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1. Introduction

In [1], Owen gave sufficient conditions for the uniqueness of certain mixed
problems having elliptic and hyperbolic nature for the ultrahyperbolic equation.
Recently, Diaz and Young [2] has obtained necessary and sufficient conditions
for the uniqueness of solutions of the Dirichlet and Neumann problems involving
the more general ultrahyperbolic equation

Au — DyayDyu)+cu =0

The purpose of this paper is to present corresponding uniqueness conditions for
the Dirichlet and Neumann problems for the singular ultrahyperbolic equation

(1) Lu = u, + («/tyu, + Au — D{a; Du) + cu = 0

for all values of the parameter a, — o0 < a < c0. The symbol A denotes the
Laplace operator in the variables x,,---,x,,, D; indicates partial differentiation
with respect to the variable y; (1 £ j < n), and the summation convention is
adopted for repeated indices including (9;u)?, where 9; denotes differentiation with
respect to the variable x;.

The boundary value problems will be considered in the domain Q = X*x Y
where X'* is the parallelepiped defined by 0 <t < 7,0 < x; < a1 £ i £ m), and
Y is a bounded domain in the space y,,---,y,. The parallelepiped defined by
0 <x; <a(l £i=m) will be denoted by X. For brevity, we write
X =(X;,,X%m), ¥ = (¥1,, ), and denote a point in Q by (¢,x, y).

Throughout this paper, we assume that the coefficients a; and ¢ depend only
on the variables y,,---, y,, and are continuous functions of these variables with
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¢ = 0in Y. As in [2] and [4], we also assume that the matrix (a;) is symmetric,
positive definite, and that aj;, ¢ and the domain Y are sufficiently regular in order
to allow the application of the divergence theorem and to ensure the existence
of a complete set of eigenfunctions of class C*(Y) N CY(¥) for the eigenvalue
problems that will be needed below. By a solution of a boundary value problem
considered here we shall mean a function ue C*Q) N CY(Q) which satisfies
the differential equation and the boundary condition of the problem.

The results given here include not only those obtained in [2], but also those
derived by Dunninger and Zachmanoglov [3], [4], Sigillito [5] and Young [6]
in the case of the normal hyperbolic equation.

2, The Dirichlet problem
We consider first the homogeneous Dirichlet problem
2 Lu=0in Q, u=0 on dQ

Corresponding to various ranges of the parameter «, we shall prove uniqueness
of solution by showing that every solution of the problem vanishes identically in
Q. We begin by stating a lemma which characterizes every smooth solution of
the equation (1) for a # 0.

LEMMA. If o # 0, then every solution u of (1) belonging to C* for t>0
and to C! for t = 0 satisfies the condition u,(0,x,y) = 0,

This lemma can be proved by following, almost step for step, the method
employed by Fox [7] in establishing the same property for the corresponding
singular normal hyperbolic equation in the case that (a;) is the identity matrix,
using the domain Q.

THEOREM 1. If « > O, then every solution of the problem (2) vanishes identi-
cally in Q.
"PROOF. Let u be a solution of the problem (2). We integrate the identity
O = Zu,Lu = [u,z - (0‘14)2 + ajijuDku + Cuz]'
+ 20(u,0;u) — 2D {a;u,Dyu)
+ Quftyu?
over Q and use the divergence theorem to obtain
t=T
f (u? — () + ayDuDu + cu®)|  dxdy

t=0
XxY

3) N f Qu,dv; — 2u,a,Deuv?) dS

oQ
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+ 2a f (u?/t)dtdxdy = 0
Q

where v; and v;* denote the components of the outward normal vector on X
and 2Y, respectively. By the lemma and the fact that 4 vanishes on 0Q, (3) reduces
to
f u(T, x, y)dxdy + 2 f(uf/t)dtdxdy =0
C) XXy )

Since o > 0, this implies that u, = 0 in Q, that is, u is independent of ¢. Butu = 0
ont =0, henceu = 0in Q.

THEOREM 2. Let A, (r = 1,2,---) be the eigenvalues of the problem

DiayDyw)—co+Av =0in Y

&)
v =0 on dY.
If « < 0, then every solution of the problem (2) vanishes identically in @ if and
only if
(6) -2 T) # 0

for any real number u # 0 and nonzero integers p;,- -, p, such that

™ p+ T (pimfay = 1,
i=1

13

where J (1) is the Bessel’s function of the first kind of order a.

PrOOF. Suppose that there exist an eigenvalue A, of (5), a real number p, # 0,
and nonzero integers ¢q,,-, q,, satisfying (7) such that

(®) J(l—z)/z(ﬂ;}n =0.

Let v, be an eigenfunction of (5) corresponding to A,, and define
© #(x:) = [T sintgmsfa.
Then it is readily verified that the function
u(t, x,y) = 972 (ENG(x; 9)v(y)
is a nontrivial solution of the problem (2).

Conversely, suppose that the conditions (6) and (7) hold. Let us integrate
the identity
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wLlu — uMw = (wu, — wu + auw [ 1),
+ 3 wou — udw)

dvér Q, = X! x Y, where X is the'barallelep‘iped defined by 0<s <t < T,
0<x;<a; (1 £i=m),and M is the adjoint operator of L given by

Mw =w,, — a(wff), + Aw
~ Dya; Dyw) + cw.

By the divergence theorem, we have

f[wLu — uMw]dtdxdy
Qs

(10) = j [(wu, — wou + auw/t)v, + (Wou — udw)v;
205
— ay(wDu — uDw)vt 1ds.
Now let u be a solution of (2) and for any choice of A,, u # 0, and nonzero
integers py, -, p,, satisfying (6) and-(7), let
W(t, X, J’) = t(17+a)/2J(1 —a)/Z(u%t)qS(X; p)vr(y)

where ¢ is defined in (9) and v, is an eigenfunction associated with A,. Since
Lu =0 and

Mw = —t(i+a)l2](1—a)/2(lr‘*t)¢(x§ p) [Dj(ajkavr) —-cv,+ lrvr] =0,

the left hand side of (10) vanishes. Moreover, since 4 = 0 on 4Q and w = 0 on
X* x 0Y and 0X x Y, equation (10) becomes

t=T
an f (wu, — wu + auw/t) ‘ dxdy = 0.
t=s

XxY

We now let s approach zero. Since both w, and w/t are bounded at t = 0,
and u vanishes there, we obtain in the limit

1) TG [ T e )dsdy = 0.

: : XxY :
In view of (6) and the completneness of the sets of eigenfunctions
{[17=1 sin(pinx;/a)} and {v} in X and Y, respectively, (12) implies that
u(T,x,y) = 0. With this additional information, we can now show that u =0

in Q.
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Let us integrate the identity
0 = Qtu, + u)Lu = [tu? — (Ou)* + a;DuDu + cu?) + u(u, + ou/t],
(13) + 0,[(2tu, + w)ou] — D;[a;(2tu, + u)Dyu] + 2(a— Du} + ou?/t?

over Q, and pass to the limit as s > 0. Since ¥ = 0 on 6Q, u, = 0 on ¢t = 0 and
t = T, all surface integrals arising from the integration vanish in the limit, so
that we are left with the convergent integral

f[2(a — Du? + you?/t*]dtdxdy = 0.
Q
Since o £ 0, this yields the result that u = 0 in Q.

3. The Neumann problem
We consider next the homogeneous Neumann problem
(14) Lu =0 in Q, du/dn =0 on 4Q,
where du/én denotes the conormal derivative
dufon = ayDuv}

on the part X* x dY of Q.
THEOREM 3. Let A, (r = 1,2,---) be the nonzero eigenvalues of the problem
15) DyayDw) —cvo+ Av =0 in Y,

dv/on = 0 on dY.

Then every solution u of the problem (14) vanishes zdentzcally (or u = const,
if c=0) for « =2 0 if and only if

(16) J(1+a)/2(ll%T) #0
Sfor any real number p # 0 and integers p,,---, p,, satisfying (7).

ProoF. The condition (16) is actually necessary for any value of the parameter
a. In fact, if there exist a nonzero eigenvalue 2, of (15), a real number p; # 0,
and integers ¢,,-:-,q,, satisfying (7) such that

(17) J(1+a)/2(#3T) =0
then the function
18) u(t,x,y) = t(l_a)/zJ@—l)/z(ﬂgt)'//(x;‘I)Us()")

constitutes a nontrivial solution of the problem (14) for any value of o. Here
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19) VU(x;q) = H cos(g;nx;/a;)

i=1

and v, is an eigenfunction corresponding to A_. Indeed, by (15) it is easily shown
that (18) satisfies Lu = 0, du/dn = 0on X* x dY,and u =0onx; =0, x;=a
(1 £i £ m). Moreover, since

U, = - I‘?t(l_a)lz"u +a);2(ﬂ3t)‘l’(X;Q)”s(Y) = 0(1),

it follows that u,(0,x, y) = 0 and by (17) u(T, x, y) = 0. Thus (18) is a nontrivial
solution of the problem (14).

On the other hand, let « = 0 and assume that the condition (16) holds.
Let 4, be a nonzero eigenvalue of (15) with the corresponding eigenfunction v, .
For any choice of real number x # 0 and integers p,, -, p,, satisfying (7) and (16),
let

(20) W(t’ X, ,V) = t(l +a)/2J(a— 1),2(u*t)¢(x 5 p)vr(y)

where ¥ is given by (19). By direct differentiation, it is readily verified that Mw = 0
in @, dw/dn = 0 on 0Q except on t = 0 and ¢t = T. Hence, if u is a solution of
(14), substitution of (20) for w in (10) leads again to the integral (11). Since

-1y/2
w, = o™V J (a=1y2(¥t)

— pht “)/ZJ(H 12D (x; p)o(y)
it follows that
—w,+awft = pUTIRT (Y (e pu(y)
= o(r**Y).

Therefore, as s is allowed to approach zero in (11), we obtain in the limit

BT ) [ T i P )dxdy = 0,

XxY

By the hypothesis (16) and the completeness of the sets of eigenfunctions
{I17xicos(pnx;fa)} and {v,} in X and Y, respectively, we conclude that
u(T,x,y) = 0 if ¢ >0 and u(T, x,y) = const. if ¢ =0. Notice that in the case
¢ = 0, the problem (15) has the eigenfunction » = 1 corresponding to the eigen-
value 4 = 0.

Let us consider the case ¢ > 0. It remains to be shown that u=0in Q.
For this purpose, we note that the identity (13) no longer applies. We integrate
instead the identity

(2% tu, + (o + DefulLlu = [*F(u? — (u)* + azDuDu + cu?)
+ (o + Dt*uw, |, + 8{°Qtu, + (¢ + 1u)du]
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— D[*a;(2tu, + (x + Du)Du] — 2t*u?

over Q and apply the divergence theorem. Because u is a solution of (14) and
u=0att=T,itis clear that all surface integrals arising from the integration
vanish. Thus we have

-2 j *uldtdxdy = 0
Q

from which the conclusion that u = 0 in Q follows.
If ¢ = 0, then the above argument gives u = const. in Q.

4. Concluding remarks

By using the same technique, it is possible to prove uniqueness theorems for
equation (1) subject to mixed boundary conditions of the type considered in [2]
with respect to the variables x, y and with either the condition 4 = 0 oru, =0
ont=0and t=T.
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