(g)dg . (All)

Apart from an additional linear transformation, (Al 1) is the Kirchhoff trans-
formation, which has been applied to nonlinear diffusion problems since the
last century [13]. Then (Al) is equivalent to the linear diffusion equation

The initial and boundary conditions (A3-A5) become

H = l, s = 0 (A13)

f f = O, z = -R/c (A14)

- A | - 1 ^ = l , z=s. (A15)

Hence, the nonlinear boundary value problem (A1-A15) has been trans-
formed to a linear diffusion problem (A12-A15). Cannon [7] shows how to
establish uniqueness of its classical solution. The condition (A5) of constant-
rate expression has been transformed to a radiation boundary condition
(A15). If the nonlinear diffusion equation (Al) has an additional nonlin-
ear convection term of the form [X^c — g)~2 + X2]dg/d€, with Xx and
A2 constant, then the linear diffusion equation (A12) would be replaced by
Burgers' equation (for example [6]). The latter may be transformed to the
linear diffusion equation by an additional Hopf-Cole transformation [8, 11],
fi —> <£, which is essentially equation 2.8 of King [12]. However, following
this extra transformation, (j> would satisfy a concentration boundary con-
dition rather than a radiation boundary condition. Hence, in the nonlinear
diffusion-convection problem solved by King [12] and generalised by Broad-
bridge et al. [5], the equivalent linear diffusion problem is essentially different
from that addressed here in (A12)-(A15).

Now the Laplace transform fi(z, p) of fi(z, s) satisfies pp. - 1 = ^ f
with general solution

(A16)

The piston boundary condition (A 14) implies

(A17)
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However, the membrane boundary condition (A 15) cannot be expressed di-
rectly in terms of the variable p. Therefore, following King [12], we intro-
duce a moving coordinate

y = z-s (A18)

which is fixed at the membrane y — 0 .
Let r}(y, x) = n{z, s). Equation (A12) is equivalent to

f̂  f^ r\ £/

(A19)
ds dy ~ dy2 '

with initial condition
ri=l, 5 = 0 ,

and membrane boundary condition

-a
The Laplace transform f)(y, p) of fj(y, s) satisfies

dfj d2f\

(A20)

with the general solution

(A21)

Now we apply a Laplace transform boost to represent (A 16) in the moving
coordinate system (y, s). From Theorem 2 of King [12], the result is

1 - -

I/P.

* "5 J]')
(A22)

The coefficients A and B may be regarded as functions of p1' . By com-
paring (A21) and (A22), we obtain

C= 1 +

and

IP + -4
(A23a)

(A23b)

https://doi.org/10.1017/S0334270000007153 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007153


446 P. Broadbridge and P. J. Banks

Now the boundary condition (A20) may be implemented as

dfildy = -fi, y = 0.

Assuming (A21), (A24) implies

Combining (A23) and (A25), we obtain

[17]

(A24)

(A25)

(A26)

The, by substituting (A17) in (A26), we obtain

That is,

(v) = A(v-l)exp[2-[v- - \v

(A27)

(A28)

where v = \ + Jp + \ .
Since (A28) is a linear difference equation, A(v) may be expressed as a

linear superposition

A{V)=\AX{V)-\AQ{V), (A29)

where A (v) (p = 0, 1) satisfies

(v) = Ap(u - l)exp ^ | [ ! / - ) ' 2
{y - p)

By analogy with King's ansatz [12], we assume initially

*„(») = £ > " » - P">~2 exP ( f U," + hS) •
Substitution of (A31) into (A30) leads to the recurrence relations

/ o = ° ; /« = / « - i + 2 C"1^1) a n d *o = <>; A«- i - /« - i

The solution to (A32) is

fm = 2m and hm = -m(m + 1).

(A30)

(A31)

(A32)

(A33)
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From (A29), (A31) and (A33), a particular solution to the inhomogeneous
equation (A28) is

A = A^Xv) = i f ) {[v - (n + I ) ] " 2 - [1/ - n ] " 2 } exp ( * [ 2 n v - n(n + l ) ] \ .

(A34)
However, in this application, King's ansatz does not immediately lead to
an applicable solution to our initial boundary-value problem (A12-A15). To
the particular solution A^\v), we may add any solution of the homogeneous
equation

A{h){v) = e1("-l)RlcA{h\v-\), (A35)

which, in fact, has an infinite-dimensional solution space [16]. We try

A{h\u)= J2 wn(v)exp("[2nv-n(n+l)]\. (A36)
n=-oo ^ '

Substitution of (A36) in (A35) leads to the general solution

A(h\v) = £ w(v- n) exp (j[2nv - n{n + 1)]V (A37)
n=—oo ^ 'n=—oo

with w an arbitrary function.
In the above expression for A^ , we require a function w so that fi(z, p)

given by (A16) and (A17), with A = A^ + A(h), has an inverse Laplace
transform fi(z, s) which is continuous on the time domain s e [0, oo). An
appropriate choice is

w(v - «) = I ( i / - n) 2 - i ( i / - « - l ) 2. (A38)

We then obtain

= \ E {l" + n + ! r 2 " [v + nf2} exp ( f [-2(/i + \)u - n(n + l

(A39)
Hence, from (A 16) and (A 17),

/i = l + l v r " (

p 2 n=o (A40)
rg -ph2{n+l)R/c+z] + e-ph2nR/c-zU
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From tabulated inverse Laplace transforms (e.g. Oberhettinger and Badii
[18]), we obtain

1

x exp - -

~2 ( i ) * + {2(" + 1)2^ +

ffl2(n+l)R/c+z .

-{2n2s + «[2(« + l)R,c + z] + 1}/ ( 1

| - 2 ( - ) * - {2n25 + n[2ni?/c - z] + 1}

1 inRIc - z

n + 1)25 + (n + l)[2nR/c- z] + i}f(^2nR^_z + („

(A41)
with the function / defined by f(x) = exp(x )erfc(jc).

Equation (A41) gives fi as a function of z and s. Therefore, from (A10),
we obtain g as a function of z and 5,

^•s)'c-^Vy < A 4 2 »
To obtain an exact parametric solution to the problem (A1-A5), we also
require ^ as a function of z and s. From (A7) and (A 10), it follows that

^ + ^ds]. (A43)

From (A 12), (A43) is an exact differential equation, which integrates to

£ = i r f tiz,s)dz+G(s) (A44)
K J-R/c

for some function G(s). At the piston boundary, £, — 1 and z = -R/c.
Therefore, G(s) = 1 (constant) and

[Z ix{z,s)dz. (A45)
-R/c

https://doi.org/10.1017/S0334270000007153 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007153


[20] Constant-rate expression: exact solution 449

Now let £(z, p) be the Laplace transform of £(z, s). From (A45),

ji(z,p)dz. (A46)f_R/c
Therefore, from (A40),

(A47)
, -p?[2nR/c-z] -pl[2{n+l)R/c+z],

By taking the inverse Laplace transform of (A47), we obtain

_ C ̂  C

" R 2R
n=0

l)R/c

+ 2nR/c - z]f (\

2nR/c - z]f Q

(A48)

where f(x) = exp(x2)erfc(x) and s = R2T/c(c - 1). Since f{x) -> 0 as
x —> oo (e.g. Gautschi [10]), the series in (A48) and (A41) converge, by
comparison with £ „ exp(-«2f [1 + ^ ] ) .

An exact parametric solution to the problem (A1-A5) is provided by (A41),
(A42) and (A48).
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