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Abstract

Non-technical summary. Irrigation relies on groundwater, but depletion threatens food
supply, rural livelihoods, and ecosystems. Nature-based Solutions can potentially combat
groundwater depletion, typically combining physical and natural infrastructure to ben-
efit both people and nature. However, social infrastructure (e.g., rules and norms) is
also needed but is under-studied for NbS used in agricultural groundwater management.
Through a narrative review, we find that social infrastructure is infrequently described
with an emphasis on using Nature-based Solutions to augment supply rather than manage
demand.

Technical summary. Groundwater faces depletion worldwide, threatening irrigators who rely
on it. Supply-side interventions to drill deeper or import water greater distances have not
reduced this threat. Nature-based Solutions (NbS) are increasingly promoted as leveraging
natural infrastructure to reduce depletion. However, there is growing evidence that without
social infrastructure (e.g., social norms, capacities and knowledge), NbS will reproduce the
problems of technical approaches. How can social infrastructure be implemented within agri-
cultural groundwater NbS to overcome groundwater depletion? Through a narrative review
of the literature on agricultural groundwater NbS, we evaluate how social infrastructure has
been implemented to (1) enable coordination, (2) monitor and manage change over time,
and (3) achieve social fit. Our analysis covers diverse cases from around the world and
various points in time, ranging from ancient civilizations to present-day. We conclude that
social infrastructure is essential to effective agricultural groundwater NbS but understud-
ied. We also propose further research on NbS designs that rely only on social and natural
infrastructure by focusing on ecological fit between agricultural practices and their local
environments.

Social media summary. A review of nature-based solutions for agricultural groundwater
management finds that social infrastructure is key.

1. Introduction

The volume of water that people withdraw and use annually is equivalent to twice the global
groundwater recharge to meet various demands (Abbott et al., 2019). Those demands are over-
whelmingly agricultural, and, even in some of the more regulated settings (e.g., California),
groundwater is over-extracted to meet them (Aeschbach-Hertig & Gleeson, 2012; Lall et al,,
2020). Supply-side solutions, such as solar pumps, have accelerated groundwater depletion and
drawn attention to the need for an alternative approach that addresses demand and works
with processes of recharge (Balasubramanya et al., 2024). While nature-based solutions (NbS)
have offered an alternative focused on ecosystems, their potential to date has been limited by
localized implementation and monitoring approaches. These approaches struggle to address
governance challenges and measure cumulative or large-scale social and ecological effects
(Gleeson et al., 2020; Keesstra et al., 2018). Accordingly, groundwater depletion presents a col-
lective action problem that undermines social and ecological resilience, particularly amid the
population growth and changing climate of the Anthropocene (Gajurel et al., 2024; Gleeson
et al., 2020; Huggins et al., 2023; Kuang et al., 2024). We suggest that social infrastructure pro-
vide the means to address groundwater depletion by promoting cooperation that addresses the
immediate effects of depletion and the associated distributional conflicts. Growing evidence
demonstrates the importance of combining technological innovations with social infrastruc-
ture, which ‘encompasses formal and informal institutions (e.g., norms about water), social
networks, and cultural values” (Stoler et al., 2022: 4; cf. Klinenberg, 2018). In this article, we
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conduct a narrative review of existing evidence to assert that
social infrastructure is key to sustainable and resilient agricultural
groundwater solutions (Dalin et al., 2019; Maleksaeidi & Karami,
2013; Rosegrant et al., 2009; Scanlon et al., 2023; Uhlenbrook et al.,
2022).

Historically, supply-side engineering approaches were treated
as a panacea for overcoming water scarcity when the ‘combination
of timing, place, and water quality on the planet [did] not match
human demand’ (van Noordwijk et al., 2022: 115). Despite their
implementation, humans and ecosystems have become increas-
ingly susceptible to water scarcity (Mekonnen & Hoekstra, 2016;
Srinivasan et al., 2012) and evidence shows that supply-side solu-
tions, like reservoirs, can actually increase risks of water shocks
by encouraging overuse and reducing the buffer available for
times of shortage (Di Baldassarre et al., 2018). While such hard
infrastructure advances have improved agricultural productivity
and well-being in many areas of the world, they have also had
unexpected consequences that underscore the need for change
(Anderies et al., 2016; Burke, 2003; Gleick, 2018). For example,
technological advances such as solar-based groundwater pumping
promise to improve productivity but tend to overlook the actual
economic and environmental costs (Balasubramanya et al., 2024;
Closas & Rap, 2017). Consequently, more attention is being paid
to interventions that address the ‘human impact on the water cycle’
and emphasize environmental benefits (van Noordwijk et al., 2022:
115).

Scholars and practitioners have pointed to NbS for water man-
agement that addresses a range of challenges, from flooding to
water scarcity (Seddon et al., 2020; United Nations Environment
Programme, 2022). Their potential to be self-sustaining, scalable,
and generate multi-dimensional benefits for social and ecologi-
cal resilience is promising, yet largely unfulfilled (Gleeson et al.,
2020; Keesstra et al., 2018; Nesshover et al., 2017; Turner et al.,
2022). Furthermore, NbS rely on social infrastructure which, like
hard infrastructure, is often a form of public good that is under-
supplied unless communities and governments invest in it (Albert
et al., 2019; Hirons, 2021; Lopez, 2005). In this context, we ask,
how can social infrastructure be implemented within agricultural
groundwater NbS to overcome the collective action challenge of
groundwater depletion?

Here, we conduct a narrative review of how social infrastruc-
ture has been implemented in NbS for agricultural groundwater
management, with a focus on groundwater quantity. Narrative
reviews are a form of non-systematic evidence synthesis used
to formulate critical insights from fields where a topic has been
approached in diverse ways and developed associated definitional
issues, such as NbS (Siddaway et al., 2019; Sukhera, 2022). In our
review, we focused on how social infrastructure has been used
in NbS implementation to achieve conditions thought to ensure
good institutional fit by matching institutions with local social and
ecological conditions, resulting in coordination and sustainable
resource management spanning multiple generations (Agrawal,
2001; Carlisle & Gruby, 2019; Epstein et al., 2015; Jagers et al.,
2020). Accordingly, we take a long-term perspective on NbS, draw-
ing from archaeological and anthropological studies of ancient
civilizations to contemporary approaches adopted since the term
‘NbS’ became a prominent initiative over the past 10-15 years.
In particular, we emphasize how social infrastructure has been
implemented within NbS to (1) enable coordination, (2) monitor
and manage changing groundwater conditions over time, and (3)
achieve social fit by considering the cultural values and norms of
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the people affected. We first review these concepts in the context
of managing groundwater depletion in agricultural systems before
describing the narrative review methods. The third section then
provides an overview of our findings, followed by a discussion of
how social infrastructure has been implemented according to our
three dimensions of interest. Based on our findings, we conclude
that social infrastructure is an integral component to effective agri-
cultural groundwater NbS that use hard and natural infrastructure
but that more needs to be done to manage the demand-side of
extraction. We also suggest that future research should support
NbDS designs that rely on social and natural infrastructure, rather
than hard infrastructure, with particular attention to ecological fit
between agricultural practices and their local environments.

2. Groundwater sustainability and collective action

NbDS are an effort to innovate resource management approaches to
benefit people and nature with an increasing focus on resilience
and sustainability (Cohen-Shacham et al., 2019, Cohen-Shacham
et al,, 2016). Applied to agricultural groundwater management,
NbS could improve the resilience of groundwater supplies and in
turn support resilient agriculture, broadly understood as agricul-
ture that persists, changes, adapts, and transforms in response to
the world around it while retaining key functions (Bennett et al.,
2021; Huggins et al., 2023). For agricultural systems, groundwater
NbS will require a good ‘fit’ between the temporal and spatial extent
of the problem and the preferences of the people who interact
with them. In other words, groundwater NbS need social infras-
tructure that is calibrated to local context, just as other forms of
infrastructure require appropriate technical design and adapta-
tion to local conditions to function effectively (Smit and Wandel,
2006). Advantageously, groundwater irrigation has been founda-
tional focus in collective action literature, providing insights on
managing depletion that can inform our approach to NbS imple-
mentation (Blomquist, 1992; Lopez-Gunn, 2003; Nagrah et al.,
2016; Ostrom, 1990; Shalsi et al., 2022). While we note strides by
other scholars, such as those looking at Coupled Infrastructure
Systems (CIS) (e.g., Svensson et al., 2019), we instead draw on
understandings from Common-Pool Resource (CPR) and political
ecology scholarship and combine them with diverse case stud-
ies on agricultural groundwater NbS. This approach allows us to
clarify definitional issues and enable more systematic approaches
to reviewing papers with social infrastructure components in the
future. In this section, we first review how NbS are defined before
providing an overview of existing literature on collective action for
groundwater irrigation. This allows us to articulate the opportu-
nity for NbS to improve groundwater management and agricul-
tural resilience if deployed with social infrastructure as a core or
even sole element. We focus on three conditions from the col-
lective action literature that may limit the effectiveness of social
infrastructure in this regard: the costs of coordination (including
participation), monitoring and managing change over time, and
fit to the social context of those affected by or involved with the
NbS.

We use the term ‘social infrastructure’ to maintain consistency
with the focus on nature as infrastructure in the NbS space, and
consider hard infrastructure to be human-made physical struc-
tures. We frame social infrastructure as an integral part of an effec-
tive NbS based on three arguments. First, all commonly accepted
definitions (Table 1) of NbS allow for the inclusion of social
infrastructure (e.g., Cohen-Shacham et al., 2016; UNESCO, 2018).
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Table 1. Commonly used definitions of NbS among practitioners

Source Definition

University of Oxford
NbS Initiative (2022)

‘Actions that involve the protection, restoration
or management of natural and semi-natural
ecosystems; the sustainable management of
aquatic systems and working lands...; or the
creation of novel ecosystems in and around
cities’

Cohen-Shacham et
al. (2016)

‘Nature-based Solutions are actions to protect,
sustainably manage, and restore natural and
modified ecosystems that address societal chal-
lenges effectively and adaptively, simultaneously
providing human well-being and biodiversity
benefits’ (Annex 1)

UNESCO (2018) ‘Nature-based solutions (NBS) are inspired and
supported by nature and use, or mimic, natural

processes’ (p. 22)

European
Commission (2024)

‘Nature-based solutions (NBS) are inspired and
supported by nature, they are cost-effective,
simultaneously provide environmental, social and
economic benefits and help build resilience’ (p. 1)

Second, these definitions often align with the objectives of many
resource management institutions. For example, in a report for
the IUCN, Cohen-Shacham et al (2016) defines NbS as ‘actions
to protect, sustainably manage, and restore natural and modi-
fied ecosystems that address societal challenges effectively and
adaptively, simultaneously providing human well-being and biodi-
versity benefits’ (Annex 1). Finally, an NbS composed exclusively
of social and natural infrastructure can succeed whereas the one
consisting of exclusively hard infrastructure cannot, as our review
will demonstrate.

Poor social infrastructure leads to negative outcomes, unin-
tended consequences, and failure in the long run. If NbS are to
be implemented at the scale that environmental challenges like
groundwater depletion demand, they must have a social infras-
tructure that manages heterogeneity and large spatial and temporal
distances. This approach is referred to by practitioners as either
a large-scale or landscape-scale approach, such as the Bureau of
Land Management in the United States who use ‘landscape-scale
approach’ to refer to multiscale management of human and ecolog-
ical conditions (BLM, 2023). In agricultural contexts specifically,
the landscape-scale approach intends to look beyond the indi-
vidual farm or field and consider other ecosystems, land uses,
and their connections (Milder et al, 2012; Sayer et al., 2013).
For groundwater management, this requires social infrastructure
that can address hydrologic connectivity, complexity, and asso-
ciated coordination challenges, such as obtaining comprehensive
data.

From a collective action and CPR perspective, groundwater is
considered hard to manage because it is hard to exclude users if
they have the financial ability to dig a well (Schlager, 2007). This
challenge is perpetuated by a feedback loop where groundwater
extraction is harder to monitor due to its low visibility and thus is
less regulated (ibid.). The challenge of excludability and enforce-
ment makes it easy for individuals to extract without issue, but
collective depletion will eventually diminish individual supply. In
many small-scale cases, especially in California and the Western
US, this has motivated individuals to participate in collective action
to manage their groundwater resources (Lubell et al., 2020; Shalsi
etal.,, 2022). However, as the scale of the groundwater resource and

its users increase, coordinating these individuals becomes increas-
ingly challenging and is plagued by high transaction costs (Ayres
et al,, 2018), particularly for transboundary management which
poses ‘large-scale’ collective action challenges involving multiple
groups and interests. Transaction costs are inherent in solving
large-scale collective action problems (Huitema et al., 2009; Taylor
& Singleton, 1993). For example, defining property rights is con-
sidered foundational for excluding users and monitoring resource
usage. However, this can generate prohibitively high transaction
costs, as demonstrated in California, where heterogeneity of both
users and basins drove high transaction costs in 445 basins and led
to expensive litigation (Ayres et al., 2018).

A second and related condition for sustained large-scale col-
lective action is monitoring and managing change. This is par-
ticularly challenging with asynchronous and lagged changes that
make causal relationships difficult to detect and are misaligned
with patterns of human resource use and governance (Epstein etal.,
2015; Jagers et al., 2020). Groundwater is particularly vexing in
this regard as it can have variable flow patterns and timings with
prolonged storage periods (i.e., residence times) (Gleeson et al.,
2020). Groundwater interventions that target infiltration could
consequently take years to yield results depending on the hydroge-
ology (ibid.). Meanwhile, farmers respond to contemporary global
market conditions, seasonal growing conditions, episodic weather
events and disease, and the availability of inputs (Garrick et al,
2022). These competing and asynchronous timelines, especially
if compounded by a crisis (e.g., drought), can make supply-side
approaches more appealing than demand-side approaches, which
rely on coordination and a diverse portfolio of alternatives to exist-
ing over-extractive practices (Marston & Cai, 2016). For instance,
research done in the San Luis basin in Colorado found that
despite having theoretically good institutional design in all other
aspects, groundwater irrigators were ultimately unable to manage
the effects of drought on their system of resource use because it
relied on predictability (Cody et al., 2015).

We consider social fit to be the fit between institutions and
social systems, accounting for cross-scale linkages and heterogene-
ity (Epstein et al., 2015). Social fit has been discussed in the context
of agricultural groundwater governance in terms of the existence
and enforcement of clearly defined boundaries on who gets access
(Marston et al., 2022). Focusing on fit highlights not only the lim-
its of groundwater self-governance due to large numbers of water
users, but also the limits of externally imposed regulations to curb
groundwater use (Molle and Closas, 2020). In their comparison
of three groundwater basins in Spain, for example, Lopez-Gunn
(2003) found that the one basin that had not been over-extracted
had devised its own rules and included all basin well owners within
its water user association. This led to further collaboration with
the state on water rights definition and allocation, monitoring,
and sanctioning. Similarly, Shalsi et al (2019) found that irriga-
tors in South Australia coordinated with government departments
and successfully recovered their groundwater resource from deple-
tion and salinization. With greater attention to the specific social
aspects that contributed to social fit, Bhalla et al (2024) found
that the loss of social norms led to the collapse of groundwater
user groups in Tunisia. Evidence from surface water irrigation,
primarily in Nepal, also suggests that irrigation systems managed
by farmers tend to outperform those managed by governments
because farmers experienced the effects of depletion directly and
thus designed a system that reportedly had better fit between rules
and context (in Lam, 1998: Schlager, 2007; Tang, 1992). Based
on the existing literature, these three conditions of overcoming
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coordination costs, monitoring and managing change, and achiev-
ing social fit are necessary for effective agricultural groundwater
governance, and thus for the social infrastructure of NbS.

Social

3. Methods

We conducted a narrative review to examine how social infrastruc-
ture has been used to address groundwater depletion. Narrative
reviews are a form of non-systematic evidence synthesis that are
useful for capturing a wider variety of studies and formulating crit-
ical insights in fields that are under-developed or scattered across
diverse conceptualizations and quantitative approaches (Siddaway
et al., 2019; Sukhera, 2022). This method was selected because of
the rapidly growing diversity and quantity of papers on groundwa-
ter NbS, often utilizing different terminology, which confounded
a standardized approach to searching and synthesizing evidence
systematically. Furthermore, while systematic and bibliometric
reviews are useful for summarizing insights within a specific field
(e.g., Gajurel et al., 2024), narrative reviews are better equipped
for reviewing current evidence from a different perspective to that
field (Greenhalgh et al., 2018). We selected a narrative review
because we were interested in applying a collective action lens to
better understand and articulate the social elements of agricultural
groundwater NbS. Here we first describe our process and then the
definitions we used for key terms relevant to our methods.

Articles had to meet four thematic criteria to be included: (1)
describe an NbS, (2) identify how the NbS addressed groundwater
quantity, (3) demonstrate groundwater was used for agricultural
purposes, and (4) discuss one of the three conditions of interest for
collective action. For this initial exploratory stage of the review, the
article had to describe the case explicitly as an NbS. As these initial
articles were read, emergent and recurring themes were identified
to capture areas where substantial evidence had been gathered and
areas where evidence was promising but relatively new. As we read
our initial selection of papers, we abductively developed a simple
but comprehensive analytical framework for extracting and coding
cases from each paper (Table 2). Abduction uses emergent evidence
for initial framework design and updates the framework induc-
tively and iteratively as more evidence is gathered to develop theory
about why a phenomenon is occurring (Meyfroidt et al., 2018).
Beyond expected categories related to the characteristics of the
NbDS, we were able to identify three types of NbS: those that relied
on hard infrastructure, social infrastructure, and both hard and
social. Additionally, we found some articles utilized agricultural
terminology to identify which process associated with ground-
water recharge was being modified by a particular NbS: sowing,
storing, and harvesting (e.g., Ribeiro, 2021). We carried these
terms forward in our review because they effectively described
and bounded the primary intervention of an NbS, which was
particularly useful given the complex and interconnected nature
of processes that lead to groundwater recharge. Note that cross-
counting was possible within and between infrastructure types and
intervention types.

We considered this exploratory and abductive stage com-
plete when additional articles did not introduce new concepts
to our analytical framework, i.e., thematic saturation (Saunders
et al., 2018). We then sought out cases through database searches
and citation tracing that captured our analytical framework and
stopped the review when data saturation on a particular case was
reached. These articles did not need to refer to a case as NbS if
another paper had already done so in the exploratory stage. Part of
this stage was citation tracing, where we identified relevant sources

Yes (X)/no (blank), based
on article(s) description

Infrastructure type
Hard

Harvest

Store

Yes (X)/no (blank), based
on article(s) description

Intervention point

Sow

Traditional
Yes (X)/no
(blank),
based on
article(s)
description

Drawbacks
Based on
description in
the article(s),
not exhaus-
tive review
of the case
specifically

Benefits
Based on
description in
the article(s),
not exhaus-
tive review
of the case
specifically

wise paraphrase
the technical or

available, other-
design specifi-

Quote if concise
description is
cations of the

Description of
intervention
NbS

Problem being
addressed

As described in the
article(s). If blank,
then article(s) did not
explicitly state

Region
Region
where case
is located

is described

Reference(s)
where case
and/or
mentioned

Articles

Case

Short
description
according to
article

Table 2. Analytical framework used to code each case
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by selecting from the cited literature of an informative source,
often a review on a related topic (Wohlin, 2014). For instance,
Cassin and Ochoa-Tocachi (2021) produced a useful review of tra-
ditional practices for the book Nature-based Solutions and Water
Security from which we identified a further 17 references. Since
this was not a systematic review and traditional practices were
an emergent theme in our framework, drawing many references
from one source was appropriate and allowed us to deepen our
investigation of each case. While conducting this deeper investi-
gation, evidence of the social infrastructure for certain cases was
insufficient to characterize it with certainty. In these instances, the
case was not coded as having social infrastructure because evi-
dence was insufficient, but they were still included in our final
case list to identify cases where future research could follow up
on high-level evidence that social infrastructure was present but
just understudied. Finally, a quality check was performed to ensure
only the most relevant, credible, and informative articles on a
case were retained (Sye & Thompson, 2023). The final list of cases
is provided in Supplementary Table S1, and the papers are pro-
vided in Supplementary Table S2. Note that each line represents
a unique combination of case and geography with the exception
of Wadi Terrace Systems and water banking, which were listed as
occurring in many different places but without specific details or
further articles on how they varied between geographies. These
were retained as one case to avoid misinterpretation of how this
NbDS type was implemented in each specific place, but we plotted
them individually in our maps to illustrate geographic spread.

For our review, we considered groundwater management as
any intervention that deliberately managed water below the soil
surface, including NbS aiming to improve soil moisture to facil-
itate percolation to groundwater, and thus our definition reflects
the diverse ways in which the literature considers an NbS to tar-
get groundwater. We coded cases as ‘sow, ‘store, and/or ‘harvest’
based on their primary intervention, rather than their secondary
impacts or ultimate objective. For example, a case involving a dam
to slow runoff and increase infiltration was coded as ‘sow’ because
its primary intervention was to increase the amount of water infil-
trating into groundwater systems, despite its ultimate impact being
increased withdrawal (i.e., harvesting). We acknowledge that these
three processes and their feedback are interconnected but distin-
guish them because the primary point of intervention reveals how
the people implementing the NbS understand groundwater pro-
cesses. For example, an NbS designed to sow water is working to
augment supply without controlling demand, leaving it exposed
to Jevons paradox, i.e., increasing demand that keeps pace with
or outpaces increasing supplies (e.g., Grafton et al., 2018). Finally,
we do not engage with the definitional challenges around ‘NbS’ or
related concepts (e.g., green infrastructure), but we acknowledge
and account for them in our analysis by discussing environmental
impacts and study limitations (Pauleit et al., 2017).

Our definition of hard infrastructure encompasses any human-
made structures, including ones that enhance nature (e.g., ‘green-
grey infrastructure’) where social infrastructure refers to social
factors (including social norms, capacities, and knowledge) (cf.
Anderies et al.,, 2016; Hodgson, 2006; Latham & Layton, 2022;
Stoler et al., 2022). We also noted an analytical distinction between
hard and social infrastructure that were modern versus traditional.
Here, we use the term ‘traditional’ to refer to NbS that are ‘culturally
transmitted from generation to generation, emerge from place-
based understanding of the relationships between living beings,
including humans, with the environment and each other, and have
evolved through adaptive learning processes in specific places over

time’ (Cassin & Ochoa-Tocachi, 2021: 286). This encompasses
practices that are Indigenous, local, and ancestral and reflects a
growing interest in how intergenerational practices and different
interpretations of nature-human relationships could change how
NbDS are implemented (Reed et al., 2024).

A major aspect that emerged from our review of the literature
that we had not come across in more technical NbS articles focused
on engineering and deployment was the prevalence of research on
traditional NbS for groundwater management in traditional agri-
cultural systems, as reviewed by Cassin and Ochoa-Tocachi (2021).
Our authorship team lacks Indigenous representation in both iden-
tity and specific topic expertise. We therefore acknowledge the
limitations of our analysis and hope that by covering the topic in
a collective action context, we further highlight the need for more
institutional and financial support for experts researching the topic
of traditional practices (Reed et al., 2024).

4. Findings

This section presents an overview of findings from the narrative
review. A detailed description of each case can be found in the
Supplementary Material (S1). There was a clear reliance on sowing
approaches in our cases. In total, 42 unique cases of NbS inter-
vening in groundwater quantity for agricultural purposes were
identified from 34 references. Of these cases, sowing was the pri-
mary intervention for 95% (40 cases), while 21% (9 cases) involved
storage, and 43% (18 cases) involved harvesting (Figure 1). Of the
40 cases intervening by sowing, 19 only used sowing, four also used
storing, 13 used harvesting, and four used sowing, storing and har-
vesting. Of the nine cases involving storing, one used storing only,
and none used harvesting. Of the 18 cases involving harvesting,
one used harvesting only.

Regarding types of NbS, 41 cases had references that explicitly
mentioned hard infrastructure, while 15 mentioned social infras-
tructure (Figure 2). Specifically, 14 cases incorporated both hard
and social infrastructure, compared to only one case using exclu-
sively social infrastructure and 27 cases using only hard infras-
tructure. When sowing was the primary intervention (i.e., in 40
cases), 14 cases described both social and hard infrastructure and
26 cases described only hard infrastructure. When storage was
the primary intervention, four of the cases included both infras-
tructure types while five had only hard infrastructure described.
When harvesting was the primary intervention, eight of the cases
utilized both infrastructure types, nine cases were described as
having only hard infrastructure, and one case reportedly relied
solely on social infrastructure. No clear geographic patterns
emerged across intervention types or infrastructure combinations
overall.

Of the 32 cases describing a traditional NbS (Figure 3), nine
used both hard and social infrastructure, 22 described only hard
infrastructure, and one case mentioned only social infrastructure.
These traditional NbS cases were predominantly located in the
Global South.

We also found that groundwater NbS in agricultural settings
addressed diverse challenges, ranging from mediating the effects
of regular weather events (e.g., capturing snowmelt via acequias
in Spain or collecting monsoonal rains using ahar pynes in India)
to managing saltwater intrusion and natural salinization (e.g.,
the puna in Rapa Nui or virdas in Gujarat) (see Supplementary
Information S1). While many practices were reported to improve
groundwater quantity and deliver related benefits like agricultural
development, in other cases the benefits were either unmeasured
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Figure 1. Maps showing cases (based on center point of approximate study location) that intervened via (a) sowing, (b) storage, and (c) harvesting with round points indicating
presence of an intervention type and crosses indicating absence.

or ambiguous (e.g., hafaer in Syria). In some cases with social ~ Rajasthan or the negarim system in Jordan). In cases where man-
infrastructure, there were also reported conflicts and potential  aged aquifer recharge (MAR) was used (e.g., Paphos, Cyprus), there
for capture by elites (Edwards Aquifer or the johadi system in  was a risk of contamination related to the injection of wastewater

Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 02 Oct 2025 at 09:01:32, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/sus.2025.10020


https://doi.org/10.1017/sus.2025.10020
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Global Sustainability

a)

b)

x Eﬁf\'x ":o.

Figure 2. Maps showing cases that included (a) hard infrastructure and (b) social infrastructure harvesting with circles indicating presence of an infrastructure type and

crosses indicating absence.

(Qadir et al., 2015). This was also true for unmanaged aquifer
recharge in the Mezquital Valley, where treated wastewater was
spread onto fields and caused unplanned recharge that was then
applied to irrigated crops (Qadir et al., 2015).

5. Discussion

Opverall, it was unsurprising to find that most cases were focused
on augmenting supply through either sowing or, in fewer cases,
storage. The finding that supply-side approaches prevail, even
when there is a focus placed on identifying cases where social
infrastructure may be strong, reflects the broad reliance on supply-
side approaches globally (van Noordwijk et al., 2022). While cer-
tain efficiency techniques offer technical demand-side solutions,
it is well documented that efficiency technologies need to be
complemented by social infrastructure that regulates who uses
groundwater and how much they can use (Grafton et al., 2018).

For example, in Jordan an intricate three-part technical solution
of negarim (diamond-shaped runoff grid plots), polymers added
to soil, and the introduction of fruit trees was used to improve
the storage efficiency of soil and thus reduce groundwater demand
(Oweis & Hachum, 2006). Limitations of this system according
to the study’s authors are conflicts and disputes over water rights
as groundwater supplies increase. Nevertheless, the case demon-
strates the potential for groundwater NbS to manage demand,
rather than an exclusive focus on augmenting supply. This case
and others that we coded as being harvest-oriented often focused
on improving soil moisture to reduce crop demands and to indi-
rectly increase vertical percolation to groundwater as more water
is applied to the soil (Sorensen et al., 2014). However, because of
the focus on supply-side approaches in present definitions of NbS,
systematic review methods would likely exclude these cases from
a groundwater NbS study despite their relevance for groundwater
recharge and managing groundwater demand.
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Figure 3. Map showing cases that were based on traditional practices (dark blue points) or based on modern practices (green point exclusively)

An additional insight from our review was that few stud-
ies evaluated whether the NbS they were reportedly describing
benefited nature, which aligns with the ambiguity of the defini-
tion of NbS reported elsewhere (Pauleit et al., 2017). While there
is a diversity of definitions, most of the definitions commonly
used by practitioners include environmental benefits and not just
mimicry or integration of a natural process (cf. UNESCO, 2018;
see Table 1). This, along with the supply-side focus of our agri-
cultural groundwater NbS, raises questions about the effectiveness
of NbS to change how we manage groundwater in agricultural
systems and in other settings (e.g., using tree-planting to offset car-
bon emissions) (Seddon et al., 2021). For instance, some articles
describing traditional NbS cases appeared to assume that tradi-
tional hard infrastructure was inherently an NbS, without explicit
substantiation of the environmental benefits of the practice. This
was especially evident for traditional practices that had modern
analogs that were not described as NbS in any literature we found
during our search process, implying that environmental benefits
were assumed because the case was traditional rather than mod-
ern. An example of this would be the amunas, concrete-lined
canals used by the Indigenous Huarochiran communities of Peru
that mimic the natural recharge processes of fissures to ground-
water (Apaza et al., 2006). However, this mimicry is the general
premise of most water transmission systems, including modern
canals which did not appear in search results or our included
literature as NbS. While amunas rely on Indigenous technology
with a distinct social infrastructure that resulted in improved crop
productivity, without known environmental benefits it is unclear
whether they should be considered an NbS according to most
definitions.

Indeed, our study was limited by both the diversity of defi-
nitions used for NbS and the dominance of traditional NbS in
the final case list. First, the diversity of NbS definitions made it
challenging to bind the review. In particular, Managed Aquifer
Recharge (MAR) was sometimes considered an NbS by the NbS
literature, but the MAR literature infrequently referred to MAR
as such. Instead, MAR appears to often get segmented into other
bodies of literature, such as that on ‘green infrastructure’ which
has definitional overlap but is not synonymous with NbS (Hanson
et al,, 2020). For instance, Dillon et al (2019) provides a widely
cited quantification of MAR globally and do not use the term ‘NbS’
once. The sheer diversity of search terms used to identify MAR

in Kebede et al (2024) further alludes to this definitional chal-
lenge. Consequently, our literature search identified some modern
MAR while missing other known cases and reviews (e.g., Sprenger
et al,, 2017). This challenge extends beyond our study: for exam-
ple, Sprenger et al (2017) documented the start of MAR in Europe
in Glasgow around 200 years ago, but Martos-Rosillo et al (2021)
describe Medieval Spanish acequias de careo, which are channels
dug to trap flood runoff and snowmelt and recharge groundwater
that pre-date Glaswegian MAR.

Another distinctive feature of our review was the dominance
of traditional NbS in our included cases. We attribute this to a
long-standing anthropological interest in cultural practices of tra-
ditional societies (e.g., Scarborough et al., 2012) and a growing
interest from other fields as well (e.g., Diaz et al., 2019; Forrest
& Cicek, 2021; Martin et al., 2010), which resulted in many of
these studies discussing social factors and thus being included.
At the same time, information can be missing from the archaeo-
logical record because it disproportionately reflects physical over
non-physical aspects of societies (Neustupny, 1995). There is con-
sequently a risk that there is permanently lost or missing infor-
mation on the strengths and challenges that these societies faced
in NbS implementation, and this may explain the surface-level
descriptions of social factors in some of our included traditional
cases.

In the remainder of this section, we discuss our cases with spe-
cific reference to our question: how can social infrastructure be
implemented within agricultural groundwater NbS to overcome
the collective action challenge of groundwater depletion? We dis-
cuss this collective action challenge in terms of institutional fit,
focusing on social infrastructure that can improve coordination,
monitor and manage change, and achieve social fit.

5.1. Enabling coordination

Achieving coordination in agricultural groundwater systems is
necessary and difficult because of issues excluding users, encour-
aging participation, and overcoming transaction costs (Ayres et al.,
2018; Schlager, 2007). Coordination becomes increasingly difficult
as the scale of the resource and its users increase, demanding larger
solutions that address the increasing size and diversity of the users
(Jagers et al., 2020). On the other hand, scaling up can account for
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large-scale tradeoffs and expand the suite of options for address-
ing them, such as benefit sharing and issue linkage, with the caveat
that increasing options comes with increasing costs (Boyd et al.,
2018; Nelson et al., 2009). Additionally, as the number of objec-
tives increases with scale, issues of equity become core in deciding
who wins, who loses, and by how much (Hegwood et al., 2022). We
found that few NbS cases in our review discussed tradeoffs or how
they were navigated by social infrastructure. If social infrastructure
overlooks these considerations, it can lead to inequitable outcomes
that entrench mistrust and hinder future cooperation. These poten-
tial inequities underscore the need for both a large-scale approach
and social infrastructure that can account for and consider the
different perceptions, incentives, and challenges actors might face
that encourage or discourage their participation in agricultural
groundwater NbS (Gajurel et al., 2024; Wight et al., 2021).

Everard (2015) provide a useful case study on participation and
coordination where equity and cross-scale governance were con-
sidered through a phased approach where centralized governance
and pilots are followed by decentralization and devolution to com-
munity governance. This case study describes the work of NGO
Tarun Bharat Sangh (TBS) in Alwar District, Rajasthan, India.
TBS scaled up one pilot project in Gopalpura in 1985 to achieve
catchment-scale outcomes by involving over 700 villages in johadi
restoration, with many villages restoring their traditional village
decision-making bodies (Gram Sabha) as well (Everard, 2015). TBS
coordinated this ‘scaled-up’ success by only expanding to villages
where there was financial capacity and demand for the projects,
on the basis that these factors indicated interest in participation
and the building of social infrastructure (ibid.). Financial capacity
included sweat equity via volunteer labor known as shramdan, a
culturally significant collective action practice.

TBS then coordinated these projects across scales by encour-
aging the formation of Pad Yatra (Arwari Water Parliament) in
1998 which would meet twice a year to manage basin-level issues
and resolve conflicts (Everard, 2015). Additionally, in 1998 TBS
launched Rashtriya Jal Biradari (National Water Brotherhood) to
bring together diverse people (farmers, social groups, voluntary
organizations, NGOs, water experts, etc.) to drive progress on
water, soil and forest management, re-establishment of commu-
nity water rights, and other community-identified issues (ibid.).
We suggest that this approach simplified coordination by reduc-
ing transaction costs through an early centralized and small-scale
approach that responded to participation levels, allowing them to
gather information at smaller scales first and make coordination
more efficient in the long run. This then lowered transaction costs
enough that a decentralized approach became feasible. However,
conflict did arise between the state government and the community
over the threat of community empowerment, which would have
generated transaction costs as well (Everard, 2015). This highlights
an important caveat that even when social fit is achieved locally,
there may still be conflict arising from misfits at other scales that
require systemic change (Epstein et al., 2015; Smit and Wandel,
2006).

5.2. Monitoring and managing change

Managing groundwater for agricultural purposes presents many
temporal mismatches, requiring monitoring and adaptive manage-
ment to changing groundwater conditions (Garrick et al., 2022).
The sometimes unpredictable behavior and timing of ground-
water flows combined with the seasonality and vulnerability of
agriculture to market pressures and natural disasters make it

hard to obtain reliable data and act on it with efficacy (Gleeson
et al,, 2020). This acquisition of data is yet another transac-
tion cost associated with collective action for groundwater gover-
nance. It was challenging to identify approaches where monitoring
and managing change were described, particularly for traditional
approaches. While strides have been made to obtain better data
globally, such as satellite monitoring of irrigation use (e.g., Foster
et al.,, 2020) and groundwater depletion (Richey et al., 2015), high
costs, resolution issues, and difficulty integrating them into trans-
parent decision-making processes remain a barrier. Furthermore,
none of these approaches measure issues associated with social
infrastructure, such as institutional capacity or the incidence of
legal disputes (Gorelick & Zheng, 2015). Ultimately, all of these
challenges contribute to high transaction costs that increase with
scale, but the hope is that they prevent environmental and social
externalities that are more costly. The most illustrative case in this
regard was water banking, an institutional mechanism used in the
western United States to augment groundwater supply and adap-
tively manage storage and harvesting over longer time periods
(O’Donnell & Colby, 2010).

Through this mechanism, water is transferred voluntarily, often
via a market exchange, on a temporary, intermittent, or perma-
nent basis to an authority responsible for ensuring that the water
is kept in storage. Examples include the Central Arizona Project
(CAP), California Semitropic Groundwater Storage Program, the
Oregon Deschutes Groundwater Mitigation Bank, the Edwards
Aquifer Authority Groundwater Trust, and the Nevada Truckee-
Meadows Groundwater Bank (Clifford et al., 2004). Groundwater
banking improves reliability, secures against future demands, and
provides a storage mechanism for conserved water and for more
water market activity (Colby et al., 2010). However, drawbacks
identified by the American experience are related to coordina-
tion in defining and enforcing groundwater rights, particularly for
transboundary aquifers, as well as aligning the timing of mitigation
with impacts. Instead, groundwater has been historically managed
as an open access resource, causing resistance from users to gov-
ernmental pumping regulations (cf. Allen & Smith, 2023; Ayres
et al, 2018; Garrick, 2018). Alternatively, governmental agen-
cies have purchased land to protect it and the aquifer below. For
example, city government in San Antonio Texas purchased prop-
erties in sensitive recharge zones over the Edwards Aquifer and
converted them into nature reserves to improve recharge and ser-
vice its mixed urban-agricultural-industrial user base (Singh &
Zaragoza-Watkins, 2018). This also facilitated natural remediation
of runoff by the soil, although it is too early to assess the quantita-
tive outcomes of this intervention over time (ibid.). In tandem, the
authority transfers water from the Edwards Aquifer to the Carrizo-
Wilcox aquifer through an MAR project called H20aks to protect
endangered species and buffer supply against drought (Miller et al.,
2021). The land it owns for this project is leased to farmers, main-
taining agricultural production (ibid.). However, how this solution
will evolve over longer periods of time is unknown.

5.3. Achieving social fit

Achieving social fit, or a fit between the solutions and the social
system they affect, can strengthen social infrastructure through
multiple layers of governance nested in a way that supports partic-
ipation and cross-scale coordination, thereby building legitimacy
(Carlisle & Gruby, 2019). Revitalized traditional NbS may be espe-
cially effective at achieving social fit because they simultaneously
match deeply held traditional knowledge-practice-value systems
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while also leveraging modern resources and adapting to mod-
ern governance structures and value systems (Cassin & Ochoa-
Tocachi, 2021).

For instance, in Peru, the revitalization of Indigenous prac-
tices has been accomplished through national support and part-
nership between Indigenous communities and an urban water
utility with greater financial resourcing than traditional commu-
nities have access to (ibid.). Today there is dedicated support at
the national level, with the Ministry of Agriculture running a
national water sowing and harvesting program and Lima’s urban
water utility SEDAPAL restoring the upper catchments of the city’s
major rivers (the Chillon, Rimac, and Alto Mantaro) (Cassin &
Ochoa-Tocachi, 2021). In addition to restoring the catchments
ecosystems, SEDAPAL has worked with the Huamantanga com-
munity to revitalize and replicate pre-Inca infiltration systems
called amunas-mamanteo. Amunas-mamanteo provide water dur-
ing the dry season for subsistence agriculture using impermeable
canals to transmit wet season flows to a network of infiltration
(permeable) canals and ponds (Cassin & Ochoa-Tocachi, 2021).
This modern and scaled approach to traditional NbS is possible
because it strategically combines traditional and modern resources
and values.

TBS’s work in Rajasthan, India, took a similar approach, com-
bining traditional practices and modifying aspects of them to
match modern values and norms of gender equality, navigate mod-
ern governance structures, and build social capital. The 8,600
johadi that TBS revived throughout the Arvari catchment were
based on a traditional NbS dating back to at least the 1660s (Davies
et al,, 2016; Everard, 2015). In addition to the johadi hard infras-
tructure, TBS re-introduced traditional village decision-making
bodies (Gram Sabha) but updated it to include and empower
women through decision-making responsibility, education, and
self-help groups (Everard, 2015). TBS and local communities not
only saw water tables rise from depths of 100-120 m to just 3-13 m,
but also agro-economic improvements. Between 1985 and 2015,
the area under single cropping grew from 11% to 70% and under
double cropping from 3% to 50%. Agro-forestry and social forestry
were also supported by the johadi social infrastructure, resulting
in an increase in forested area from 7% to 40% (Everard, 2015).
Thus, the economic improvements go beyond direct groundwa-
ter quantity improvements because of the multiple ecological and
social benefits of the social infrastructure that this NbS introduced.
Moreover, the Gram Sabha supported decision-making processes
beyond groundwater management that were relevant for building
social capital (education, forest protection, zoning, etc.) because
TBS viewed social capital as ‘central to regeneration of ecosystems
and their associated services contributing to a return to pros-
perity’ (Everard, 2015: p. 130). In this case, TBS recognized that
agriculturalists were motivated by non-market benefits and that
incorporating them into their NbS projects was essential to success
(Everard, 2015).

Alternatively, some traditional practices have been restored
with successful outcomes and without much change from their
original format. The amunas used by Huarochiran communities
in Peru, for example, are operated and maintained through exten-
sive social infrastructure (Apaza et al., 2006). Water allocations and
other governance decisions are made in a democratic assembly
by the 120 comuneros with rights to the land (Cassin & Ochoa-
Tocachi, 2021). Maintenance of the canals (e.g., cleaning gates) is
done through rituals and religious festivities and the ponds and
springs where water is harvested are protected by being marked
as sacred (Cassin & Ochoa-Tocachi, 2021). Locals have reported
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doubled and tripled spring discharge volumes, and sustained pro-
duction of heirloom crops, such as prickly pears and peaches in
Santiago de Tuna, has become possible (Apaza et al., 2006; Ribeiro,
2021).

A final note on social fit is that it is necessary but not sufficient.
Ecological fit remains equally important for achieving sustainable
social-ecological resilience (Huggins et al., 2023). Only one case
captured by our review targeted harvesting without also targeting
sowing or storage, and it involved reducing harvesting by cultivat-
ing crops from different ecological niches to manage groundwater
variability in the Peruvian Andes (Ribeiro, 2021). Although this
case could be considered incidental groundwater management
and mostly a drought response, its mimicry of natural vegetation
growth patterns to manage agricultural groundwater use warrants
its inclusion as an NbS and underscores the need for NbS to con-
sider ecosystems in terms of fit rather than as just a blueprint for
design.

6. Key takeaways and next steps

We examined how social infrastructure can be implemented within
agricultural groundwater NbS to overcome the collective action
challenge of groundwater depletion with a focus on three con-
ditions: (1) enabling coordination, (2) monitoring and managing
change over time, and (3) achieving social fit. Overall, we were
able to identify a limited set of case studies where these condi-
tions were at least partly addressed. However, most of our identified
studies focused on supply-side interventions and discussions about
demand management or ecological benefits were sparse.

Despite seeking articles out, there were only a few strong and
detailed examples of deliberately designed social infrastructure
described as part of an agricultural groundwater NbS. This echoes
findings for NbS more broadly that governance and politics are
less studied (cf. Lubell et al., 2020) and points to a need for future
research to consider how social infrastructure from other types of
resource management approaches could be translated to our con-
text, but also the need for NbS researchers to at least reflect on the
social infrastructure in place. For practitioners, such knowledge
will be critical to designing NbS that are effective in the long term
for large-scale systems. The example of both TBS in Rajasthan and
SEDAPAL in Lima illustrates the benefits of researching the social
setting of an NbS and integrating appropriate social infrastruc-
ture directly into their projects (Cassin & Ochoa-Tocachi, 2021;
Everard, 2015). Moreover, while they embraced traditional meth-
ods, they revised them to meet modern demands and values, such
as gender equality in the case of TBS and scaling across boundaries
in the case of SEDAPAL (ibid.).

Another avenue for future research and dedicated practice is
on demand-side NbS, particularly those that use exclusively or
primarily social and natural infrastructure and not hard infras-
tructure. The only example of this we were able to identify was the
limited information about niche-specific agricultural practices in
the Peruvian Andes. Yet, adapting agriculture to ecological context
should be a primary goal for NbS, which have the goal of benefiting
nature as well as people (Seddon et al., 2021). This might include
practices like shifting irrigated crops to rain-fed when irrigation
becomes nonviable due to widespread groundwater depletion (cf.
Rosa, 2022).

In conclusion, social infrastructure is an integral component to
effective agricultural groundwater NbS that use hard and natural
infrastructure, yet evidence or direct recommendations on how it
can be implemented are limited. Our review points to the need
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for researchers to explicitly evaluate social infrastructure in their
research on agricultural groundwater NbS and NbS more broadly,
and urges practitioners to consider and design social infrastructure
that complements their NbS.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/sus.2025.10020.
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