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Abstract
Radio-frequency interference detection and flagging is one of the most difficult and urgent problems in 21 cm Epoch of Reionisation
research. In this work, we present χ2 from redundant calibration as a novel method for RFI detection and flagging, demonstrating it to
be complementary to current state-of-the-art flagging algorithms. Beginning with a brief overview of redundant calibration and the mean-
ing of the χ2 metric, we demonstrate a two-step RFI flagging algorithm which uses the values of this metric to detect faint RFI. We find
that roughly 27.4% of observations have RFI from digital television channel 7 detected by at least one algorithm of the three tested: 18.0%
of observations are flagged by the novel χ2 algorithm, 16.5% are flagged by SSINS, and 6.8% are flagged by AOFlagger (there is significant
overlap in these percentages). Of the 27.4% of observations with detected DTV channel 7 RFI, 37.1% (10.2% of the total observations) are
detected by χ2 alone, and not by either SSINS or AOFlagger, demonstrating a significant population of as-yet undetected RFI. We find that
χ2 is able to detect RFI events which remain undetectable to SSINS and AOFlagger, especially in the domain of long-duration, weak RFI
from digital television. We also discuss the shortcomings of this approach and discuss examples of RFI which seems undetectable using χ2

while being successfully flagged by SSINS and/or AOFlagger.
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1. Introduction

During the Universe’s Epoch of Reionisation (EoR), which took
place when 20� z� 6, the intergalactic medium (IGM) transi-
tioned from being almost entirely neutral to an effectively com-
pletely ionised state. While the process of reionisation is generally
expected to have been driven by ionising radiation from early stars,
this period of the Universe’s history has yet to be directly observed.
The details of reionisation are sensitive to other important cos-
mological factors such as the process of early galaxy formation,
so its observation is of high potential value to experimental cos-
mology. Two review articles which describe the EoR in depth are
Choudhury (2022) and Wise (2019).

Themost promising experimental probe into the EoR is 21 cen-
timeter radiation emitted by neutral hydrogen gas in the IGM.
Neutral hydrogen gas emits radiation at a wavelength of 21 cen-
timeters owing to the spin-flip transition in the atom; notably, this
transition requires both an electron and a proton, so 21 cm radia-
tion is not emitted by ionised hydrogen. By mapping the EoR’s 21
cm radiation, cosmologists hope to learn about the spatial distri-
bution of neutral hydrogen in the IGM as the EoR progressed. For
reviews of 21 cm cosmology, see, for example, Morales & Wyithe
(2010), Furlanetto, Oh, & Briggs (2006), Liu & Shaw (2020) and
Pritchard & Loeb (2012).
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Efforts to observe the 21 cm power spectrum from the EoR are
underway at LOFARa (van Haarlem et al. 2013), HERAb (DeBoer
et al. 2017), and the Murchison Widefield Arrayc (Tingay et al.
2013; Wayth et al. 2018).

Detecting the 21 cm EoR power spectrum is difficult for mul-
tiple reasons, and chief among them is the contamination intro-
duced to the data by anthropogenic radio-frequency interference
(RFI). Removing RFI-contaminated data from a power-spectrum
analysis is essential if the measurement is to be sensitive to the
21 cm EoR signal (Wilensky et al. 2020). While LOFAR is situ-
ated in the Netherlands, where RFI is omnipresent, HERA and the
MWA are located in more radio-quiet sites in South Africa and
Western Australia, respectively. Even in these radio-quiet sites,
there are many sources of RFI, including digital television (DTV)
(which may even be reflected by passing aircraft Wilensky et al.
2019), ORBCOMM satellite transmissions (Sokolowski, Wayth, &
Lewis 2015), and FM radio, which may reflect from satellites
(Zhang et al. 2018). The MWA, in particular, is located far from
any transmitters, and still observes DTV regularly, as well as
narrow- and broad-band RFI from time to time (Offringa et al.
2015).

There are two software packages regularly used in RFI detec-
tion at the MWA, AOFlagger (Offringa et al. 2015), and SSINS

ahttps://www.astron.nl/telescopes/lofar/.
bhttps://reionisation.org/.
chttps://www.mwatelescope.org/.
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(Wilensky et al. 2019). While these software tools are both power-
ful, it has been demonstrated that they fail to excise all RFI, leaving
behind so-called ‘ultra-faint’ RFI in the data (Wilensky et al. 2023).
In Wilensky et al. (2023), statistical methods were used to demon-
strate that this ‘ultra-faint’ RFI is present in existing datasets that
have been used for analysis, and that even this very weak residual
RFI is extremely deleterious to the effort to accurately measure the
21 cm EoR power spectrum.

In a radio interferometer, a baseline is defined as the dis-
placement vector which separates two antennas whose signals
are to be correlated by the instrument. Both HERA and the
MWA have baseline redundancies, i.e., there are baseline vec-
tors which are repeated multiple times throughout the array. This
baseline redundancy is visible as translationally symmetric lay-
outs in all (in the case of HERA) or a subset (in the case of the
MWA) of antennas.d Baseline redundancy was built into these
interferometers in order to increase sensitivity on these baselines
(Parsons et al. 2012), and also to make use of redundant calibra-
tion (Wieringa 1992), which uses the fact that identical baseline
vectors should measure identical visibilities. In a redundant cali-
bration algorithm, a metric called χ 2, which measures a baseline’s
visibility’s noise-normalised square deviation from a calculated
‘consensus’ visibility for that baseline group, is minimised for each
baseline by adjusting antenna gains (see Section 2.3 for a formal
definition of the χ 2 used in redundant calibration).

In this work we present an alternative use of the χ 2 metric from
redundant calibration as an RFI detection tool. This approach has
been proposed before in Zheng et al. (2014), but has not yet been
investigated as a standalone technique. Li et al. (2019) observed
elevated χ 2 in MWA data corresponding to RFI and used it to
hand-flag some contaminated data, but did not include a system-
atic search using χ 2 to automatically flag data or a comparison to
the RFI detected by SSINS and AOFlagger. In this work, we will
demonstrate that χ 2 from redundant calibration is not only effec-
tive at detecting RFI in MWA data, but can also detect RFI which
is not visible to either SSINS or AOFlagger.

The structure of this paper is as follows: Section 2 describes
our dataset and preprocessing, provides an overview of redun-
dant calibration, and introduces the χ 2 metric, which will be the
focus of this work. Section 3 discusses χ 2’s sensitivity to RFI, and
describes our method used to generate flags based on RFI detected
in χ 2. Section 4 briefly describes AOFlagger and SSINS, the per-
formance of which is to be compared to χ 2 flagging. Section 5
presents the results of our analysis, including describing the spe-
cific RFI that is detected with this method, and presenting a
comparison of χ 2 with AOFlagger and SSINS on their perfor-
mance flagging the most common types of RFI observed in the
dataset. Section 6 provides a discussion of the results and their
implications for 21 cm cosmology, and concludes the work. This
paper has three short appendices; in Appendix A, we discuss the
effects of time-averaging on χ 2 generated by redundant calibra-
tion, in Appendix B, we discuss the specific parameters used to run
redundant calibration, and Appendix C is a collection of interest-
ing and exemplary RFI events, visualised using all three flagging
algorithms.

dAntennas in theMWA are usually referred to as ‘tiles’ and consist of 16 crossed dipoles
of less than a meter in any dimension arranged in a 4× 4 grid over a ground screen.
In this work, we will use the terms ‘tile’ and ‘antenna’ interchangeably to refer to MWA
tiles.

Figure 1. Antenna positions in the MWA Phase II compact configuration.

2. Data and redundant calibration

2.1 Data

Data were downloaded from the MWA All-Sky Virtual
Observatory (ASVO)e service in MWA correlator FITS format.
The data lie in the band between 167.055 MHz and 197.735 MHz
and were collected by the MWA between the dates of October
15th and December 15th of 2016. This period coincides with
the beginning of MWA Phase II operations, and these data were
taken with the array in its 128-antenna ‘compact’ configuration
(Wayth et al. 2018), which includes 71 antennas in two redundant,
compact hexagons of 36 and 35 antennas (both hexagons were
intended to comprise 36 antennas, but one antenna location was
inaccessible on site Li et al. 2018).

Fig. 1 illustrates the antenna positions of the Phase II compact
configuration of the MWA.

Within the dataset, there are observations of both the EoR0
(R.A.= 0.0◦, Dec.= -27.0◦) and EoR1 (R.A.= 60.0◦, Dec= -30.0◦)
fields (Jacobs et al. 2016).

The EoR0 observations in this set are the same data analysed
in Li et al. (2019), and (apart from three nights of data analysed
in Zhang et al. 2020) the EoR1 data are heretofore unanalysed.
The dataset comprises 51.8 h of observations, spanning 1 665
approximately two-minute observation files.

For both the EoR0 and EoR1 datasets, the data include several
pointings of the MWA, which are accomplished instrumentally by
introducing relative delays into the analog signals from each of the
16 individual dipoles which make up each MWA tile, changing
the angle of the beam’s phase center on the sky. In a single night of
observing, the same field on the sky is tracked by allowing it to drift
through the beam several times as the beam is phased in discrete
increments to follow it. According to the grid numbering scheme
in Beardsley et al. (2016), the pointings included in the dataset are
−3 to +2 for the EoR0 observations, and −3 to +3 in the EoR1
observations (where pointing 0 is an observation with the beam
center at zenith).

ehttps://asvo.mwatelescope.org/.

https://doi.org/10.1017/pasa.2024.79 Published online by Cambridge University Press

https://asvo.mwatelescope.org/
https://doi.org/10.1017/pasa.2024.79


Publications of the Astronomical Society of Australia 3

The MWA correlator used during Phase II of operations intro-
duced a coarse-band structure to the data, which is discussed in
detail in Section 3.4. Briefly, due to the design of the correlator,
there are certain frequency bins (corresponding to the edges and
centers of 24 coarse bands) which always contain corrupted data.
Throughout this paper, we will mask out corrupted data in these
bins and will always note when an algorithm has been modified to
work around these masked sections of data.

2.2 Data preprocessing and redundant calibration

Before they are run through redundant calibration, the data are
downsampled in time using the python package pyuvdataf ver-
sion 2.4.0 (Hazelton et al. 2017). The files are time-averaged from
a time cadence of one visibility every 2 s to one visibility every 18 s;
this is to reduce noise in the observations, which at a 2-s cadence
prove too noisy to allow the redundant calibration algorithm to
arrive at reasonable gain solutions. The rationale for this time-
averaging is discussed further and example images are provided in
Appendix A.

Pyuvdata is likewise used to select down to only the 71 anten-
nas in the redundant section of the array. This is because the
software package used in this work for running redundant calibra-
tion, hera_cal, was developed for use with the HERA telescope,
which is fully redundantly laid out (Dillon & Parsons 2016),
as opposed to the MWA which has some redundant antennas
alongside pseudorandomly positioned antennas. The software is
therefore likely to calculate spuriously ‘redundant’ baselines when
all of the pseudorandomly positioned antennas are included.

2.3 Redundant calibration

Once the data have been preprocessed, hera_calg (Dillon et al.
2020) is used to run redundant calibration, using hera_cal’s
redcal_run() method.

Redundant calibration takes advantage of the fact that baselines
which have the same vector separating their component antennas
should in principle measure the same visibility from the sky. We
assume that a measured visibility for a given time t, frequency ν,
and polarisation p, between antennas i and j, vij can be expressed
as the product of two antenna-dependent complex gains, gi and gj
and a ‘true’ sky visibility yij, with an added noise term nij

vij(t, ν, p)≈ gi(t, ν, p)g∗
j (t, ν, p)yij(t, ν, p)+ nij (1)

We drop the explicit time, frequency, and polarisation depen-
dencies in much of the following discussion, but it should be
emphasised that redundant calibration provides an independent
solution for the gains and visibilities at every unique combination
of time, frequency, and polarisation. This also means that we get a
value for χ 2 at each time, frequency, and polarisation.

The goal of calibration is to solve for the gains gi. We go about
this by minimising χ 2, defined as

χ 2 =
∑

i<j

∣∣∣vij − gig∗
j yij

∣∣∣
2

σ 2
ij

(2)

where yij has subtly changed in meaning to be a ‘consensus’ vis-
ibility calculated for the baseline group (a ‘baseline group’ being

fAvailable at https://github.com/RadioAstronomySoftwareGroup/pyuvdata.
gAvailable at https://github.com/HERA-Team/hera_cal, version 3.4.1.dev2+g102e14f8

was used in this work.

a collection of baselines with identical baseline vectors), and σ 2
ij

is an estimation of the noise variance of that baseline type. The
consensus visibility, yij, of a group of identical baselines is a free
parameter to be solved for in our system of linear equations, along-
side the gains and visibilities, and its value is such that the overall
χ 2 values for that baseline group are minimised.

Minimising these χ 2 values is our objective as we adjust param-
eters in a large system of linear equations. In the redundant
subsection of theMWA, there are 71 antennas, and if we only con-
sider redundant baseline groups containing two ormore baselines,
that leaves 181 unique baseline types; 71 complex gains and 181
complex visibilities make for 252 complex free parameters to solve
for, but the number of equations is much larger at (71× 70)/2=
2 485 (the total number of baselines in the redundant subsection
of the array), making this system overdetermined.

χ 2 and its sensitivity to radio-frequency interference will be the
focus of this work. In order to obtain χ 2 for analysis, we must run
redundant calibration using hera_cal. However, it is vital to note
that the results of this redundant calibration process – the gains
and visibilities generated by the algorithm – will not be used in our
analysis. Only the χ 2 values are of interest in finding and flagging
RFI.

There are three different algorithms, run in series on the uncal-
ibrated data, used to solve this system of equations in hera_cal.
The first is aptly named firstcal, the second is known as
logcal, and the third is called omnical.h For an in-depth descrip-
tion of how these algorithms work, please consult Li et al. (2018)
and Dillon et al. (2020).

3. RFI identification and flagging with χ2

3.1 χ2and degrees of freedom

As hera_cal implements the above algorithms to estimate gains
gi and visibilities yij, it does so with the goal of minimising the
metric χ 2, defined in equation (2). This is the overall χ 2 for the
entire array (at each time, frequency, and polarisation), found
by summing over each baseline ij, comparing a baseline’s mea-
sured visibility with the visibility calculated by multiplying the
antenna gains gi and g∗

j by the calculated ‘consensus’ visibility yij.
The difference of these quantities is squared, and then divided by
an estimation of the noise variance σ 2

ij . If the measured visibil-
ity and calculated visibility only differ by a factor of noise, this
quotient should be of order 1. When summed over the entire sys-
tem, we would expect χ 2 of a well-calibrated array to be of order
nDoF, or the number of complex degrees of freedom in the system,
calculated by Dillon et al. (2020) to be

nDoF=Nbl −Nubl −Nants + 2.5 (3)

where Nbl is the total number of baselines, Nubl is the num-
ber of unique baseline types, or alternatively the number of yij

hFurther complicating the history of these algorithms, the software package described
in Zheng et al. (2014) is called OMNICAL, and contains three algorithms: logcal, lincal,
and omnical (where we use lowercase letters to distinguish the algorithm omnical from
the software package OMNICAL). lincal and omnical perform the same task with differ-
ent solvers. Previous work applying redundant calibration to the MWA (Li et al. 2018; Li
et al. 2019, and Zhang et al. 2020) use the OMNICAL package to run logcal and lincal
but not omnical. To be explicit, in this work we use the hera_cal software package (not
OMNICAL) and the omnical algorithm (not lincal).
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that need to be solved for, and Nants is the total number of
antennas, understood as the number of individual gains gi to be
solved for.

The additive factor of 2.5 accounts for the degeneracies of
redundant calibration in the array, which reduce the total num-
ber of parameters which can be solved for in our system of
linear equations, increasing the total number of degrees of free-
dom. In Dillon et al. (2020), this constant factor is calculated
to be 2 in a classical redundant array. In such an array, these
2 complex numbers or 4 real parameters correspond to overall
amplitude, overall phase, tip/tilt of the array in the N/S direc-
tion, and tip/tilt of the array in the E/W direction. However, due
to having two spatially separated redundant hexagons, the MWA
introduces an additional real degenerate parameter – the phase
separation between the two redundant hexagons – which increases
the number of real degeneracies in the system from 4 to 5, and the
number of complex degenerate parameters in turn from 2 to 2.5
(Dillon 2024).

Taking χ 2/nDoF, we expect a number close to 1.0 for each time
and frequency if redundant calibration has been successfully run
and the resulting calibration is accurate.

χ 2 is intrinsically a measure of how redundant the array actu-
ally is. Said another way, χ 2 measures how well the calibrated
baseline groups agree with each other on a measured visibility;
in a perfectly calibrated, perfectly constructed array, each baseline
should measure identical visibilities. Higher χ 2 values for a given
time or frequency indicate that nominally ‘redundant’ baseline
groups do not agree on their measured visibilities.

We have observed that χ 2/nDoF is elevated by radio-frequency
interference (c.f. the lower plot in Fig. A1). There are two main
ways this could occur: either the presence of RFI increases χ 2 by
increasing non-redundancy (the numerator of χ 2), or the pres-
ence of RFI leads to an underestimation of noise variance σ 2

ij (the
denominator of χ 2).

In order to determine which of these mechanisms was respon-
sible for heightened χ 2 in the presence of RFI, we separated the
numerator and denominator of equation (2). Within hera_cal,
the antenna autocorrelations, which measure the total power inci-
dent on each antenna element, are used as a proxy for σ 2. We
do find that some powerful RFI events slightly elevate the total
power seen in the autocorrelations, and hence elevate hera_cal’s
estimation of σ 2. However, this has the effect of suppressing χ 2,
opposite to the overall effect in χ 2 we report here. It follows that
RFI elevates χ 2 by magnifying or exacerbating non-redundancy in
the array, i.e., it increases the numerator of equation (2).

3.2 Modified z-score as a tool to flag outlying χ2 data

The simplest approach to flagging RFI inχ 2 data would be to set an
absolute threshold forχ 2/nDoF, and to flag data which exceed that
threshold. However, both the EoR0 and EoR1 fields have an over-
all Local Sidereal Time (LST) dependence in the χ 2 values. This
makes it difficult to define an absolute χ 2/nDoF cutoff for flagging
data, since what may be an elevated χ 2 value for one observation
can be the χ 2 value of perfectly uncontaminated data for another.
Fig. 2 illustrates this LST-dependence with the North-North polar-
isations of EoR1 observations. Y-axis locations represent the mean
of χ 2/nDoF for each observation, and the error bars signify their
standard deviations. Points are color-coded by integer modified
Julian date, such that data taken during the same 24-h period

are of the same color. Different marker shapes represent different
pointings of the MWA beam.

In the EoR1 data especially, there is a clear upward trend in
each individual pointing’s χ 2/nDoF means. This sub-pointing
trend is likely due to bright celestial objects moving through the
sidelobes of the individual tile beams, which are much less redun-
dant between the tiles of the MWA than the beam’s main lobe
(Line et al. 2018; Chokshi et al. 2021); see Choudhuri, Bull, &
Garsden (2021) for a similar effect seen in simulations of HERA.
Having the same bright sources cross our beam multiple times as
the beam pointing is adjusted is natural in ‘drift and shift’ observa-
tions such as these, where the primary beam pointing is adjusted
to different angles at regular intervals throughout the observing
period.

Taking the modified z-scores of the χ 2/nDoF data greatly
reduces their LST-dependence, as shown in Fig. 3, which repre-
sents the same data as Fig. 2. Modified z-score for the ith element
of a dataset x is calculated according to the following formula:

zi = 0.6745× (xi − x̃)
(MAD)

(4)

where x̃ represents the dataset’s median, and MAD is the median
absolute deviation of the data from the median.

MAD= ˜|xi − x̃| (5)

Here, the tilde (∼) operator has been used to signify ‘take the
median of the dataset.’ The factor of 0.6745 is included to scale
modified z-scores to have the same step size as standard z-score,
i.e., if the standard z-score and modified z-score are both taken
of the same perfectly Gaussian dataset, each integer step in mod-
ified z-score is the same size as a step in standard z-score, and
corresponds to 1 standard deviation of the dataset.

As opposed to the standard z-score, modified z-score uses
medians instead of means. As a result, the measure is less affected
by outlier values, and more appropriate for datasets that have
a mostly Gaussian distribution, aside from some high z-score
outliers (in this case caused by RFI).

Modified z-score assumes that the data have a distribution that
is close to Gaussian; this is a valid assumption for these data
because, even though a χ 2 distribution is not Gaussian, due to
the central limit theorem, as nDoF increases, so does the distri-
bution’s resemblance to a Gaussian. For the redundant sub-array
of theMWA, as calculated with equation (3), nDoF= 2 228, which
is more than enough to warrant making this simplification.

Because it almost completely eliminates LST-dependence of χ 2,
we base our RFI-flagging algorithm on the modified z-scores of
χ 2/nDoF generated by redundant calibration.

As shown in Fig. 3, most files have a mean z-score which is near
0.0 and a standard deviation of z-scores which is close to 1.0. There
are also files with noticeably higher mean z-scores, and wider stan-
dard deviations, which are almost always caused by strong RFI
events. However, rather than further analyse the distribution of χ 2

values within a single observation, we turn to the time, frequency,
and polarisation information of the χ 2’s, which help us localise
and characterise the source of the interference.

3.3 Examples of χ2 and its sensitivity to RFI

To demonstrate the sensitivity of χ 2 to RFI, we have included
here a few χ 2 time/frequency waterfall plots and histograms of the
corresponding data in Fig. 4.
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Figure 2. Themean value ofχ 2/nDoF versus local sidereal time; eachpoint represents one two-minute observation,with the standarddeviation ofχ 2/nDoFwithin the observation
represented as an error bar. Each color represents data from a different night, while each shape represents data from a different pointing. The χ2 means have a pronounced
LST dependence. Within individual instrument pointings, there is also an upward trend. Because of the dependence on LST, a single χ2/nDoF cutoff value applied across all
observations in sub-optimal for flagging RFI.

While the RFI-free file produces a distribution of χ 2 that is
close to Gaussian, the presence of RFI leads to outliers. Included
are four examples of DTV RFI of differing strengths. Common
to all four of them is a bimodal distribution of χ 2, which generally
remains below z = 40, but, even in the example of the weakest RFI,
have bins above z = 4.

On the other hand, the RFI in the final waterfall plot of Fig. 4
may be difficult to see, because it only spans one frequency-bin
at 196.175 MHz. It is worth noting, however, that the χ 2 z-score
values are exceptionally high for these six bins, as demonstrated in
the histogram.

3.4 RFI flagging

RFI appearing in the χ 2 data is flagged with a two-step pro-
cess consisting of iterative modified z-score flagging followed by
watershed flagging.

First, the modified z-scores of the χ 2 values are calculated for
the dataset. Each point with a modified z-score greater than 4.0 is
first masked out of the dataset. After high-z-score datapoints have
been flagged, z-scores are recalculated without the outlier points,
and the process is repeated until it produces no update in flags
from its most recent iteration.

Starting from this preliminary set of flags, we follow the
watershed RFI flagging algorithm described in Appendix A of
Kerrigan et al. (2019). Briefly, this flagging algorithm works on

the assumption that RFI-contaminated bins tend to be contiguous,
and flags every bin with a modified z-score greater than 2.0 which
lies orthogonally adjacent to an already-flagged bin. This process
is iteratively repeated until the flags remain unchanged from the
last iteration, thereby ‘flooding’ the lower-z-score data which are
directly connected to higher outliers.

This algorithm has to be slightly modified in order to handle
the coarse-band flagging which is necessary for Phase II MWA
data. In general, when working with MWA Phase II data, within
each 1.28 MHz, 32-channel coarse band, two channels on either
edge of the band as well as the central channel are flagged and
excluded from analysis due to data corruption arising from alias-
ing from the poly-phase filter bank (for the edges) and DC offsets
(for the center) (Offringa et al. 2015). These flags are apparent in
the masked values in the waterfall plots of Fig. 4. As a result, the
function for finding ‘adjacent’ bins has to be modified to ignore the
coarse band edges. When a bin being processed by the watershed
algorithm is adjacent to a coarse band flag, the algorithm skips
the flagged coarse feature and considers the next bin beyond it as
adjacent to the flagged bins on the other side for ‘flooding.’

This two-step flagging algorithm is far from perfect. Even after
watershed flagging, there are datapoints which are clearly contigu-
ously part of an RFI event which remain unflagged due to their low
z-scores. One such event is shown in Fig. 5. While the two-step
algorithm has nearly completely flagged contiguous points with
high modified z-score, we can identify this RFI event as a DTV
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Figure 3. This plot represents the samedata as Fig. 2, except nowmodified z-scores have been taken of theχ 2/nDoF data. Themean of themodified z-scores ofχ 2/nDoF is plotted
against local sidereal time, with the standard deviation of the modified z-scores of the data represented as error bars. The LST dependence of χ2 present in Fig. 2 is effectively
eliminated by using modified z-score. As with Fig. 2, color denotes the day data were taken, and different point shapes represent different antenna pointings of the instrument.

channel 7 broadcast due to its frequency band. Using this deduc-
tion, we can assume a priori that the RFI should occupy the entire
channel 7 band, which is not fully flagged by this code.

In this work, we focus on demonstrating the potential for
redundant calibration χ 2 to detect RFI events. Future work is
likely to improve on the exact algorithm for calculating flags from
the χ 2 values themselves. One might, for instance, explore averag-
ing similar data together to reduce noise in χ 2, since we can expect
noise to reduce with averaging whereas consistent RFI will not.
Furthermore, the prospect of using a machine-learning approach
to flag RFI events is especially interesting, based on the heuristic
that they are easy for the human eye to identify, while still being
difficult to algorithmically define.

4. Other RFI-flagging algorithms: AOFlagger and SSINS

In order to compare χ 2 flagging with existing RFI flagging algo-
rithms, wemust obtain these algorithms’ flags for the same dataset.

For the purposes of this work, we have compared the perfor-
mance of χ 2 flagging with AOFlagger as part of the MWA cotter
pipeline (Offringa et al. 2015) and SSINS (Wilensky et al. 2019),
run locally.

4.1 AOFlagger

AOFlagger operates in three broad steps. First, a high-pass fil-
ter is applied to the visibility amplitudes. The filtered visibility

amplitudes are then run through a straight-line detecting algo-
rithm called SumThreshold, introduced in Offringa et al. (2010),
based on the observation that RFI often has sharp edges in the
frequency-time domain. Finally, the scale-invariant rank (SIR)
operator, introduced in Offringa, Van De Gronde, & Roerdink
(2012), is applied to the SumThreshold-flagged visibilities, which
acts to propagate those flags into adjacent contaminated bins.

AOFlagger flags are generated by cotter (the processing
pipeline in use by the MWA during Phase II operations), and
included when downloading MWA data from the data download
service ASVO. The AOFlagger algorithm generates flags by base-
line, so in order to visualise the flagging patterns for an entire
individual observation, we average over the baseline axis and view
the average occupation fraction for each frequency/time bin for a
given polarisation.

4.2 SSINS

SSINS is short for Sky-Subtracted Incoherent Noise Spectra, and
is an RFI-flagging algorithm first introduced in Wilensky et al.
(2019).i SSINS begins with ‘sky-subtraction,’ whereby every vis-
ibility is subtracted from the next visibility adjacent in time,
removing features that vary much more slowly than the two-
second cadence of most MWA data, including the sky. Once
sky-subtraction has been applied to every baseline’s visibilities, the

ihttps://github.com/mwilensky768/SSINS.
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Figure 4. Waterfalls and histograms of the modified z-scores of χ 2/nDoF of 6 two-minute observations. The waterfall plots, left, show the modified z-score of χ 2/nDoF as a
function of time and frequency. Elevated values are indicative of RFI. To the right of each waterfall plot is the corresponding histogram, showing the distribution of the modified
z-scores of the data. The first observation is RFI-free and shows a nearly Gaussian normal distribution, whereas the subsequent examples all contain RFI and have high-z-score
outliers of varying degree. The second through fifth images all represent DTV events, while the sixth is a narrow-band event at 196.175 MHz.
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Figure 5. An example χ 2 waterfall plot of an incompletely-flagged channel 7 DTV
event. The top panel shows the calculated z-scores, while the bottom panel shows
the derived flags in magenta. This event was flagged using the algorithm described
in Section 3.4, but the channel 7 DTV band is only partially flagged for any given time.

data should consist of only noise and RFI. The sensitivity to RFI
is increased by forming an ‘incoherent noise spectrum,’ or INS, of
the sky-subtracted visibilities. This is done by averaging the visi-
bility amplitudes (discarding phase) over all baselines in the array.
One INS per polarisation is produced.

SSINS uses a frequency-matched flagging algorithm to find
features in the sky-subtracted incoherent noise spectrum. This
algorithm is aware of DTV-bands and will flag out the entire
channel band if enough DTV RFI is detected in that channel.
The flagging algorithm is also sensitive to narrow-band RFI and
broad-band streaks.

SSINS version 1.4.7 was run locally on the downloaded data. In
order to reduce the number of spurious flags, the incoherent noise
spectrum (INS) object was calculated with a 2nd order polynomial
fit for each frequency channel during mean subtraction.

5. Results

5.1 Average flagging occupation fractions

When the χ 2 flags are averaged across all of the files in the dataset,
as visualised in Fig. 6, it becomes clear that RFI falling in the band
allocated to Australia’s digital television channel 7 (181–188MHz)
comprises the bulk of the RFI which is flagged. Looking closely, we
see that DTV channels 6 (174–181MHz) and 9 (195–202MHz) are
also visible as slight elevations in flagging fraction.

In addition to the strong peak at channel 7 frequencies, there
are some noticeable narrow-band peaks. Most of these narrow-
band peaks in bins adjacent to the masked-off bins corresponding
to the MWA correlator’s coarse bands, which are widely known to
contaminate data, as described in Section 3.4. Coarse band flags
are represented by the shaded zones in Fig. 6, and data from these
frequency bins have been excluded from this plot. Most of the
observed narrow-band peaks in flagging fraction are adjacent to
these flagged channels, which perhaps indicates that the data cor-
ruption extends beyond the commonly-flagged channels, although

Figure 6. The fraction of data flagged using χ 2 across all observations as a function of
frequency. The most commonly flagged RFI (in approximately 5 to 6% of the data) is
channel 7 DTV, as indicated by the large feature between 181 and 188 MHz. Also visi-
ble are slight amounts of flagging in channels 6 (174–181 MHz) and 9 (195–202 MHz).
Narrow-band RFI is apparent at 196.175 and 194.455 MHz. Most other narrow-band
peaks correspond to MWA coarse band edges, indicated by the shaded regions and
are unlikely to be actual RFI. The slight increase in flagging at the lowest frequencies
is due to spurious flagging of elevated χ 2 stemming from the presence of the Galactic
plane in the sidelobes of the primary beam (see Fig. 7).

the flagging fraction is only 1− 2%, so it follows that their χ 2 val-
ues are not consistently elevated. The cause of the elevated χ 2

numbers that occasionally appear around the coarse band edges
remains a topic for further investigation.

Of the narrow-band flagging peaks, two prominent exam-
ples are not adjacent to coarse band edges. These represent
real narrow-band RFI, each contained within a single 40 kHz
frequency-bin at central frequencies of 196.175 and 194.455 MHz
for the higher and lower peaks, respectively.

The last obvious feature of Fig. 6 is a small increase in flag-
ging at low frequencies, which is due to the spurious flagging of
low-frequency bins whose χ 2 values are elevated – not by RFI,
but by the presence of the Galactic plane in the far sidelobes of
the primary beam. Affected observations, like the one visualised
in Fig. 7, are uniformly from gridpoint number −3 of the grid
pointing scheme used in Beardsley et al. (2016), with az = 90◦,
el = 69.1655◦ – one of the more extreme pointings of the instru-
ment used to observe the EoR0 field which appear in this dataset.
The affected data were taken when the Galactic anti-center was
still above the horizon, where it could be picked up by sensitivity
in the sidelobes of the beam. Although using modified z-score for
flagging decreases the number of spurious flags in this pointing,
it does not reduce them to zero. This results in the uptick in χ 2

flagging at the lowest frequencies observable by the MWA. Future
work looking to apply RFI flags generated from χ 2 values toMWA
data may need to handle the analysis of this pointing separately.

5.2 Comparing χ2 flagging with SSINS and AOFlagger

Themost common type of RFI detected in this dataset was channel
7 DTV, which is broadcast between 181 and 188MHz. This section
focuses on flagging RFI when only this band is considered. Other
types of RFI are discussed in Section 6.
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Figure 7. An example of an observationwith elevated low-frequency NN χ 2 values due
to the presence of the Galactic plane in the sidelobes of the MWA primary beam. In the
corresponding histogram, we can see that the distribution deviates from a Gaussian
normal. Observations like this (all corresponding to the -3 pointingwith the instrument
phased to EoR0) cause the uptick in flagging at very low frequencies in Fig. 6.

In Fig. 8, a filled dot indicates that channel 7 DTV RFI was
detected in a particular observation, whereas an empty dot indi-
cates that channel 7 DTVRFI was not detected in that observation.
In order to qualify as ‘detected’ by χ 2 or AOFlagger, a file must
clear a threshold value of 5% of channel 7 bins being flagged by
the algorithm in question, as well as verifying that the DTV chan-
nel 7 band is more densely flagged than the file as a whole (which
distinguishes channel-7-only RFI from broad-band events). To
qualify as ‘detected’ by SSINS, a file must be tagged as containing

channel 7 RFI by SSINS’s match filter. Although Fig. 6 indicates
that between 5% and 6% of the data are flagged for channel 7 RFI
by χ 2, as indicated in Table 1, roughly 27.4% of the two-minute
observation files are flagged for this type of RFI. That is to say,
27.4% of files have 5% or more of the DTV channel 7 band flagged
(if the detection was with χ 2 or AOFlagger) or was tagged by
SSINS’s match filter as containing DTV channel 7, but if all of
the data is considered in bulk, between 5% and 6% of the total
data are contaminated by channel 7 DTV (according to χ 2-based
flagging).

When the flagging fraction of the channel 7 band is compared
across algorithms and plotted versus time, as in Fig. 8, we observe
that there are certain DTV events which are flagged by χ 2 but
not the other algorithms, and that the same could be said for
SSINS. The number of files flagged in the channel 7 band for each
algorithm is summarised in Table 1 and in the Venn diagram in
Fig. 9.

While every event caught by AOFlagger was also found by
either SSINS, χ 2, or both, there is less overlap between the events
flagged by SSINS and χ 2. Of all events flagged by χ 2, about
56.5% are unflagged by other algorithms, and of all the events
flagged by SSINS, roughly 52.2% are unflagged by other algo-
rithms. This indicates that the SSINS and χ 2 algorithms are both
suited to spotting exclusive categories of events, whereas there
is a significant overlap between AOFlagger and either SSINS
or χ 2.

Using only these three algorithms, it is impossible to deter-
mine whether there are events which are missed by all three;
it is of course possible that a novel algorithm will be able
to detect RFI events invisible to χ 2, SSINS, and AOFlagger.
However, for the data and methods we have, it seems that using
a combination of χ 2 and SSINS will flag all detectable RFI,
and the addition of AOFlagger does not measurably add to our
sensitivity.

Figure 8. A comparison of χ 2, SSINS, and AOFlagger performance on flagging DTV channel 7, the most commonly-detected source of RFI in our dataset. The x-axis represents the
local time of the observation in UTC, while each vertical panel represents observations from a different date. Within a panel, each observation is represented by three circles: the
top row (blue circles) is our χ 2 method, themiddle row (orange circles) is SSINS, and the bottom row (green circles) is AOFlagger. Filled circles indicate that RFI was detected by an
algorithm in the channel 7 band for that file, whereas empty circles indicate that the algorithm did not detect any RFI in that observation file. “Detected” meaning, in the case of
χ 2 and AOFlagger, that> 5% of possibly contaminated bins were flagged, and in the case of SSINS, that the match filter identified DTV channel 7 in this file. χ2 seems well-suited
to detecting long-duration DTV events which are picked up only sporadically by SSINS and AOFlagger. Meanwhile, SSINS detects isolated events which are not detected by χ2 and,
often, AOFlagger.
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Table 1. Number of files flagged in the DTV channel 7 band for χ2, SSINS, and AOFlagger.

Flagged by Flagged by Flagged by Flagged by

Flagged by Flagged by Flagged by Flagged by χ2 and SSINS χ2 and SSINS and Flagged by

Flagged by none χ2 only SSINS only AOFlagger only only AOFlagger only AOFlagger only all

Number of observations 1 209 169 143 0 30 13 14 87

% of total 72.61% 10.15% 8.59% 0.00% 1.80% 0.78% 0.84% 5.23%

% of flagged n/a 37.06% 31.36% 0.00% 6.58% 2.85% 3.07% 19.08%

Figure 9. A Venn diagram comparing the percentage of DTV events flagged by the
χ 2, SSINS, and AOFlagger algorithms. Most of the events flagged by AOFlagger are
detected by either χ 2 or SSINS, but there are a significant number which are flagged
by χ 2 and missed by SSINS, and vice-versa. The circles in this diagram are to scale,
although overlaps are not.

6. Discussion and conclusion

6.1 RFI classification

Several distinct types of RFI can be seen in χ 2 data. The most
common type of RFI is digital television (DTV) signals, usually in
Australian channel 7 (181–188 MHz), although channel 9 (195–
202 MHz) is sometimes also present. Channels 6 (174–181 MHz)
and 8 (188–195 MHz) are the rarest to see, usually only visible
in very strong DTV RFI events which contain 7 and 9 as well.
Channel 7 is flagged in roughly 5-6% of the data, channels 6, 8,
and 9 are all flagged in less than 1% of the data.

We also observe broad-band, short-duration RFI which is vis-
ible through most of the frequencies observed by the MWA. In
general, SSINS seems much more sensitive to these events, which
seem difficult to flag using χ 2.

Finally, we can see long-duration, narrow-band RFI which fits
entirely into a single 40 kHz frequency-bin at central frequen-
cies of 196.175, and 194.455 MHz, as discussed in Section 5.1. An
example event is visualised in Figure C7 in Appendix C.

When flagging occupancy for the 196.175 MHz narrow-band
RFI is plotted against time, as in Fig. 10, it seems to represent a
repeating signal with a period of around 105 min. The source of
this radiation is unclear, although the 105 min period does fall
in a range of periods typical for low Earth orbit satellites. Further
investigation is needed to track down this signal’s provenance.

6.2 Comparing events flagged by different algorithms

Referring to Fig. 8, we observe a few patterns:

• Observations flagged by only χ 2 tend to occur clustered in
time, and are more common in the data taken later at night
(which correspond to EoR1 observations).

- an example of an observation that was flagged by χ 2

alone, and was a part of one of these late-night clus-
ters is Fig. C1 (this and other examples in this section
may be found in Appendix C). This observation is from
the second half of the night on 2016-10-26, around 18:15
UTC.

• SSINS flags also cluster in time somewhat, but less con-
sistently than χ 2 flags, and the clusters seem shorter in
duration on average (consistent with the time clustering
properties found in Wilensky et al. 2023).

- Figs. C2 and C3 are part of a short cluster of SSINS flags,
at around 14:30 on 2016-10-30.

- While Fig. C3 is a bright signal in SSINS, it is brief
enough to be reduced in strength by time-averaging.
Fig. C2, on the other hand, is much weaker when visu-
alised in SSINS, even though it has a longer duration. It
is unclear why the event in Fig. C2 was visible to SSINS
but not to χ 2.

• There are also many observations flagged by SSINS alone
which are isolated from other flags in time.

- An example of an event which is isolated from other
detections may be found at Fig. C4. Like Fig. C3, it is
bright and brief. It occurred on 2016-11-12 shortly after
11:45.

• AOFlagger flags for this dataset overlap entirely with SSINS
flags, χ 2 flags, or both.

- It seems as though AOFlagger is not uniquely sensitive
to any of the RFI in this dataset.

- An event which was flagged by AOFlagger and χ 2 but
not seen by SSINS can be seen at Fig. C5. This event
occurred just after 13:15 on 2016-11-19.

In general, it seems that χ 2 is more consistent in finding longer-
timescale RFI than SSINS, and conversely, SSINS seems better at
detecting short-timescale RFI. An example of the former can be
seen in Fig. C1, and an example of the latter in Fig. C3. Given that
the first step to processing the χ 2 values of MWA data is to time-
average the files, and this would have the tendency to ‘wash out’
shorter-timescale events, this pattern makes sense. Conversely,
since SSINS relies on time-differencing to remove slowly varying
signals, it is perhaps not surprising that it misses events with long
durations.
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Figure 10. The same as Fig. 8, except for the 196.175 MHz narrow-band RFI signal (as opposed to channel 7 DTV). This signal appears to be periodic with a period of around 105
min.

SSINS also sees certain wide-band, short duration RFI, termed
‘streaks’, which are not as visible to χ 2. An example is Fig. C8.

6.3 χ2and RFI

In Section 3, we discussed how χ 2 is calculated and how it could be
influenced by RFI. We came to the conclusion that the heightened
χ 2 seen with RFI are not due to an underestimation of the noise
variance σ 2, but instead due to genuinely less redundant visibilities
between nominally redundant baselines.

RFI detected by χ 2 has in the past been hypothesised to be
locally produced, which would lead to certain antennas detecting
the signal more strongly than others, thus increasing the χ 2 met-
ric. In fact, in our analysis, it became clear that the RFI picked up
by χ 2 does not seem to be associated with local transmitters, as it
doesn’t peak in particular areas of the array for individual observa-
tions – when χ 2 is elevated for a certain observation, it is increased
for every antenna in the array.

We offer the following theory for the elevated χ 2 val-
ues we observe. One source of non-redundancy in the MWA
is the antenna-to-antenna variation of the the primary beam.
Observationally, the MWA beams are generally consistent in the
main lobe, but the sidelobes exhibit more variability (Line et al.
2018; Chokshi et al. 2021). RFI from sources in the sidelobes (e.g.
signals propagated over the horizon via tropospheric ducting or
reflections from airplanes far away from zenith) would appear
with different strengths in the signals from different antennas,
leading to more observed disagareement in nominally redundant
visibilities and enhanced χ 2 values.

As a corollary to this theory, we might expect this χ 2 flagger
to have a lower success-rate when RFI is located near the zenith,
i.e., within the main lobe, since we expect significantly more agree-
ment between redundant baselines. The RFI events detected by
SSINS but not χ 2 could potentially be reflections off airplanes or
other objects transiting near zenith, a detection-case which SSINS
has been shown to handle well (Wilensky et al. 2019). In order to
verify this hypothesis and its implications, direct imaging of RFI
caught by a χ 2-based flagger is likely necessary. This is an avenue
for future work on this topic.

6.4 Conclusion

RFI detection and flagging remain a formidable challenge in the
realm of 21 cm EoR cosmology. Without an algorithm (or suite of
algorithms) which can detect and excise RFI at a sensitivity hereto-
fore unachieved, instruments like the MWA and HERA may be
unable to deliver an accurate power spectrum of the EoR’s 21 cm
radiation.

In this work, we have presented χ 2 from redundant calibration
as a new approach to flagging RFI in data from the MWA. We
have demonstrated the effectiveness of this method and compared
its efficacy at flagging different kinds of RFI than AOFlagger and
SSINS.

χ 2 flagging as implemented here seems effective at flagging
the DTV RFI events which are all too common at the MWA
site. In the realm of long-duration, weak DTV events, χ 2 finds
RFI that’s missed by the current state-of-the-art algorithm SSINS.
However, χ 2 should not be taken as a replacement for or improve-
ment on SSINS; in fact, the algorithms seem quite complemen-
tary, each being able to detect RFI that remains invisible to
the other.

There are many potential avenues for future work using this
tool. The flagging algorithm based on the modified z-scores of
χ 2/nDoF could be improved with features like those found in
the SSINS flagging suite, such as applying a threshold to fully
flag a DTV channel when sufficient RFI has been detected within
it. Furthermore, a machine-learning approach to flag generation
could potentially be sensitive to even weaker and more tenuous
events, which are visible to the human eye but difficult to pick out
algorithmically.

In the course of this work, a repeating narrow-band RFI source
was identified at 196.175 MHz with a period of around 105 min.
Identifying the source of this RFI is another opportunity for
further work.

Producing a cosmological 21 cm power spectrum using data
screened with χ 2 RFI flagging alongside SSINS is another near-
term goal. Furthermore, it would be instructive to investigate
whether this hypothetical power spectrum still carries the statis-
tical footprint of ultra-faint RFI as described in Wilensky et al.
(2023).
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That the χ 2 values produced by redundant calibration are sen-
sitive to weak RFI is a happy accident, which will hopefully become
useful in improving the quality of the data that goes into serious
analyses in the future. This work represents the first step in bring-
ing this promising new method into the pipelines of new 21 cm
data-processing efforts.
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Appendix A. The effects of time-averaging on χ2/nDoF

In an initial analysis, the data were processed with hera_cal
without the additional nine-fold time averaging step described
in Section 2.2. The result was that the χ 2 values were noisy and
elevated in regions where there is no RFI. A

The upper plot in Fig. A1 is a single time-slice of the χ 2/nDoF
generated by hera_cal from a file that was not first downsampled
in time. This file is known to have DTV channel 7 RFI present,
visible between 181 and 188 MHz. Notably, the presence of RFI
increases the signal-to-noise level in those frequencies, and so
there is much less noise propagated through to χ 2 in that band.

The lower plot of Fig. A1, on the other hand, is also a sin-
gle time-slice of the χ 2/nDoF generated by hera_cal from the
same file at approximately the same time, when the data had been
time-averaged before calibrating. Files are time-averaged from a
cadence of one visibility every 2 s to one visibility every 18 s,
which we would expect to lower the noise amplitude by a factor
of

√
9= 3. This plot showcases the lower noise levels afforded by

Figure A1. A single time-slice of χ 2/nDoF, generated by hera_cal without downsam-
pling in time first (top) and after downsampling in time (bottom). The result without
downsampling is noisy and difficult to process to identify RFI. After downsampling,
noise in the χ 2 metric is significantly reduced, and the RFI is visibly elevated over the
noise floor.
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time-averaging, and the stark contrast between frequencies with
and without RFI.

Appendix A.1. Weighting χ2 by N Samples to correct noise
discrepancy

When pyuvdata downsamples in time, it does not include flagged
data in the calculated average. Furthermore, when working with
MWA data, it is good practice to flag a few times at the beginning
and end of the file, which often contain bad data. Noise is reduced
by time-averaging, so we observe that χ 2 generated from MWA
data which have been flagged at the beginning and end of the file
in this manner have an elevated noise-floor.

We can correct for this discrepancy by multiplying each χ 2

value by the corresponding element in pyuvdata’s NSample_array,
which tracks the fraction of unflagged data which were averaged
into a given time/frequency bin.

When averaged, noise is decreased by a factor of
√
N, where

N is the total number of data-points averaged together. Because
σ 2 scales with the square of the noise level, and forms the
denominator of equation (2), we expect χ 2 to scale inversely with
N. It is sufficient, then, to normalise the noise level by multi-
plying χ 2 by the corresponding element in the UVData object’s
NSample_array.

Appendix B. redcal_run() parameters for use on MWA data

A few custom parameters are necessary to make hera_cal work
with MWA data. The parameters we used were

max_dims=3, oc_conv_crit=1e-10, oc_maxiter=2000,
check_every=10, check_after=500,
ant_z_thresh=100.0, gain=0.3

A few of these warrant further explanation – max_dims=3 is
absolutely necessary, because the spatial separation between the
two hexagons introduces an extra dimension to the degenerate
subspace inherent to redundant calibration solutions, correspond-
ing to an arbitrary phase separation between the hexagons, in
addition to the three other degenerate parameters, which corre-
spond to the tip/tilt of the array and an overall phase. Setting
ant_z_thresh=100 eliminates the software’s throwing out of
high-z-score antennas when calculating solutions, because we are
not planning to use the gain solutions for calibration. The remain-
ing parameters are the result of some by-hand fine-tuning, but
could probably be improved with a more systematic parameter-
space search.

Appendix C. A selection of interesting RFI events

In the course of this research, we encountered many interest-
ing individual RFI events. In this appendix, we have included a
selection of particularly illustrative or interesting events.

Figs. C1 through C9 show time-frequency waterfall plots of
χ 2/nDoF modified z-scores (top row), SSINS’s Incoherent Noise
Spectrum waterfall plot (INS, middle row), and AOFlagger flags
averaged over baseline as described in Section 4.1 (bottom row).
Each column shows one of the two linear polarisations measured
by the MWA.

Figure C1. A typical example of an observation with RFI in DTV channel 7 which is detectable with χ 2, and not with other flagging algorithms. This observation is a part of a long
string of DTV detections seen by χ 2 alone.
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Figure C2. This SSINS DTV detection occurs as part of a small cluster of files flagged by SSINS alone. The event is also visible in AOFlagger, and a hint of it is visible in χ2, but it did
not reach the threshold for being listed as being ‘detected’ by any algorithm besides SSINS.

Figure C3. This SSINS DTV detection occurs as part of the same small cluster of SSINS detections as Fig. C2. The event is also visible in AOFlagger, but it did not reach the threshold
for being listed as being ‘detected’ by AOFlagger or χ 2.

Figure C4. This SSINS DTV detection occurs isolated in time from other RFI events.
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Figure C5. This DTV channel 7 event was detected by χ 2 and AOFlagger, but missed by SSINS.

Figure C6. An example of DTV channel 7, detected by all three algorithms.

Figure C7. An example of narrow-band RFI at 196.175 MHz, detected by all three algorithms.
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Figure C8. An example of a ‘streak’ found in SSINS, but invisible to χ 2.

Figure C9. An unusual event, which might have been due to weather, is also nearly invisible to χ 2.
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