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UNBOUNDED FREDHOLM MODULES AND SPECTRAL FLOW

ALAN CAREY AND JOHN PHILLIPS

ABSTRACT. An odd unbounded (respectively, p-summable) Fredholm module for a
unital Banach Ł-algebra, A, is a pair (H, D) where A is represented on the Hilbert space,
H, and D is an unbounded self-adjoint operator on H satisfying:

(1) (1 + D2)�1 is compact (respectively, Trace
�

(1 + D2)�(pÛ2)
�
Ú 1), and

(2) fa 2 A j [D, a] is boundedg is a dense Ł�subalgebra of A.
If u is a unitary in the dense Ł�subalgebra mentioned in (2) then

uDuŁ ≥ D + u[D, uŁ] ≥ D + B

where B is a bounded self-adjoint operator. The path

Du
t :≥ (1� t)D + tuDuŁ ≥ D + tB

is a “continuous” path of unbounded self-adjoint “Fredholm” operators. More precisely,
we show that

Fu
t :≥ Du

t

�
1 + (Du

t )2
�� 1

2

is a norm-continuous path of (bounded) self-adjoint Fredholm operators. The spectral
flow of this path fFu

t g (or fDu
t g) is roughly speaking the net number of eigenvalues that

pass through 0 in the positive direction as t runs from 0 to 1. This integer,

sf(fDu
t g) :≥ sf(fFu

t g),

recovers the pairing of the K-homology class [D] with the K-theory class [u].
We use I. M. Singer’s idea (as did E. Getzler in the í-summable case) to consider the

operator B as a parameter in the Banach manifold, Bsa(H), so that spectral flow can be
exhibited as the integral of a closed 1-form on this manifold. Now, for B in our manifold,

any X 2 TB

�
Bsa(H)

�
is given by an X in Bsa(H) as the derivative at B along the curve

t 7! B + tX in the manifold. Then we show that for m a sufficiently large half-integer:

ã(X) ≥
1

C̃m
Tr
 

X
�

1 + (D + B)2
��m

!

is a closed 1-form. For any piecewise smooth path fDt ≥ D + Btg with D0 and D1
unitarily equivalent we show that

sf(fDtg) ≥
1

C̃m

Z 1

0
Tr
 

d
dt

(Dt)(1 + D2
t )�m

!
dt

the integral of the 1-formã. If D0 and D1 are not unitarily equivalent, we must add a pair
of correction terms to the right-hand side. We also prove a bounded finitely summable
version of the form:

sf(fFtg) ≥
1

Cn

Z 1

0
Tr
 

d
dt

(Ft)(1� F2
t )n

!
dt

for n ½ p�1
2 an integer. The unbounded case is proved by reducing to the bounded case

via the map D 7! F ≥ D(1 + D2)�
1
2 . We prove simultaneously a type II version of our

results.
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674 A. CAREY AND J. PHILLIPS

Introduction. Spectral flow was invented by Atiyah and Lusztig to handle smooth
paths of self-adjoint elliptic operators. In the work of Atiyah-Patodi-Singer [APS], in-
tegral formulas for spectral flow were lurking in the background at the outset. In par-
ticular, Singer indicated how, in the case of certain geometric operators, spectral flow
could be interpreted as the integral of a 1-form obtained as the exterior derivative of the
eta invariant on a certain manifold of operators [Si, p. 190]. Douglas-Hurder-Kaminker
in their study of the eta invariant used Singer’s formula in an essential way [DHK; H;
Kam]. Moreover, the idea of type II spectral flow arose naturally in their work as well as
in the paper of Mathai [M].

Recent work by one of us [P1, 2] has clarified the purely functional analytic aspects of
spectral flow in both the type I and type II cases. We felt that it was now both possible and
desirable to obtain analogous integral formulas for spectral flow in much more general
settings. In fact, two such formulas already exist in particular cases: [G] and [P2]. This
paper grew out of an attempt to find a deeper connection between these two integral
formulas beyond mere analogy.

To discuss this further, we need to set some terminology and notation. If A is a Banach
Ł-algebra, then a (bounded, odd) Fredholm module for A is a pair (H, F) where H is a
Hilbert space on which A is represented and F is a self-adjoint operator on H satisfying
F2 ≥ 1 and [F, a] is compact for all a 2 A. An unbounded (odd) Fredholm module
for A is a pair (H, D) where, again, H is a Hilbert space on which A acts and D is an
unbounded self-adjoint operator on H satisfying (1+D2)�1 is compact and fa 2 A j [D, a]
is boundedg is dense in A. At this level of generality, the mapping (H, D) 7! (H, F)
where F ≥ sign(D) produces a bounded Fredholm module from an unbounded one.
One can impose summability conditions more stringent than compactness in the above
definitions and thereby axiomatize concrete cycles for cyclic cohomology or entire cyclic
cohomology [C1,2]. In this specialized setting, the properties of the mapping (H, D) 7!
(H, F) are more subtle. Returning to the general case, if u is a unitary in A, then F �
uFuŁ is compact, and the straight line path fFtg from F to uFuŁ is a continuous path
of self-adjoint Fredholm operators. The spectral flow of this path, sffFtg, is roughly,
the net number of eigenvalues that pass through 0 in the positive direction as t runs
from 0 to 1. If P is the projection on the positive spectral subspace for F, then PuP is a
Fredholm operator on P(H) and ind(PuP) ≥ sffFtg. Similarly, fDt :≥ (1� t)D+ t uDuŁg
is a “continuous” path of self-adjoint “unbounded Fredholm operators” and we have
ind(PuP) ≥ sffDtg where P is the projection on the nonnegative spectral subspace for
D.

In order to obtain explicit integral formulas for spectral flow, it is clear that some sort
of summability conditions need to be imposed. To this end, Ezra Getzler in [G] outlined a
method of exhibiting spectral flow as the integral of a 1-form in the context of unbounded
í-summable Fredholm modules (Tr(e�tD2

) Ú 1 for all t Ù 0). In particular, if fDtg is
the path mentioned above he indicated how to prove that

sffDtg ≥ 1pô
Z 1

0
Tr(D0

te
�D2

t ) dt
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FREDHOLM MODULES AND SPECTRAL FLOW 675

in the í-summable context. Then, in [P2] one of us showed that for (H, F) a bounded
p-summable Fredholm module

�
Tr(j[F, a]jp) Ú 1

�
and n a sufficiently large positive

integer,

sf(fFtg) ≥ 1
Cn

Z 1

0
Tr
�
F0t(1 � F2

t )n
�

dt,

where fFtg is as above. These are the two formulas that we want to reconcile.
Our path seemed clear. One, there should be a finitely summable unbounded version

of Getzler’s formula of the form:

sffDtg ≥ 1

C̃m

Z 1

0
Tr
�
D0

t(1 + D2
t )�m

�
dt

(here Tr
�
(1 + D2)�p

�
Ú +1 for some p Ù 0), where the Dt vary in D + B(H)sa. Two, the

finitely summable bounded version should be more general than the computation done in
[P2]: that is, the fFtg should vary freely in a manifold, F+Lsa where L is some Schatten-
like class in B(H). Third, we should be able to obtain the unbounded from the bounded
case via the map D 7! FD ≥ D(1 + D2)� 1

2 . Of course, FD is a smooth approximation
of sign(D) and the corresponding pair (H, FD) is called a pre-Fredholm module. The
technical obstacles to this program are legion, especially since we include the type II
situation at all stages.

In chapter one we anticipate our needs and consider finitely summable pre-Fredholm
modules (actually, Breuer-Fredholm modules) (N, F0) for a Banach Ł-algebra A. That is,
1 � F2

0 is p
2 -summable and [F0, a] is p-summable in the semifinite factor N for a dense

set of a’s in A. Our manifold of allowable perturbations of F0 is precisely the subspace
of F0 + Lp

sa which retains these two summability criteria. We denote this manifold by

F0 + Lp, p
2

sa . For F in this manifold and X 2 Lp, p
2

sa a tangent vector (at F), let ã(X) ≥
1

Cn
Tr
�
X(1�F2)n

�
where n ½ p�1

2 is an integer and Cn is a normalizing constant. Then ã
is a closed 1-form; that is, dã ≥ 0 (Proposition 1.3). By a version of the Poincaré Lemma
(Proposition 1.4), ã is exact; that is, ã ≥ dí where í(F) is the line integral of ã along
the segment [F0 ! F]. A simple argument (Proposition 1.5) shows that the integral of ã
along a piecewise-C1 path Γ depends only on the endpoints of Γ. Now, if Γ is such a path
from F1 to F2 we can extend it to a path Γ0 from sign(F1) to sign(F2). By Theorem 3.1
of [P2], the integral of ã along Γ0 is, therefore, sf(Γ0). The formula for sf(Γ) with natural
correction terms follows (Theorem 1.7).

In chapter two we study p-summable unbounded modules by reducing to the bounded
case. Our main technical tools are the functional calculus and an integral formula for
(1 + D2)� 1

2 . We first show that if (N, D0) is p-summable then (N, FD0 ) is q-summable for
q Ù p (Proposition 2.4). This result may be known but it does not appear to be in the
literature: Connes discusses the even case in [C1] and does not use the map D 7! FD. We

believe that q Ù p is necessary. We then show that D 7! FD mapping D0+Nsa to FD0 +Lq, q
2

sa

is continuous for q Ù p (Corollary 2.8). Next, we show that if t 7! Dt is C1 in operator
norm then t 7! Ft ≥ FDt is C1 in the norm of Lq

sa (Proposition 2.10). This is sufficient
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by Remark 1.8. We also obtain an integral formula for d
dt (Ft) in Proposition 2.10. Using

this formula and the trace property we show that

Tr
�
F0t(1 � F2

t )n
�
≥ Tr

�
D0

t(1 + D2
t )�(n+ 3

2 )
�
.

The extra 3
2 is exactly what is expected from formally differentiating Ft ≥ Dt(1 + D2

t )� 1
2

(Proposition 2.12). Finally, we deduce that if (N, D0) is p-summable and m ≥ n+ 3
2 where

n Ù p�1
2 is an integer, then for D 2 D0 + Nsa and X 2 Nsa a tangent vector (at D) the

1-form, 1
C̃m

Tr
�
X(1+D2)�m

�
is exact and integrating this 1-form along a path fDtg yields

sffDtg (modulo natural correction terms).
The operator norm estimates and trace norm estimates needed in Chapter 2 are of

independent interest and are contained in Appendix A and Appendix B, respectively. In
Appendix C we present some examples.

We are currently working on a sequel where we study the í-summable situation in
both the bounded and unbounded cases for types I and II.

ACKNOWLEDGMENT. This work was supported by NSERC of Canada and the ARC
of Australia. We thank the referee for suggestions which have greatly improved the in-
troduction.

1. Spectral flow as the integral of a 1-form—Finitely summable bounded Fred-
holm modules (Types I and II).

DEFINITION 1.1. Let A be a unital Banach Ł-algebra and p Ù 0, then an odd p-
summable pre-Breuer-Fredholm module for A is a pair (N, F0) where N is a semifinite
factor (on a separable Hilbert space), A is unitally Ł-represented in N, F0 in N is a self-
adjoint operator satisfying

(1) 1 � F2
0 is p

2 -summable, and
(2) [F0, a] is p-summable for all a in a dense Ł-subalgebra A of A (see [P2]).
We observe that if ü is the characteristic function of [0,1) then

F̃0 ≥ 2ü(F0) � 1 ≥ sign(F0)

is self-adjoint, in N, and satisfies F̃2
0 ≥ 1. Moreover,

1 � F2
0 ≥ F̃2

0 � F2
0 ≥ (F̃0 � F0)(F̃0 + F0)

and since (F̃0 + F0) is invertible in N, we see that

(F̃0 � F0) ≥ (1 � F2
0)(F̃0 + F0)�1

is p
2 -summable. This, of course, implies that [F̃0, a] is p-summable whenever [F0, a] is p-

summable. Thus, we can obtain a genuine p-summable Breuer-Fredholm module (N, F̃0).
However, we want the greater generality when we come to apply these results to un-
bounded Breuer-Fredholm modules.
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In general, we denote the Ł-ideal of n-summable operators in N by Ln(N) or Ln. We
denote by Ln

sa(N) or Ln
sa the real subspace of self-adjoints in Ln(N).

We let P ≥ ü(F0) so that F̃0 ≥ 2P � 1 and hence, relative to the decomposition,

1 ≥ P +(1�P), F̃0 has the matrix,
"

1 0
0 �1

#
. For a 2 A we let a ≥

"
a11 a12

a21 a22

#
relative

to this decomposition, so that [F̃0, a] 2 Lp(N) implies that a12 and a21 are in Lp(N) (and

conversely). If u ≥
"

u11 u12

u21 u22

#
is a unitary in A, then

uF̃0uŁ � F̃0 ≥
24 �2u12uŁ12 u11uŁ21 � u12uŁ22

u21uŁ11 � u22uŁ12 2u21uŁ21

35
is a self-adjoint element in the Ł-algebra,24 PL

p
2 P PLpP?

P?LpP P?L
p
2 P?

35 .

This is easily seen to be a Banach Ł-algebra in the norm

k(ai,j)k ≥ ka11kpÛ2 + ka12kp + ka21kp + ka22kpÛ2 +
X
i,j
kaijk1.

If N is a type I factor, the operator-norm terms are not necessary [CP, Proposition A-1].

We denote this Banach Ł-algebra by Lp, p
2 and its real self-adjoint subspace by Lp, p

2
sa .

Now,
uF0uŁ � F0 ≥ u(F0 � F̃0)uŁ + (uF̃0uŁ � F̃0) + (F̃0 � F0)

which is in
L

p
2
sa + Lp, p

2
sa + L

p
2
sa ≥ Lp, p

2
sa .

Thus, uF0uŁ is in the affine space F0 + Lp, p
2

sa , as are F̃0 and uF̃0uŁ for all u 2 U(A).

LEMMA 1.2. Let (N, F0) be an odd p-summable pre-Breuer-Fredholm module for
the unital Banach Ł-algebra, A. Let F̃0 ≥ 2ü(F0) � 1 and let

A ≥ fa 2 A j [F0, a] 2 Lp(N)g.

Then,
(1) F0, F̃0, uF0uŁ, uF̃0uŁ are in the affine space F0 + Lp, p

2
sa for all u 2 U(A), and

(2) for all F in F0 + Lp, p
2

sa , (1 � F2) 2 L
p
2

sa, and

F 7! (1 � F2): F0 + Lp, p
2

sa ! L
p
2

sa

is continuous.

PROOF. It remains to show (2). By (1) F0 � F̃0 is in Lp, p
2

sa , so any F in F0 + Lp, p
2

sa is of

the form F ≥ F̃0 + k with k 2 Lp, p
2

sa . Thus,

1 � F2 ≥
"

1 0
0 1

#
�
0@24 1 + k11 k12

kŁ12 �1 + k22

351A2

≥ �
24 k2

11 + 2k11 + k12kŁ12 k11k12 + k12k22

kŁ12k11 + k22kŁ12 kŁ22 � 2k22 + kŁ12k12

35
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is in L
p
2
sa as claimed.

NOTES. (1) The affine space F0 +Lp, p
2

sa appears to have a distinguished point, namely

F0. However, if F1 2 F0 + Lp, p
2

sa is any other point in this space and we use the positive

and negative spectral subspaces of F1 to define a new space, say (Lp, p
2

sa )0 then, in fact:

(a) (Lp, p
2

sa )0 ≥ Lp, p
2

sa

(b) Lp, p
2

sa ≥ fX 2 Lp
sa j 1 � (F0 + X)2 2 L

p
2 g

(c) F1 + Lp, p
2

sa ≥ F0 + Lp, p
2

sa .

PROOF. To see (b), first note that by part (2) of the previous lemma we get: �. On

the other hand if X 2 Lp
sa and 1 � (F0 + X)2 2 L

p
2 then letting Y0 ≥ F0 � F̃0 2 L

p
2
sa, we

have 1 �
�
F̃0 + (Y0 + X)

�2 2 L
p
2

) (Y0 + X)2 + F̃0Y0 + F̃0X + XF̃0 + Y0F̃0 2 L
p
2

) F̃0X + XF̃0 2 L
p
2 ) X 2 Lp, p

2
sa .

So (b) holds.
To see (a) let X 2 Lp, p

2
sa then X 2 Lp

sa and 1 � F2
1 ≥ 1 � (F0 + X)2 2 L

p
2 . But,

by hypothesis 1 � (F1 � X)2 ≥ 1 � F2
0 2 L

p
2 , so by part (b) applied to F1 we get

(�X) 2 (Lp, p
2

sa )0 and so X 2 (Lp, p
2

sa )0. The reverse inequality is proved similarly.
Part (c) is trivial.
(2) For further evidence that these slightly exotic spaces are the correct ones to use

in this context, we show in Chapter 2 that they are exactly the receptacles for the trans-
formation D 7! FD ≥ D(1 + D2)� 1

2 from the unbounded to the bounded set-up.

We now fix A and (N, F0) as above and consider the space M ≥ F0 + Lp, p
2

sa as a real
Banach manifold. Let n be a positive integer with n ½ p�1

2 . We define a 1-form ã on M
via

ã(X) ≥ 1
Cn

Tr
�
X(1 � F2)n

�
where

F 2 M ≥ F0 + Lp, p
2

sa ,

X 2 TF(M) ≥ Lp, p
2

sa � Ln
sa, and

Cn ≥
Z 1

�1
(1 � t2)n dt ≥ n! 2n+1

1 Ð 3 Ð Ð Ð (2n + 1)
.

By the lemma, ã is certainly a real-valued function of X and F and for fixed F 2 M it is
a bounded linear function of X. It is probably true that

ã: T(M) ≥ Lp, p
2

sa ð M ! R

is continuously differentiable in the strongest sense: i.e., for each (X, F) in T(M),

Dã(X, F) is in L(Lp, p
2

sa ðM, R) and (X, F) 7! Dã(X, F) is norm-continuous. Since we are
only using the language and ideas of (elementary) differential geometry as motivation
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and none of the big theorems we do not need this. We only need the weaker result that
dã, the exterior derivative of ã, makes sense and dã ≥ 0.

To this end, we use the invariant definition of exterior differentiation [S, p. 292]. For

F in M, we have X, Y in TF(M) ≥ Lp, p
2

sa realized as tangent vectors at F by differentiating
the curves F + sX and F + sY at s ≥ 0. That is, we consider X and Y also as the canonical
vector fields on M (or flows on M) given by flowing in the X direction or Y direction.
Then, by definition:

dã(X, Y) ≥ X Ð
�
ã(Y)

�
� Y Ð

�
ã(X)

�
� ã([X, Y]).

Since X and Y commute as flows the last term is 0 and so drops from our calculation.

PROPOSITION 1.3. Let N be a semifinite factor and F0 a self-adjoint element in N
satisfying 1 � F2

0 is p
2 -summable for some p Ù 0. Let M be the real Banach manifold

F0 + Lp, p
2

sa . Let n ½ p�1
2 be a positive integer and let ã(X) ≥ 1

Cn
Tr
�
X(1 � F2)n

�
. Then ã

is a closed 1-form on M; that is, dã ≥ 0.

(NOTE. (N, F0) is an odd p-summable pre-Breuer-Fredholm module for the CŁ-alge-
bra A ≥ C1, but the particular algebra is unnecessary here.)

PROOF. Fix F 2 M and X, Y 2 TF(M), then

(dã)F(X, Y) ≥ XF Ð
�
ã(Y)

�
� YF Ð

�
ã(X)

�
≥ d

ds

þþþþ
s≥0

� 1
Cn

²
Tr
�

Y
�
1 � (F + sX)2

�n
�
� Tr

�
X
�
1 � (F + sY)2

�n
�¦½

so it suffices to see that
d
ds

þþþþ
s≥0

 
Tr
�

Y
�
1 � (F + sX)2

�n
�!

≥ d
ds

þþþþ
s≥0

 
Tr
�

X
�
1 � (F + sY)2

�n
�!

.

We simplify our notation a little by using Fs ≥ F + sX for s Ù 0.

d
ds

þþþþ
s≥0

�
Tr
�
Y(1 � F2

s )n
��

≥ lim
s!0

Tr
�

Y
1
s

[(1 � F2
s )n � (1 � F2)n]

�

≥ lim
s!0

Tr
�

Y
1
s

�n�1X
k≥0

(1 � F2
s )k
�
(1 � F2

s )� (1 � F2)
�
(1 � F2)n�k�1

½�

≥ lim
s!0

Tr
�

Y
�n�1X

k≥0
(1 � F2

s )k(�FX � XF � sX2)(1 � F2)n�k�1
½�

≥ Tr
�

Y
�n�1X

k≥0
(1 � F2)k(�FX � XF)(1 � F2)n�k�1

½�

where (1�F2
s )k ! (1�F2)k in L

p
2k and sX2 ! 0 in L

p
2 as X2 is in L

p
2 , so that XF +FX is

in L
p
2 and by the Hölder inequality [D], the sum converges in L

p
2n . Since Y 2 Lp, p

2 � Lp

and 1
p + 2n

p ≥ 2n+1
p ½ 1, the traces converge as claimed. Thus,

d
ds

þþþþ
s≥0

�
Tr
�
Y(1 � F2

s )n
��

≥ �
n�1X
k≥0

Tr
�
Y(1 � F2)k(FX + XF)(1 � F2)n�k�1

�
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Now,
Y(1 � F2)k 2 L

p
2k+1 and X(1 � F2)n�k�1 2 L

p
2(n�k�1)+1

by the Hölder inequality, so that

Y(1 � F2)kFX(1 � F2)n�k�1 and Y(1 � F2)kXF(1 � F2)n�k�1

are both summable. Thus,

d
ds

þþþþ
s≥0

�
Tr
�
Y(1 � F2

s )n
��

≥ �
n�1X
k≥0

h
Tr
�
Y(1 � F2)kFX(1 � F2)n�k�1

�
+ Tr

�
Y(1 � F2)kXF(1 � F2)n�k�1

�i

≥ �
n�1X
k≥0

h
Tr
�
X(1 � F2)n�k�1Y(1 � F2)kF

�
+ Tr

�
XF(1 � F2)n�k�1Y(1 � F2)k

�i

≥ �
n�1X
k≥0

h
Tr
�
X(1 � F2)n�k�1YF(1 � F2)k

�
+ Tr

�
X(1 � F2)n�k�1FY(1 � F2)k

�i
which, after changing the variables j ≥ n � k � 1 is precisely

d
ds

þþþþ
s≥0

 
Tr
�

X
�
1 � (F + sY)2

�n
�!

.

Now, since ã is closed and M is convex, one would expect from some version of
Poincaré’s Lemma thatã is, in fact, exact. This is the case, and we prove it below. Fixing
(N, F0) we define í: M ! R via

í(F) ≥ 1
Cn

Z 1

0
Tr
�
(F � F0)(1 � F2

t )n
�

dt

where Ft ≥ F0 + t(F � F0) for t in [0, 1]. Since the integrand is clearly continuous, í is
well-defined. By definition,

díF(X) ≥ d
ds

þþþþ
s≥0

�
í(F + sX)

�
.

PROPOSITION 1.4. With the assumptions of Proposition 1.3 and the above definition
of í we have that dí ≥ ã.

PROOF. Fix F1 2 M ≥ F0 + Lp, p
2

sa and let Y ≥ (F1 � F0) so that

í(F1) ≥ 1
Cn

Z 1

0
Tr
�
Y(1 � F2

t )n
�

dt

and

í(F1 + sX) ≥ 1
Cn

Z 1

0
Tr
�

(Y + sX)
�
1 � (Fs)2

t

�n
�

dt

where
(F s)t ≥ F0 + t(F1 + sX � F0) ≥ F0 + t(Y + sX)
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for real s. Now, by the product rule

d
ds

 
Tr
�

(Y + sX)
�
1 � (Fs)2

t

�n
�!

≥ Tr
�

X
�
1 � (Fs)2

t

�n
�

+ Tr
�

(Y + sX)
d
ds

�
1 � (Fs)2

t

�n
�

≥ Tr
�

X
�
1 � (Fs)2

t

�n
�

�
n�1X
k≥0

²
Tr
�

(Y + sX)
�
1 � (Fs)2

t

�k�
t(F0 + tY)X + tX(F0 + tY) + t22sX2

�
Ð
�
1 � (Fs)2

t

�n�k�1
�¦

by a calculation very similar to that of Proposition 1.3. Now, as s ! 0 this real-valued
function converges to

d
ds

þþþþ
s≥0

 
Tr
�

(Y + sX)
�
1 � (Fs)2

t

�n
�!

uniformly in t. By the Mean Value Theorem this shows that the difference quotients for

d
ds

þþþþ
s≥0

 
Tr
�

(Y + sX)
�
1 � (Fs)2

t

�n
�!

converge uniformly in t. That is, we can pass d
ds js≥0 through the integral and obtain

díF1 (X)

≥ d
ds

þþþþ
s≥0

�
í(F1 + sX)

�
≥ 1

Cn

Z 1

0

d
ds

þþþþ
s≥0

Tr
�

(Y + sX)
�
1 � (Fs)2

t

�n
�

dt

≥ 1
Cn

Z 1

0

²
Tr
�
X(1 � F2

t )n
�

+ Tr
�

Y
d
ds

þþþþ
s≥0

�
1 � (Fs)2

t

�n
�¦

dt

≥ 1
Cn

Z 1

0

²
Tr
�
X(1 � F2

t )n
�
�

n�1X
k≥0

h
Tr
�
Y(1 � F2

t )k(tFtX + tXFt)(1 � F2
t )n�k�1

�i¦
dt

≥ 1
Cn

Z 1

0

²
Tr
�
X(1 � F2

t )n
�
�

n�1X
k≥0

h
Tr
�
X(1 � F2

t )k(FttY + tYFt)(1 � F2
t )n�k�1

�i¦
dt

≥ 1
Cn

Z 1

0

²
Tr
�
X(1 � F2

t )n
�

+ t
d
dt

Tr
�
X(1 � F2

t )n
�¦

dt

≥ 1
Cn

Z 1

0

d
dt

h
t Tr

�
X(1 � F2

t )n
�i

dt ≥ 1
Cn

Tr
�
X(1 � F2

1)n
�

which is ãF1 (X) as required.
Now, if we had used F00 in place of F0 we would get í0 in place of í and dí0 ≥ ã ≥ dí

so that d(í0 � í) ≥ 0. The usual argument shows that í ≥ í0 + C for a constant C.
Evaluating at F0 gives í(F00) ≥ í0(F00) + C ≥ C. That is, í(F) ≥ í0(F) + í(F00). In other
words, the integral

1
Cn

Z
Γ

Tr
� d

dt
(Ft)(1 � F2

t )n
�

dt
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is independent of the piecewise linear paths Γ from F0 to F given by

Γ1: F0 ž�ž F and Γ2: F0 ž�ž F0
0 ž�ž F.

By a very easy induction argument, this can be extended to show that

1
Cn

Z
Γ

Tr
� d

dt
(Ft)(1 � F2

t )n
�

dt

depends only on the endpoints of any piecewise-linear path Γ. By an approximation
argument, this conclusion can be extended to paths which are piecewise continuously
differentiable (see Remark 1.8). Thus, we have proved

PROPOSITION 1.5. The integral of the 1-form ã along a piecewise continuously dif-
ferentiable path Γ in M depends only on the endpoints of the path Γ.

DEFINITION 1.6. Let F 2 M ≥ F0 + Lp, p
2

sa and let F̃ ≥ 2ü(F) � 1 the corresponding
symmetry. Then, as before F̃ 2 M as well. Let fFtgt2[0,1] a piecewise smooth path in M
beginning at F and ending at F̃. For example, we could choose Ft ≥ F + t(F̃ � F) as our
path. Let n be a positive integer, n ½ p�1

2 . We define

ån(F) ≥ 1
Cn

Z 1

0
Tr
� d

dt
(Ft)(1 � F2

t )n
�

dt.

It is clear by considering the linear path that if F1 and F2 are unitarily equivalent in M
then ån(F1) ≥ ån(F2).

THEOREM 1.7. Let (N, F0) be an odd p-summable pre-Breuer-Fredholm module for

a unital Banach Ł-algebra A, let n ½ p�1
2 be a positive integer and let M ≥ F0 + Lp, p

2
sa .

Let F1, F2 2 M and let fFtg ≥ Γ be any piecewise continuously differentiable path in M
from F1 to F2. Then the spectral flow from F1 to F2 in M is given by:

sf(F1, F2) ≥ 1
Cn

Z
Γ

Tr
� d

dt
(Ft)(1 � F2

t )n
�

dt + ån(F2)� ån(F1).

PROOF. The formula on the right is just the integral of ã along a curve in M from
F̃1 to F̃2. Thus, it is equal to the integral of ã along the straight line from F̃1 to F̃2. But,

F̃1 � F̃2 2 Lp, p
2

sa � Lp
sa and so Theorem 3.1 of [P2] applies (we note that Theorem 3.1 of

[P2] is true for 2n ½ p � 1 by an appeal to Theorem 4.1 of [ASS]). Hence the formula
gives the spectral flow of the straight line path from F̃1 to F̃2. But, then the two piecewise
linear paths from F̃1 to F̃2 indicated below are clearly homotopic in M and so yield the
same spectral flow:

F̃1 ž�ž F̃2 and F̃1 ž�ž F1 ž�ž F2 ž�ž F̃2.

That is,
sf(F̃1, F̃2) ≥ sf(F̃1, F1) + sf(F1, F2) + sf (F2, F̃2).
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But, since ü is constant on the path from F̃1 to F1, sf(F̃1, F1) ≥ 0 [P2, Remark 2.3].
Similarly, sf(F2, F̃2) ≥ 0. Hence,

sf(F1, F2) ≥ sf(F̃1, F̃2)

≥ 1
Cn

Z
Γ

Tr
� d

dt
(Ft)(1 � F2

t )n
�

dt + ån(F2)� ån(F1)

as claimed.

REMARK 1.8. We can relax the hypotheses in Theorem 1.7 to the following:

(1) t 7! Ft is continuous in M ≥ F0 + Lp, p
2

sa , and
(2) piecewise, d

dt (Ft) exists in L2n+1 as a (2n + 1)-norm limit and t 7! d
dt (Ft) is piece-

wise continuous in (2n + 1)-norm, for n ½ p�1
2 .

It is clear that the integral exists in this generality, as the integrand is piecewise continu-
ous and trace-class by Hölder’s inequality. By a standard continuity and compactness ar-

gument we can approximate fFtg by a continuous piecewise linear path in M ≥ F0+Lp, p
2

sa

with the same end points so that kFt � GtkM and kF0
t � G0

tk2n+1 are uniformly small. As

F 7! (1 � F2)n: F0 + Lp, p
2

sa ! L
p

2n !̈ L 2n+1
2n

is continuous this will imply that k(1� F2
t )n � (1�G2

t )nk 2n+1
2n

is uniformly small. Hence

kF0
t(1 � F2

t )n � G0
t(1 � G2

t )nk1 will be uniformly small.
Thus, Z 1

0
Tr
� d

dt
(Ft)(1 � F2

t )n
�

dt

is close to Z 1

0
Tr
� d

dt
(Gt)(1 � G2

t )n
�

dt.

Since F0 ≥ G0 and F1 ≥ G1 we get that

sf(F0, F1) ≥ sf(G0, G1) ≥ 1
Cn

Z 1

0
Tr
� d

dt
(Gt)(1 � G2

t )n
�

dt + ån(G1) � ån(G0)

which we can choose to be arbitrarily close to

1
Cn

Z 1

0
Tr
� d

dt
(Ft)(1 � F2

t )n
�

dt + ån(F1)� ån(F0).

Hence, they are equal.

THEOREM 1.9. Let (N, F0) be an odd p-summable pre-Breuer-Fredholm module for
the unital Banach Ł-algebra A. Let P ≥ ü(F0) and let n be a positive integer n ½ p�1

2 .
For each u 2 U(A) with [F, u] p-summable, the path Fu

t ≥ F0 + t(uF0uŁ � F0) lies in

M ≥ F0 + Lp, p
2

sa and

ind(PuP) ≥ sf(fFu
t g) ≥ 1

Cn

Z 1

0
Tr
� d

dt
(Fu

t )
�
1 � (Fu

t )2
�n
�

dt.

https://doi.org/10.4153/CJM-1998-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-038-x


684 A. CAREY AND J. PHILLIPS

PROOF. The second equality follows from the previous theorem and the fact that
ån(uF0uŁ) ≥ ån(F0). The first equality follows from Theorem 3.3 of [P2] (again, we use
the improved version with 2n ½ p � 1, courtesy of Theorem 4.1 of [ASS]) since

ind(PuP) ≥ sf(F̃0, uF̃0uŁ) ≥ sf
�
F̃0, (uF0uŁ)¾

�
≥ sf(F0, uF0uŁ) ≥ sf(fFu

t g).

2. Spectral flow as the integral of a 1-form for finitely summable unbounded
Fredholm modules (Types I and II). The idea of this chapter is to prove a spectral
flow formula as indicated in the title by passing to the bounded case (Chapter 1) via the
transformation D 7! F ≥ D(1 + D2)� 1

2 . Beneath this simple idea lurks a plethora of
technical difficulties. Many of these technicalities have been shunted to the appendices;
indeed, it is the problems raised in this chapter which made the appendices necessary.
In order to make the material more digestible, we have broken down the chapter into
subheadings A, B, etc. with self-explanatory titles. A quick perusal of these titles by the
reader would be an excellent overview for the chapter.

We begin with:

DEFINITION 2.1. Let A be a unital Banach Ł-algebra and p Ù 0, then an odd p-
summable unbounded Breuer-Fredholmmodule for A is a pair (N, D) where N is a semifi-
nite factor (on a separable Hilbert space), A is unitally Ł-represented in N, D is an un-
bounded self-adjoint operator affiliated with N satisfying

(1) (1 + D2)�1 is p
2 -summable, and

(2) A :≥ fa 2 A j a(dom D) � dom D and [D, a] is boundedg is a dense Ł-
subalgebra of A.

If (1 + D2)�1 is in the ideal KN but not necessarily finitely summable, we still call (N, D)
an unbounded Breuer-Fredholm module for A.

A. If (N, D) is an odd, p-summable, unbounded Fredholm module, then�
N, D(1 + D2)� 1

2

�
is an odd q-summable pre-Fredholm module for q Ù p.

In [C1], Connes discusses the even case of Proposition 2.4. In the odd case, he only
discusses bounded Fredholm modules. In order to take q ≥ p one is forced either to
consider weak Lp spaces as in [C2, IV.2] or, as hinted at in [C2, IV.8, Remark 5], to
assume that the commutators, [jDj, a] are bounded. We may take this up in the sequel.

LEMMA 2.2. If ï 7! S(ï): (a, b) ! N is operator-norm continuous and

T ≥
Z b

a
S(ï) dï

converges in operator norm, then for any p ½ 1,

kTkp �
Z b

a
kS(ï)kp dï
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(where, of course, kXkp
p ≥ Tr(jXjp)).

PROOF. First note that ï 7! jS(ï)jp is operator-norm continuous, so that ï 7!
kS(ï)kp is lower semicontinuous. We can assume that the Lebesgue integral

Z b

a
kS(ï)kp dï

is finite, otherwise there is nothing to prove. In this case the integral is equal to the lower
Riemann integral and hence by a judicious choice of a sequence of partitions fPkg of
[a, b] we can assume:

(1) T ≥ k Ð k � limk!1
�P

Pk
S(ïk,i)∆k,i(ï)

�
and

(2)
Rb

a kS(ï)kp dï ≥ limk!1
�P

Pk
kS(ïk,i)kp∆k,i(ï)

�
.

Let Tk ≥ P
Pk

S(ïk,i)∆k,i(ï) so that T ≥ k Ð k � limk!1 Tk and hence

jTjp ≥ k Ð k � lim
k!1

jTkjp.

Thus,

kTkp � lim inf
k!1 kTkkp � lim inf

k!1
X
Pk

kS(ïk,i)kp∆(ïk,i)

≥
Z b

a
kS(ï)kp dï.

LEMMA 2.3. Let D be an unbounded self-adjoint operator and let a be a bounded
operator satisfying a(dom D) � dom D so that [D, a] is densely defined on dom D. Then
for each x Ù 0 we have:

[a, (x + D2)�1] ≥ D(x + D2)�1[D, a](x + D2)�1 + (x + D2)�1[D, a]D(x + D2)�1

as everywhere-defined operators.

PROOF. We first note that this would be the usual resolvent calculation if
a(dom D2) � dom D2. We must be more subtle.

[a, (x + D2)�1] ≥ a(x + D2)�1 � (x + D2)�1a Ð 1H

≥ a(x + D2)�1 � (x + D2)�1a(x + D2)(x + D2)�1

≥
�
a � (x + D2)�1a(x + D2)

�
(x + D2)�1

≥
�
a � (x + D2)�1xa � (x + D2)�1aD2

�
(x + D2)�1

≥
�

a �
�
1 � D2(x + D2)�1

�
a � (x + D2)�1aD2

�
(x + D2)�1

≥ D2(x + D2)�1a(x + D2)�1 � (x + D2)�1aD2(x + D2)�1.

Now, D2(x + D2)�1 ≥ D(x + D2)�1D on dom D and since

range(x + D2)�1 ≥ dom D2 � dom D
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which is left invariant by a, we see that

D2(x + D2)�1a(x + D2)�1 ≥ D(x + D2)�1Da(x + D2)�1

on all of H. Similarly,

D(x + D2)�1aD(x + D2)�1 ≥ (x + D2)�1DaD(x + D2)�1

on all of H. Thus,

[a, (x + D2)�1] ≥ D(x + D2)�1Da(x + D2)�1 � D(x + D2)�1aD(x + D2)�1

+ (x + D2)�1DaD(x + D2)�1 � (x + D2)�1aD2(x + D2)�1

≥ D(x + D2)�1[D, a](x + D2)�1 + (x + D2)�1[D, a]D(x + D2)�1

as claimed.
With even more care, this lemma can be proved under the weaker assumption that

fò 2 dom D j aò 2 dom Dg is dense in dom D in the graph norm. One then needs
to replace [D, a] with its closure [D, a] for the conclusion to make sense. It is possible
(likely?) that most of the theory of unbounded Fredholm modules can be pushed through
in this generality. We do not attempt this here, but note that [C1] uses the stronger domain
invariance condition while the more expository [C2] is sometimes a little vague on the
meaning of “[D, a] is bounded”.

PROPOSITION 2.4. Let (N, D) be an odd p-summable unbounded Breuer-Fredholm
module for the Banach Ł-algebra A and let F ≥ D(1 + D2)� 1

2 . Then (N, F) is an odd
q-summable pre-Breuer-Fredholm module for A for any q Ù p.

PROOF. 1 � F2 ≥ (1 + D2)�1 which is p
2 -summable and hence q

2 -summable for any
q ½ p.

Now, for a 2 A with [D, a] bounded, one checks that

[F, a] ≥ [D, a](1 + D2)�
1
2 + D[(1 + D2)�

1
2 , a]

so it suffices to see that D[(1 + D2)� 1
2 , a] is q-summable for q Ù p. By Remark 3 of

Appendix A,

(1 + D2)�
1
2 ≥ 1

ô
Z 1

0
ï� 1

2 (1 + D2 + ï)�1 dï
converges in operator norm. So, by Lemma 2.3

D
�
(1 + D2)�

1
2 , a

½
≥ D

1
ô
Z 1

0
ï� 1

2 f(1 + D2 + ï)�1[a, D]D(1 + D2 + ï)�1

+ D(1 + D2 + ï)�1[a, D](1 + D2 + ï)�1g dï.

Since D is a closed operator and the integral converges in norm and hence pointwise on
H, we can pass D through the integral provided the resulting integral also converges at
least pointwise on H. In fact, the resulting integral

1
ô
Z 1

0
ï� 1

2

�
D(1 + D2 + ï)�1[a, D]D(1 + D2 + ï)�1

+ D2(1 + D2 + ï)�1[a, D](1 + D2 + ï)�1
�

dï
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converges in norm using the estimates of Remark 5 of Appendix A (and
kD2(1 + D2 + ï)�1k � 1). Since q Ù p we can write p ≥ (1 � è)q. By Lemma 2.2,

kD[(1 + D2)�
1
2 , a]kq

� 1
ô
Z 1

0
ï� 1

2

0B@kD(1 + D2 + ï)�1[a, D]D(1 + D2 + ï)�( 1+è
2 )k k(1 + D2 + ï)�( 1�è

2 )kq

+ kD2(1 + D2 + ï)�1[a, D](1 + D2 + ï)�( 1+è
2 )k k(1 + D2 + ï)�( 1�è

2 )kq

1CA dï

� 1
ô
Z 1

0
ï� 1

2

0B@ 1

2
p
ï + 1

k[a, D]k kD(1 + D2 + ï)�( 1+è
2 )k k(1 + D2 + ï)�

1
2 k

p
q
p

+ 1 Ð k[a, D]k k(1 + D2 + ï)�( 1+è
2 )k k(1 + D2 + ï)�

1
2 k

p
q
p

1CA dï.

Now, p
q ≥ 1 � è and (1 + D2 + ï)� 1

2 � (1 + D2)� 1
2 so that

k(1 + D2 + ï)�
1
2 k

p
q
p � k(1 + D2)�

1
2 k(1�è)

p .

By the spectral theorem and a little estimating we get

kD(1 + D2 + ï)�( 1+è
2 )k � (1 + ï)�

è

2

and

k(1 + D2 + ï)�( 1+è
2 )k � (1 + ï)�( 1+è

2 ).

Finally, we get

kD[(1 + D2)�
1
2 , a]kq

� 1
ô
Z 1

0
ï� 1

2

 
1

2
p

1 + ï (1 + ï)�
è

2 + (1 + ï)�( 1+è
2 )
!

dïk[a, D]k k(1 + D2)�
1
2 k1�è

p

≥ 3
2

1
ô
Z 1

0
ï� 1

2 (1 + ï)�( 1+è
2 ) dïk[a, D]k k(1 + D2)�

1
2 k1�è

p

Ú +1.

COROLLARY 2.5. Let (N, D) be an odd p-summable unbounded Breuer-Fredholm
module for the Banach Ł-algebra A, and let F0 ≥ 2ü(D)�1 whereü is the characteristic
function of R+. Then, (N, F0) is an odd q-summable Breuer-Fredholm module for any
q Ù p.

PROOF. This follows immediately from Proposition 2.4, the remarks after Defini-
tion 1.1 and the fact that ü(D) ≥ ü

�
D(1 + D2)� 1

2

�
.
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B. If (N, D) is an odd, p-summable, unbounded Fredholm module and t 7! Dt ≥
D+At 2 D+Nsa is operator-norm continuous, then for q Ù p, t 7! Ft ≥ Dt(1 +D2

t )� 1
2

is continuous in F + Lq, q
2

sa .

LEMMA 2.6. Let D be an unbounded self-adjoint operator, ï ½ 0 and 1
2 ½ è ½ 0.

Then
(1) kD(1 + D2)

1
2�è(1 + D2 + ï)�1k � (1 + ï)�è and

(2) k(1 + D2)
1
2�è(1 + D2 + ï)�1k � (1 + ï)�( 1

2 +è).

PROOF. We prove (1). The proof of (2) follows the same plan. It suffices by the
functional calculus to prove the following numerical inequality:þþþþþx(1 + x2)

1
2�è

1 + x2 + ï
þþþþþ � (1 + ï)�è for all x 2 R.

We break this into two cases: if x2 � ï thenþþþþþx(1 + x2)
1
2�è

1 + x2 + ï
þþþþþ �

p
ï(1 + ï)

1
2�è

1 + ï � (1 + ï)
1
2 (1 + ï)

1
2�è

1 + ï ≥ (1 + ï)�è.

If x2 ½ ï thenþþþþþx(1 + x2)
1
2�è

1 + x2 + ï
þþþþþ � (1 + x2)

1
2 (1 + x2)

1
2�è

1 + x2
≥ (1 + x2)�è � (1 + ï)�è.

The following lemma is crucial for the remainder of this chapter and indeed for the
sequel to this paper on the í-summable case.

LEMMA 2.7. Let D0 be an unbounded self-adjoint operator affiliated with the semifi-
nite factor N. Let A 2 Nsa and let D1 ≥ D0 + A. For i ≥ 0, 1 let FDi ≥ Di(1 + D2

i )� 1
2 .

Then for fixed è, 0 Ú è Ú 1
2 , FD1 � FD0 ≥ Bè(1 + D2

0)�( 1
2�è) where

Bè ≥ 1
ô
Z 1

0
ï� 1

2 [(1 + ï)(1 + D2
1 + ï)�1A(1 + D2

0)
1
2�è(1 + D2

0 + ï)�1

� D1(1 + D2
1 + ï)�1AD0(1 + D2

0)
1
2�è(1 + D2

0 + ï)�1] dï
converges in operator norm and kBèk � C(è)kAk.

PROOF. The norm-convergence of the integral and the final estimate both follow
from the previous lemma and Remark 5 of Appendix A.

Now, by Appendix A, Lemma 4 we have for all ò 2 dom D0 ≥ dom D1:

FD1ò � FD0ò ≥
1
ô
Z 1

0
ï� 1

2 [D1(1 + D2
1 + ï)�1 � D0(1 + D2

0 + ï)�1]ò dï

where the integral is norm convergent in H. However, by Appendix A, Lemma 6, part
(2) the integral converges in operator norm and so

FD1 � FD0 ≥
1
ô
Z 1

0
ï� 1

2 [D1(1 + D2
1 + ï)�1 � D0(1 + D2

0 + ï)�1] dï.
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Now,

D1(1+D2
1 + ï)�1 � D0(1 + D2

0 + ï)�1

≥ A(1 + D2
0 + ï)�1 + D1[(1 + D2

1 + ï)�1 � (1 + D2
0 + ï)�1]

which by Lemma 2.9 of the next section

≥ A(1 + D2
0 + ï)�1 � D1[D1(1 + D2

1 + ï)�1A(1 + D2
0 + ï)�1

+ (1 + D2
1 + ï)�1AD0(1 + D2

0 + ï)�1]

≥ A(1 + D2
0 + ï)�1 � D2

1(1 + D2
1 + ï)�1A(1 + D2

0 + ï)�1

� D1(1 + D2
1 + ï)�1AD0(1 + D2

0 + ï)�1

≥ A(1 + D2
0 + ï)�1 � [1 � (1 + ï)(1 + D2

1 + ï)�1]A(1 + D2
0 + ï)�1

� D1(1 + D2
1 + ï)�1AD0(1 + D2

0 + ï)�1

≥ (1 + ï)(1 + D2
1 + ï)�1A(1 + D2

0 + ï)�1

� D1(1 + D2
1 + ï)�1AD0(1 + D2

0 + ï)�1

≥ [Ð Ð Ð](1 + D2
0)

1
2�è(1 + D2

0)�
1
2 +è

≥ [(1 + ï)(1 + D2
1 + ï)�1A(1 + D2

0)
1
2�è(1 + D2

0 + ï)�1

� D1(1 + D2
1 + ï)�1A(1 + D2

0)
1
2�è(1 + D2

0 + ï)�1](1 + D2
0)�

1
2 +è.

Hence, as (1 + D2
0)� 1

2 +è is bounded:

FD1 � FD0 ≥
1
ô
Z 1

0
ï� 1

2 [(1 + ï)(1 + D2
1 + ï)�1A(1 + D2

0)
1
2�è(1 + D2

0 + ï)�1

� D1(1 + D2
1 + ï)�1A(1 + D2

0)
1
2�è(1 + D2

0 + ï)�1] dï(1 + D2
0)�

1
2 +è

as claimed.

COROLLARY 2.8. Let (N, D0) be p-summable and let Dt ≥ D0 + At 2 D0 + Nsa be an
operator-norm continuous path. Then,

Ft ≥ Dt(1 + D2
t )�

1
2 2 F0 + Lq, q

2
sa

is continuous for q Ù p.

PROOF. Let q Ù p. Then there exists è Ù 0 so that p ≥ (1 � 2è)q. By Lemma 2.7,

Ft � F0 ≥ Bè(1 + D2
0)�( 1

2�è)

and since ( 1
2 � è)q ≥ p

2 , we have Ft � F0 2 Lq
sa. Now, by Appendix B, Lemma 6 we see

that (1 + D2
t0 )
�( 1

2�è) 2 Lq
sa for each t0, and by Lemma 2.7 above

Ft � Ft0 ≥ Bè(t)(1 + D2
t0 )
�( 1

2�è)

where
kBè(t)k � C(è)kAt � At0k.
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Thus, t 7! Ft 2 F0 + Lq
sa is q-norm continuous. Letting F̃0 ≥ 2ü(F0) � 1 we see by the

discussion after Definition 1.1 that

Ft 2 F̃0 + Lq
sa ≥ F0 + Lq

sa.

That is, Ft ≥ F̃0 +Xt where t 7! Xt is continuous in Lq
sa. Let F̃0 ≥

"
1 0
0 �1

#
and relative

to this decomposition, let Xt ≥
"

At Bt

BŁt Ct

#
where each entry is continuous in Lq, and At,

Ct are in Lq
sa.

Now, 1�F2
t ≥ (1+D2

t )�1 is continuous in L
q
2

sa by Proposition 10 of Appendix B (with
r ≥ 1 and q

2 in place of n). Hence, t 7! 1
2 (1 � F2

t + X2
t ) is also continuous in L

q
2 . One

easily calculates that

1
2

(1 � F2
t + X2

t ) ≥ �1
2

(XtF̃0 + F̃0Xt) ≥
"�At 0

0 Ct

#
.

That is,

Xt ≥
"

At Bt

BŁt Ct

#

is in Lq, q
2

sa and furthermore, t 7! Bt is continuous in Lq and t 7! At, t 7! Ct are continuous
in L

q
2
sa.

Finally since t 7! Ft is operator-norm continuous by Theorem 8 of Appendix A, we

see that t 7! Ft 2 (F̃0 + Lq, q
2

sa ) ≥ (F0 + Lq, q
2

sa ) is continuous in the Banach space norm of

F0 + Lq, q
2

sa as claimed.

C. If (N, D) is an odd unbounded Fredholm module and t 7! Dt ≥ D + At 2 Nsa

is C1 in operator norm, then for q Ù p t 7! Ft ≥ Dt(1 + D2
t )

1
2 is a path in Lq, q

2
sa which

is C1 in the norm of Lq
sa.

LEMMA 2.9. If D0 is an unbounded self-adjoint operator on H, A is a bounded self-
adjoint operator on H and D ≥ D0 + A, then for x Ù 0

(D2 + x)�1 � (D2
0 + x)�1 ≥ �D0(D2

0 + x)�1A(D2 + x)�1 � (D2
0 + x)�1AD(D2 + x)�1.

PROOF. We first assume that A(dom D0) � dom D0 so that (with a little thought) all
of the domain difficulties disappear in the resolvent calculation:

(D2 + x)�1 � (D2
0 + x)�1 ≥ (D2

0 + x)�1[(D2
0 + x) � (D2 + x)](D2 + x)�1

≥ (D2
0 + x)�1[�A2 � D0A � AD0](D2 + x)�1

≥ (D2
0 + x)�1[�D0A � AD](D2 + x)�1

≥ �D0(D2
0 + x)�1A(D2 + x)�1 � (D2

0 + x)�1AD(D2 + x)�1.

We then apply the trick in the proof of Lemma 6 of Appendix B to get the result for
general A.
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PROPOSITION 2.10. If (N, D0) is an odd unbounded p-summable Breuer-Fredholm
module (for C, say) and t 7! At is a C1 path in Nsa, then letting Dt ≥ D0 + At, we have

that t 7! Ft ≥ Dt(1 + D2
t )� 1

2 is a path of Breuer-Fredholm operators in F0 + Lq, q
2

sa for
q Ù p which is C1 in the Banach space norm of Lq

sa. Moreover,

d
dt

(Ft) ≥ 1
ô
Z 1

0
ï� 1

2

�
(1 + D2

t + ï)�1(1 + ï)
d
dt

(At)(1 + D2
t + ï)�1

� Dt(1 + D2
t + ï)�1 d

dt
(At)Dt(1 + D2

t + ï)�1
½

dï

where the integral converges both in the q-norm and the operator norm.

PROOF. We observe that by Remark 5 of Appendix A, for each fixed t the above
integrand is an operator-norm continuous function ofï and that as ï ! +1 the operator
norm of the integrand approaches C1pï(1+ï)

while as ï ! 0 the operator norm of the

integrand approaches C2pï so that the integral does indeed converge in operator norm.
On the other hand, letting p ≥ (1�2è)q we have by Hölder’s inequality and Lemma 2.6

that
k(1 + D2

t + ï)�1kq � k(1 + D2
t )

1
2�è(1 + D2

t + ï)�1k k(1 + D2
t )�

1
2 +èkq

� (1 + ï)�( 1
2 +è)k(1 + D2

t )�
1
2 +èkq

and similarly,
kDt(1 + D2

t + ï)�1kq � (1 + ï)�èk(1 + D2
t )�

1
2 +èkq.

So, that combining these estimates with Remark 5 of Appendix A, we see that the q-norm
of the integrand approaches C1pï(1+ï)

1
2 +è

asï ! 1 and approaches C2pï as ï ! 0. Thus, the

integral will be seen to converge in the q-norm once we know that the integrand is q-norm
continuous. To see this it suffices to see that ï 7! (1+D2

t +ï)�1 andï 7! Dt(1+D2
t +ï)�1

are q-norm continuous since the other terms are operator-norm continuous by Remark 5
of Appendix A. We show continuity of ï 7! (1 + D2

t + ï)�1 as the other term is similar:

k(1 + D2
t +ï)�1 � (1 + D2

t + ç)�1kq

� k(1 + D2
t )

1
2�è[(1 + D2

t + ï)�1 � (1 + D2
t + ç)�1]k k(1 + D2

t )�
1
2 +èkq

≥ k(1 + D2
t )

1
2�è(1 + D2

t + ï)�1(ç � ï)(1 + D2
t + ç)�1k k(1 + D2

t )�
1
2 +èkq

� (1 + ï)�( 1
2�è)jç � ïj(1 + ç)�1k(1 + D2

t )�
1
2 +èkq

which ! 0 as jç � ïj ! 0. Thus the integrand is q-norm continuous and the integral
converges in q-norms for each fixed t.

Now, to calculate d
dt (Ft) we observe that since each Dt defines an unbounded p-sum-

mable Breuer-Fredholm module (Lemma 6, Appendix B) we can assume t ≥ 0 and
A0 ≥ 0. At t ≥ 0, the purported derivative is:

1
ô
Z 1

0
ï� 1

2

h
(1 + D2

0 + ï)�1(1 + ï)A00(1 + D2
0 + ï)�1

� D0(1 + D2
0 + ï)�1A00D0(1 + D2

0 + ï)�1
i

dï

https://doi.org/10.4153/CJM-1998-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-038-x


692 A. CAREY AND J. PHILLIPS

which equals:

1
ô
Z 1

0
ï� 1

2

�
(1 + D2

0 + ï)�1(1 + ï)A00(1 + D2
0)

1
2�è(1 + D2

0 + ï)�1

� D0(1 + D2
0 + ï)�1A00D0(1 + D2

0)
1
2�è(1 + D2

0 + ï)�1
½

dï(1 + D2
0)�

1
2 +è

where the new integrand converges in operator norm by the estimates of Lemma 2.7.
But, by Lemma 2.7 the difference quotient 1

t (Ft � F0) equals:

1
ô
Z 1

0
ï� 1

2

�
(1 + D2

t + ï)�1(1 + ï)
1
t

At(1 + D2
0)

1
2�è(1 + D2

0 + ï)�1

� Dt(1 + D2
t + ï)�1 1

t
AtD0(1 + D2

0)
1
2�è(1 + D2

0 + ï)�1
½

dï(1 + D2
0)�

1
2 +è.

The q-norm difference between these two operators can thus be estimated by:

1
ô
Z 1

0
ï� 1

2

�



(1 + D2
t + ï)�1 1

t
At � (1 + D2

0 + ï)�1A00




(1 + ï)(1 + ï)�( 1

2 +è)

+




Dt(1 + D2

t + ï)�1 1
t

At � D0(1 + D2
0 + ï)�1A00





(1 + ï)�è
½

dïk(1 + D2
0)�

1
2 +èkq.

By Remark 5 and Lemma 6 of Appendix A,





(1 + D2
t + ï)�1 1

t
At � (1 + D2

0 + ï)�1A00






� k(1 + D2
t + ï)�1 � (1 + D2

0 + ï)�1k




1

t
At






+




1

t
At � A00





 k(1 + D2
0 + ï)�1k

� (1 + ï)�
3
2 kAtk





1
t

At





 +




1

t
At � A00





(1 + ï)�1.

Similarly,





Dt(1 + D2
t + ï)�1 1

t
At � D0(1 + D2

0 + ï)�1A00






� (1 + ï)�1kAtk




1

t
At





 +




1

t
At � A00





1
2

(1 + ï)�
1
2 .

Integrating, we see that the q-norm of the difference between the difference quotient and
the claimed derivative is less than or equal to C1kAtk k 1

t Atk+C2k 1
t At�A00kwhere C1 and

C2 are positive constants independent of t. As t ! 0 both of these terms go to 0 (recall
A0 ≥ 0). Thus, d

dt (Ft) is the claimed integral. Similar (but slightly easier) calculations
show that the limit of the difference quotients in the operator norm exists and is the
aforementioned integral, also.

https://doi.org/10.4153/CJM-1998-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-038-x


FREDHOLM MODULES AND SPECTRAL FLOW 693

To see the q-norm continuity of t 7! F0t we use the integral formula for F0s � F0t and
estimate. For example, we need:

(1 + ï)k(1+D2
s + ï)�1A0s(1 + D2

s + ï)�1 � (1 + D2
t + ï)�1A0t(1 + D2

t + ï)�1kq

� (1 + ï)fk(1 + D2
s + ï)�1kqkA0

sk k(1 + D2
s + ï)�1 � (1 + D2

t + ï)�1k
+ k(1 + D2

s + ï)�1kqkA0
s � A0tk k(1 + D2

t + ï)�1k
+ k(1 + D2

s + ï)�1 � (1 + D2
t + ï)�1k kA0

tk k(1 + D2
t + ï)�1kqg

� (1 + ï)f(1 + ï)�( 1
2 +è)k(1 + D2

s )�
1
2 +èkqkA0

sk(1 + ï)�
3
2 kAs � Atk

+ (1 + ï)�( 1
2 +è)k(1 + D2

s )�
1
2 +èkqkA0

s � A0tk(1 + ï)�1

+ (1 + ï)�
3
2 kAs � Atk kA0

tk(1 + ï)�( 1
2 +è)k(1 + D2

t )�
1
2 +èkqg

� f(1 + ï)�(1+è)C Ð k(1 + D2
0)�

1
2 +èkqkA0

sk kAs � Atk
+ (1 + ï)�( 1

2 +è)C Ð k(1 + D2
0)�

1
2 +èkqkA0

s � A0tk
+ (1 + ï)�(1+è)C Ð kAs � Atk kA0

tk k(1 + D2
0)�

1
2 +èkqg

where we have used Remark 5 and Lemma 6 of Appendix A, the q-norm estimates of
(1 + D2

t + ï)�1 given earlier and Corollary 8, part (1) of Appendix B since

sup
t
kAtk Ú +1.

We get similar estimates for the other part of the integrand. Integrating these estimates
we get:

kF0
s � F0tkq � [C1kAs � Atk + C2kA0

s � A0tk] k(1 + D2
0)�

1
2 +èkq

where C1 and C2 are positive constants independent of s and t. Thus, t 7! Ft is C1 in
q-norm.

By similar (but easier) estimates we can show that t 7! Ft is also C1 in operator norm,
and hence in the Banach space norm of F0 + Lq

sa.

D. If (N, D) is p-summable and t 7! Dt is C1 in operator norm, then for n Ù p�1
2 ,

Tr
� d

dt
(Ft)(1 � F2

t )n
�
≥ Tr

� d
dt

(Dt)(1 + D2
t )�(n+ 3

2 )
�

.

LEMMA 2.11. If D is an unbounded self-adjoint operator, then

(1 + D2)�
3
2 + (1 + D2)�

1
2 ≥ 2

ô
Z 1

0
ï� 1

2 (1 + ï)(1 + D2 + ï)�2 dï

where the integral converges in operator norm.
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PROOF. Since

k(1 + D2 + ï)�2k �
� 1

1 + ï
�2

the integral converges in operator norm. Letting B ≥ (1 + D2)�1, it is equivalent to
showing that

B
3
2 + B

1
2 ≥ 2

ô
Z 1

0
ï� 1

2 (1 + ï)B2(1 + ïB)�2 dï

for a bounded positive operator, B � 1. It is an easy calculus exercise to show that this
equation holds for nonnegative constants. Now, let fEtg be the spectral measure for the
operator B and let

A ≥ 2
ô
Z 1

0
ï� 1

2 (1 + ï)B2(1 + ïB)�2 dï.

For each ò 2 H,

hAò, òi ≥ 2
ô
Z 1

0
ï� 1

2 (1 + ï)hB2(1 + ïB)�2ò, òi dï

≥ 2
ô
Z 1

0
ï� 1

2 (1 + ï)
�Z 1

0
t2(1 + ït)�2 dhEtò, òi

�
dï

≥
Z 1

0

�2
ô
Z 1

0
ï� 1

2 (1 + ï)t2(1 + ït)�2 dï
�

dhEtò, òi

≥
Z 1

0
(t

3
2 + t

1
2 ) dhEtò, òi ≥ h(B 3

2 + B
1
2 )ò, òi,

so that A ≥ B
3
2 +B

1
2 as claimed. The interchange of the order of integration is justified by

Tonelli’s Theorem, as the two nonnegative measures, dï and dhEtò, òi are both õ-finite,
and the nonnegative integrand is continuous and hence product measurable.

PROPOSITION 2.12. If (N, D) is an odd p-summable unbounded Breuer-Fredholm
module (for C, say) and t 7! At is a C1-path in Nsa, then letting Ft ≥ Dt(1+D2

t )� 1
2 where

Dt ≥ D + At, we have for n Ù p�1
2 that

Tr
� d

dt
(Ft)(1 � F2

t )n
�
≥ Tr

� d
dt

(At)(1 + D2
t )�(n+ 3

2 )
�

.

PROOF. Since 2n + 1 Ù p, d
dt (Ft) 2 L2n+1 by Proposition 2.10. Moreover,

(1 � F2
t )n ≥ (1 + D2

t )�n 2 L
p

2n � L 2n+1
2n

so that the left-hand side of the equation is well-defined by Hölder’s inequality. Also, by
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Proposition 2.10,

Tr
� d

dt
(Ft)(1�F2

t )n
�

≥ Tr
�1
ô
Z 1

0
ï� 1

2 [(1 + D2
t + ï)�1(1 + ï)A0t(1 + D2

t + ï)�1

� Dt(1 + D2
t + ï)�1A0tDt(1 + D2

t + ï)�1] dï(1 + D2
t )�n

�
(where the integrand is (2n + 1)-norm continuous and converges in (2n + 1)-norm)

≥ Tr
�1
ô
Z 1

0
ï� 1

2 [Ð Ð Ð](1 + D2
t )�n dï

�
(the integrand is trace-norm continuous and converges in trace-norm)

≥ 1
ô
Z 1

0
ï� 1

2 Tr
�
[Ð Ð Ð](1 + D2

t )�n
�

dï

≥ 1
ô
Z 1

0
ï� 1

2 (Tr[(1 + D2
t + ï)�1(1 + ï)A0t(1 + D2

t + ï)�1(1 + D2
t )�n]

� Tr[Dt(1 + D2
t + ï)�1A0tDt(1 + D2

t + ï)�1(1 + D2
t )�n]) dï

since both parts are trace-class by the estimates in the proof of Proposition 2.10. Using
the trace property on each piece and recombining, this equals

1
ô
Z 1

0
ï� 1

2 Tr[A0t(1 + ï � D2
t )(1 + D2

t + ï)�2(1 + D2
t )�n] dï

≥ Tr
�1
ô
Z 1

0
ï� 1

2 [A0t(1 + ï � D2
t )(1 + D2

t + ï)�2(1 + D2
t )�n] dï

�
(this new integrand is easily seen to converge in trace-norm). Now, this integrand is
also convergent in operator-norm to the same (trace-class) operator because both imply
strong-operator convergence. Thus, it suffices to see that the integral (in operator norm
convergence) equals

A0t(1 + D2
t )�(n+ 3

2 ).

But,

1
ô
Z 1

0
ï� 1

2 [A0t(1 + ï � D2
t )(1 + D2

t + ï)�2(1 + D2
t )�n] dï

≥ A0t
1
ô
Z 1

0
ï� 1

2 [2(1 + ï) � (1 + D2
t + ï)](1 + D2

t + ï)�2dï(1 + D2
t )�n

≥ A0t
�1
ô
Z 1

0
ï� 1

2 2(1 + ï)(1 + D2
t + ï)�2 dï

� 1
ô
Z 1

0
ï� 1

2 (1 + D2
t + ï)�1 dï

½
(1 + D2

t )�n

≥ A0t[(1 + D2
t )�

3
2 + (1 + D2

t )�
1
2 � (1 + D2

t )�
1
2 ](1 + D2

t )�n

≥ A0t(1 + D2
t )�(n+ 3

2 )

by Lemma 2.11.
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E. If (N, D0) is p-summable, n Ù p�1
2 is an integer, M0 ≥ D0 + Nsa, then

Tr
�
X(1 + D2)�(n+ 3

2 )
�

is an exact 1-form on M0.

DEFINITION 2.13. Let (N, D0) be an odd p-summable Breuer-Fredholm module (for
C, say), let n Ù p�1

2 be an integer, and let m ≥ n + 3
2 and let M0 ≥ D0 + Nsa. Then for

D 2 M0 we define:

ç(D) :≥ 1

C̃m

Z 1

0
Tr
� d

dt
(Dt)(1 + D2

t )�m
�

dt

where fDtg is any piecewise C1, continuous path in M0 from D0 to D and

C̃m ≥
Z 1
�1(1 + x2)�m dx

(≥ Cn ≥ R1�1(1 � s2)n ds where m ≥ n + 3
2 ).

THEOREM 2.14. ç is well-defined and

dçD(X) ≥ 1

C̃m
Tr
�
X(1 + D2)�m

�
for

D 2 M0 ≥ D0 + Nsa and X 2 TD(M0) ≥ Nsa.

Therefore, the latter is an exact (and hence closed) 1-form on M0.

PROOF. Fix q so that 2n + 1 Ù q Ù p. Let fDtg be any piecewise C1, continuous
path from D0 to D so that Ft ≥ Dt(1 + D2

t )� 1
2 is a piecewise q-norm-C1 continuous path

from F0 ≥ D0(1 + D2
0)� 1

2 to F1 ≥ D(1 + D2)� 1
2 in F0 + Lq, q

2
sa by parts B and C. Moreover,

by part D,

1

C̃m

Z 1

0
Tr
� d

dt
(Dt)(1 + D2

t )�m
�

dt ≥ 1
Cn

Z 1

0
Tr
� d

dt
(Ft)(1 � F2

t )n
�

dt

which by Theorem 1.7 and Remark 1.8 is equal to

sf(F0, F1) � ån(F1) + ån(F0)

and this only depends on the end points D0 and D1 ≥ D. Thus, ç is well-defined.
Now, for X 2 TD(M0) ≥ Nsa, we have

dçD(X) ≥ d
ds

þþþþ
s≥0

�
ç(D + sX)

�
.

Since ç is independent of path we can choose our path from D0 to D + sX to pass through
D (e.g., our path can be linear from D0 to D and then linear from D to D + sX). Then,

ç(D + sX) ≥ 1

C̃m

Z 1
2

0
Tr
� d

dt
(Dt)(1 + D2

t )�m
�

dt

+
1

C̃m

Z 1

1
2

Tr
� d

dt
(Dt)(1 + D2

t )�m
�

dt.
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Since the first half of the path (from D0 to D) does not depend on s, we get

dçD(X) ≥ d
ds

þþþþ
s≥0

 
1

C̃m

Z 1

1
2

Tr
� d

dt
(Dt)(1 + D2

t )�m
�

dt
!

where Dt for t 2 [ 1
2 , 1] is the line from D to D + sX. That is, Dt ≥ D + (2t� 1)sX. Hence

d
dt

(Dt) ≥ 2sX

and so

dçD(X) ≥ lim
s!0

Z 1

1
2

Tr
 

2X
�

1 +
�
D + (2t � 1)sX

�2
��m

!
dt.

Now, by Proposition 11 of Appendix B we get



�1 +
�
D + (2t � 1)sX

�2
��m

� (1 + D2)�m






1

� 2
1

m+ 1
2

�
2k(2t � 1)sXk

� m
m+ 1

2

h
f
�
k(2t � 1)sXk

�im
(m + 1)k(1 + D2)�mk1

� 4(skXk)
m

m+ 1
2 [f (kXk)]m(m + 1)k(1 + D2)�mk1 (for jsj � 1)

! 0 uniformly in t.

Therefore,

dçD(X) ≥ 1

C̃m

Z 1

1
2

Tr
�
2X(1 + D2)�m

�
dt

≥ 1

C̃m
Tr
�
X(1 + D2)�m

�
as claimed.

F. The Theorems.

DEFINITION 2.15. If (N, D0) is an odd unbounded Breuer-Fredholm module (for C,
say) and fDtgt2[a,b] is any norm continuous path in M0 ≥ D0 + Nsa then we define the
spectral flow of the path fDtg, sf(Da, Db) to be the spectral flow of the norm-continuous
path fFt ≥ Dt(1 + D2

t )� 1
2 g of self-adjoint Breuer-Fredholm operators, [P2]. This is well-

defined by Theorem 8 of Appendix A, and the fact that 1�F2
t ≥ (1 + D2

t )�1 is in KN for
each t.

THEOREM 2.16. Let (N, D0) be an odd p-summable unbounded Breuer-Fredholm
module (for C) and let M0 ≥ D0 + Nsa. Let n Ù p�1

2 be an integer and let m ≥ n + 3
2 .

Then, for D 2 M0, X 2 TD(M0) ≥ Nsa,

X 7! 1

C̃m
Tr
�
X(1 + D2)�m

�
is an exact 1-form on M0. Moreover, if fDtgt2[a,b] is any piecewise-C1 continuous path
in M0, then integrating this 1-form yields:

sf(Da, Db) ≥ 1

C̃m

Z b

a
Tr
� d

dt
(Dt)(1 + D2

t )�m
�

dt +ån

�
Db(1 + D2

b)�
1
2

�
�ån

�
Da(1 + D2

a)�
1
2

�
.
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PROOF. As usual, we let Ft ≥ Dt(1 + D2
t )� 1

2 . As observed in the proof of Theo-
rem 2.14, the right-hand side of the equation equals sf(Fa, Fb) and so by the previous
definition this is sf(Da, Db), as required. That the 1-form is exact is Theorem 2.14.

THEOREM 2.17. Let (N, D0) be an odd p-summable unbounded Breuer-Fredholm
module for the unital Banach Ł-algebra A, let n be an integer n Ù p�1

2 and let m ≥ n+ 3
2 .

Let P ≥ ü(D0). Then, for each u 2 U(A) with u(dom D) � dom D and [D, u] bounded,
PuP is a Breuer-Fredholm operator in PNP and if fDu

t g is any piecewise-C1 continuous
path in M0 ≥ D0 + Nsa from D0 to uD0uŁ (e.g., the linear path lies in M0), then:

ind(PuP) ≥ sf(fDu
t g) ≥ 1

C̃m

Z 1

0
Tr
� d

dt
(Du

t )
�
1 + (Du

t )2
��m

�
dt,

the integral of the exact 1-form, 1
C̃m

Tr
�
X(1 + D2)�m

�
along the path fDu

t g.

PROOF. That PuP is a Breuer-Fredholm operator whose index is the spectral flow
of the straight line path from F0 to uF0uŁ is part of Theorem 1.9. That this is also
sf(D0, u D0 uŁ) is just Definition 2.15. That the spectral flow is independent of path (in
M0) is in the previous theorem. The formula for the spectral flow is likewise part of the
previous theorem, where it should be recalled that

uD0uŁ � D0 ≥ [u, D0]uŁ.

Appendix A. The Operator-Norm Continuity of Functions of Unbounded Self-
Adjoint Operators. In this appendix, we prove sharp perturbation estimates (in the
operator-norm) of the following sort: if D is an unbounded self-adjoint operator, A is a
bounded self-adjoint operator, and f is an explicit, bounded continuous function on R
then

kf (D + A) � f (D)k � CfkAk
where Cf is a constant depending only on f . While some of these results may be known,
we have not found them in the standard references [DS, K, RS]. At a number of places
in this paper, we need these sharp estimates, rather than just the usual continuity results
of the form:

kf (D + An) � f (D)k ! 0 as kAnk ! 0.

Many of these results can be generalized to relatively D-bounded symmetric opera-
tors, A [K, V.4]. While we do not use these results in this paper, we plan to use them in
the future and they may be of independent interest to other workers in the field. For these
reasons we include the more general D-bounded results and indicate the modifications
needed to prove them.

We begin with some well-known facts that will help set the notation. Let D be an
unbounded self-adjoint operator on the Hilbert space, H, and let

GD ≥ f(ò, Dò) j ò 2 dom Dg
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denote the graph of D, a closed subspace of HýH. It is well-known [DS, Lemma XII.1.5]
that the orthogonal complement to GD is given by

G?
D ≥ f(Dò,�ò) j ò 2 dom Dg.

We denote the projection from HýH onto GD by PD and recall the result of B. Sz.-Nagy
[DS, Exercise XII.9.36] that for ò 2 H,

PD(ò, 0) ≥
�
(1 + D2)�1ò, D(1 + D2)�1ò

�
.

From this, we easily deduce that the matrix of PD relative to the decomposition HýH is24 (1 + D2)�1 D(1 + D2)�1

D(1 + D2)�1 D2(1 + D2)�1

35 .

RELATIVELY BOUNDED OPERATORS. Let D0 be a self-adjoint operator and let A be
a symmetric operator with dom D0 � dom A. We will say that A is D0-bounded if there
exists a positive constant C with

kAòk � C(kòk2 + kD0òk2)
1
2

for all ò 2 dom D0. We denote by kAkD0 the infimum of all such constants C, and note
that if A is actually bounded then kAkD0 � kAk and so A is also relatively D0-bounded.
We warn the reader that this number, kAkD0, is not the D0-bound in the sense of [K,
V.4.1]; however, the D0-bound is � kAkD0 . Furthermore, by [K, V.4.1, Theorem 4.3], if
kAkD0 Ú 1 then D0 + A is self-adjoint. If A is actually bounded then D0 + A is also self-
adjoint, independent of kAk. If A is a D0-bounded symmetric operator with kAkD0 Ú 1,
and D ≥ D0 + A, then A is also D-bounded and one easily calculates that

kAkD �
p

2kAkD0

1 � kAkD0

.

If we have kAkD0 �. 29 (Ú (1 � 1p
2
) will do) we get kAkD � 2kAkD0. This lack of

symmetry between kAkD and kAkD0 is the reason one often uses the distance between
GD0 and GD to measure the distance between closed operators in perturbation theory [K,
IV.2.4].

PROPOSITION 1. Let D0 be an unbounded self-adjoint operator and let A be a
bounded self-adjoint operator. Then, D ≥ D0 + A is also self-adjoint and kPD � PD0k �
kAk. If A is a D0-bounded symmetric operator and kAkD0 � . 29, we get kPD � PD0k �
2kAkD0.

PROOF. It is very easy to verify that D is also self-adjoint, and dom D ≥ dom D0.
Let ° 2 H ý H, so that PD0° ≥ ê ≥ (ò, D0ò) 2 GD0 . Let ê0 ≥ (ò, Dò) 2 GD so then

kê0 � êk ≥ k(0, Aò)k � kAk kòk � kAk kêk.
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We can replace kAk with kAkD0 if necessary. Since PDê is the closest point to ê in GD we
have

kê � PDêk � kê � ê0k � kAk kêk.

That is,

k(1 � PD)PD0°k ≥ kê � PDêk � kAk kêk ≥ kAk kPD0°k � kAk k°k,

and hence,
k(1 � PD)PD0k � kAk, (or kAkD0).

Since D0 ≥ D � A, reversing roles, we get by a similar calculation that

kPD(1 � PD0 )k ≥ k(1 � PD0 )PDk � k � Ak ≥ kAk (or kAkD � 2kAkD0).

Finally,

kPD � PD0k ≥ kPD(1 � PD0 ) � (1 � PD)PD0k
≥ maxfkPD(1 � PD0 )k, k(1 � PD)PD0kg � kAk, (or 2kAkD0),

since these two operators have orthogonal initial spaces and orthogonal ranges.

COROLLARY 2. Let D0 be an unbounded self-adjoint operator and let A be a bounded
self-adjoint operator. Letting D ≥ D0 + A, we have:

(1) k(1 + D2)�1 � (1 + D2
0)�1k � kAk,

(2) kD(1 + D2)�1 � D0(1 + D2
0)�1k � kAk, and

(3) kD2(1 + D2)�1 � D2
0(1 + D2

0)�1k � kAk.
If A is a D0-bounded symmetric operator and kAkD0 �. 29, we can replace kAk by

2kAkD0 in each case.

PROOF. These all follow directly from Proposition 1 and the matrix form of PD given
above.

These are careful versions of results of Sz.-Nagy [DS, Exercise XII.9.37].

REMARK 3. Each of the functions, f1(x) ≥ (1 + x2)�1, f2(x) ≥ x(1 + x2)�1 and
f3(x) ≥ x2(1 + x2)�1 used above satisfy fi(1) ≥ fi(�1). In order to get an estimate for a
function with different limits at +1 and �1, we must work harder. We are particularly
interested in f (x) ≥ x(1 + x2)� 1

2 .
To begin, we recall [Ped, p. 8] that for any bounded positive operator B, and any r,

0 Ú r Ú 1 that

Br ≥ sin(rô)
ô

Z 1
0

ï�r(1 + ïB)�1B dï,

where the integrand is a norm-continuous function of ï and the finite Riemann Sums
converge in norm. Here,

ô
sin(rô)

≥
Z 1

0
u�r(1 + u)�1 du.
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This integral formula for Br can also be proved by the method of Lemma 2.10. [See also
[K, V.3.50]]. Letting B ≥ (1 + D2)�1 we calculate:

B(1 + ïB)�1 ≥ (1 + D2)�1
�
1 + ï(1 + D2)�1

��1

≥
h
(1 + D2)

�
1 + ï(1 + D2)�1

�i�1

≥ (1 + D2 + ï)�1

so

(1 + D2)�r ≥ sin(rô)
ô

Z 1
0

ï�r(1 + D2 + ï)�1 dï

where the integrand is a norm-continuous function of ï and the integral converges in
operator norm. We would like to apply the operator, D, to both sides of this equation and
pass D through the integral. However, the integrand, ï�rD(1 + D2 + ï)�1 is not abso-
lutely integrable in operator norm for r � 1

2 . Fortunately, for ò 2 dom D, the integrand
ï�rD(1 + D2 + ï)�1ò is integrable in H!

LEMMA 4. If D is a self-adjoint operator, then for all ò 2 dom D and 0 Ú r Ú 1

D(1 + D2)�rò ≥ sin(rô)
ô

Z 1
0

ï�rD(1 + D2 + ï)�1ò dï

where the integrand on the right converges in H.

PROOF. Since ò 2 dom D

D(1 + D2)�rò ≥ (1 + D2)�r(Dò)

≥ sin(rô)
ô

Z 1
0
ï�r(1 + D2 + ï)�1 dï(Dò)

≥ sin(rô)
ô

Z 1
0
ï�r(1 + D2 + ï)�1Dò dï

≥ sin(rô)
ô

Z 1
0
ï�rD(1 + D2 + ï)�1ò dï.

REMARK 5. By the Spectral Theorem for self-adjoint operators one can easily prove
the following estimates:

(1) k(1 + D2 + ï)�1k � 1
1+ï

(2) k(1 + D2 + ï)�1 � (1 + D2 + ç)�1k � 1
1+ï jï � çj 1

1+ç
(3) kD(1 + D2 + ï)�1k � 1

2
p

1+ï
(4) kD(1 + D2 + ï)�1 � D(1 + D2 + ç)�1k � 1

2
p

1+ï jï � çj 1
1+ç

for all ï, ç ½ 0.
From (1) and (2) one concludes that the function ï 7! ï�r(1 + D2 +ï)�1 is norm con-

tinuous, and provided 0 Ú r Ú 1, absolutely integrable. From (3) and (4) one concludes
that the function ï 7! ï�rD(1 + D2 +ï)�1 is norm continuous, and absolutely integrable
for r Ù 1

2 ; but, for 0 Ú r � 1
2 this function is generally not absolutely integrable. If D

is “multiplication by x” on L2(R) or “multiplication by n” on ‡2(Z), then these integrals
do not converge in norm. For 0 Ú r Ú 1

2 , the operator, D(1 + D2)�r is not even bounded!
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LEMMA 6. Let D0 be an unbounded self-adjoint operator, let A be a bounded self-
adjoint operator, and let D ≥ D0 + A. Then for all ï ½ 0,

(1) k(1 + D2 + ï)�1 � (1 + D2
0 + ï)�1k � ( 1

1+ï )
3
2 kAk and

(2) kD(1 + D2 + ï)�1 � D0(1 + D2
0 + ï)�1k � 1

1+ïkAk.
If A is only D0-bounded and kAkD0 �. 29 then we get:

(3) k(1 + D2 + ï)�1 � (1 + D2
0 + ï)�1k � 1

1+ï2kAkD0 and

(4) kD(1 + D2 + ï)�1 � D0(1 + D2
0 + ï)�1k � ( 1

1+ï )
1
2 2kAkD0 .

PROOF.

(1 + D2 + ï)�1 ≥ 1
1 + ï

 
1 +

�� 1
1 + ï

� 1
2
D0 +

� 1
1 + ï

� 1
2
A
½2
!�1

.

We apply Corollary 2 part (1) and observe that



� 1
1 + ï

� 1
2
A




 ≥ � 1

1 + ï
� 1

2 kAk
to get (1) above, and that 



� 1

1 + ï
� 1

2
A






( 1
1+ï )

1
2 D0

� kAkD0

to get (3).
To see (2) and (4) we apply Corollary 2 part (2) to:

D(1 + D2 + ï)�1 ≥
� 1

1 + ï
� 1

2

"� 1
1 + ï

� 1
2
D
 

1 +
�� 1

1 + ï
� 1

2
D
½2
!�1#

.

PROPOSITION 7. Let D0 be an unbounded self-adjoint operator, let A be a bounded
self-adjoint operator, and let D ≥ D0 + A. Then for 0 � r � 1 we get

k(1 + D2)�r � (1 + D2
0)�rk � kAk.

If A is only D0-bounded and kAkD0 �. 29 we get the same estimate with kAk replaced by
2kAkD0.

PROOF. By Lemma 6 part (1) we get for 0 Ú r Ú 1

k(1 + D2)�r � (1 + D2
0)�rk � sin(rô)

ô
Z 1

0
ï�rk(1 + D2 + ï)�1 � (1 + D2

0 + ï)�1k dï

� sin(rô)
ô

Z 1
0

ï�r
� 1

1 + ï
� 3

2 kAk dï

� sin(rô)
ô

Z 1
0

ï�r
� 1

1 + ï
�

dïkAk ≥ kAk.

If A is only D0-bounded we appeal to Lemma 6 part (3) to get the final estimate. Of
course, we could do a little better in the bounded case by evaluating

Z 1
0
ï�r

� 1
1 + ï

� 3
2

dï

exactly. For example, if r ≥ 1
2 we get the estimate 2

ôkAk.
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THEOREM 8. Let D0 be an unbounded self-adjoint operator, let A be a bounded self-
adjoint operator and let D ≥ D0 + A. Then, for 1

2 � r � 1 we have:

kD(1 + D2)�r � D0(1 + D2
0)�rk � kAk.

PROOF. The case r ≥ 1 has already been done. For r Ú 1, we use Lemma 4: let
ò 2 dom D0 ≥ dom D so that for 0 Ú r Ú 1

D(1+D2)�rò�D0(1+D2
0)�rò ≥ sin(rô)

ô
Z 1

0
ï�r[D(1+D2 +ï)�1�D0(1+D2

0 +ï)�1]ò dï
and hence by Lemma 6 part (2):

k[D(1 + D2)�r � D0(1 + D2
0)�r]òk � sin(rô)

ô
Z 1

0
ï�r 1

1 + ïkAk kòk dï ≥ kAk kòk.

Since both operators are bounded for r ½ 1
2 and dom D0 is dense in H, the result follows.

For r ≥ 1
2 see Theorem 4.7 of [BF] for a slightly weaker version of this result.

REMARK 9. Even for 0 Ú r Ú 1
2 where the two operators D(1 + D2)�r and

D0(1+D2
0)�r are both unbounded, the above proof shows that their difference is bounded

by kAk on dom D0!
If A is only D0-bounded with kAkD0 �. 29 and r Ù 1

2 then the same proof using
Lemma 6 part (4) yields:

kD(1 + D2)�r � D0(1 + D2
0)�rk � Cr2kAkD0

where

Cr ≥ sin(rô)
ô

Z 1
0
ï�r(1 + ï)�

1
2 dï Ú 1.

If r ≥ 1
2 and A is D0-bounded then we don’t know if such a result holds. However, we

can show a weaker result.
If ò 2 dom D0, we let

kòkD0 ≥ (kòk2 + kD0òk2)
1
2 .

THEOREM 10. Let D0 be an unbounded self-adjoint operator, and let A be a D0-
bounded symmetric operator such that kAkD0 �. 29. Then

kD(1 + D2)�
1
2 � D0(1 + D2

0)�
1
2 kD0 � 3kAkD0.

PROOF. For ò 2 dom D ≥ dom D0 we have:

kD(1 + D2)�
1
2 ò�D0(1 + D2

0)�
1
2 òk

≥ k(1 + D2)�
1
2 Dò � (1 + D2

0)�
1
2 D0òk

� k(1 + D2)�
1
2 Aòk + k(1 + D2)�

1
2 � (1 + D2

0)�
1
2 k kD0òk

� kAòk + 2kAkD0kD0òk by Proposition 7

� kAkD0kòkD0 + 2kAkD0kD0òk � 3kAkD0kòkD0 .
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FOURIER TRANSFORM METHODS.

LEMMA 11. If D is an unbounded self-adjoint operator then

eitD ≥ strong lim
n!1

�
1 � itD

n

��n

for all t 2 R, where the left-hand side of the equation is defined by the functional calculus
for unbounded self-adjoint operators (i.e., the spectral theorem).

PROOF. Without loss of generality t ≥ 1. In this case, the functions (1 � ix
n )�n and

eix are all bounded by 1 on R, as are their derivatives. Since

lim
n!1

�
1 � ix

n

��n
≥ eix

pointwise on R, the convergence is thus uniform on compact subsets. Let EN be the
spectral projection for D corresponding to [�N, N]. Then,

EN(eiD)EN ≥ k Ð k � lim
n!1EN

�
1 � iD

n

��n
EN.

So, for vectors ò in the dense set
S1

N≥1 EN(H), we see that

lim
n!1

�
1 � iD

n

��n
ò ≥ eiDò.

As all the operators are bounded by 1, this is sufficient to conclude that

eiD ≥ strong lim
n!1

�
1 � iD

n

��n
.

PROPOSITION 12. Let D0 be an unbounded self-adjoint operator; let A be a bounded
self-adjoint operator, and let t be a real number. Then

keitD � eitD0k � jtj kAk,

where D ≥ D0 + A.

PROOF.�
1 � i

t
n

D
��1

�
�

1 � i
t
n

D0

��1

≥
�

1 � i
t
n

D)
��1��

1 � i
t
n

D0

�
�
�

1 � i
t
n

D
�½�

1 � i
t
n

D0

��1

≥
�

1 � i
t
n

D
��1�

i
t
n

A
½�

1 � i
t
n

D0

��1
.

So, 



�1 � i
t
n

D
��1

�
�

1 � i
t
n

D0

��1



 � jtj
n
kAk.

(Since dom D ≥ dom D0 ≥ range(1 � i t
n D0)�1 ≥ range(1 � i t

n D)�1, the first equality
holds for all vectors in H.)
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We now apply the identity

Xn � Yn ≥
n�1X
k≥0

Xk(X � Y)Yn�k�1

to �
1 � i

t
n

D
��n

�
�

1 � i
t
n

D0

��n

to obtain:



�1 � i
t
n

D
��n

�
�

1 � i
t
n

D0

��n



 � n�1X
k≥0





�1 � i
t
n

D
��k



 jtjn kAk





�1 � i
t
n

D0

��(n�k�1)




� jtj kAk.

Taking strong operator limits gives us

keitD � eitD0k � jtj kAk.

REMARK 13. If we only assume that A is D0-bounded, then the map A 7! eit(D0+A)

is not continuous in general. For example, if D0 is “multiplication by x” on L2(R) and
An ≥ 1

n D0 then kAnkD0 � 1
n , but

keit(D0+An) � eitD0k ≥




eitD0

�
ei t

n D0 � 1
�





≥ kei t
n D0 � 1k ≥ 2 for t Â≥ 0.

However, we do have the following:

PROPOSITION 14. Let D0 be an unbounded self-adjoint operator, let A be a D0-
bounded symmetric operator such that D ≥ D0 + A is self-adjoint. For each real number
t we have

keitD � eitD0kD0 � jtj kAkD0 .

PROOF. Let ò 2 dom D0. Following the ideas of Proposition 12,



�1 � i
t
n

D
��n

ò �
�

1 � it
n

D0

��n
ò






�
n�1X
k≥0





�1 � it
n

D
��k







 it

n
A
�

1 � it
n

D0

��(n�k�1)
ò






�
n�1X
k≥0

jtj
n
kAkD0

 



�1 � it
n

D0

��(n�k�1)
ò




2

+




D0

�
1 � it

n
D0

��(n�k�1)
ò




2
! 1

2

�
n�1X
k≥0

jtj
n
kAkD0(kòk2 + kD0òk2)

1
2 ≥ jtj kAkD0kòkD0.

By Lemma 11, we obtain for ò 2 dom D0

keitDò � eitD0òk � jtj kAkD0kòkD0

https://doi.org/10.4153/CJM-1998-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-038-x


706 A. CAREY AND J. PHILLIPS

and the result follows.

15. FOURIER TRANSFORM. Let f 2 L1(R), then for t 2 R,

f̂ (t) ≥ 1p
2ô

Z 1
�1 e�ixtf (x) dx

is the Fourier transform of f , a continuous function vanishing at š1. We wish to apply
this to an unbounded self-adjoint operator D.

LEMMA 16. Let D be an unbounded self-adjoint operator and let f 2 L1(R). Then

f̂ (D) ≥ 1p
2ô

Z 1
�1 e�ixDf (x) dx,

where the integral on the right converges in the strong-operator topology.

PROOF. A careful application of the spectral theorem.

THEOREM 17. Let D0 be an unbounded self-adjoint operator and suppose f (x) and
xf (x) are in L1(R). Let D ≥ D0 + A where A is bounded and self-adjoint. Then

kf̂ (D) � f̂ (D0)k � kAkp
2ô

Z 1
�1 jxf (x)j dx.

PROOF. For ò 2 H we have




�f̂ (D) � f̂ (D0)
�
ò



 � 1p

2ô
Z 1
�1 k(e�ixD � e�ixD0 )òk jf (x)j dx

� 1p
2ô

Z 1
�1 jxj kAk kòk Ð jf (x)j dx

≥
 kAkp

2ô
Z 1
�1 jxf (x)j dx

!
kòk.

COROLLARY 18. ke�tD2 � e�tD2
0k � 2

q
t
ôkAk, for t Ù 0.

PROOF. For t ≥ 1
2 the function f (x) ≥ e� 1

2 x2
satisfies f̂ ≥ f and so we get

ke�
1
2 D2 � e�

1
2 D2

0k � kAkp
2ô

Z 1
�1 jxje� 1

2 x2
dx ≥

vut2
ôkAk.

For arbitrary t, we get e�tD2 ≥ e� 1
2 (
p

2tD)2
so we replace kAk by

p
2tkAk in the calculation

for t ≥ 1
2 .

REMARK 19. In the case that A is only D0-bounded and D ≥ D0 + A is self-adjoint,
the same proofs show that

kf̂ (D) � f̂ (D0)kD0 �
kAkD0p

2ô
Z 1
�1 jxf (x)j dx
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under the hypotheses of Theorem 17 and, therefore

ke�tD2 � e�tD2
0kD0 � 2

s
t
ôkAkD0 .

REMARK 20. Let A be the CŁ-subalgebra of Cb(R) generated by the almost periodic
functions and the functions having limits at +1 and �1. Let D0 be an unbounded self-
adjoint operator on H. Then for each fixed f 2 A the mapping A 7! f (D0 +A): B(H)sa !
B(H) is continuous: to see this we first observe that the set of f 2 Cb(R) for which this
holds is a CŁ-algebra. Once this is established, Corollary 2, Theorem 8 and Proposition 12
together with the Stone-Weierstrass Theorem complete the proof.

By a similar argument, if fAng is a sequence of D0-bounded symmetric operators and
kAnkD0 ! 0, then

kf (D0 + An) � f (D0)kD0 ! 0 for all f 2 A.

For f in the unitization of C0(R) we can prove the stronger result:

kf (D0 + An) � f (D0)k ! 0

by this argument and an appeal to Corollary 2.

REMARK 21. If D0 is an unbounded self-adjoint operator, then there exists a bounded
continuous (even smooth) function f and a sequence fAng of bounded self-adjoint oper-
ators with kAnk ! 0 and kf (D0 + An) � f (D0)k ½ 1 for all n.

We outline the proof for D0 ≥ “multiplication by n” on ‡2(Z): the general case is
similar but messier. Let f be a continuous function on R with range in [0, 1] which is 0
at all integer points but so that f (n + 1

n ) ≥ 1 for all positive integers n ½ 2. For n ½ 2 let
An ≥ 1

n Pn where Pn is the projection on the nth basis vector. Then kAnk ≥ 1
n ! 0 but

kf (D0 + An) � f (D0)k ½ 1.

NOTE. Remarks 20 and 21 are carefully stated versions of results of Rellich [DS,
Exercise XII.9.38]. The example given above shows that the result stated in [DS] is not
quite correct. See also Remark 13.

Appendix B. The Trace-Norm Continuity of Certain Functions of Unbounded
Self-Adjoint Operators. In this appendix, we prove continuity results of the following
sort. We assume that D is an unbounded self-adjoint operator affiliated with the semifinite

factor, N, and that (1 + D2)�1 is n-summable
�

Tr
�
(1 + D2)�n

�
Ú +1

�
. We then show

(with explicit bounds) that the map Nsa ! L1(N) given by A 7! [1 + (D + A2)]�n is
well-defined and continuous. We also prove D-bounded versions of these results.

The following lemma is certainly known, although we have not found a proof in the
literature. We outline its proof for completeness.
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LEMMA 1. If A and B are (unbounded) self-adjoint operators with dom A ≥ dom B
and 0 Ú c1 � A � B on their common domain, then 0 � B�1 � A�1 � 1

c 1 on all of H.

PROOF. For ò 2 dom B, í(B 1
2 ò) ≥ A

1
2 ò is well-defined and kík � 1. Since the clo-

sure of B
1
2 jdom B is B

1
2 one checks that í(B 1

2 ò) ≥ A
1
2 ò makes sense for all ò 2 dom B

1
2 �

dom A
1
2 and so íB 1

2 ≥ A
1
2 . Since B

1
2 ½ c

1
2 1, range B

1
2 ≥ H and í is everywhere defined

and 1 : 1 and range í � range A
1
2 ≥ H. So, í�1 is bounded. Thus, B

1
2 ≥ í�1A

1
2 and so

B� 1
2 ≥ A� 1

2 í or B� 1
2 ≥ íŁA� 1

2 and kíŁk � 1. This implies B�1 � A�1.

2. GENERALIZED SINGULAR VALUES. In order to prove our results in full generality
we need the concept of generalized singular values due to Fack and Kosaki, [FK]. We let
N be a fixed von Neumann algebra with faithful, normal, semifinite trace, Tr. If A 2 N
we define for each t Ù 0, the t-th singular value of A, ñt(A), by

ñt(A) ≥ inffkAEk j E is a projection in N with Tr(1 � E) � tg.

LEMMA 3. If N is a von Neumann algebra with faithful, normal, semifinite trace, Tr;
0 � A � B are self-adjoint operators in N; and g is a continuous, increasing function
on R+ with g(0) ≥ 0 then

Tr
�
g(A)

�
� Tr

�
g(B)

�
.

PROOF. This follows immediately from Lemma 2.5 and Proposition 2.7 of [FK].

COROLLARY 4. With N as above and 0 � A � B in N and k Ù 0 then

Tr(Ak) � Tr(Bk).

LEMMA 5. Let N be a von Neumann algebra with faithful, normal, semifinite trace,
Tr. If S, T in N are self-adjoint with S positive and�S � T � S, then for any continuous,
increasing function g on R+ with g(0) ≥ 0 we have

Tr
�
g(jTj)

�
� 2 Tr

�
g(S)

�
.

PROOF. Let P+ be the spectral projection for T corresponding to R+. Let T+ ≥ P+TP+

so that T+ � P+SP+ and so by Lemma 2.5 of [FK], for each t Ù 0

ñt

�
g(T+)

�
≥ g

�
ñt(T+)

�
� g

�
ñt(P+ S P+)

�
� g

�
ñt(S)

�
≥ ñt

�
g(S)

�
and so by Proposition 2.7 of [FK]

Tr
�
g(T+)

�
� Tr

�
g(S)

�
.
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Similarly,
Tr
�
g(T�)

�
� Tr

�
g(S)

�
where

T� :≥ (1 � P+)(�T)(1 � P+).

Since jTj ≥ T+ + T� is a direct sum, g(jTj) ≥ g(T+) + g(T�) and hence

Tr
�
g(jTj)

�
� 2 Tr

�
g(S)

�
.

LEMMA 6. If D0 is an unbounded self-adjoint operator, A is a bounded self-adjoint
operator, and D ≥ D0 + A then

(1 + D2)�1 � f (kAk)(1 + D2
0)�1

where f (a) ≥ 1 + 1
2 a2 + 1

2 a
p

a2 + 4.

PROOF. We first assume that A(dom D0) � dom D0 so that dom D2 ≥ dom D2
0. We

seek a positive constant C so that:

1 + D2
0 � C(1 + D2) on dom D2 ≥ dom D2

0.

That is, for all vectors ò of norm 1 in dom D2
0 we want:

hò, òi + hD0ò, D0òi � C
h
hò, òi + hD0ò, D0òi + hAò, Aòi + hD0ò, Aòi + hAò, D0òi

i
or,

1 + kD0òk2 � C
h
1 + kD0òk2 + kAòk2 + 2 RehD0ò, Aòi

i
which would follow from:

1 + kD0òk2 � C
h
1 + kD0òk2 + kAòk2 � 2kD0òk kAòk

i
.

Letting x ≥ kD0òk and a ≥ kAòk one easily calculates the maximum value of 1+x2

1+(x�a)2

to be f (a) ≥ 1 + 1
2 a2 + 1

2 a
p

a2 + 4. Since a ≥ kAòk � kAk and f is clearly increasing,
we get

(1 + x2) � f (kAk)
�
1 + (x � a)2

�
and so (1 + D2

0) � f (kAk)(1 + D2) on dom(1 + D2
0) ≥ dom(1 + D2). By Lemma 1,

(1 + D2)�1 � f (kAk)(1 + D2
0)�1.

To rid ourselves of the restrictive hypothesis that A(dom D0) � dom D0, we let Ek

be the spectral projection of D0 for the interval [�k, k] and let Ak ≥ EkAEk. Then Ak is
self-adjoint, kAkk � kAk, Ak(dom D0) � dom D0 and Aò ≥ limk!1 Akò for all ò 2 H.
If Dk :≥ (D0 + Ak) then

(1 + D2
k )�1 � f (kAk)(1 + D2

0)�1.

By a result of Sz.-Nagy [DS, Exercise XII.9.37],

(1 + D2
k)�1ò ! (1 + D2)�1ò for all ò 2 H

and so the inequality holds for all A.

https://doi.org/10.4153/CJM-1998-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-038-x


710 A. CAREY AND J. PHILLIPS

LEMMA 7. If D0 is an unboundedself-adjoint operator, A is a symmetric D0-bounded
operator with kAkD0 Ú 1, and D ≥ D0 + A then

(1 + D2)�1 � h(kAkD0 )(1 + D2
0)�1

where h(a) ≥ (1 � a)�2.

PROOF. We follow the proof of the previous lemma, with ò 2 dom D2
0, kòkD0 ≥ 1.

So we want C Ù 0 satisfying:

1 � C[1 + kAòk2 � 2kD0òk kAòk].

Since kD0òk Ú kòkD0 ≥ 1 this will be satisfied if

1 � C[1 + kAòk2 � 2kAòk]

or
(1 � kAòk)�2 � C.

Choosing C ≥ (1 � kAkD0)
�2 works, since (1 � a)�2 is increasing for a Ú 1.

We rid ourselves of the restriction A(dom D0) � dom D0 in the same way: each Ak ≥
EkAEk is self-adjoint (bounded, in fact!), and it is easy to see Akò ! Aò for all ò 2S1

k≥1 Ek(H) which is a core for (D0 + A). Hence, by the same result of Sz.-Nagy (using
its full power) we obtain

(1 + D2)�1 � (1 � kAkD0)
�2(1 + D2

0)�1.

COROLLARY 8. Let N be as above, let D0 be an unbounded self-adjoint operator
affiliated with N, let A 2 Nsa and let D ≥ D0 + A.

(1) If Tr
�
(1 + D2

0)�n
�
Ú +1 for some positive n, then so is Tr

�
(1 + D2)�n

�
and

Tr
�
(1 + D2)�n

�
� f (kAk)n Tr

�
(1 + D2

0)�n
�
.

(2) If Tr(e�tD2
0 ) Ú +1 for t Ù 0 then

Tr(e�tD2
) � exp

 
1 � 1

f (t
1
2 kAk)

!
Tr

0B@exp
 
� t

f (t
1
2 kAk)

D2
0

!1CA.

If we only assume that A is D0-bounded and symmetric then we must also assume that
kAkD0 Ú 1 and D ≥ D0 + A is affiliated with N. In this case we get:

(3) If Tr
�
(1 + D2

0)�n
�
Ú +1 for some positive n, then

Tr
�
(1 + D2)�n

�
�
�
h(kAkD0 )

�n
Tr
�
(1 + D2

0)�n
�
.

(4) If Tr(e�tD2
0 ) Ú 1 for t Ù 0 then if t � 1

Tr(e�tD2
) � ekAkD0

(2�kAkD0
) Tr(e�(1�kAkD0

)2tD2
0 )
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while for t ½ 1 we get

Tr(e�tD2
) � Tr(e�D2

) � ekAkD0
(2�kAkD0

) Tr(e�(1�kAkD0
)2D2

0 )

by the previous line.

PROOF. (1) and (3) follow from Lemmas 6 and 7 and Corollary 4.
To see (2) and (4), we let

g(x) ≥
²

0 if x ≥ 0
e�( 1

x�1) if x Ù 0

so that g is a continuous increasing function on R+ with g(0) ≥ 0. Then, e�tD2 ≥
g
�
(1 + tD2)�1

�
and applying Lemmas 6 and 7 yields:

(1 + tD2)�1 � f (t
1
2 kAk)(1 + tD2

0)�1 in case (2);

while
(1 + tD2)�1 � h(kt

1
2 Ak

t
1
2 D0

)(1 + tD2
0)�1

� h(kAkD0 )(1 + tD2
0)�1 in case (4)

since for s � 1,
ksAksD0 � kAkD0.

A straightforward application of Lemma 3 and the fact that

g(cx) ≥ e(1� 1
c )[g(x)]

1
c

gives us (2) and (4).

REMARK 9. (1) In the following propositions we will use the easily derived esti-
mates: (

1 � f (a) � 1 + 2a if 0 � a � 1. 5 and
1 � h(a) � 1 + 4a if 0 � a �. 35.

(2) We will also use the following estimates (with x ≥ f (a) or h(a)):
(i) xr � 1 � (x � 1)r for x ½ 1 and 0 Ú r � 1

(ii) ( 1
x )r � 1 ½ �(x � 1)r for x ½ 1 and 0 Ú r � 1.

Inequality (ii) follows easily from (i) and (i) is proved using the usual calculus tech-
niques after letting (x � 1)r ≥ b and s ≥ 1

r , to convert (i) into:

bs + 1 � (b + 1)s for b ½ 0, s ½ 1.

(3) In the following propositions we could also use the same techniques to get operator
norm estimates of k(1 +D2)�r� (1 +D2

0)�rk. However, they would not be nearly as sharp
as the estimates obtained in Appendix A.

(4) In the following propositions, if we were only interested in positive integers n,
we could restrict to the case r ≥ 1 and things would simplify somewhat. However, we
need the greater generality.
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PROPOSITION 10. If D0 is an unbounded self-adjoint operator affiliated with N and
if Tr

�
(1 + D2

0)�n
�
Ú 1 for some n ½ 1 (not necessarily an integer), then for all A in Nsa,

Tr
��

1 + (D0 + A)2
��n

�
Ú 1 and if 0 Ú r � 1 and kAk � 1 then


(1 + D2

0)�r �
�
1 + (D0 + A2)

��r


 n
r

� 2
r
n (2kAk)rk(1 + D2

0)�1kr
n.

If we only assume that A is a D0-bounded symmetric operator with D ≥ D0 + A also
affiliated with N, then the inequality becomes:

k(1 + D2
0)�r � (1 + D2)�rk n

r
� 2

r
n (8kAkD0)

rk(1 + D2
0)�1kr

n,

provided kAkD0 �. 29.

PROOF. By Lemma 6 we have

(1 + D2)�1 � f (kAk)(1 + D2
0)�1 and

(1 + D2
0)�1 � f (k � Ak)(1 + D2)�1.

[Or, by Lemma 7, (1 + D2)�1 � h(kAkD0 )(1 + D2
0)�1 and

(1 + D2
0)�1 � h(k � AkD)(1 + D2)�1

� h(2kAkD0)(1 + D2)�1 if A is D0-bounded. ]

Thus,
1

f (kAk)
(1 + D2

0)�1 � (1 + D2)�1 � f (kAk)(1 + D2
0)�1.

Hence, by operator monotonicity: 
1

f (kAk)

!r

(1 + D2
0)�r � (1 + D2)�r �

�
f (kAk)

�r
(1 + D2

0)�r.

And so," 
1

f (kak)

!r

� 1
#
(1 + D2

0)�r � (1 + D2)�r � (1 + D2
0)�r �

" 
f (kAk)

!r

� 1
#
(1 + D2

0)�r,

which, by the previous remarks, yields

�[f (kAk) � 1]r(1 + D2
0)�r � (1 + D2)�r � (1 + D2

0)�r � [f (kAk) � 1]r(1 + D2
0)�r.

So, if kAk � 1. 5 we get:

�(2kAk)r(1 + D2
0)�r � (1 + D2)�r � (1 + D2

0)�r � (2kAk)r(1 + D2
0)�r.

(If A is only D0-bounded and kAkD0 �. 29 we get:

�(8kAkD0 )
r(1 + D2

0)�r � (1 + D2)�r � (1 + D2
0)�r

� (4kAkD0 )
r(1 + D2

0)�r

� (8kAkD0 )
r(1 + D2

0)�r. )

An application of Lemma 5 with g(x) ≥ x
n
r yields the result.
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PROPOSITION 11. With the hypotheses as in Proposition 10 and r ≥ n
dne+1 , we get:

k(1 + D2
0)�n � (1 + D2)�nk1 � 2

r
n (2kAk)r[f (kAk)]n(n + 1)k(1 + D2

0)�nk1.

If A is only D0-bounded with kAkD0 �. 29 we get:

k(1 + D2
0)�n � (1 + D2)�nk1 � 2

r
n (8kAkD0 )

r[h(kAkD0 )]
n(n + 1)k(1 + D2

0)�nk1.

PROOF. Let k ≥ dne, the greatest integer in n, and let r ≥ n
k+1 Ú 1. So,

(1 + D2)�n � (1 + D2
0)�n ≥ [(1 + D2)�r]k+1 � [(1 + D2

0)�r]k+1

≥
kX

j≥0
(1 + D2)�rj

�
(1 + D2)�r � (1 + D2

0)�r
�
(1 + D2

0)�r(k�j).

Applying the Hölder inequality [D] we get:

k(1+D2)�n � (1 + D2
0)�nk1

�
kX

j≥0
k(1 + D2)�rjk n

rj
k(1 + D2)�r � (1 + D2

0)�rk n
r
k(1 + D2

0)�r(k�j)k n
r(k�j)

�
kX

j≥0
k(1 + D2)�1krj

n 2
r
n (2kAkr)k(1 + D2

0)�1kr
nk(1 + D2

0)�1kr(k�j)
n

�
kX

j≥0
f (kAk)rjk(1 + D2

0)�1krj
n 2

r
n (2kAkr)k(1 + D2

0)�1kr(k�j+1)
n

≥ 2
r
n (2kAk)rk(1 + D2

0)�1kn
n

kX
j≥0

f (kAk)rj

� 2
r
n (2kAk)rk(1 + D2

0)�nk1(k + 1) f (kAk)rk

� 2
r
n (2kAk)rk(1 + D2

0)�nk1(n + 1)
�
f (kAk)

�n
.

The proof of the D0-bounded version is similar.

At this point we are in a position to prove the trace-class continuity of the map A 7!
e�(D0+A)2

: Nsa ! L1(N) assuming that D0 is í-summable (i.e., Tr(e�tD2
0 ) Ú 1 for all

t Ù 0). We can also prove a D0-bounded version of this result. However, in order to keep
this paper to a reasonable length we leave these results to the sequel on í-summable
Fredholm modules and spectral flow where they will be directly useful.

REMARK 12. Motivated by our work, F. A. Sukochev has generalized and improved
some of our estimates by other methods [Su].
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Appendix C. Examples. To illustrate the theory we present some nontrivial exam-
ples.

EXAMPLE I. Let A ≥ C(T), the CŁ-algebra of continuous functions on the unit circle,
T, and let N ≥ B

�
L2(T)

�
, the (type I) von Neumann factor of all bounded operators on

the Hilbert space, L2(T). We represent A as multiplication operators on L2(T) so that
f 7! Mf : A ! N is faithful. We let D ≥ 1

i
d
dt be the unique self-adjoint unbounded

operator on L2(T) which is diagonal relative to the orthonormal basis,(
1p
2ôeint

)
n2Z

.

If f is a continuously differentiable function in A, then one easily calculates that

[D, Mf ] ≥ 1
i

Mf 0

so that axiom 2 of Definition 2.1 holds. Using the orthonormal basis which diagonalizes
D, we easily calculate that

Tr
�
(1 + D2)�

p
2

�
≥ X

n2Z

� 1
1 + n2

� p
2
,

which is finite for any p Ù 1. Thus, (N, D) is a p-summable Fredholm module for A ≥
C(T) for any p Ù 1. We take p ≥ 2 in the following calculations to be definite.

We let u 2 U(A) be the function u(t) ≥ e�it, so that (suppressing the representation
M) we have

uDuŁ ≥ D + u[D, uŁ] ≥ D + u
1
i

(uŁ)
0 ≥ D + 1.

Thus, the straight line path from D to uDuŁ is Du
t ≥ D + t1 for t 2 [0, 1]. As t increases

from 0 to 1, the eigenvectors of the operators Du
t remain the same, but the eigenvalues

each increase by 1. Exactly one eigenvalue changes from negative to nonnegative so
that sf(fDu

t g) ≥ +1. In this setting, P ≥ ü(D) is the projection of L2(T) onto H2(T) and
Tu ≥ PuP is the classical Toeplitz operator corresponding to the backward shift so that
ind(Tu) ≥ +1 also.

Letting k ≥ p
2 ≥ 2

2 ≥ 1 we have

C̃k :≥
Z 1
�1(1 + x2)�k dx ≥

Z 1
�1(1 + x2)�1 dx ≥ ô.

Thus,

1

C̃k

Z 1

0
Tr
� d

dt
(Du

t )
�
1 + (Du

t )2
��k

�
dt

≥ 1
ô
Z 1

0
Tr
�

1 Ð
�
1 + (D + t1)2

��1
�

dt ≥ 1
ô
Z 1

0

 X
n2Z

1
1 + (n + t)2

!
dt

≥ 1
ô
X
n2Z

Z 1

0

1
1 + (n + t)2

dt ≥ 1
ô
X
n2Z

Z n+1

n

1
1 + u2

du ≥ +1.
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Thus, we have verified that, in this case,

ind(PuP) ≥ sf(fDu
t g)

≥ 1
ô
Z 1

0
Tr
� d

dt
(Du

t )
�
1 + (Du

t )2
��1

�
dt ≥ 1.

Theorem 2.17 (with p ≥ 1 + è) would require us to use the exponent m ≥ 1 + 3
2 ≥ 2. 5

and the constant,

C̃m ≥
Z 1
�1(1 + x2)�2.5 dx ≥ 4

3
.

We fully believe that this exponent m is only an artifact of the proof, and furthermore
that in general one need only use the minimal exponent for which the integral formula
converges, namely k ≥ p

2 .

EXAMPLE II. Let A ≥ C(T2), the CŁ-algebra of continuous functions on the torus,
and let A act as multiplication operators on H ≥ L2(T2). We let ã: R ! Aut(A) be the
Kronecker flow on A determined by the irrational number, í. That is, for s 2 R, f 2 A,
and (z1, z2) 2 T2 we have:

(ãsf )(z1, z2) ≥ f (e�2ôisz1, e�2ôiísz2).

Now, the CŁ-crossed product A çã R acts on L2(R, H) as follows: for

s, t 2 R, ò 2 L2(R, H) and f 2 A

we define �
ô(f )ò

�
(s) ≥ ã�1

s (f ) Ð ò(s) and�
ï(t)ò

�
(s) ≥ ò(s � t).

Thus, ô ð ï is a faithful representation of A çã R on L2(R, H). It is well-known that
N ≥

�
ô ð ï(A çã R)

�00
is a II1 factor, [CMX], and so we have ô: A ! N. We let

D ≥ 1
2ôi

d
ds

,

the usual generator of the one-parameter unitary group ï: R ! N, so that D is affiliated
with N. Now, if é is the densely defined (unbounded) derivation on A generating the
representation ã: R ! Aut(A) and f 2 A is a smooth element for é then

ô
�
é(f )

�
≥ 2ôi[D,ô(f )]

by [L] so that axiom (2) of Definition 2.1 holds.
Now, D is really

1
2ôi

d
ds


 1

and ï(t) is really
ï(t) 
 1
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on L2(R)
H. Since the trace on A (given by integration) is finite, we have that the trace
on N restricts to the usual trace on ï(R)00 
 1: that is, x
 1 in ï(R)00 
 1 is trace class if
and only if x ≥ ï(ĝ) for some g 2 L1(R) \ L1(R) and then

Tr
�
ï(ĝ) 
 1

�
≥
Z 1
�1 g(r) dr.

In this Fourier Transform picture, D becomes multiplication by the independent variable,
r. Hence, (1 + D2)�1 becomes multiplication by the function g(r) ≥ (1 + r2)�1 which is
in L1(R) \ L1(R). That is,

(1 + D2)�1 ≥ ï(ĝ) 
 1.

Therefore if p Ù 1, then

Tr
�
(1 + D2)�

p
2

�
≥
Z 1
�1(1 + r2)�

p
2 dr Ú +1.

That is, (N, D) is a p-summable (type II1) unbounded Breuer-Fredholm module for A
for any p Ù 1. In particular, (N, D) is 2-summable and

Tr
�
(1 + D2)�1

�
≥
Z 1
�1(1 + r2)�1 dr ≥ ô.

We let u 2 U(A) be the function u(z1, z2) ≥ z2 which is easily seen to be a smooth
element for the derivation é and that é(uŁ) ≥ 2ôiíuŁ. This implies that

[D,ô(uŁ)] ≥ 1
2ôi

ô
�
é(uŁ)

�
≥ íô(uŁ).

Now, suppressing the representation ô we get:

uDuŁ ≥ D + u[D, uŁ] ≥ D + u(íuŁ) ≥ D + í1.

Thus, the straight line path from D to uDuŁ is Du
t ≥ D + tí1 for t 2 [0, 1]. As t increases

from 0 to 1, the spectral subspaces of the operators Du
t remain the same, but the spec-

tral values each increase by í. The spectral subspace of D corresponding to the interval
[�í, 0), E ≥ E[�í,0), is exactly the subspace where the spectral values change from neg-
ative to nonnegative. By a calculation very similar to Example 2.6 of [P2], the spectral
flow of the path fDu

t g is exactly Tr(E) and since E ≥ ï(ĝ)
1 where g ≥ ü[�í,0) we have

sf(fDu
t g) ≥ Tr(E) ≥

Z 1
�1 ü[�í,0)(r) dr ≥ í.

It is also easy to show directly that í is the Breuer index of the “Toeplitz” operator Tu :≥
PuP (where P ≥ üR+ (D)) computed in the II1 factor, PNP. Finally,

1
ô
Z 1

0
Tr
� d

dt
(Du

t )
�
1 + (Du

t )2
��1

�
dt ≥ 1

ô
Z 1

0
Tr
�
í
�
1 + (D + tí)2

��1
�

dt

≥ í
ô
Z 1

0

�Z 1
�1

1
1 + (r + tí)2

dr
�

dt

≥ í
ô
Z 1

0

�Z 1
�1

1
1 + u2

du
�

dt ≥ í

.
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Hence, we have verified in the example that:

ind(PuP) ≥ sf(fDu
t g)

≥ 1
ô
Z 1

0
Tr
� d

dt
(Du

t )
�
1 + (Du

t )2
��1

�
dt ≥ í.

As mentioned in Example I, Theorem 2.17 would require us to use the exponent m ≥
2. 5 (or 3.5 or 4. 5 Ð Ð Ð) to get:

ind(PuP) ≥ sf(fDu
t g) ≥ 3

4

Z 1

0
Tr
� d

dt
(Du

t )
�
1 + (Du

t )2
��2.5

�
dt ≥ í.

These examples serve to illustrate our conjecture that one need only use the minimal
exponent necessary (namely p

2 ) in the integral formula for the spectral flow.
For more general examples of this type (i.e., given by action of R) see [L] and [PR]

where the index formula

ind(PuP) ≥ �1
2ôi

ú
�
é(u)uŁ

�
is proved (here ú is an R-invariant trace on the CŁ-algebra, A).

Higher dimensional examples (larger p) can be constructed from Dirac operators on
Riemannian manifolds, but we do not present the construction here.
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