ON A PROBLEM OF CHEVALLEY

HIDEO KUNIYOSHI

In the present note we wish to deal with the same problem as the preceding paper [1] for the case of modular fields.

Let k be a field of characteristic $p \neq 0$ and $K = k(x_1, \ldots, x_p)$ a purely transcendental extension of k. Let S be the automorphism of K which is induced by the cyclic permutation (x_1, \ldots, x_p) and L the fixed subfield of S. Then L is a purely transcendental extension field over k.

Proof. We put

Since u_1 , u_2u_1 , u_3u_1 , ..., u_pu_1 are linear forms in x_1 , ..., x_p and their determinant is $\prod_{p>i>j\geq 0} (i-j) \neq 0$,

$$K = k(x_1, \ldots, x_p) = k(u_1, u_2u_1, \ldots, u_pu_1) = k(u_1, u_2, \ldots, u_p).$$

To see the effect of S on u_i , we compute $S^{-1}u_i - u_i = \Delta u_i$ intstead of Su_i .

$$\Delta u_1 = 0,$$

$$\Delta u_2 = 1,$$

$$\Delta u_3 = 2 u_2 + 1,$$

$$\cdots \cdots$$

$$\Delta u_{i+1} = \binom{i}{1} u_i + \binom{i}{2} u_i + \cdots + \binom{i}{i-1} u_2 + 1,$$

From these u_i we now construct new elements $v_2(=u_2), v_2, \ldots, v_p \in K$ such that

Received June 2, 1954.

$$\Delta v_i = 1,$$

 $v_i = u_i + f_i(v_2, \dots, v_{i-1}),$

where f_i is a linear form of v_j^e , $j=2,\ldots,i-1$, $e=0,\ldots,i-1$, with coefficients in the prime field. We take, at first, $v_2=u_2$, $v_3=u_3-u_2^2+u_2$ and construct them by induction. If we get first i-2 terms v_2,\ldots,v_{i-1} , then v_i is obtained as follows:

(1)
$$\Delta u_{i} = {i-1 \choose 1} u_{i-1} + {i-1 \choose 2} u_{i-2} + \dots + 1$$

$$= {i-1 \choose 1} (v_{i-1} - f_{i-1}(v_{2}, \dots, v_{i-2})) + {i-1 \choose 2} (v_{i-2} - f_{i-2}(v_{2}, \dots, v_{i-3})) + \dots + 1.$$

The right side of this relation is a linear form of v_j^e , $j=2,\ldots,i-2$, $e=0,\ldots,i-2$. We compute Δv_j^2 , using the inductive assumption $\Delta v_j=1$,

From these relations we solve v_j^e in a linear form of $\Delta v_j^{e'}$.

(2)
$$v_j^2 = h_j(\Delta v_j, \Delta v_j^2, \ldots, \Delta v_j^{e+1}) = \Delta h_j(v_j, v_j^2, \ldots, v_j^{e+1}),$$

 $1 \le e \le i - 2 < h.$

where h_j is a linear form in its arguments. We put (2) into (1), then

$$\Delta u_i = \Delta g_i(v_2, \ldots, v_{i-1}),$$

where g_i is a linear form of v_j^e , $j=2,\ldots,i-1$, $e=0,\ldots,i-1$. Since

$$\Delta \lceil u_i - g_i(v_2, \ldots, v_{i-1}) \rceil = 0,$$

the element

$$u_i - g_i(v_2, \ldots, v_{i-1}) + v_2$$

satisfies the inductive assumption and we may take it as v_i .

Now, we construct algebraically independent generators of L over k. We put

$$w_1 = u_1,$$

 $w_2 = v_2^p - v_2,$
 $w_i = v_i - u_2.$ $i = 3, \dots, p.$
 $\Delta w_i = 0,$ $i = 1, \dots, p,$

Then

hence

$$k(w_1, \ldots, w_p) < L$$

On the other hand

$$[k(w_1, \ldots, w_p, v_2) : k(w_1, \ldots, w_p)] \leq p,$$

$$k(w_1, \ldots, w_p, v_2) \supset k(u_i, \ldots, u_p) = K,$$

and [K:L] = p. Therefore

$$L=k(w_1,\ldots,w_p).$$

Since L is an extension field of dimension (degree of transcendency) p over k, we see that w_1, \ldots, w_p are algebraically independent over k.

REFERENCE

[1] K. Masuda: On a problem of Chevalley, this journal.

Mathematical Institute
Tôhoku University, Sendai