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UNBOUNDED FREDHOLM MODULESAND SPECTRAL FLOW

ALAN CAREY AND JOHN PHILLIPS

ABSTRACT.  An odd unbounded (respectively, p-summable) Fredholm module for a
unital Banach x-algebra, A, isapair (H, D) where Aiis represented on the Hilbert space,
H, and D is an unbounded self-adjoint operator on H satisfying:

(1) (1+D?)1iscompact (respectively, Trace((l + DZ)*(p/Z)) < 00), and
(2) {a€ A|[D,a] isbounded} isadense x—subalgebra of A.
If uisaunitary in the dense x—subalgebra mentioned in (2) then
uDu* =D +u[D,u*] =D+B
where B is abounded self-adjoint operator. The path
D{ = (L—t)D+tuDu* = D +tB
isa“continuous’ path of unbounded self-adjoint “ Fredholm” operators. More precisely,
we show that .
FY=DY(1+0P?) °
is a norm-continuous path of (bounded) self-adjoint Fredholm operators. The spectral
flow of thispath {F{'} (or {D¢'}) isroughly speaking the net number of eigenvaluesthat
pass through 0 in the positive direction ast runs from O to 1. This integer,
s({Dr'}) == sf{F'}),
recoversthe pairing of the K-homology class [D] with the K-theory class [u].
Weusel. M. Singer’sidea (asdid E. Getzler in the §-summable case) to consider the

operator B as a parameter in the Banach manifold, Bs(H), so that spectral flow can be
exhibited astheintegral of aclosed 1-form onthismanifold. Now, for Bin our manifold,

any X € TB<B$(H)) isgiven by an X in Bg(H) as the derivative at B along the curve
t — B+ tXin the manifold. Then we show that for ma sufficiently large half-integer:

a(X) = é Tr(x(l +(D+ B)Z)fm)

is a closed 1-form. For any piecewise smooth path {D; = D + B;} with Dy and D;
unitarily equivalent we show that

S0 = &= ;T GO0+ od )t

theintegral of the 1-form «. If Dg and D, arenot unitarily equivalent, wemust add apair
of correction terms to the right-hand side. We also prove a bounded finitely summable
version of the form:

S(FD) = & ) GEIa- R

forn> p%l aninteger. The unbounded caseis proved by reducing to the bounded case

viathemapD — F = D(1+ DZ)*% . We prove simultaneously atype |l version of our
results.
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Introduction. Spectral flow was invented by Atiyah and Lusztig to handle smooth
paths of self-adjoint elliptic operators. In the work of Atiyah-Patodi-Singer [APS], in-
tegral formulas for spectral flow were lurking in the background at the outset. In par-
ticular, Singer indicated how, in the case of certain geometric operators, spectral flow
could be interpreted asthe integral of a 1-form obtained as the exterior derivative of the
etainvariant on a certain manifold of operators [Si, p. 190]. Douglas-Hurder-Kaminker
in their study of the eta invariant used Singer’s formula in an essential way [DHK; H;
Kam]. Moreover, theideaof type Il spectral flow arose naturally in their work aswell as
in the paper of Mathai [M].

Recent work by one of us[P1, 2] hasclarified the purely functional analytic aspectsof
spectral flow in both thetype | andtypell cases. Wefelt that it was now both possibleand
desirable to obtain analogous integral formulas for spectral flow in much more general
settings. In fact, two such formulas already exist in particular cases: [G] and [P2]. This
paper grew out of an attempt to find a deeper connection between these two integral
formulas beyond mere analogy.

To discussthisfurther, we need to set someterminology and notation. If AisaBanach
x-algebra, then a (bounded, odd) Fredholm module for A is apair (H,F) where H isa
Hilbert space on which A is represented and F is a self-adjoint operator on H satisfying
F? = 1 and [F,4a] is compact for all a € A. An unbounded (odd) Fredholm module
for Alisapair (H, D) where, again, H is a Hilbert space on which A acts and D is an
unbounded self-adjoint operator on H satisfying (1+D?)~tiscompactand {a € A | [D, a]
is bounded} is dense in A. At this level of generality, the mapping (H,D) — (H,F)
where F = sign(D) produces a bounded Fredholm module from an unbounded one.
One can impose summability conditions more stringent than compactnessin the above
definitionsand thereby axiomatize concrete cyclesfor cyclic cohnomology or entirecyclic
cohomology [C1,2]. In this specialized setting, the properties of the mapping (H, D) —
(H, F) are more subtle. Returning to the general case, if uis a unitary in A, then F —
uFux is compact, and the straight line path {F;} from F to uFux is a continuous path
of self-adjoint Fredholm operators. The spectral flow of this path, sf{F}, is roughly,
the net number of eigenvalues that pass through O in the positive direction ast runs
from 0 to 1. If P is the projection on the positive spectral subspacefor F, then PuP isa
Fredholm operator on P(H) and ind(PuP) = sf{F:}. Similarly, {D; := (1—t)D+tuDux}
is a“continuous’ path of self-adjoint “unbounded Fredholm operators’ and we have
ind(PuP) = sf{D;} where P is the projection on the nonnegative spectral subspace for
D.

In order to obtain explicit integral formulas for spectral flow, it is clear that some sort
of summability conditions need to beimposed. Tothisend, EzraGetzler in [G] outlined a
method of exhibiting spectral flow astheintegral of a1-form inthe context of unbounded
9-summable Fredholm modules (Tr(e™®*) < oo for al t > 0). In particular, if {D;} is
the path mentioned above he indicated how to prove that

S{D} = Tr(Dje ™) dt

1 4
7
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in the 8-summable context. Then, in [P2] one of us showed that for (H, F) a bounded
p-summable Fredholm module (Tr(|[F,a][’) < oo) and n a sufficiently large positive
integer,

SF({F}) = cin /01 Tr(Fi(1 — FA)") dt,

where {F} is as above. These are the two formulas that we want to reconcile.
Our path seemed clear. One, there should be afinitely summable unbounded version
of Getzler's formula of the form:

1
SDy = & [ Te(pia+ o)) o

(here Tr((l + DZ)"’) < +oo for somep > 0), wherethe D, vary in D + B(H)«. Two, the
finitely summable bounded version should be more general than the computation donein
[P2]: that i, the {F¢ } should vary freely in amanifold, F+ L, where L is some Schatten-
like classin B(H). Third, we should be able to obtain the unbounded from the bounded
caseviathemap D — Fp = D(1 + Dz)‘%. Of course, Fp is a smooth approximation
of sign(D) and the corresponding pair (H, Fp) is called a pre-Fredholm module. The
technical obstacles to this program are legion, especially since we include the type I1
situation at all stages.

In chapter one we anticipate our needs and consider finitely summable pre-Fredholm
modules (actually, Breuer-Fredholm modules) (N, Fo) for aBanach x-algebraA. That is,
1 — F3 is 5-summable and [Fo, a] is p-summable in the semifinite factor N for a dense
set of a'sin A. Our manifold of allowable perturbations of F is precisely the subspace
of Fo + L& which retains these two summability criteria. We denote this manifold by
Fo + ng. For F in this manifold and X € L&g a tangent vector (at F), let a(X) =
& Tr(X(1—F?") wheren > 21 jsan integer and C, isanormalizing constant. Then o
isaclosed 1-form; that is, dor = O (Proposition 1.3). By aversion of the PoincaréLemma
(Proposition 1.4), « is exact; that is, « = df where §(F) is the line integral of « along
the segment [Fo — F]. A simple argument (Proposition 1.5) showsthat theintegral of «
along apiecewise-C! path I” dependsonly on the endpointsof I'. Now, if I" is such apath
from Fy to F, we can extend it to a path '’ from sign(F1) to sign(Fz). By Theorem 3.1
of [P2], theintegral of « adlong "’ is, therefore, sf(I'). Theformulafor sf (") with natural
correction terms follows (Theorem 1.7).

In chapter two we study p-summable unbounded modules by reducing to the bounded
case. Our main technical tools are the functional calculus and an integral formula for
a+ DZ)‘% . Wefirst show that if (N, Do) is p-summablethen (N, Fp,) is g-summable for
g > p (Proposition 2.4). This result may be known but it does not appear to be in the
literature: Connesdiscussesthe even casein [C1] and doesnot usethemap D — Fp. We
believethat g > pisnecessary. Wethen show that D — Fp mapping Do+Ng to FD0+L§§
is continuousfor q > p (Corollary 2.8). Next, we show that if t — Dy is C' in operator
normthent — F; = Fp, is C! in the norm of L&, (Proposition 2.10). Thisis sufficient
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by Remark 1.8. We also obtain an integral formulafor %(Ft) in Proposition 2.10. Using
this formula and the trace property we show that

Tr(Fi(1 — FA)") = Tr(Dj(1+ D)~™D).

Theextra g is exactly what is expected from formally differentiating F; = D¢(1 + th)*%
(Proposition 2.12). Finally, we deducethat if (N, Do) is p-summableand m = n+% where
n> ‘%1 is an integer, then for D € Do + Ng and X € Ng, a tangent vector (at D) the
1-form, ’61; Tr(X(l + D2)*m) isexact and integrating this 1-form along apath {D; } yields
sf{D¢} (modulo natural correction terms).

The operator norm estimates and trace norm estimates needed in Chapter 2 are of
independent interest and are contained in Appendix A and Appendix B, respectively. In
Appendix C we present some examples.

We are currently working on a sequel where we study the #-summable situation in
both the bounded and unbounded casesfor types| and I1.

ACKNOWLEDGMENT. Thiswork was supported by NSERC of Canadaand the ARC
of Australia. We thank the referee for suggestions which have greatly improved the in-
troduction.

1. Spectral flow astheintegral of a 1-form—Finitely summable bounded Fred-
holm modules (Types| and I1).

DerINITION 1.1. Let A be a unital Banach x-algebra and p > 0, then an odd p-
summable pre-Breuer-Fredholm module for Ais a pair (N, Fo) where N is a semifinite
factor (on a separable Hilbert space), A is unitally x-represented in N, Fo in N is a self-
adjoint operator satisfying

(1) 1—F3is 5-summable, and

(2) [Fo,4a] isp-summablefor all ain adense *-subalgebraA of A (see[P2]).

We observethat if  isthe characteristic function of [0, co) then

Fo = 2x(Fo) — 1 = sign(Fo)
is self-adjoint, in N, and satisfies F2 = 1. Moreover,
1—F3=F3— F2= (Fo — Fo)(Fo + Fo)
and since (Fo + Fo) isinvertiblein N, we see that
(Fo—Fo) = (1 —F3)(Fo+ Fo)*

is 5-summable. This, of course, implies that [Fo, a] is p-summablewhenever [Fo, a] i§ p-
summable. Thus, we can obtain agenuine p-summable Breuer-Fredholm module (N, Fo).
However, we want the greater generality when we come to apply these results to un-
bounded Breuer-Fredholm modules.

https://doi.org/10.4153/CJM-1998-038-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-038-x

FREDHOLM MODULES AND SPECTRAL FLOW 677

In general, we denote the *-ideal of n-summable operatorsin N by L"(N) or L". We
denoteby LZ(N) or L2, the real subspace of self-adjointsin L"(N).
We let P = y(Fo) so that Fp = 2P — 1 and hence, relative to the decomposition,

1= P+(1—P), Fo hasthe matrix, O | ForacAweleta= |2 22| gzive
. 0 -1 ay1 Ay
to this decomposition, so that [Fo, a] € LP(N) impliesthat a;» and ay arein LP(N) (and
conversely). If u = [uﬂ u12} isaunitary in A, then
U1 U
. - —2U12U7, ‘ U1U5; — U,
UF()U* —Fo=
Uy — Ul | 2Uz1 U
is aself-adjoint element in the x-algebra,
{ PLZP ‘ PLPP- }
piLPp | PLLIP:
Thisis easily seen to be a Banach x-algebrain the norm
@I = llasllp/2 + l|aszllp + l|azllp + az2llp 2 + > lla]| -
i

If N isatypel factor, the operator-norm terms are not necessary [CP, Proposition A-1].
We denote this Banach x-algebraby LP2 and its real self-adjoint subspace by L&g.
Now,
UFou* — Fg = u(Fg — Fo)u® + (UFou* — Fo) + (Fg — Fo)
whichisin
b P P P
Le+L22+Lg=L%.
Thus, UFoU* isin the affine space Fo + L22, as are By and UEqu® for all u € U(A).

LEMMA 1.2. Let (N, Fg) be an odd p-summable pre-Breuer-Fredholm module for
the unital Banach x-algebra, A. Let Fg = 2y (Fg) — 1 and let

A = {ae A|[Foal € LP(N)}.

Then,

(1) Fo, Fo, UFoU*, uFou* arein the affine space Fo + L% for all u € U(A), and

(2) for all FinFo+L2%%, (1—F?) e LS, and

Fro (1—FY):Fo+LRE LS
is continuous.

PROOF. It remainsto show (2). By (1) Fo — Foisin L%, soany Fin Fo+L2¢ isof

theform F = Eo + kwithk € L%2. Thus,

oS-
01 \ kIZ ‘ —l+k22

{ k2, + k1 + Kok, ‘ Ki1kiz + kiokon }

k?f_zkll + kzgkiz ‘ k;z — 2koo + k?f_zklg
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B .
isin L as claimed. "

NoTES. (1) TheaffinespaceFq+ L&g appearsto have adistinguished point, namely
P
Fo. However, if F1 € Fo + L%? isany other point in this space and we use the positive
P
and negative spectral subspacesof F; to define anew space, say (L22) then, in fact:
P P
@ (L§?) = L&
(b) L& = {Xe L& |1 (Fo+X)? €Lz}
P P
© Fi+L& =Fo+ L&

PrROOF. To see (b), first note that by part (2) of the previous lemma we get: C. On
~ b
the other hand if X € L& and 1 — (Fo + X)? € L2 then letting Yo = Fo — Fo € L2, we
havel— (Fo+(Yo+X))* € L3

= (Y0+X)2+|30Yo+|~:ox+X|~:0+Y0ﬁo € |_g
= FX+XFoe Lf = xe LB

So (b) holds.

Tosee(a) let X € LB thenX € LEand1— F2 = 1 — (Fo+ X)? € L. But,
by hypothesis 1 — (F; — X)2 = 1 — F2 € L%, so by part (b) applied to F; we get
(—X) € (LY andso X e (L22Y. The reverse inequality is proved similarly.

Part (c) istrivial. ]

(2) For further evidence that these slightly exotic spaces are the correct ones to use
in this context, we show in Chapter 2 that they are exactly the receptaclesfor the trans-
formation D — Fp = D(1 + D2)~2 from the unbounded to the bounded set-up.

We now fix A and (N, Fg) as above and consider the space M = Fq + ng asared
Banach manifold. Let n be a positive integer with n > ";—1 We definea 1-form o on M
via 1

2\n
a(X) = oA Tr(X(1 —F?)")

n

where

FeM=Fo+ LR
XeTeM) = L2 L, and
n! 2n+1
1-3---(2n+1)
By thelemma, « is certainly areal-valued function of X and F and for fixed F € M itis
abounded linear function of X. It is probably true that

1
Cn = ‘/71(1—t2)” dt =

aTM) = L2 x M —R

is continuously differentiable in the strongest sense: i.e., for each (X,F) in T(M),
P

Da(X, F)isin L(LE2 x M, R) and (X, F) — Da(X, F) is norm-continuous. Sincewe are

only using the language and ideas of (elementary) differential geometry as motivation
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and none of the big theorems we do not need this. We only need the weaker result that
do, the exterior derivative of «, makes senseand do = 0.
To this end, we use the invariant definition of exterior differentiation [S, p. 292]. For

FinM, wehave X, YinTe(M) = L% realized as tangent vectorsat F by differentiating
the curvesF +sXand F +sY at s= 0. That is, we consider X and Y also as the canonical
vector fields on M (or flows on M) given by flowing in the X direction or Y direction.
Then, by definition:
da(X,Y) = X- (a(Y)) = Y- (X)) — a([X, Y]).

Since X and Y commute as flows the last term is 0 and so drops from our calculation.

ProPOSITION 1.3. Let N be a semifinite factor and F( a self-adjoint element in N
satisfying 1 — FZ is lgf-summablefor somep > 0. Let M be the real Banach manifold
Fo+L%% Letn> B> bea positiveinteger and let o(X) = & Tr(X(1— F?)"). Then
isaclosed 1-formon M; that is, do = 0.

(NoTte. (N, Fp) isanodd p-summable pre-Breuer-Fredholm modulefor the C*-alge-
bra A = C1, but the particular algebrais unnecessary here.)

ProOF. FixF &€ MandX,Y € Tg(M), then

(da)e(X,Y) = X - (1) — Y - (a(X)

= 2l JE (v E o))~ Te(x(a - E+sv?)") ]

so it sufficesto see that
d d
(-0 = G ((xa e eo0r)))
We simplify our notation alittle by using Fs = F + sX for s > 0.
d
deloo (YA )

= 'Singr(Y%[(l —F)"—(1- FZ)“])
— imTr(Y2[S - (- D) - (- F) - P
0 sl ° ®
~ |imTr(Y[nf(1 — FAK(-FX = XF — )1 — F" 1))
s—0 k=0

n—1
= Tr(Y[Z @ - PR = xP - F )
k=0
where (1—F2)¥ — (1—F?)kinL#% andsx?2 — 0in L% asX?isinL?, sothat XF +FXis
in L% and by the Holder inequality [D], the sum convergesin L% . SinceY € LP2 C LP
and ,l) + 2—; = Z”T:'l > 1, the traces converge as claimed. Thus,
d

n—1
d_S‘s:O (TT(Y(]. — Fg)”)) — _ I;)Tr(Y(l — Fz)k(FX + XF)(]_ _ |:2)n7k71>
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Now,
Y1-F)<elm and X1-F?)"*telLmriom

by the Holder inequality, so that
Y1 - F)EX(A — F)™% 1 and  Y(1 — FA*XF(1 — F?)M k-t
are both summable. Thus,
d 2\n
d_S‘s:O (Tr(Y(l —F) )>

== ni:l[Tf(Y(l — F*FX(1 - Fz)“’k’l) + Tr(Y(l — F2XF(L — FZ)nfkfl)}
k=0

= — niiI-[TI'(X(]_ — Fz)nfkle(l _ F2)k|:) + Tr(XF(l . FZ)nfkle(l . FZ)k”
k=0

= — nil[Tr(X(l — FZ)ﬂfkleF(l _ F2)k) + Tr(X(l _ Fz)nfkleY(l _ Fz)k)]
k=0

which, after changing the variablesj = n — k — 1 is precisely

dEsL—o (Tr(X(l —(F+ sY)Z)n)) .

Now, since « is closed and M is convex, one would expect from some version of
Poincar€ sLemmathat « is, in fact, exact. Thisisthe case, and we proveit below. Fixing

(N, Fo) we defined:M — R via

o(F) = cin J “Tr((F — Fo)(1 — F))") dt

where F; = Fo + t(F — Fo) for tin [0, 1]. Sincethe integrand is clearly continuous, 6 is

well-defined. By definition,

d0:0) = | (6(F +9).

Ehol

ProOPOSITION 1.4.  With the assumptions of Proposition 1.3 and the above definition

of # we have that df = «.
PROOF. Fix F1 € M = Fo +L2? andlet Y = (F1 — Fo) so that
O(F1) = o /O Tr(Y(1— F)") dt

and
O(F1 +sX) = ci ./01 Tr((Y+ X)(1— (FS)E)”) dt

where
(F%) = Fo+t(F1+sX—Fo) = Fo+t(Y +5sX)
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for real s. Now, by the product rule
dES(Tr((\H X)(1 - (FS)E)”))
- Tr(X(l - (FS)E)”) + Tr((Y + sX)dis(l — (Fs)tz)n)
=Tr(x(1 - F23)")

_ ni:l{Tr((Y + sX)(l — (Fs)tz)k(t(Fo +tY)X + tX(Fo + 1Y) + IZZSXZ)
k=0

(1-F9)" )]

by a calculation very similar to that of Proposition 1.3. Now, as s — 0 this real-valued
function convergesto

dﬂsLo (Tr((Y +X)(1- (FS)E)”))

uniformly in t. By the Mean Value Theorem this shows that the difference quotientsfor

dESL:O(Tr((Y +)(1- (FS)E)“))

converge uniformly in t. That is, we can pass d%|s:0 through the integral and obtain

dgFl(X)

~ s ‘ (9(F1+SX) C / = } Tr<Y+SX)( (Fs)tz)n> gt

B ci/ {Tr X(1—-F)") +Tr(Y—‘ (1-(F9?) )}

- ci Jy {xa—Fy) ZO[TF(Y(l— PR+ XFO(L — F2) )
1 —1

= c / {Tr X1 - th) %{TI‘(X(I— th)k(FttY+tYFt)(1— Fg)nfkfl)}} ot

- ci / {Tr(x@—F2r) +tE L Tr(X(@ — F)") }

= & Gl xa R o= & Tr(xa - Fy)

which is o, (X) asrequired. ]

Now, if we had used F; in place of Fo wewould get ¢’ in placeof § andd¢’ = o = df
so that d(#’ — 6) = 0. The usual argument shows that # = ¢ + C for a constant C.
Evaluating at Fo gives 0(F() = 0'(Fp) + C = C. That is, (F) = ¢'(F) + 6(F;). In other

words, the integral
c Tr( S (Fo@—FR") at
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isindependent of the piecewise linear paths ™ from Fg to F given by
MN:FoeeF and [ Fpe-eFjeeF.

By avery easy induction argument, this can be extended to show that

1 d o

c_n/r Tr(a(Ft)(l— F )dt

depends only on the endpoints of any piecewise-linear path I'. By an approximation
argument, this conclusion can be extended to paths which are piecewise continuously

differentiable (see Remark 1.8). Thus, we have proved

ProPOSITION 1.5.  Theintegral of the 1-form o along a piecewise continuously dif-
ferentiable path I" in M depends only on the endpoints of the path I".

DEFINITION 1.6. LetF € M = Fo + L2 andlet E = 2y (F) — 1 the corresponding
symmetry. Then, as before F € M aswell. Let {Ft }tc0.1) a piecewise smooth path in M
beginning at F and ending at F. For example, we could choose F; = F + t(F — F) asour
path. Let n be a positive integer, n > ‘%1 We define

Bn(F) = cin | ' Tr(%(a)(l - Ff)“) .

It is clear by considering the linear path that if F1 and F, are unitarily equivalent in M
then Bn(Fl) = Bn(FZ)-

THEOREM 1.7. Let (N, Fp) bean odd p-summable pre-Breuer-Fredholmmodule for
a unital Banach x-algebra A, let n > ’%1 be a positive integer and let M = Fg + ng.
LetFy, F, € Mandlet {Fi} = I be any piecewise continuously differentiable path in M
from Fy to F,. Then the spectral flow fromF; to F, in M is given by:

Sf(F1, F2) = cin /r Tr(%(Ft)(l — Ff)“) dt + Bn(F2) — Bn(Fa).

PrOOF. The formula on the right is just the integral of « along a curvein M from
F1 to F». Thus, it is equal to the integral of « along the straight line from F; to F». But,
F1—F, e L% C L& and so Theorem 3.1 of [P2] applies (we note that Theorem 3.1 of
[P2] istrue for 2n > p — 1 by an appeal to Theorem 4.1 of [ASS]). Hence the formula
givesthe spectral flow of the straight line path from F1 to F». But, then the two piecewise
linear paths from F1 to F» indicated below are clearly homotopic in M and so yield the
same spectral flow:

FieeF, and FreeFieeF,eeF,.

That is,
sf(F1, F2) = sf(F1, F1) + sf(F1, F2) + sf(F2, F2).
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But, since  is constant on the path from F; to Fq, sf(F1, F1) = 0 [P2, Remark 2.3].
Similarly, sf(F», F») = 0. Hence,

sf(F1, F2) = f(F1, F2)

- Cin /r Tr(%(Ft)(l - th)") dt + Bn(F2) — Bn(F1)

as claimed. n

REMARK 1.8. We can relax the hypothesesin Theorem 1.7 to the following:

(1) t— Fyiscontinuousin M = Fo + L2, and

(2) piecewise, 4(Fy) existsin L>™* asa(2n+1)-normlimit and t — 4 (F,) is piece-

wise continuousin (2n + 1)-norm, for n > &1,

Itisclear that theintegral existsin this generality, asthe integrand is piecewise continu-
ous and trace-classby Holder’sinequality. By astandard continuity and compactnessar-
gument we can approximate { F } by acontinuouspiecewiselinear pathinM = Fo+ ng
with the same end points so that ||F; — Gt||m and ||F{ — G{||2n+1 are uniformly small. As

2n+1

Fro(l—F):Fo+ L2 - LE L%

is continuous this will imply that ||(1 — F?)" — (1 — G&)"|| 21 isuniformly small. Hence
IF{(1 — F)" — G{(1 — GP)"[|1 will be uniformly small.
Thus,

1 d 2\n
/0 Tr(a(Ft)(l—Ft) )dt
iscloseto . q
el _ 2\n
/0 Tr( (G -6) )dt.
Since Fg = Gg and F; = G; we get that

S(Fo.F1) = (G, Go) = - [ Tr( GO — G2Y") i+ 5n(Gr) — n(Go)

which we can choose to be arbitrarily closeto
1

Cn

Hence, they are equal. ]

[ (S EIW— F2) dt+ Fa) — (o),

THEOREM 1.9. Let (N, Fp) bean odd p-summable pre-Breuer-Fredholmmodule for
the unital Banach *-algebra A. Let P = y(Fo) and let n be a positive integer n > ’%1
For each u € U(A) with [F, u] p-summable, the path F' = Fq + t(uFou* — Fo) liesin
M = Fo+ L%} and

ind(PuP) = sf({F{}) = cin I Tr(%(F{‘)(l— (F2?)") ct.
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PrROOF. The second equality follows from the previous theorem and the fact that
Bn(UFou*) = Bn(Fo). Thefirst equality follows from Theorem 3.3 of [P2] (again, we use
the improved version with 2n > p — 1, courtesy of Theorem 4.1 of [ASS]) since

ind(PuP) = sf(Fo, uFou") = sf(Fo, (UFou)™)
= Sf(Fo, UFQU*) = Sf({th}) [ ]

2. Spectral flow as the integral of a 1-form for finitely summable unbounded
Fredholm modules (Types | and I1). The idea of this chapter is to prove a spectral
flow formula asindicated in the title by passing to the bounded case (Chapter 1) via the
transformation D — F = D(1 + DZ)‘%. Beneath this ssmple idea lurks a plethora of
technical difficulties. Many of these technicalities have been shunted to the appendices;
indeed, it is the problems raised in this chapter which made the appendices necessary.
In order to make the material more digestible, we have broken down the chapter into
subheadings A, B, etc. with self-explanatory titles. A quick perusal of thesetitles by the
reader would be an excellent overview for the chapter.

We begin with:

DEFINITION 2.1. Let A be a unital Banach x-algebra and p > 0, then an odd p-
summable unbounded Breuer-Fredholmmodulefor Aisapair (N, D) whereN isasemifi-
nite factor (on a separable Hilbert space), A is unitally x-represented in N, D is an un-
bounded self-adjoint operator affiliated with N satisfying

(1) (1+D?tisE-summable, and

(@ A := {a € A | a([domD) C domD and [D,a] is bounded} is a dense x-

subalgebraof A.
If (1+D?)tisintheidea Ky but not necessarily finitely summable, we still call (N, D)
an unbounded Breuer-Fredholmmodule for A.

A. If (N,D) is an odd, p-summable, unbounded Fredholm module, then
(N,D@+ DZ)*%) isan odd g-summable pre-Fredholm module for q > p.

In [C1], Connes discusses the even case of Proposition 2.4. In the odd case, he only
discusses bounded Fredholm modules. In order to take g = p one is forced either to
consider weak LP spacesasin [C2, IV.2] or, as hinted at in [C2, V.8, Remark 5], to
assume that the commutators, [|D|, a] are bounded. We may take this up in the sequel.

LEMMA 2.2. If A — S(\): (a, b) — N isoperator-norm continuous and

Tzl/:S()\)d)\

convergesin operator norm, then for anyp > 1,

ITllo < [ 1Sl
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(where, of course, || X||h = Tr(|X|?)).

PrOOF. First note that A — |S(\)|P is operator-norm continuous, so that A —
|[SOV)||p is lower semicontinuous. We can assume that the L ebesgue integral

b
[ IS llpdx

isfinite, otherwisethere is nothing to prove. In this casetheintegral is equal to the lower
Riemann integral and hence by a judicious choice of a sequence of partitions {Py} of
[a, b] we can assume;

@ T=1 | = iMoo (Tp, SOi)AKi(A)) and

(2 RIS lpdA = limoo (Tp, [1SOK) lp8Ki(A)).-
Let Ty = >p, S(Aki)Axi(A) sothat T = Il - |l = lim_, Ty and hence

TP =1 - [| = lim [T[".
k—o0
Thus,

[Tllp < timint [Ty < fiminf 5 SO [pA0)
— 00 — 00 Pk

b
= [CISM)pdx. .

LEMMA 2.3. Let D be an unbounded self-adjoint operator and let a be a bounded
operator satisfying a(domD) C domD sothat [D, a] is densely defined on domD. Then
for each x > 0 we have:

[a, (x+ D?) ™1 = D(x+ DA 7D, a](x + D?)~! + (x + D?)7[D, a]D(x + D?)*

as everywhere-defined operators.

Proor. We first note that this would be the usua resolvent calculation if
a(domD?) C dom D?. We must be more subtle.

[a,(x+D?) ] =ax+D?) - (x+D»)a- 14
=a(x+D?™! — (x+D?ta(x + D?)(x + D?)*
= (a— (x+ D% 'a(x+ D?))(x+D?)*
= (a— (x+D? xa— (x + D’)"'aD?)(x + D?)*
= (a —(1-D*x+D*))a— (x+ Dz)*laDz) (x+D?)1!
= D?(x+D?)ta(x+ D?)~! — (x + D?)~taD?(x + D?)L.
Now, D?(x + D?)~! = D(x + D?)~'D on domD and since

range(x + D?)~* = domD? C domD
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which isleft invariant by a, we see that
D?(x+ D?)ta(x + D?) ! = D(x + D?)"'Da(x + D?) !
on all of H. Similarly,
D(x+D?laD(x+ D?)! = (x + D?)~'DaD(x + D?)~!
on all of H. Thus,
[, (x+D?) ™1 = D(x + D?)'Da(x + D?) ! — D(x + D?)~*aD(x + D?)~*
+ (x+D?DaD(x + D?) ! — (x + D?)~taD?(x + D?) !
= D(x+D? 7D, a)(x+ D%+ (x+ D?7}[D,a]D(x + D)t

as claimed. ]

With even more care, this lemma can be proved under the weaker assumption that
{¢ € domD | a¢ € domD} is densein domD in the graph norm. One then needs
to replace [D, a] with its closure [D, a] for the conclusion to make sense. It is possible
(likely?) that most of the theory of unbounded Fredholm modules can be pushed through
inthisgenerality. We do not attempt this here, but notethat [ C1] usesthe stronger domain
invariance condition while the more expository [C2] is sometimes a little vague on the
meaning of “[D, @] is bounded”.

PrRoOPOSITION 2.4. Let (N, D) be an odd p-summable unbounded Breuer-Fredholm
module for the Banach x-algebra Aand let F = D(1 + DZ)*%. Then (N, F) is an odd
g-summabl e pre-Breuer-Fredholm module for Afor any g > p.

PrOOF. 1— F?= (1+D? ! whichis 5-summable and hence J-summable for any

qz=p.
Now, for a € Awith [D, a] bounded, one checks that

[F,a] = [D,a](1+D?) % +D[(1 +D?)%,4q]

so it suffices to see that D[(1 + D2)‘%,a] is g-summable for g > p. By Remark 3 of
Appendix A,

(1+D?) % = 1 /°° AT3(L+D%+ ) Ld)
T JO
convergesin operator norm. So, by Lemma 2.3
D[(l +D?)" %, a] _pt /Ow A"H{(1+ D2+ \)[a, D]D(L + D2+ )\t
™
+D(1+D?+ ) Ya,D](1+D?+ \)1}dA.

Since D is a closed operator and the integral convergesin norm and hence pointwise on
H, we can pass D through the integral provided the resulting integral also converges at
least pointwise on H. In fact, the resulting integral

1 /°° A"3(D(1+D?+\)[a,D]D(L +D? + A) !
T JO
+D?(1+D?+ ) '[a,D](1+D?+X)~*) dA
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converges in norm using the estimates of Remark 5 of Appendix A (and
[D?(1+D?+ \)71|| < 1). Sinceq > pwecanwritep = (1 — €)g. By Lemma2.2,

ID[(1+D?)"%,a|q

1 oo ) )
s - /o A3 <||D(1 +D? +))"1[a,D]D(L + D2 + A)~F)| (1 + D + \)"F)|

+||D%(1+ D2+ \) [, D](1+ D? + )\)_(%)

|(1+D?+ A)‘(l_i)||q) d\

1 > 1+e
Seh ¥ (2\/_||[aD]||||D(1+D2+)\)( )

[(1+D?+ )" ZHP

+1-|[a D]|| |2 + D%+ 3)~(%)

1L+ D2+ \) Hé) i,

Now, § = =1—cand(1+D?+))"z < (1+D? z sothat

_1,8 _1,(1—
I(L+D?+X)72[|g < [I(L+D?) 2§
By the spectral theorem and allittle estimating we get

IDA+D?+ )| < (1+2)°

and

[(L+ D2+ 20| < (1+ X)),

Finally, we get
ID(a+ Dz>—% alllq
R P AR P EN X ([ CRLo Ry

— — (L N—1n1—¢
=22 [Mataew <z’dA||[a,D]|| l@+D% 2

< +00. [

COROLLARY 2.5. Let (N, D) be an odd p-summable unbounded Breuer-Fredholm
modulefor the Banach x-algebra A, andlet Fo = 2x(D)— 1 wherex isthecharacteristic
function of R*. Then, (N, Fp) is an odd g-summable Breuer-Fredholm module for any
q>np.

PrROOF. This follows immediately from Proposition 2.4, the remarks after Defini-
tion 1.1 and the fact that x (D) = X(D(1+D2)*%). .
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B. If (N, D) isan odd, p-summable, unbounded Fredholm moduleandt +— D; =
D+A; € D+Ng isoperator-normcontinuous, then for q > p,t — F; = Dt(1+Dt2)*%
q
iscontinuousin F+ Lgz2.

LEMMA 2.6. Let D be an unbounded self-adjoint operator, A > 0 and % >e>0.
Then

(1) [|[DL+D?)2<(L+D2+ )| < (1+)) * and

(2) [|(L+D?)2 (1 + D2+ )2 < (1+) (%,

PrROOF. We prove (1). The proof of (2) follows the same plan. It suffices by the
functional calculusto prove the following numerical inequality:

X(1 +x2)2 ¢

< —€
T+x2+ 0\ <@+ fordlxeR.

We break thisinto two cases: if X2 < ) then

23 —€ 1 1 1_.
X(L+x)E | VAL + )3 _ AN NE Lo
1+x2+) 1+ 1+ )
If X2 > X then
x(1+x2)%*6 (1+x2)%(1+x2)%*E _ . .
1+X2+ )\ | — 1+x2 =1+x) <1+ "

The following lemmais crucial for the remainder of this chapter and indeed for the
sequel to this paper on the 6-summable case.

LEMMA 2.7. Let Do bean unbounded self-adjoint operator affiliated with the semifi-
nite factor N. Let A € Ny andlet D3 = Do+ A. Fori = 0,1letFp, = Di(1 + D?)—%.
Then for fixed e, 0 < € < 3, Fp, — Fp, = B.(1+ D)~ where

1 oo
Bo= — [TATH(1+ N+ D+ 0 TAQL+ DY (1 +DF+ N
— Dy(1+D? + )" ADg(1 + D)2 (1 + D3+ \) ] dA
convergesin operator normand ||B.|| < C(e)||A||-

ProOOF. The norm-convergence of the integral and the final estimate both follow
from the previous lemma and Remark 5 of Appendix A.
Now, by Appendix A, Lemma4 we havefor al ¢ € domDg = domD;:

1 oo
Fo,§ —Foo¢ = ~ /0 ATE[Dy(1+DZ +A)™t — Do(1+ D3 +A) ¢ dA

where the integral is norm convergent in H. However, by Appendix A, Lemma 6, part
(2) theintegral convergesin operator norm and so

—Fp, = = /0°° ATZ[Dy(1+ D2+ A)t — Do(1 + D3+ )] d).

™

Fo

1
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Now,
D1(1+D% + \) ™ — Dg(1 + D3+ A)*
= A(L+D§+X) 1 +Dg[(1+DF+A) "t — (1 +D§+A) ]
which by Lemma 2.9 of the next section
=A1+D3+)\) "t —Dy[D1(1+D%+ \)AQ+DZ+ )t
+(1+ D3+ \)*ADg(1+ D3+ \) 1
=AL+D3+ )\t —D2(1+D?+\) AL +D;5+ )t
— Dy(1+ D3+ \)"*ADg(1 + D3+ \)*
=AL+D5+ N\t —[1— @+ N)(@Q+DZ+)\)NAL+D5+ Nt
— Dy(1+ D3+ \)"*ADg(1+ DZ + \)*
= (1+N)@A+D7+)\)tAQ+D5+ )\t
—Dy(1+D%+ \)1ADg(1+ D3+ A) !
=[--]@+Dp)# (1 +Dp) **
=[(A+ )@ +D+))'A@L+D})I (1 +D3+ N
—Dy(1+DF + ) "A(L+Dg)# (L + D3 +A) (1 +Dp) 2.

Hence, as (1 + D2)~z* is bounded:
1 oo
Fo, —Fo, = — [“AH[(L+ )1+ D+ 0) "AQL+ DY (L + DG+ 1)
—Dy(1+D2+)) " AL+ D) (1 + D3 +A) " dA(L + D)~

as claimed. n

COROLLARY 2.8. Let (N, Dg) be p-summableand let Dy = Do+ A; € Do+ Ng bean
operator-nor m continuous path. Then,

Fo=Di(1+D?) % e Fo+ L%

is continuous for g > p.

PrROOF. Letqg > p. Thenthereexistse > 0 sothat p = (1 — 2¢)g. By Lemma2.7,
Fo— Fo = B/(1+ D) ¢

and since (3 — €)q = &, we have F; — Fo € L&, Now, by Appendix B, Lemma 6 we see
that (1+D?)~(—9 € L for each to, and by Lemma 2.7 above

1
Fi— Fp = B(t)(1+D2) (29

where

[B-O] < Cl)]| A — Agl-
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Thus, t — F; € Fo + L% is g-norm continuous. Letting Fo = 2x(Fo) — 1 we see by the
discussion after Definition 1.1 that

Ft€|~:0+|—ga: F0+L;.

1 0
0 -1

} where each entry is continuousin L9, and A,

Thatis, Fy = Fo+X; wheret — X, iscontinuousin L%, Let Fg = {

A B
B G

} and relative

to this decomposition, let X; = [
Ciarein LJ. .

Now, 1—F? = (1+D?)~tiscontinuousin L& by Proposition 10 of Appendix B (with
r = 1and ¢ in place of n). Hence, t — (1 — FZ + X?) is also continuousin L?. One
easily calculates that

1 1.~ = A O
SR = 0o Foxy = | 0 2.
Thatis,
A Bt}
x =
‘ {Bf C
isin Iq_;g and furthermore, t — By iscontinuousin L9andt — A, t — C; arecontinuous
inL2,.

Finally sincet — F; is operator-norm continuous by Theorem 8 of Appendix A, we
seethat t — Fy € (Fo + ng) = (Fo+ L',l;g) is continuous in the Banach space norm of
Fo+ L%? asclaimed. .

C. If (N,D) isan odd unbounded Fredholm moduleand t +— Dy = D + A; € Ng
isCL in operator norm, then for q > pt— F; = Dy(1+D2)? isapath in L;‘Ig which
isC!in thenorm of LJ.

LEMMA 2.9. If Dg isan unbounded self-adjoint operator on H, A is a bounded self-
adjoint operator on H and D = Dg + A, then for x > 0

(D*+x) 71— (D3 +x) 1 = —Do(D3 + x) TAD? + x) "1 — (D3 + x)*AD(D? + x) 1.

PrROOF. Wefirst assumethat A(domDg) € domDg so that (with alittle thought) all
of the domain difficulties disappear in the resolvent calculation:
(D?+X) 71— (D3 +X) ! = (D§ +X) (D} +X) — (D? +X)](D? +X)~*
= (D3 +X)"}[—A? — DoA — ADg](D? + )1
= (D3 +X)'[~DoA— AD](D? +Xx)~*
= —Do(D3 +X)*A(D? +x)71 — (D3 +x)LAD(D? + x) .

We then apply the trick in the proof of Lemma 6 of Appendix B to get the result for
general A. n
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ProPoSITION 2.10. If (N, Do) is an odd unbounded p-summable Breuer-Fredholm
module (for C, say) and t — A; isa C! path in Ng, then letting D; = D + A, We have
thatt — Fy = Dy(1+ th)‘% is a path of Breuer-Fredholm operatorsin Fq + L&’lg for
q > p which is C! in the Banach space normof L. Moreover,

d 1 0 2 _ d _
F) = = [T @+ D+ N L+ N (AN +DF + 1)
—Dy(1+D?+ A)*%(A()Dt(l +D2+ )7t dA

wherethe integral convergeshboth in the g-norm and the operator norm.

PROOF. We observe that by Remark 5 of Appendix A, for each fixed t the above
integrand is an operator-norm continuousfunction of A and that as A — +oo the operator

norm of the integrand approaches ﬁ((:llﬂ) while as A — 0 the operator norm of the

integrand approaches C—ZA so that the integral doesindeed convergein operator norm.
Ontheother hand, letting p = (1—2¢)q wehaveby Holder’sinequality and LemmaZ2.6
that

11+ D2 +X) g < |1+ D?)I(1+ D2+ A)2 [|(1 + D)~
<@+ G2+ DY) g
and similarly,
ID(L+DZ +X)Y|q < (1+A)|(L+D2) "l

So, that combining these estimateswith Remark 5 of Appendix A, we seethat theg-norm

of theintegrand approach%ﬁ as\ — ooand approaches% as\ — 0. Thus, the
+))2

integral will be seento convergein the g-norm onceweknow that theintegrandis g-norm

continuous. To seethisit sufficesto seethat A — (1+DZ+\)~tand A — Dy(1+D2+))~1

are g-norm continuous since the other terms are operator-norm continuous by Remark 5

of Appendix A. We show continuity of A — (1+ DZ + \)~! asthe other term is similar:
|0+ DZ2) ™ — (1+DZ+7) g
<[1@+ D)@+ DF + 1) — L+ D +) ] @+ DFy 4l
= [[(1+DA)F @+ DF + )7 = N2 + D +9) | + DA,
< @+ X) G = AL +9) Y@+ D) g

which — O as|y — A| — 0. Thusthe integrand is g-norm continuous and the integral
convergesin g-normsfor each fixed t.

Now, to calculate %(Ft) we observe that since each D, defines an unbounded p-sum-
mable Breuer-Fredholm module (Lemma 6, Appendix B) we can assumet = 0 and
Ag = 0. At t = 0, the purported derivativeis:

1 /OOO A2 [(1+D§+ M) M1+ M)AL+Dj+X) !
Y
— Do(1 +D§+ A) " AGDo(1 + D§+ A) | dA
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which equals:
E /OOO )\7% [(1 + DS + /\)*1(1 + /\)A6(1 + Dg)%76(1 + Dg + )\)71
.
— Do(1+ D + ) "AGDo(1+ D3)2 (L +Df+ A) ™| dA(L+ Df) 2

where the new integrand converges in operator norm by the estimates of Lemma 2.7.
But, by Lemma 2.7 the difference quotient %(Ft — Fo) equals:

2 t[asozenta s niAa s DY gy
1
—Dy(1+D¢ +A) " TADo(1+ D3)?~“(1+ D3+ A)~1| dA(1 + D) z*.
The g-norm difference between these two operators can thus be estimated by:

ey

+|oua+ 0 + A)*l%At — Do(1+DZ+\) A

1
(L+D?+0)7 T A — (1+DF + ) HA (L + A)(L+ 2)

(L+ 2] A2+ DF)# .
By Remark 5 and Lemma 6 of Appendix A,

@02+ ) TA - @+ DF )

< @+ D7+ 0 — @+ g+ 1) A

o R IRV
< e Fad|Fa] +[TA - A v
Similarly,
HDt(l +D2+ A)*l%AI — Do(1+D§+\) A
<@ - e

Integrating, we seethat the g-norm of the difference between the difference quotient and
the claimed derivativeis|essthan or equal to Ca||A| || 1 Ac| +Co|| A — Ay|| where Cy and
C, are positive constants independent of t. Ast — 0 both of these terms go to O (recall
Ag = 0). Thus, %(Ft) is the claimed integral. Similar (but slightly easier) calculations
show that the limit of the difference quotients in the operator norm exists and is the
aforementioned integral, also.
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To see the g-norm continuity of t — F{ we use the integral formula for F, — F{ and
estimate. For example, we need:

(1+N)]|(A+DZ + \)PA L+ D2+ 0t — (1+ D + A) AL+ D+ 0)
< @+l +DZ+X0) gl A (1 +D3+A) "t — (1+DZ+ )77
+[[(2+DZ+ X)) gll A — Al [[(2+DF+ 1)
+[|(1+DZ+ At — (@ +DF+ )Y A (L +DF + A) g}
< (L+N){@+2)"E(1+D2) 5| AL+ \) 2| As — Al
+(1+X0)7E 91+ DY) gl AL — AL+ N
+ (14 X)72]|As — Al A+ A1+ DF) 27 o}
<{@+X)"®9C |1+ D3 gl ALl [|As — A
+(1+ 1) GHIC - [|(1+ DY)+ |ql| AL — Al
+(L+A)"EC - [|As — Al Al |1+ D)~ 2*|q}

where we have used Remark 5 and Lemma 6 of Appendix A, the g-norm estimates of
(1+D? + \)~! given earlier and Corollary 8, part (1) of Appendix B since

StthIIA(II < +o0.

We get similar estimatesfor the other part of theintegrand. Integrating these estimates
we get:

IFE = Fillg < [CallAs — Al + Call AL — A 1](2+ D3) 2" Iq

where C; and C; are positive constants independent of sand t. Thus, t — F; isCt in

g-norm.
By similar (but easier) estimateswe can show that t — F isalso C' in operator norm,
and hence in the Banach space norm of Fo + Lg.. n

D. If (N,D) isp-summableand t — Dy isC in operator norm, then for n > ";—1
Tr(E(Ft)(l - FZ)“) = Tr(E(Dt)(l + DZ)—W%)).
dt ! dt !

LEMMA 2.11. If D isan unbounded self-adjoint operator, then
(1+D)f+(1+D2) = 2 /0°° AE(1+A)(1+ D%+ ))"2d)
T .

wherethe integral convergesin operator norm.
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PrROOF. Since

1 2
2 —2 <
la+0?+ 72 < (135)

the integral converges in operator norm. Letting B = (1 + D?)71, it is equivalent to
showing that

2
B} +B: =2 /OO)\‘%(1+>\)BZ(1+)\B)‘2d>\
T JO

for abounded positive operator, B < 1. It is an easy calculus exercise to show that this
equation holds for nonnegative constants. Now, let {E;} be the spectral measure for the
operator B and let

2 0 1
A= —/ A3(1+\)BX(1+ \B)2d).
T JO

For each ¢ € H,

(6.6 = 2 [ A Hwe (B AB) 26,000
=2 abasn(f e aeso) o
= L2t 02 dEse

- [ +thaEe o = (B +Bhe. ),

sothat A = B? +B? asclaimed. Thei nterchange of the order of integration isjustified by
Tonelli’s Theorem, as the two nonnegative measures, d\ and d(E:¢, &) are both o-finite,
and the nonnegative integrand is continuous and hence product measurable. ]

ProPOSITION 2.12. If (N, D) is an odd p-summable unbounded Breuer-Fredholm
module (for C, say) and t — A isa Cl-pathin Ng, then letting Fy = Dy(1+D2)~z where
Dy = D + A, we havefor n > 2 that

Tr(%(Ft)(l - th)”) = Tr(%(A()(l + th)f(mg))'

PROOF. Since2n+ 1> p, &(F;) € L2™1 by Proposition 2.10. Moreover,
1-F)"=@1+D) "elLmiCL%

so that the left-hand side of the equation is well-defined by Holder’s inequality. Also, by
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Proposition 2.10,
Tr(E(Ft)(l—FZ)“)
dt t
1 o 1 _ _
:Tr(;./o ATZ[(1+DE +A) ML+ AL +DE+A) !

— Dy(1+DZ + ) IAD (1 + D+ ) Y dA(L+ D))
(where the integrand is (2n + 1)-norm continuous and convergesin (2n + 1)-norm)
_ 1 o1 2\—n
= Tr(; /0 A7 ] +D?) d,\)
(the integrand is trace-norm continuous and convergesin trace-norm)

% ./0°° A2 Tr([---](1+D)™") dA

= [T DR+ ) L DA+ D7 ) KA+ D)
— Tr[Dy(1+ Df + ) "ADy(L + Df + 1)~} (1 + D) ") d

since both parts are trace-class by the estimates in the proof of Proposition 2.10. Using
the trace property on each piece and recombining, this equals

% ./OOO/\?% THAL + A — D?)(1 + D2 + A)"2(1+ D)~ dx
= Tr(% /OOO )\*%[A((l + A —D2)(1+D?+ \)"2(1+D?)™" d)\)

(this new integrand is easily seen to converge in trace-norm). Now, this integrand is
also convergent in operator-norm to the same (trace-class) operator because both imply
strong-operator convergence. Thus, it suffices to see that the integral (in operator norm
convergence) equals

A1 +D)D,

But,

1 /0°° ATHA/(L+ )\ — D2)(1+ D2+ A)2(1+ D)~ dA

T
= A{% [;’O A3[2(1+A) — (1+ D2+ \)](1+DZ+A)2dA(1 + D))"
Y, 1 oo 1 2 -2
—At[;/o AT32(1+ \)(1+ D2+ A)"2dA

— %AxA‘%(l+Df+A)‘ldA (1+D?™"

= A[(1+D?)~% +(1+ D)% — (1+D})~3](1+DY)™"
= A+D}) "D

by Lemma2.11. n
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E. If (N,Dg) is p-summable, n > ”;21 is an integer, Mp = Dg + Ng, then
Tr(X(1+D?)~) isan exact 1-form on Mo.

DerINITION 2.13.  Let (N, Dg) be an odd p-summable Breuer-Fredholm module (for
C, say), let n > 21 beaninteger, andlet m = n + £ and let Mg = Do + Ns. Then for
D € Mg we define:

Y(D) = Cim A ' Tr(%(Dt)(l +D)™) ot

where {Dy} is any piecewise C!, continuous path in Mo from Dy to D and
Cn = /f’ (1+x3) ™ dx
(= Ch= /41— "dswherem=n+ 3).
THEOREM 2.14. v iswell-defined and
1
dp(X) = =— Tr(X(L+D?™™
o) = & Tr(X(@+ D))
for
DeMy=Dg+Ng and X e Tp(Mg) = Ng.

Therefore, the latter is an exact (and hence closed) 1-formon M.

PrROOF. Fix qsothat 2n+1 > g > p. Let {D;} be any piecewise C!, continuous
path from Dg to D so that F; = Dy(1 + th)—% is a piecewise g-norm-C* continuous path
from Fo = Do(1+D2)~? to Fy = D(1+D?)~% in Fo+ L%’ by parts B and C. Moreover,
by part D,

1 d 2)—m _ 1 d 2\n
=h Tr(a(Dt)(l +D2) ) dt= & i Tr(a(Ft)(l F2) ) dt
which by Theorem 1.7 and Remark 1.8 is equal to
Sf(FO! Fl) - ﬁn(Fl) + 5n(FO)
and this only depends on the end points Dy and D; = D. Thus, v is well-defined.
Now, for X € Tp(Mg) = Ng, we have

tho(X) = = (D +x).

d
d_Sls:O(
Sincey isindependent of path we can choose our path from Dy to D + sX to passthrough
D (e.g., our path can be linear from Dy to D and then linear from D to D + sX). Then,

(D +X) = éi /O : Tr(%(Dt)(l + Df)*m> dt

+ é_lm ./; Tr(%(Dt)(l + Df)—m) dt.
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Since the first half of the path (from Dg to D) does not depend on s, we get
d 1 1 d Mo
= — — — +
009 = ol (& TGO+ D7)
whereD; fort € [%, 1] isthelinefrom D to D + sX. That is, D; = D + (2t — 1)sX. Hence

d
p (Dy) = 2sX

o) = lim /; Tr(2x<1+ (D+(@2t— 1)sx)2)7m) .
Now, by Proposition 11 of Appendix B we get
2 —m
H (1+ (D + (2t — DsX) ) 1+ DZ)-'“H1

< 277 (22t~ )sxX)) 1 (2t — 1) "+ D1+ DI s

< 4 X D™ [F(IXIDI™(m+ DII(L+ DA™y (for |s| < 1)
— Ouniformly int.

Therefore, .
1
dp(X) = =— / Tr(2X(1+D?) ™) dt
Cn’3
1
= — Tr(X(1+D?»™™
& Tr(x@+Dy ™)
as claimed. -

F. The Theorems.

DerINITION 2.15.  If (N, Do) is an odd unbounded Breuer-Fredholm module (for C,
say) and { Dt }iejap IS @any norm continuous path in Mg = Dp + Ns, then we define the
spectral flow of the path {D;}, sf(Da, D) to be the spectral flow of the norm-continuous
path {F; = Dy(1+ th)—% } of self-adjoint Breuer-Fredholm operators, [P2]. Thisiswell-
defined by Theorem 8 of Appendix A, and thefact that 1 — FZ = (1+D2)~ 1 isin Ky for
eacht.

THEOREM 2.16. Let (N, Dg) be an odd p-summable unbounded Breuer-Fredholm
module (for C) and let Mg = Dg + Ng. Let n > ”;21 beaninteger andletm = n+ %
Then, for D € Mg, X € TD(M()) = N,

1
X— =— Tr(X(1+D?™™
— & Trx@+ DY)
is an exact 1-form on Mg. Moreover, if {D; }tcfay iS any piecewise-C continuous path
in Mo, then integrating this 1-formyields:

S(0a0p) = & [ Tr( S OI+DY) ™) dh+3n(Du(1+ DY) ) — fn(Da1+DY ).
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PrROOF. Asusual, we let F; = Dy(1 + th)*%. As observed in the proof of Theo-
rem 2.14, the right-hand side of the equation equals sf(F4, F) and so by the previous
definition thisis sf(D,, D), asrequired. That the 1-form isexactis Theorem2.14. =

THEOREM 2.17. Let (N, Do) be an odd p-summable unbounded Breuer-Fredholm
modulefor the unital Banach x-algebra A, let nbeaninteger n > p;zl andletm= n+%.
Let P = x(Do). Then, for each u € U(A) with u{domD) C domD and [D, u] bounded,
PuP is a Breuer-Fredholmoperator in PNP and if {D{'} is any piecewise-C* continuous
path in Mg = Dg + Ng, from Dg to uDgu* (e.g., the linear path liesin Mg), then:

. d “m
ind(PuP) = sf({D{'}) = Ci [ e(5@(+ o0 ")

theintegral of the exact 1-form, & Tr(X(1+D?)~™) along the path {D}'}.

ProOOF. That PuP is a Breuer-Fredholm operator whose index is the spectral flow
of the straight line path from Fq to uFou* is part of Theorem 1.9. That this is also
sf(Dg, uDg U*) is just Definition 2.15. That the spectral flow is independent of path (in
Mo) is in the previous theorem. The formula for the spectral flow is likewise part of the
previous theorem, where it should be recalled that

uDou* — Dg = [u, Do]Ju*. n

Appendix A. The Operator-Norm Continuity of Functions of Unbounded Self-
Adjoint Operators. In this appendix, we prove sharp perturbation estimates (in the
operator-norm) of the following sort: if D is an unbounded self-adjoint operator, A is a
bounded self-adjoint operator, and f is an explicit, bounded continuous function on R
then

If(@+A) — D) < A

where C; isaconstant depending only on f. While some of these results may be known,
we have not found them in the standard references [DS, K, RS]. At a number of places
in this paper, we need these sharp estimates, rather than just the usual continuity results
of the form:

[f(O+A) —f(D)[| -0 as [Asf| —0.

Many of these results can be generalized to relatively D-bounded symmetric opera-
tors, A [K, V.4]. While we do not use these results in this paper, we plan to use them in
the future and they may be of independent interest to other workersin thefield. For these
reasons we include the more general D-bounded results and indicate the modifications
needed to prove them.

We begin with some well-known facts that will help set the notation. Let D be an
unbounded self-adjoint operator on the Hilbert space, H, and let

Gop = {(¢,D¢) | € € domD}
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denotethe graph of D, aclosed subspaceof H®H. Itiswell-known [DS, LemmaXIl1.1.5]
that the orthogonal complement to Gp, is given by

Gp = {(D¢, —¢) | € € domD}.

We denote the projection from H & H onto Gp by Pp and recall the result of B. Sz.-Nagy
[DS, Exercise X11.9.36] that for ¢ € H,

Po(&,0) = ((1+D?%) 7", D(1+D?)7%¢).

From this, we easily deducethat the matrix of Pp relative to the decompositionH @ H is

(1+D?t ‘ D(1+D?»™1

DAL+D?)! | D2(1+D?) 1]’

RELATIVELY BOUNDED OPERATORS. Let Dy be a self-adjoint operator and let A be
a symmetric operator with domDg C domA. We will say that A is Do-bounded if there
exists a positive constant C with

IAS]| < C(|€]12 + Do )12

for all ¢ € domDy. We denote by ||Al|p, the infimum of all such constants C, and note
that if Aisactually bounded then ||Al|p, < ||A|| and so A is also relatively Do-bounded.
We warn the reader that this number, ||Al|p,, is not the Do-bound in the sense of [K,
V.4.1]; however, the Do-bound is < ||A||p,. Furthermore, by [K, V.4.1, Theorem 4.3], if
lAllp, < 1then Do + Ais self-adjoint. If Ais actually bounded then Dg + A is also self-
adjoint, independent of ||A||. If AisaDo-bounded symmetric operator with ||Al|p, < 1,

and D = Dg + A, then A isalso D-bounded and one easily calculates that

V2| Allo,

IAlo < :
1—[IAllo

If we have ||Allp, <.29 (< (1 — %) will do) we get ||Allp < 2||Al|p,. This lack of
symmetry between ||Al|p and ||Al|p, is the reason one often uses the distance between
Gp, and Gp to measure the distance between closed operatorsin perturbation theory [K,
IV.2.4].

PROPOSITION 1. Let Dy be an unbounded self-adjoint operator and let A be a
bounded self-adjoint operator. Then, D = Dy + Aisalso self-adjoint and ||Pp — Pp, || <
|A|l. If Ais a Do-bounded symmetric operator and ||Al|p, < .29, we get ||Pp — Pp,|| <
2||Allo,-

PROCF. Itisvery easy to verify that D is also self-adjoint, and domD = dom Dy.
Letw € H @ H, sothat Pp,w = ¢ = (€, Dot) € Gp,. Let(’ = (€, D¢) € Gp sothen

16" = ¢l = 110, AN < NIAIIEIN < 1A -
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We can replace ||A|| with ||Al|p, if necessary. Since Pp( isthe closest pointto ¢ in Gp we

have
<= Po¢ll < llE=<II < 1A il
That is,
[[(1 — Pp)Po,wl| = [|¢—Pod|l < [[Al Il = [[All |Pogwl| < IAI[ fwll,
and hence,

12 = Po)Poy || < [[All, (or [[Allo,)-
Since Do = D — A, reversing roles, we get by a similar calculation that
[IPo(L = Poyp)l| = [[(1 = Po)Pol| < || = Al = [IA[ - (or [|Allo < 2[|Allo,)-
Finally,

[Po — Po,|| = [|Po(1 — Pp,) — (1 — Po)Po, ||
= max{||Po(1 — Pp,)|, [I(1 — Po)Po, [} < [|All,  (or 2]|A][p,),

since these two operators have orthogonal initial spacesand orthogonal ranges. ]

COROLLARY 2. Let Dg bean unbounded self-adjoint operator and let A bea bounded
self-adjoint operator. Letting D = Dg + A, we have:

(1) [I(1+ D)1 — 1+ D)1 < [IAll,

(2) [ID(L+D?)* — Do(1+ D) < ||A], and

(3) D% +D?)* — D31 +D}) Y| <||A].

If A'is a Do-bounded symmetric operator and ||Al|p, <.29, we can replace ||A|| by
2||Al|p, in each case.

ProOF. Theseall follow directly from Proposition 1 and the matrix form of Pp given
above. ]
These are careful versions of results of Sz.-Nagy [DS, Exercise X11.9.37].

REMARK 3. Each of the functions, fi(x) = (1 + x)7%, f2(x) = x(1 + %)~ and
fa(X) = x°(1+x?)~* used above satisfy fi(co) = fi(—o0). In order to get an estimate for a
function with different limits at +oco and —oo, we must work harder. We are particularly
interested in f(x) = x(1 +x2)~2.

To begin, we recall [Ped, p. 8] that for any bounded positive operator B, and any r,
0<r <1lthat

B =

sin(rm) oo, 1
- /O A1+ AB)"1Bd),

where the integrand is a norm-continuous function of A and the finite Riemann Sums
convergein norm. Here,

m _ >y -1
sin(rn)_./o u " (1+u)""du.
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Thisintegral formulafor B" can aso be proved by the method of Lemma2.10. [See also
[K, V.3.50]]. Letting B = (1 + D?)~! we calculate:

B(L+AB) ! = (1+D?)}(1+A(1+D)Y)

= [@+D)(1+r2+D) )"
=(1+D?*+ )\

(1+D?) " = y L ara+pzenta

where the integrand is a norm-continuous function of A and the integral convergesin
operator norm. Wewould like to apply the operator, D, to both sides of this equation and
pass D through the integral. However, the integrand, A\~"D(1 + D? + \)~! is not abso-
lutely integrable in operator norm for r < 1. Fortunately, for ¢ € domD, the integrand
AT'D(1+D? + \) "¢ isintegrable in H!

LEMMA 4. If D isa self-adjoint operator, then for all ¢ € domD and0 <r <1
D(1+D?) "¢ = 3N / 2D+ D2+ A Ledy
™ JO
where the integrand on the right convergesin H.
PROOF. Since & € domD
D(1+D% "¢ = (1+D?) (DY)
sinlrm) [ A7(@+ D%+ ) (D)
m JO

_ sinlrm) [7 A1+ D2+ 1) De dA
s J0

_ sn(rm) [ D@+ D2+ ) e d, .
s 0

REMARK 5. By the Spectral Theorem for self-adjoint operators one can easily prove
the following estimates:

(D) @+D2+ N7 < £k

@ [@+D?+ ) =@ +D*+ )7 < g5 x -l

3 [DE+D?+ )7 < =

27143 1 1
(4) HD(1+ D? + >\)_1 - D(l"' D? +7)_1|| < zmp‘ _A/|1T~,
foral A,y > 0.

From (1) and (2) one concludesthat the function A — A~"(1+D?+\)~t isnorm con-
tinuous, and provided 0 < r < 1, absolutely integrable. From (3) and (4) one concludes
that the function A — A="D(1+D?+ \)~! is norm continuous, and absolutely integrable
forr > %; but, for0 <r < % this function is generally not absolutely integrable. If D
is“multiplication by X" on L2(R) or “multiplication by n” on ¢2(Z), then these integrals
do not convergeinnorm. For0 < r < % the operator, D(1+ D?)~" is not even bounded!
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LEMMA 6. Let Do be an unbounded self-adjoint operator, let A be a bounded self-
adjoint operator, and let D = Do + A. Then for all A > 0,

() @+D2+ AL = (@+D3+ )| < ()3]|A]| and

(2) [ID(L+ D2+ A)" — Do(L+ D3+ )1 < L [IA.
If Aisonly Do-bounded and ||Al|p, <.29 then we get:

(3 [[A+D?+A) 1= (1+Dg+ N < MZHAHDO and
(4) [ID(+D?+X)~! — Do(1 + D + A1 < (5)22]Allo,-

PRrOOF.

(1+D%+ )1 = 1;(15(%)%(%)%}7

We apply Corollary 2 part (1) and observe that
1
()" = (525) 10

to get (1) above, and that

H(%)%A ()2Do = [IAlles
to get (3).
To see(2) and (4) we apply Corollary 2 part (2) to:
owsoten = (737) (k) o2+ [(535) o)) | -

PROPOSITION 7. Let Dg be an unbounded self-adjoint operator, let A be a bounded
self-adjoint operator, and let D = Do + A. Thenfor 0 <r < 1 weget

I(1+D%)™ — (2 +Dg)~"|| < I|All.

If Aisonly Do-bounded and ||Al|p, <.29 we get the same estimate with || A|| replaced by
2[|Allos-

PrOOF. By Lemmab6 part (1) wegetforO<r <1
sin(rm)

I(1+D%) ™ — (1+D§)~"|| <

- sin(rfr) /OO)‘_r<1+)\) | A dA
sn(rﬂ)/ N ( )dAHAH [[A]-

If Ais only Dg-bounded we appeal to Lemma 6 part (3) to get the final estimate. Of
course, we could do alittle better in the bounded case by evaluating

/ A (1+)\) dA

exactly. For example, if r = 1 we get the estimate 2||A||. .

ATI@+ D%+ X)) = (1+ D5+ N) 7 dA
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THEOREM 8. Let Dy be an unbounded self-adjoint operator, let A be a bounded self-
adjoint operator and let D = Dg + A. Then, for % <r < 1wehave:

ID(1+D?%)™" — Do(1+Dg) || < [|A]l.

PROOF. Thecaser = 1 has already been done. For r < 1, we use Lemma 4: let
& € domDg =domD sothatforO<r <1

D(1+D?) "¢ — Do(1+D) "¢ = 3™ ”7(:”) |7 AT ID@+D242) 7~ Do(1+DF+ )¢ dA

and hence by Lemma6 part (2):

D+ D3 — Do(t+ D¢l < SN [ a el o = A ]

T 1+
Since both operators are bounded for r > % and dom Dg isdensein H, theresult follows.
Forr = % see Theorem 4.7 of [BF] for aslightly weaker version of this resullt. ]

REMARK 9. BEvenfor 0 < r < % where the two operators D(1 + D?)~" and

Do(1+D3)™" are both unbounded, the above proof showsthat their differenceis bounded
by ||Al| on dom D!
If Ais only Do-bounded with ||Allp, <.29 and r > 1 then the same proof using
Lemma6 part (4) yields:
ID(1+D?%) ™" — Do(1+D§) || < Cr2|| Al

where .
c, = Snrm [Far@e <o
m JO

Ifr = % and A is Dgo-bounded then we don’t know if such aresult holds. However, we
can show a weaker result.
If £ € domDy, welet

l€llo, = 1€]17 + IDog][2)2.

THEOREM 10. Let Dy be an unbounded self-adjoint operator, and let A be a Do-
bounded symmetric operator such that ||A||p, <.29. Then

ID(L +D?)~2 — Do(1+ D3) " #||p, < 3||Alln,-

PROCOF. For £ € domD = domDg we have:
ID(1+D?)~2¢—Do(1 + D3)"¢||
= ||(1+D?)~3D¢ — (1+ D3)" D¢
< [l(1+ DY) EAg] +]|(1+D?) % — (1+D3) 2| | Doé |
< ||A¢| + 2||Allo,||Dog|| by Proposition 7
< Ao l€ Nl + 2l[All,|[Doé Il < 3| Al lI€ Do .
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FOURIER TRANSFORM METHODS.
LEMMA 11. If D is an unbounded self-adjoint operator then

D . _it_D —n
¢ _strongr!LTO(l n)

for all t € R, wherethe left-hand side of the equationis defined by the functional calculus
for unbounded self-adjoint operators (i.e., the spectral theorem).

PrROOF.  Without loss of generality t = 1. In this case, the functions (1 — iﬁx)*” and
e* are all bounded by 1 on R, asaretheir derivatives. Since

lim (1 il‘)*” _ &

n—oo n

pointwise on R, the convergence is thus uniform on compact subsets. Let Ey be the
spectral projection for D corresponding to [—N, N]. Then,

iD . o _i_D —n
En(@)En = |- - lim Ey(1- =) En.
So, for vectors ¢ in the dense set | JJZ; En(H), we seethat
. iDy-n D
fim (1-2) 6= %
As all the operators are bounded by 1, thisis sufficient to conclude that
D . _iE —n
e _strongr!Lngo(l n) ) "

PROPOSITION 12.  Let Do be an unbounded self-adjoint operator; let A be a bounded
self-adjoint operator, and let t be a real number. Then

1€ — &l < [¢] [|All,
whereD = Dg + A.

(1—.i%D)_l—<1—i%Do)_l
- s-it0) [f1-it00) - (o)) 1t

(1-i%0) [ial(a-ston)

|(1-ip) "~ (1-i%00) | < Wy

(Since domD = domDy = range(1 — iiDg) ™! = range(1 — i+D) %, the first equality
holdsfor al vectorsin H.)

&);
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We now apply the identity

-1
XN — YN = nz XK(X — Y)Ykt
k=0

to t \—n t n
(1-17p) "= (1-iDo)
to obtain:
t\n I N T K| b\ (kD)
= _ = < = L} N
|(2-ize) " (2-igoo) = Z](2-ize) A (1-igpo) =
< [t][|A]]-
Taking strong operator limits gives us
10 — €| < [t[[|Al. .

REMARK 13. If we only assumethat A is Do-bounded, then the map A — g'@o*A)
is not continuous in general. For example, if Dy is “multiplication by x” on L(R) and
A, = 1Dg then ||Aqlp, < %, but

=n
e e = [ (4~ 1))
=|eiP —1| =2 fort+£0.
However, we do have the following:

PrROPOSITION 14. Let Doy be an unbounded self-adjoint operator, let A be a Do-
bounded symmetric operator suchthat D = Do +Ais self-adjoint. For each real number
t we have

1€® — €[lp, < [t] |Allo,-

ProOOF. Let ¢ € domDy. Following the ideas of Proposition 12,

(-150) e (1 o)
<51 50) Ao

T N S

n—1 t .
<3 H1alou(lel? + oot = 1 1Al el

<5 M a

By Lemma 11, we obtain for £ € domDyg

||eith _ eitD0§H < |t| ||AHD0||§||D0
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and the result follows. n

15. FOURIER TRANSFORM.  Letf € LY(R), thenfort € R,

\/% /°o e (x) dx
T~ —00

is the Fourier transform of f, a continuous function vanishing at +0o. We wish to apply
this to an unbounded self-adjoint operator D.

f(t) =

LEMMA 16. Let D be an unbounded self-adjoint operator and let f € L*(R). Then

f(D) = /°° & Of (x) dx,

1
V2r J-e
wherethe integral on the right convergesin the strong-operator topology.
PrOOF. A careful application of the spectral theorem. ]

THEOREM 17. Let Dy be an unbounded self-adjoint operator and suppose f (x) and
xf(x) arein LY(R). Let D = Do + A where A is bounded and self-adjoint. Then

IF© @ < 2L [~ pacoja

ProOOF. For ¢ € H we have

|(f(D) —f(Do))¢| < \/% [ Il — e o)l [f (9] ox

1
< — X [JAIIE]] - [F G| dx
7= [ AT gl - o)
~ (L5 /7 proatex) . .
COROLLARY 18. [le™®* — e™5|| < 2,/L||A], for t > 0.

PrROOF. Fort = % the function f(x) = e ¥ satisfiesf = f and sowe get

=

§D? _ 402 IIAII . 2
€ < dx = 1| —||A]l.
et — %) < = [ e P dx= Al
For arbitrary t, we get e 0 = e~2(V2D)* sowereplace || Al| by v/2t||Al| in the calculation
fort=1. .
REMARK 19. Inthe casethat A isonly Dg-bounded and D = Dg + A is self-adjoint,
the same proofs show that

IF®)—F©0llo, < 152 [ o]
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under the hypotheses of Theorem 17 and, therefore

_ _ t
e — &, <2,/ Ao,

REMARK 20. Let A bethe C*-subalgebraof Cy(R) generated by the almost periodic
functions and the functions having limits at +co and —oo. Let Dy be an unbounded self-
adjoint operator on H. Then for eachfixedf € A themapping A — f(Do+A): B(H)xa —
B(H) is continuous: to see this we first observe that the set of f € C,(R) for which this
holdsisaC*-algebra. Oncethisisestablished, Corollary 2, Theorem 8 and Propostion 12
together with the Stone-Wel erstrass Theorem compl ete the proof.

By asimilar argument, if {A,} isasequenceof Do-bounded symmetric operators and
[Anllo, — O, then

|f(Do + An) — f(Do)||p, — 0 foralf € A.
For f in the unitization of Co(R) we can prove the stronger result:
[[f(Do + An) — f(Do)|| — O
by this argument and an appeal to Corollary 2.

REMARK 21. If Dg isanunbounded self-adjoint operator, then there existsabounded
continuous (even smooth) function f and a sequence {A,} of bounded self-adjoint oper-
atorswith ||Ay|| — 0 and ||f (Do + An) — f(Do)|| > 1for al n.

We outline the proof for Do = “multiplication by n” on ¢2(Z): the general case is
similar but messier. Let f be a continuous function on R with range in [0, 1] which is 0
at all integer points but so that f(n + r—l]) = 1for all positiveintegersn > 2. Forn > 2 let

1

An = P, where P, is the projection on the nth basis vector. Then [|A,|| = r—11 — 0 but

[[f(Do + An) — f(Do)|| > 1.
NOTE. Remarks 20 and 21 are carefully stated versions of results of Rellich [DS,

Exercise X11.9.38]. The example given above shows that the result stated in [DS] is not
quite correct. See also Remark 13.

Appendix B. The Trace-Norm Continuity of Certain Functions of Unbounded
Self-Adjoint Operators.  Inthisappendix, we prove continuity results of thefollowing
sort. Weassumethat D isan unbounded sel f-adjoint operator affiliated with the semifinite
factor, N, and that (1 + D?)~! is n-summable (Tr((l + DZ)‘“) < +oo). We then show
(with explicit bounds) that the map N — L(N) givenby A — [1+ (D + A?)] " is
well-defined and continuous. We also prove D-bounded versions of these results.

The following lemmais certainly known, although we have not found a proof in the
literature. We outline its proof for completeness.
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LEmMmA 1. If Aand B are (unbounded) self-adjoint operatorswith domA = domB
and 0 < c1 < A < B on their common domain, then 0 < B! < A™* < 11 onall of H.

PROOF. For ¢ € domB, §(Bz¢) = Az ¢ iswell-defined and 16]] < 1. Sincetheclo-
sure of B%|d0m3 isB? one checksthat G(Bég) = A%g makes sensefor all £ € dom B3 C
domA? and so 6B? = A?. Since Bz > c?1, rangeB% = H and 0 is everywhere defined
and 1 : 1 and ranged D rangeA? = H. So, 6~ is bounded. Thus, Bz = 6~1A? and so
B2=A"29orB 2 = ¢*A "z and ||¢*|| < 1. ThisimpliesB~% < AL, -

2. GENERALIZED SINGULAR VALUES. In order to prove our resultsin full generality
we need the concept of generalized singular values dueto Fack and Kosaki, [FK]. Welet
N be a fixed von Neumann algebra with faithful, normal, semifinite trace, Tr. If A € N
we definefor eacht > 0, the t-th singular value of A, u(A), by

w(A) = inf{||AE|| | Eisaprojectionin N with Tr(1— E) < t}.

LEMMA 3.  If Nisavon Neumann algebrawith faithful, normal, semifinitetrace, Tr;
0 < A < B are sdf-adjoint operatorsin N; and g is a continuous, increasing function
on R* with g(0) = O then
Tr(g(A)) < Tr(g(B)).

PrOOF. Thisfollowsimmediately from Lemma 2.5 and Proposition 2.7 of [FK]. =

COROLLARY 4. With N asaboveand0 < A<BinNandk > 0then

Tr(A) < Tr(BY).

LEMMA 5. Let N be a von Neumann algebra with faithful, normal, semifinite trace,
Tr. If S Tin N are self-adjoint with Spositiveand —S < T < S thenfor any continuous,
increasing function g on R* with g(0) = 0 we have

Tr(g(T)) < 2Tr(g(9).

ProOOF. Let P, bethespectral projectionfor T correspondingtoR*. Let T, = P, TP,
sothat T, < P.SP, and so by Lemma2.5 of [FK], foreacht > 0

ue(9(T+)) = g(e(T+)) < 9(u(Ps SP4)) < g(m(9)
= Mt(g(3)
and so by Proposition 2.7 of [FK]

Tr(g(T+)) < Tr(g(9).
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Similarly,
Tr(9(T-)) < Tr(g(9)

where

Since |T| = T+ + T_ isadirect sum, g(|T|) = g(T+) + g(T-) and hence
Tr(g(T)) < 2Tr(g(9). .

LEMMA 6. If Dg is an unbounded self-adjoint operator, A is a bounded self-adjoint
operator, and D = Dy + A then

(1+D*)~ < (AL +Dj)
wheref(a) = 1+ a2+ ava? +4.

PROOF.  We first assume that A(dom Do) C dom Dy so that domD? = dom D3. We
seek a positive constant C so that:

1+D3 < C(1+D? on domD? = domD3.
That is, for all vectors ¢ of norm 1 in domD3 we want:

(£,€) + (Do€, Dog) < C[(€, &) + (Do€, Dot) + (AL, AE) + (Do, A) + (AL, Doé) |

or,
1+|Do€|? < C[1+]|Do€? + | A¢1? + 2Re(Doé, AS) |

which would follow from:
1+]|Do€|* < C[1+[|Dog||* + |A¢]1* — 2| Dot | AT ]-

Letting x = ||Do|| and a = ||A¢|| one easily calculates the maximum value of ﬁi)z
tobef(a) = 1+ 3a? + 2av/a? +4. Sincea = ||A¢|| < ||A] and f is clearly increasing,
we get

@+x%) <f(IAD(L+(x—a)?)
and so (1 + DZ) < f(||Al)(1 + D?) on dom(1 + D2) = dom(1 + D?). By Lemma,
(1+D?)~* <f(|A@+DY .

To rid ourselves of the restrictive hypothesis that A(domDg) € dom Dy, we let Ex
be the spectral projection of D for the interval [—k, k] and let A, = ExAEk. Then Ay is
self-adjoint, || Axl| < ||All, Ac({domDg) C domDg and A¢ = limy_,., A& for all € € H.
If Dx ;= (Do + Ay) then

(L+DR)~* <f(JAl@+DY
By aresult of Sz.-Nagy [DS, Exercise X11.9.37],
(1+D3) Y — @1+D?» ¢ foral¢eH
and so theinequality holdsfor all A. n
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LEMMA 7. If Dgisan unboundedself-adjoint operator, Aisa symmetric Do-bounded
operator with ||Al|p, < 1,and D = Do + A then

(1+D?%)™ < h(|Alln,)(1+D§)
whereh(a) = (1 — a)~2.

PROOF.  We follow the proof of the previous lemma, with ¢ € domD3, ||¢]|p, = 1.
So we want C > 0 satisfying:

1 < C[1+|Ag]|? — 2| Doé]| [|A4]11.
Since ||Doé|| < |1€]|p, = 1 thiswill be satisfied if
1< Cl1+ || A¢)?— 2| A

or
(1-JAgp~?<cC.

Choosing C = (1 — ||Al|p,) 2 works, since (1 — a)~2 isincreasing for a < 1.

We rid ourselves of the restriction A(domDg) C domDg in the same way: each A, =
EAEy is self-adjoint (bounded, in fact!), and it is easy to see Ay, — A¢ for all € €
Uk 1 Ex(H) which is acore for (Do + A). Hence, by the same result of Sz.-Nagy (using
its full power) we obtain

(1+D?) ' < (1—|Alp,) %1+ D). .

COROLLARY 8. Let N be as above, let Dy be an unbounded self-adjoint operator
affiliated with N, let A € N and let D = Dg + A.
(1) 1 Tr((1+D3)™") < +oo for some positive n, then sois Tr((1 + D?)™") and

Tr((1+D?)™") < (A" Tr((1+D§)™).

(2) 1f Tr(eP%) < +oo for t > Othen

_p2 1 t
e ) < o1 ) Tr<exp(_f<t% ) )

If we only assume that A is Dg-bounded and symmetric then we must also assume that
l|Allo, < 1and D = Do + Ais affiliated with N. In this case we get:
(3) If Tr((1+D3)™") < +oo for some positive n, then

Tr((1+D?)™) < (h(|Allp,))" Tr(@@+D3)™).
(4) If Tr(e ™) < cofort > Othenift <1

Tr(e0%) < @lAloo@-l1Allos) Tr(e~(1-IAlo, 103
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whilefor t > 1 we get
Tr(e*tDz) S Tr(eﬁDZ) S e”AHDO(Z*HAHDO) Tr(e*(]-*HA”DO)ZDg)
by the previousline.
ProoF. (1) and (3) follow from Lemmas 6 and 7 and Corollary 4.
To see(2) and (4), welet

ifx=0

0
909 ={g¢v ifx>0

so that g is a continuous increasing function on R* with g(0) = 0. Then, e’ =
g((1 +tD?)~*) and applying Lemmas 6 and 7 yields:

(1+tD)~ <f(t2 |A)(1+tDY) " incase(2);

while .
(1+tD?) ™ < h([[t2A]| 5 )1 +tD§)~
0

< h(||Allp,)(1 +tDg) ™ incase (4)

sincefors <1,
ISAllsp, < [|Allpe-

A straightforward application of Lemma 3 and the fact that

g(cx) = € I[g(x)] ¢
givesus (2) and (4). ]

REMARK 9. (1) In the following propositions we will use the easily derived esti-

mates: _
1<f(@ <1+2a if0<a<l5and

1<h@<1+4a if0<a<.35

(2) We will also usethe following estimates (with x = f(a) or h(a)):

() X —1<(x—1'forx>1and0O<r<1

(i) ) —1>—(x—1) forx>1and0O<r <1

Inequality (ii) follows easily from (i) and (i) is proved using the usual calculus tech-
niques after letting (x — 1) = bands = % to convert (i) into:

b+1<(b+1)° forb>0,s>1.

(3) Inthefollowing propositionswe could also usethe sametechniquesto get operator
norm estimates of ||(1+D?)~" — (1+D3)~"||. However, they would not be nearly as sharp
as the estimates obtained in Appendix A.

(4) Inthe following propositions, if we were only interested in positive integers n,
we could restrict to the caser = 1 and things would simplify somewhat. However, we
need the greater generality.
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ProPOSITION 10. If Dg is an unbounded self-adjoint operator affiliated with N and
ifTr((1+ DS)*”) < oo for somen > 1 (not necessarily an integer), then for all Ain Ng,

Tr((1+(DO +A)2)7n) <ooandif0<r <land|A| < 1then

|(1+D§) " - (1+(D0+A2))_r < 25 (2| A" |1+ D)5

If we only assume that A is a Do-bounded symmetric operator with D = Do + A also
affiliated with N, then the inequality becomes:

I(L+D§)~" = (1+D?) "2 < 25(8||Alloo) [I(L + D)5,
provided || Al|p, <.29.
PrOOF. By Lemma6 we have
(1+DH) T <f(JAD@+D3) and
(L+D§) <f(| —AlhL+D?) .
[Or, by Lemma7, (1+D? <h(]|Ap,)(1+D3)* and
(1+D5) ™" <h(| - Alp)(1+D?*)™*
< h(2||Allp,)(L+D?»™* if AisDo-bounded.]

Thus, .
rAp O = (@D <A@+ DR
Hence, by operator monotonicity:
(ﬁ) (1+D§) " < (@+D) < (f(lAID) (1 +DF) .
And so,

(1+Dj) ",

()

which, by the previous remarks, yields

(1+D2) " < (1+DY) — (1+D) Kf(IIAII)) 1

—[f(IA) — "1+ D§) ™" < (1+ D)™ — (1+Dg)~" <[f(JA) — 1I'(1+D§)™".
So, if [|A]| < 1.5 we get:
—(2Al)(@+D§)" < (1+D*) " — (1+D§) " < (2|A)(1+D§ "
(If Alisonly Do-bounded and ||Al|p, <.29 we get:
~(8||Allo) (1 +D§) " < (1+D?) " — (1+ D"

< (4] Allo,) (1 + D7)
< (8]l Allp,) (1 +D§) ")

An application of Lemma5 with g(x) = x* yields the result. L]
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ProPOSITION 11.  With the hypothesesasin Proposition 10 andr = rﬂ+1’ we get:

(2 +D3)™" — (1+ D2 ™|1 < 25 [ AN TF(IAN" (M + 1) (L + D) "l
If Ais only Do-bounded with ||Al|p, <.29 we get:

I(L+DF) ™" — (1 +D?)~"l1 < 25 (8| Allo,) T(I|Allop)1"(n + 1)]|(L + DE) ™" 1.

PrOOF. Letk = [n], the greatest integer inn, andletr = & < 1. So,

(1+D% ™"~ (@+D§) " = [(1+ D" — [(1+D§) "1

= i(l +D?) "l ((1 +D?)™" — (1+D3)” )(1 +D2) kD),
j=0

Applying the Holder inequality [D] we get:

1(1+D%) ™" — (1+ D) "1

k
< 2@ +D) 2|1+ D" — (1+D§) |||+ DF) "D a

J*

r(k 1)

P

< >[I+ DA 20 2 AINI (L + DE)HIHlI( + DF) i
&

P

< S F(IADTNI +DE) g 27 2] AL+ DF) [T
J_

= 252 Al (|2 + D) YIn E)f(IIAH)”
=

< 25(2|AIN 1L + DY) [k + D f(JAD™
< 28 (2||Al)'I(2+ D) "la(n + D(F(IAID)"

The proof of the Do-bounded versionis similar. n

At this point we are in a position to prove the trace-class continuity of the map A —
e oA’ Ng, — LI(N) assuming that D is 6-summable (i.e., Tr(e %) < oo for all
t > 0). We can also prove a Dyp-bounded version of thisresult. However, in order to keep
this paper to a reasonable length we leave these results to the sequel on #-summable
Fredholm modules and spectral flow where they will be directly useful.

REMARK 12. Moativated by our work, F. A. Sukochev has generalized and improved
some of our estimates by other methods[Su].
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Appendix C. Examples. Toillustrate the theory we present some nontrivial exam-
ples.

ExAMPLEI. LetA = C(T), the C*-algebraof continuousfunctionson the unit circle,
T,andlet N = B(L¥(T)), the (type I) von Neumann factor of all bounded operators on
the Hilbert space, L2(T). We represent A as multiplication operators on L?(T) so that
f — M;:A — Nisfaithful. Welet D = %% be the unique salf-adjoint unbounded
operator on L?(T) which is diagonal relative to the orthonormal basis,

7=

If f isacontinuously differentiable function in A, then one easily calculates that

neZ

[D! Mf] = :I_LM

so that axiom 2 of Definition 2.1 holds. Using the orthonormal basis which diagonalizes
D, we easily calculate that

PN 1 ¢
Tr((1+D%72) = ,;Z(—l+n2> :
which isfinite for any p > 1. Thus, (N, D) is a p-summable Fredholm module for A =
C(T) for any p > 1. We take p = 2 in the following calculations to be definite.
We let u € U(A) be the function u(t) = e, so that (suppressing the representation
M) we have
uDu* =D +u[D,u"] =D+ u:i—L(u*)’ =D+1

Thus, the straight line path from D to uDu* isD{ = D +tlfort € [0, 1]. Ast increases
from O to 1, the eigenvectors of the operators Dy remain the same, but the eigenvalues
each increase by 1. Exactly one eigenvalue changes from negative to nonnegative so
that sf({DV'}) = +1. In this setting, P = x(D) is the projection of L?(T) onto H2(T) and
Ty = PuP isthe classical Toeplitz operator corresponding to the backward shift so that
ind(Ty) = +1 also.

Lettingk = 5 = 2 = 1wehave

G = /_°° (1+x2)*kdx:/_oo L+x)tdx =
Thus,
1 a_/d, 2\ —K
c_k/o Tr(—(Dt)(1+(Dt)2) )dt

_/Tr( (1+@D+t1?)" ) —%/j(zmﬂt)z)m

neZ

B /1+(n+t)2 Z/n+11+ p du=+1.

T nez T nez
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Thus, we have verified that, in this case,

ind(PuP) = f({D"})
:_/ ((Wﬂﬁ@%))m:L

Theorem 2.17 (with p = 1+¢) would require usto usetheexponentm = 1+ % =25

and the constant,
ém:/m(1+%r2%x::f
—00 3
We fully believe that this exponent mis only an artifact of the proof, and furthermore
that in general one need only use the minimal exponent for which the integral formula

converges, namely k = 5.

EXAMPLE Il. Let A = C(T?), the C*-algebra of continuous functions on the torus,
and let A act as multiplication operatorson H = L2(T?). We let a: R — Aut(A) be the
Kronecker flow on A determined by the irrational number, 6. That is, fors € R, f € A,
and (z1,2) € T? we have:

(asf)(21, 22) = F(e77°21, €7 2%2).
Now, the C*-crossed product A <, R actson L2(R, H) asfollows: for
steR, ¢c€l?R,H) and fecA
we define
(r()e)(8) = ag'(f) - &(9) and
(ABE)(9) = E(s— ).

Thus, © x A is afaithful representation of A x,, R on L2(R, H). It is well-known that
"
N = (7r X MA Xq R)) isall., factor, [CMX], and so we have m: A — N. Welet
_1d
~ 2nids’

the usual generator of the one-parameter unitary group A: R — N, so that D is affiliated
with N. Now, if ¢ is the densely defined (unbounded) derivation on A generating the
representation o: R — Aut(A) and f € Aisasmooth element for § then

n(8(f)) = 2ri[D, 7()]
by [L] so that axiom (2) of Definition 2.1 holds.

Now, D isreally
L lg1
27i ds
and A(t) isreally
M) @1
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on L?(R) @ H. Since the trace on A (given by integration) isfinite, we have that the trace
on N restricts to the usual trace on A(R)” ® 1: thatis, x® 1in A(R)” ® listraceclassif
and only if x = (@) for someg € L(R) N L>(R) and then

@ e1) = [ °; g(r)dr.

In this Fourier Transform picture, D becomesmultiplication by the independent variable,
r. Hence, (1 + D?)~ becomes multiplication by the function g(r) = (1 +r?~! which is
inLYR) NL>®(R). That is,

1+DH =)@ @1

Thereforeif p > 1, then
Tr(@+D3 %) = [~ @+rd)Far <+oo.

That is, (N, D) is a p-summable (type Il,,) unbounded Breuer-Fredholm module for A
for any p > 1. In particular, (N, D) is 2-summable and

Tr(2+D?)Y) = [ °O°O(1 +r2)Ldr = 1.

Welet u € U(A) be the function u(z;, z2) = z which is easily seen to be a smooth
element for the derivation § and that 6(u*) = 2rifu*. Thisimplies that

* 1 * *
[D, n(u")] = %w(a(u )) = Om(u).
Now, suppressing the representation = we get:
uDu* = D +u[D,u*] = D +u(fu*) = D +01.

Thus, the straight line path from D to uDu* isD{ = D +tf1for t € [0, 1]. Ast increases
from O to 1, the spectral subspaces of the operators D} remain the same, but the spec-
tral values each increase by 6. The spectral subspace of D corresponding to the interval
[—0,0), E = E_y0), isexactly the subspace where the spectral values change from neg-
ative to nonnegative. By a calculation very similar to Example 2.6 of [P2], the spectral
flow of the path {Dy'} isexactly Tr(E) andsince E = A(§) ® 1 whereg = x[_g,0 We have

SO =Tr(®) = [~ xoo(r)dr =6.

It isalso easy to show directly that 6 isthe Breuer index of the “ Toeplitz” operator T, :=
PuP (where P = xr+(D)) computed in the |1, factor, PNP. Finally,

r(amanan a0 )
0 1
B /ol</f; Tr G +0) dr) dt .

:g/ol( _Oolj'uzdu)dt:H
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Hence, we have verified in the example that:
ind(PuP) = sf({D;'})
1 n d u w2\ 1 _
- ;_/O Tr(a(Dt)(1+(Dt) ) )dt_ 9.

As mentionedin Examplel, Theorem 2.17 would require usto use the exponent m =
2.5(or350r4.5---)toget:

ind(PuP) = (DY) = & [“Tr( SON(1+ ) 7)ot =0,

These examples serve to illustrate our conjecture that one need only use the minimal
exponent necessary (namely g) in the integral formula for the spectral flow.
For more general examples of this type (i.e., given by action of R) see[L] and [PR]
where the index formula 1
ind(PuP) = %T(ﬁ(u)u*)
is proved (here T is an R-invariant trace on the C*-algebra, A).
Higher dimensional examples (larger p) can be constructed from Dirac operators on

Riemannian manifolds, but we do not present the construction here.
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