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Monotone Classes of Dendrites

VeronicaMartínez-de-la-Vega and Christopher Mouron

Abstract. Continua X and Y aremonotone equivalent if there exist monotone onto maps f ∶ X → Y
and g∶Y → X. A continuum X is isolatedwith respect to monotonemaps if every continuum that is
monotone equivalent to X must also be homeomorphic to X. In this paper we show that a dendrite
X is isolatedwith respect tomonotonemaps if and only if the set of ramiûcation points of X is ûnite.
In this way we fully characterize the classes of dendrites that aremonotone isolated.

1 Introduction

A dendrite is a locally connected continuum without simple closed curves. A map
f ∶X → Y is said to be monotone if f −1(y) is connected for all y ∈ f (X). Let M
be the class ofmonotonemappings. Two continua X and Y are said to be equivalent
with respect to M (or just monotone equivalent) if there are mappings in M from X
onto Y and from Y onto X. _e classM is said to be neat, since all homeomorphisms
are in M and the composition of any two mappings in M is also in M. _erefore, a
family of continua is decomposed into disjoint equivalence classes in the sense that
two continua belong to the same class provided that they are equivalentwith respect to
M. Acontinuumis said to be isolatedwith respect toMprovided the above-mentioned
class to which X belongs consists only of X.

In [2], _eorems 6.7 and 6.14 show that universal dendrites are not isolated with
respect to M. _e problem we solve was posed in 1991 in [2][Problem 6.1] and was
also considered in [5, Problem 16 (717?), Conjecture 3.7 (718?)] _e purpose of this
paper is to prove the following theorem.

_eorem 1.1 A dendrite X is isolated with respect to monotone maps if and only if
the set of ramiûcation points of X is ûnite.

In [1], Camerlo, Darji, and Marcone present similar results on quasi-homeomor-
phisms. Two dendrites, X and Y are quasi-homeomorphic if for every є > 0 there exist
є-onto maps fє ∶X → Y and gє ∶Y → X. It follows from [1,_eorem 3.2] in their paper
that if two dendrites are monotone equivalent, then they are quasi-homeomorphic.
However, the converse is not true. For example, if X is the simple harmonic comb
and Y is two simple harmonic combs identiûed at one end-point of their respective
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spines, then it can be easily shown that X and Y are quasi-homeomorphic but not
monotone equivalent. Hence,monotone equivalence is a ûner equivalence relation.

In this paper, we will only show suõciency of the main theorem, since necessity
follows directly from [1,_eorems 3.2 and 3.5].

_eorem 1.2 If D is a dendrite with a ûnite number of ramiûcation points, then D is
monotonically isolated.

2 Preliminaries

2.1 Definitions, Notation, and Results on Dendrites

We will let D be the set of all dendrites. If D is a dendrite, let R(D) denote the set of
ramiûcation points of D. If A ⊂ D, let RD(A) = A∩ R(D) or just R(A) when there is
no confusion. If r ∈ R(D), then let ord(r) denote the order of r. Next let Com(K) be
the set of components of K. Suppose that B ⊂ D and q ∈ R(B). _en deûne

C(q, B,D) = {A ∣ A ∈ Com(D − B) such that q ∈ A}.

When there is no confusion, we write C(q, B) for C(q, B,D) and C(q) for C(q, {q}).
LetB ⊂D be some class of dendrites. _en let CB be the subset of C whose elements
belong to B. For example, we let ⊺ be the class of dendrites that contain a triod, i.e.,
dendrites that are not homeomorphic to an arc. _en

C⊺(q, B,D) = {A ∈ C(q, B,D) ∣ A ∈ ⊺}.

Also, ifA is a set, then for ease ofnotation,we letA∗ = ⋃A∈A Aand σ(A) = {⟨A i⟩i∈N ∣
A i ∈ A and N ⊂ N}.

Notice that C∗(q, B,D) is a dendrite whose intersection with B is {q}. Similarly,
we will let superscripts of R be subsets of R with certain properties. For example, we
deûne

R⊺(D) = {r ∈ R(D) ∣ ∣C⊺(r,D)∣ =∞}.
O�en, it will be useful to ûx a point rD ∈ D and call that point a root. _en we say

that (D, rD) is a rooted dendrite and Dr = {(D, rD) ∣ D ∈ D and rD is a root of D}.
If D is a dendrite such that ∣RD([x , y])∣ < ∞ for every arc [x , y] ⊂ D, then D is a
tree. Note that the set of ramiûcation points of a tree still may be inûnite, although
countable. _en deûne Tr to be the collection of rooted trees.

Suppose that there exists an arc A ⊂ D such that R(A) is inûnite. _en D is called
a comb and A is called a spine of D. Suppose that there exists an arc A ⊂ X such that
R(A) is homeomorphic to {1/n}

∞

n=1. _enD is called a harmonic comb. Furthermore,
if the closure of each component of D−A is an arc, then D is called a simple harmonic
comb. A comb D is a countable comb if R(A) is countable for every arc A ⊂ D. On the
other hand, if there exists a spine A such that R(A) is uncountable, then A is called a
wild spine and D is called a wild comb. A wild spine [x , y] is archimedian if [x , y] is
a maximal arc in D and if for every p, q ∈ R([x , y]) such that p < q (in the natural
ordering on [x , y]), there exists r ∈ R([x , y]) such that p < r < q. If B is a spine of D,
then C∗(q, B,D) is a tooth of B and q is a root of C∗(q, B,D).
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A subdendrite D′ ⊂ D is free if for every component C of D − D′, C ∩ D′ is an
endpoint of D′. Notice that this implies that D′ = intD(D′). Let [a, b] be an arc in
dendrite D and let

D′ = [a, b] ∪⋃{Y ∣ Y is a component of D − [a, b] such that Y ∩ (a, b) /= ∅} .

_en we say that D′ is a subdendrite of D strung by [a, b]. Note that in this case, D′
is a free subdendrite.

_e following well-known theorem will be very useful.

_eorem 2.1 If D1, D2 are dendrites such that there exist a one-to-one map
h∶D1 → D2, then there exists amonotonemap m∶D2 → D1 such that m∣h−1(D1) = h−1.

We let Dm be the standard universal dendrite of order m ∈ {3, 4, . . .} ∪ {ω} (see
Ważewski [9],Menger [6], Charatonik [2]). Note that if D is a dendrite whose rami-
ûcation points have order not greater than m, then D can be embedded in Dm . Fur-
thermore, every dendrite can be embedded in Dω . _e following is [2, Corollary 6.4].

_eorem 2.2 ([2]) For eachm, n ∈ {3, 4, . . .}∪{ω}, there exists amonotonemapping
of Dm onto Dn .

To prove themain theorem, we break down the dendrites with an inûnite number
of ramiûcation points into 4 classes:
(i) trees
(ii) countable combs
(iii) wild combs with perfect spines
(iv) dendrites that aremonotone equivalent to Dω .

3 Quasi-Orderings, Well-Quasi-Orderings, and
Better-Quasi-Orderings

A relation is quasi-ordered if it is re�exive and transitive. Sincemonotone onto maps
are preserved under composition, the existence of amonotonemap between two con-
tinua induces a natural partial order. IfD is the set of dendrites, then ⪯ will be used
to deûne a quasi-order on D in the following way:

D1 ⪯ D2 if and only if there exists amonotone onto map m∶D2 Ð→ D1 .

_e following variations of ⪯ will be used:
● If (D1 , r1), (D2 , r2) ∈ Dr , then we deûne the quasi-order, ⪯r , on Dr by (D1 , r1) ⪯r

(D2 , r2) if and only if there exists a monotone onto map m∶D2 → D1 such that
m(r2) = r1. Note that (D1 , r1) ⪯r (D2 , r2) implies D1 ⪯ D2, but the converse is not
true.

● We deûne (D1 , r1) ⪯er (D2 , r2) if there exists a 1-1 map e∶D1 → D2 such that
e(r2) = r1.

● We deûneT+r = {0}∪Tr∪{r∞} and let⪯+r be a quasi-order onT+r that is an extension
of ⪯r such that 0 ⪯+r r∞ and 0 ⪯+r (T , rT) for every (T , rT) ∈ Tr .
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● Suppose N ,M ⊂ N. If ⟨(A i , a i)⟩i∈N , ⟨(B i , b i)⟩i∈M ∈ σ(Dr), then we deûne
⟨(A i , a i)⟩i∈N ⪯σr ⟨(B i , b i)⟩i∈M if and only if there exists a strictly increasing onto
function f ∶N → M such that (A i , a i) ⪯r (B f (i) , b f (i)) for each i ∈ N .
We say that a collection of rooted dendrites {(D i , r i)}∞i=1 is weakly monotonically

ordered if for every i there exists j i > i such that (D i , r i) ⪯r (D j i , r j i ). We say that
{(D i , r i)}∞i=1 is monotonically ordered if (D i , r i) ⪯r (D i+1 , r i+1) for each i. Note that
every weaklymonotonically ordered sequence contains amonotonically ordered sub-
sequence.

_e symbol ≦will be used to deûne a quasi-ordering on generic sets. O�en,wewill
need to vary these symbols to extend these quasi-orderings or to avoid confusion:
● Wewill let ≦A be the quasi-order deûned on the setAwhen necessary to avoid con-
fusion. _e deûnition of the partial order will, of course, depend on the deûnition
of the set.

● If ≦ is a quasi-order deûned on a set Q, then ≦1 will be deûned on the power set ofQ
and ≦ω1 will be deûned inductively on successive power sets. _e precise deûnitions
will be given later in this section.

● Suppose N ,M ⊂ N. If ⟨A i⟩i∈N , ⟨B i⟩i∈M ∈ σ(A), then we deûne ⟨A i⟩i∈N ≦σ(A)

⟨B i⟩i∈M if and only if there exists a strictly increasing onto function f ∶N → M such
that A i ≦A B f (i) for each i ∈ N .

We will always use ≤ to denote the usual order on R. _is includes the order on arcs.
A quasi-ordered set Q is well-quasi-ordered (wqo) if every strictly descending se-

quence is ûnite and every antichain (collection of pairwise incomparable elements) is
ûnite. Let Q be quasi-ordered under ≦ and deûne the following quasi-ordering, ≦1,
on the power set P(Q) by X ≦1 Y if and only if there exists a function f ∶X → Y such
that x ≦ f (x) for each x ∈ X, where X ,Y ∈ P(Q). Rado [8] constructed a quasi-
ordered set Q such that Q was wqo but P(Q) was not. So a stronger notion of well-
quasi-ordering called better-quasi-ordered (bqo) was constructed by Nash–Williams
that preserved the property under the power set. In general, only the notion ofwqo is
required in this paper. However, in order for the all required relations to bewqo, they
must pass through intermediate steps as bqo using previous results in the literature.
_e deûnition of bqo we give is due to Laver [4] and is equivalent, to but less tech-
nical than Nash–Williams [7]: Q is bqo if Pω1(Q) is wqo. Here, Pω1(Q) is deûned
inductively by:
(a) P0(Q) = Q;
(b) if α is a successor ordinal, then Pα+1(Q) = P(Pα(Q));
(c) if β is a limit ordinal, then deûne Pβ = ⋃α<β Pα(Q).
Also, Pω1(Q) is quasi-ordered by ≦ω1 , which is a natural extension of both ≦ and ≦1,
and is deûned inductively on α, β < ω1 in the followingway: Suppose that X ∈ Pα(Q),
Y ∈ Pβ(Q). _en X ≦ω1 Y if and only if the following hold:
(a) If α = 0, β = 0, then X ≦ Y , since X ,Y ∈ Q.
(b) If α = 0, β > 0, then there exists Y ′ ∈ Y such that X ≦ω1 Y ′.
(c) If α > 0, β > 0, then then for every X′ ∈ X there exists Y ′ ∈ Y such that X′ ≦ω1 Y ′.

_en the following homomorphism property should be clear.
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Proposition 3.1 If Q is bqo, Q′ ⊂ Q and there is an onto order preserving function
f ∶Q′ → R, then R is bqo.

_e following theorem is a compilation of the work in Nash–Williams.

_eorem 3.2 ([7])
(i) If Q is bqo, then Q is wqo.
(ii) If Q1 and Q2 are bqo, then Q1 ∪ Q2 and Q1 × Q2 are bqo.
(iii) If Q is bqo, then P(Q) and σ(Q) are both bqo.

Suppose that A and B are linearly ordered sets. An order embedding of A into B is
a one-to-one order preserving function from A into B. An ordered set S is scattered if
an ordered set isomorphic to the rationals cannot be order embedded in S. Let M be
the collection of all linearly ordered sets that can be expressed as the countable union
of linearly ordered sets {L i}∞i=1 each of which is scattered. Let Q be a quasi-ordered
set ordered by ≦Q . Next deûne

QM = {(L, f ) ∣ f ∶ L Ð→ Q such that L ∈M}
to be the set of all labelings of the elements ofM byQ. Here, each f is called a labeling.
_en there is a quasi-ordering, ≦QM , of QM induced by the orderings on Q andM

deûned in the followingway: (L1 , f1) ≦QM (L2 , f2) if and only if there exists an order
embedding e∶ L1 → L2 such that f1(x) ≦Q f2(e(x)) for all x ∈ L1.
Finally, in Laver’s dissertation the following important theorem was proved.

_eorem 3.3 ( [3,4]) (i) M is better quasi-ordered under order embeddings.
(ii) If Q is better quasi-ordered, then QM is better quasi-ordered.

_e notation [x , y] will denote an arc with endpoints x and y. Let

I = {([x , y],A) ∣ A ⊂ [x , y] and A is countable }
and quasi-order I by ≦I in the following way: ([x1 , y1],A1) ≦I ([x2 , y2],A2) if and
only there exists amonotonemap m∶ [x2 , y2]→ [x1 , y1] such that
(a) m(x2) = x1,
(b) m(y2) = y1,
(c) A1 ⊂ m(A2).
In a similar way, deûne set of all labelings on I by elements of Q:

QI = {([x , y],A, f ) ∣ ([x , y],A) ∈ I and f ∶AÐ→ Q} .

We can quasi-order QI in a similar way: ([x1 , y1],A1 , f1) ≦QI ([x2 , y2],A2 , f2) if
and only if ([x1 , y1],A1) ≦I ([x2 , y2],A2) and for each y ∈ A1 there exists x ∈ A2
such that m(x) = y and f1(y) ≦Q f2(x), where m is the monotone map described
previously. Such amap is called a label preserving monotone or lpm map.

Proposition 3.4 Let A1 ⊂ [x1 , y1] and A2 ⊂ [x2 , y2] such that
(i) A1 and A2 are both closed;
(ii) there exists an order embedding e∶A1 → A2.
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_en there exists amonotonemap m∶ [x2 , y2]→ [x1 , y1] such that
(a) m(x2) = x1,
(b) m(y2) = y1,
(c) A1 ⊂ m(A2).

Proof Notice that e might not be continuous in the induced topology. However,
e(A1) ⊂ A2. If x /∈ e(A1), then deûne

a(x) = max{ r ∈ e(A1) ∪ {x2} ∣ r < x} and b(x) = min{ r ∈ e(A1) ∪ {y2} ∣ r > x} .

Now deûne m∶ [x2 , y2]→ [x1 , y1] in the following way
(a) m(x2) = x1;
(b) m(y2) = y1;
(c) if x ∈ e(A1), then let m(x) = e−1(x)
(d) if x ∈ e(A1) − e(A1), then there exists {xn}∞n=1 ⊂ e(A1) that limits to x. Let

m(x) = limn→∞ e−1(xn).
(e) If x /∈ e(A1), then deûne

m(x) = ( m(b(x)) −m(a(x))
b(x) − a(x) )(x − a(x)) +m(a(x)).

_en clearly m is monotone with the prescribed properties.

Note that the proposition is false if A1 is not closed. Now we have the following
corollary to Laver’s theorem.

Corollary 3.5
(i) I is better-quasi-ordered.
(ii) If Q is better quasi-ordered, then QI is better-quasi-ordered.

4 Results on Trees

Recall that Tr is the collection of rooted trees. Let ⪯er deûne a quasi-order on Dr by
(D1 , r1) ⪯er (D2 , r2) if and only if there exists a one-to-onemap e∶D1 → D2 such that
e(r1) = r2. _e following theorem is due to Nash–Williams.

_eorem 4.1 ([7]) Tr is better-quasi-ordered under ⪯er .

_en the following corollaries follow from Proposition 3.1 and_eorem 4.1.

Corollary 4.2 Tr is better-quasi-ordered under ⪯r .

Corollary 4.3 If {(Ti , r i)}∞i=1 is a sequence in Tr , then there exists an N such that
{(Ti , r i)}∞i=N is weakly monotonically ordered.

Let Qr ⊂ Tr and deûne F(Qr) to be the collection of fans on Qr by (D, r1) ∈ F(Qr)
if and only if the closure of each component of D − {r1} is an element of Qr , that is,
C(r1) ⊂ Qr .
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Proposition 4.4 If Qr is bqo under ⪯r , then F(Qr) is bqo under ⪯r .

Proof Let (D1 , r1), (D2 , r2) ∈ F(Qr) and let ⟨Ai
r1⟩i∈ρ1 and ⟨B i

r2⟩i∈ρ2 be enumera-
tions of the elements of C(r1 ,D1) and C(r2 ,D2), respectively, where ρ1 , ρ2 ⊂ N. _en
⟨Ai

r1⟩i∈ρ1 , ⟨B i
r2⟩i∈ρ2 ∈ σ(Qr). Suppose that ⟨Ai

r1⟩i∈ρ1 ⪯σ ⟨B i
r2⟩i∈ρ2 . _en there ex-

ists a strictly increasing function f ∶ ρ1 → ρ2 such that for each i ∈ ρ1 there exists a
monotone map m i ∶B f (i)r2 → Ai

r1 such that m i(r2) = r1. Now deûne m∶D2 → D1 by
m(x) = m i(x) if x ∈ B f (i) andm(x) = r1 otherwise. _en clearlym ismonotone and
hence (D1 , r1) ⪯r (D2 , r2). Since Qr is bqo, it follows that σ(Qr) is bqo by _eorem
3.2 and that F(Qr) is bqo by Proposition 3.1.

Proposition 4.5 If D is a tree, then R(D) is closed.

Proof Let x ∈ D − R(D). Let A be a maximal arc in D such that x ∈ A. Since D is
locally connected and R(A) is ûnite, there exists an open set U ⊂ A such that x ∈ U
and U ∩ R(A) = ∅. Hence D − R(D) is open.

If r ∈ B ⊂ D and ⊺ is the class of dendrites that contain a triod, then let

C⊺(q, B,D) = {A ∈ C(q, B,D) ∣ A ∈ ⊺} .

_at is, C⊺(r, B,D) is the collection of elements of C(r, B,D) that are not arcs.

Proposition 4.6 If D is a tree with an inûnite number of ramiûcation points, then
there exists r ∈ D such that C⊺(r,D) is inûnite.

Proof First note that if D′ is a subdendrite of D and r ∈ D′, then ∣C⊺(r, B,D′)∣ ≤
∣C⊺(r, B,D)∣. Suppose, on the contrary, that C⊺(r,D) is ûnite for each r. Pick any
r1 ∈ R(D). _en since C⊺(r1 ,D) is ûnite, there exists C1 ∈ C⊺(r1 ,D) such that R(C1)
is inûnite. Suppose that distinct ramiûcation points r1 , . . . , rn and C1 , . . . ,Cn have
been found such that the following hold:
(a) [r1 , . . . , rn−1] ⊂ [r1 , . . . rn],
(b) Cn ∈ C⊺(rn , [r1 , rn],Cn−1) such that R(Cn) is inûnite.
_enpick rn+1 ∈ R(Cn)−{rn}. _en [r1 , rn]∩[rn , rn+1] = {rn}, so [r1 , rn] ⊂ [r1 , rn+1].
Also, since C⊺(rn+1 , [r1 , rn+1],Cn) is ûnite, there exists Cn+1 ∈ C⊺(rn+1 , [r1 , rn+1],Cn)
such that R(Cn+1) is inûnite.

Let [r1 , p] = ⋃∞n=2[r1 , rn]. _en [r1 , p] is a subarc of D that contains an inûnite
number of ramiûcation points. However, this contradicts the fact that D is a tree.

Recall that R⊺(D) = {r ∈ R(D) ∣ ∣C⊺(r,D)∣ =∞}.

Lemma 4.7 If D is a tree, then R⊺(D) is closed.

Proof Notice that R⊺(D) ⊂ R(D). Suppose, on the contrary, that there exists x ∈
R⊺(D) − R⊺(D). _en C⊺(x ,D) is ûnite and

R⊺(D) = ⋃
C∈C⊺(x ,D)

R⊺(C).
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So it follows that there exists a C′ ∈ C⊺(x ,D) such that x is a limit point of R⊺(C′)
and hence a limit point of R(C′). However, since C′ is a tree and x is an endpoint of
C′, this contradicts Proposition 4.5.

_eorem 4.8 Let D be a tree with an inûnite number of ramiûcation points. _en D
is not monotonically isolated.

Proof Let R⊺(D) = V0. By Proposition 4.6 and Lemma 4.7, V0 is nonempty and
closed. If V0 is ûnite, let V = R⊺(D). Otherwise, let V1 be the set of limit points
of V0. Continuing inductively, suppose that Vα has been found. If Vα is ûnite, let
V = Vα . Otherwise, let Vα+1 be the set of limit points points of Vα . Suppose that for
some limit ordinal β, Vα is inûnite for all α < β; then let Vβ = ⋂α<β Vα . _en since
{Vα}α<β is a decreasing sequence of nonempty compact sets, Vβ is nonempty. Since
R(D) is countable, Vβ is at most countable, and therefore there exists α′ such that Vα′
is nonempty but ûnite. So let V = Vα′ ⊂ R⊺(D).

Pick some v ∈ V . If C(v ,D) − C⊺(v ,D) is ûnite, then let D̂ = D ∪ [v ,w] where
[v ,w] is an arc such that D ∩ [v ,w] = {v}. Since C⊺(v ,D) is an inûnite collection
of trees with root v and Tr is bqo, there exists a monotonically ordered sequence
{Ti}∞i=1 ⊂ C⊺(v ,D) by Corollary 4.3. Hence, for each i there exists amonotone onto
map m i ∶Ti → Ti−1 such that m i(v) = v and T0 = [v ,w]. Since D ⊂ D̂, D ⪯ D̂. Let
m∶D → D̂ be deûned by

m(x) =
⎧⎪⎪⎨⎪⎪⎩

m i(x) if x ∈ ⋃∞i=1 Ti ,
x if x /∈ ⋃∞i=1 Ti .

Sincem is easily checked to bemonotone and onto,D and D̂ aremonotone equivalent.
On the other hand, if C(v ,D) − C⊺(v ,D) is inûnite, then let D̂ = C∗⊺(v ,D) and

C(v ,D) − C⊺(v ,D) = {[v ,w i]}∞i=1 .

Notice that here D̂ ⪯ D. Again, there exists a monotonically ordered sequence
{Ti}∞i=1 ⊂ C⊺(v ,D). Hence for each i there exist monotone onto maps m i ∶T2i → Ti−1

and p i ∶T2i−1 → [v ,w i] such that m i(v) = v and p i(v) = v for each i. Let p∶ D̂ → D
be deûned by

p(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m i(x) if x ∈ ⋃∞i=1 T2i ,
p i(x) if x ∈ ⋃∞i=1 T2i−1,
x if x /∈ ⋃∞i=1 Ti .

_en p is clearly monotone, and thus D and D̂ aremonotone equivalent.
Notice that in both cases, ∣C(v ,D) − C⊺(v ,D)∣ /= ∣C(v , D̂) − C⊺(v , D̂)∣. Further-

more, if there exist a homeomorphism h∶D → D̂, then

{ ∣C(v ,D) − C⊺(v ,D)∣} v∈V = { ∣C(h(v), D̂) − C⊺(h(v), D̂)∣} v∈V .

However, this impossible, since V is ûnite. _us, D is not monotonically isolated.
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5 Countable Combs

In this section we show that countable combs are not monotonically isolated. _e
main technique to do this is _eorem 5.1 in Subsection 5.1. In Subsection 5.2 we
show that every sequence of countable combs that have bounded “levels" is weakly
monotonically ordered. In Sections 5.3 and 5.4 we extend this to more complicated
dendrites that have inûnite levels (R∞ dendrites) and even still richer dendrites called
R∞- monotone fractals. _en in Section 5.5, we apply _eorem 5.1 to the previously
described continua and show that no countable comb is monotonically isolated.

5.1 Harmonic Combs

If D is a dendrite and [p, q] ⊂ D, then [p, q] is a harmonic spine of D if R([p, q])
is homeomorphic to 1/n

∞

n=1 and p, q ∈ R([p, q]). Without loss of generality we can
assume that p is the unique limit point of R([p, q]) and then q ∈ R((p, q]). _e
subdendrite strung by a harmonic spine, [p, q], is called a strung harmonic comb and
is denoted by S([p, q]). Note that neither p nor q are ramiûcation points of S([p, q])
itself. Since there are at most a countable number of harmonic spines in a dendrite,
there are at most a countable number of strung harmonic combs of a dendrite. Let
R([(p, q)) = {r i}∞i=1, where p, r i+1 < r i < q for each i in the ordering of [p, q] and
(S([p, q]), {r i}∞i=1) will be used to denote the strung harmonic comb along with the
ramiûcation points of the harmonic spine. _en (S([p, q]), {r i}∞i=1) is said to be a
(weakly) monotonically ordered strung harmonic comb if {C∗(r i , [p, q], S([p, q]))}∞i=1
is (weakly) monotonically ordered.

_eorem 5.1 Suppose that X is a dendritewith aweaklymonotonically ordered strung
harmonic comb. _en there exists a dendrite Y that is monotonically equivalent to X
but not homeomorphic to X.

Proof Let (S([p, q]), {r i}∞i=1) be a weaklymonotonically ordered strung harmonic
comb in dendrite X and let Ti = C∗(r i , (p, q), X). Every dendrite has at most a
countable number of strung harmonic combs. So let {(S([p j , q j]), {r j

i}∞i=1)}∞j=1 be
an ordering of these combs. (Note: if a dendrite has a harmonic comb, then it has an
inûnite number of strung harmonic combs.) Let {x i}∞i=1 be a sequence in [p, q] such
that r i+1 < x i < r i . Let {A i}∞i=1 be a sequence of arcs such that diam(A i) < 1/i and let
A i = [a i , b i].

Let X1 = X ∪A1 and continuing inductively, let X i+1 = X i ∪A i+1 be deûned in the
following way:
(a) X i ∩ A i+1 = {x i+1}.
(b) If ordX(r i2i) = 3, then x i is not an endpoint of A i . _at is, ordX i (x i) = 4.
(c) If ordX(r i2i) /= 3, then x i = b i . _at is, ordX i (x i) = 3.

Let Y = ⋃∞i=1 X i and (S̃([p, q]), {y i}∞i=1) be the strung harmonic comb of Y that
corresponds to S̃([p, q]) = S([p, q]) ∪ ⋃∞i=1 A i , where y2i−1 = r i and y2i = x i . Let
T̃i = C∗(y i , (p, q),Y) be the teeth of S̃([p, q]). Notice that if ordY(y2i) = 3, then
T̃2i = [y2i , a i]. If ordY(y2i) = 4, then T̃2i = [y2i , a i] ∪ [y2i , b i].
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Claim 5.1.1 S̃([p, q]) is not homeomorphic to S([p i , q i]) for all i.

Let i ∈ N. _en the claim follows from the fact that y2i = x i is the 2i-th root of
S̃([p, q]) and ordS̃([p,q])(x i) /= ordS([p i ,q i])(r i2i).

_us, it may be concluded that Y is not homeomorphic to X.

Claim 5.1.2 _ere exists amonotonemap g∶ S([p, q])→ S̃([p, q]).

Let n(1) = 1, and for each i let n(i + 1) ≥ n(i) + 4 such that there is a monotone
map g i ∶Tn(i) → Ti with g i(rn(i)) = r i . We know that such a n(i + 1) exists, since D is
monotonically ordered. Let M1∶T1 → T̃1 be a homeomorphism such that M1(r1) = y1

and for i > 1 let M i ∶Tn(i) → T̃2i−1 be amonotonemap such that M i(rn(i)) = y2i−1.
Let S i be the subdendrite of S([p, q]) strung by [rn(i) , rn(i+1)] and S̃ i be the sub-

dendrite of S̃([p, q]) strung by [y2i−1 , y2i+1]. _en let f i ∶ S i → S̃ i be amap such that
the following hold:
(a) [rn(i) , rn(i)+1] is mapped homeomorphically onto [y2i−1 , y2i];
(b) [rn(i+1)−1 , rn(i+1)] is mapped homeomorphically onto [y2i , y2i+1];
(c) Tn(i)+1 is mappedmonotonically onto [y2i , a i] such that f i(rn(i)+1) = y2i ;
(d) if ord(y2i) = 4, then Tn(i)+2 is mapped monotonically onto [y2i , b i] such that

f i(rn(i)+2) = y2i ;
(e) if ord(y2i) = 3, then Tn(i)+2 is mapped to y2i ;
(f) [rn(i)+1 , rn(i+1)−1] is mapped to y2i ;
(g) Tj is mapped to y2i for all j ∈ {n(i) + 3, . . . , n(i + 1) − 1}.
_en f i is monotone. Next deûne g∶ S([p, q])→ S̃([p, q]) by

g(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M i(x) if x ∈ Tn(i),
f i(x) if x ∈ S i ,
p x = p.

_en it can be checked that g is monotone.

Claim 5.1.3 X and Y aremonotonically equivalent.

Let G∶X → Y be deûned by G(x) = x if x /∈ S([p, q]) and G(x) = g(x) if x ∈
S([p, q]). _en G is clearlymonotone. Since X ⊂ Y , it follows from _eorem 2.1 that
there exists amonotonemap from Y onto X.

5.2 Countable Combs with Bounded Levels are bqo

An arc is said to be a level 0 dendrite. A dendrite D with root r is said to be a level 1
dendrite if it is not an arc and there exists an endpoint e such that the closure of the
components of D − [r, e] are arcs. A dendrite D with root r is a level n dendrite if it is
not a level k dendrite for any k in {0, . . . , n − 1}, and there exists an endpoint e such
that the closure of each component of D − [r, e] has level less than n. Note that the
root of each component of D = [r, e] is where that component meets [r, e].
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LetLn
r be the collection of rooted n-level countable combs. For a dendrite (D, r1) ∈

Ln
r , let e1 be some endpoint ofD such that the closure of each component ofD−[r1 , e1]

has level of atmost n−1. Let F be the collection of fans asdescribed in Section 4 and for
ease of notation let LTn

r = F(Tr ∪⋃n
i=0L

i
r) ∪ {0}. So deûne f ∶RD([r1 , e1]) → LT

n
r

by f (q) = C∗(q, [r1 , e1],D) if q ∈ RD([r1 , e1]) and f (q) = 0 if q ∈ RD([r1 , e1]) −
RD([r1 , e1]). Recall that I = {([x , y],A) ∣ A ⊂ [x , y] and A is countable}. _en
([r1 , e1], RD([r1 , e1]), f ) ∈ (LTn

r )I.

_eorem 5.2 Ln
r is bqo under ⪯r .

Proof Proof is by induction on n. Since L0
r ⊂ Tr , L0

r is bqo. Suppose that
L0

r , . . . ,Ln−1
r are all bqo. _en LT

n−1
r is bqo by _eorems 3.2 and 4.1 and Proposi-

tion 4.4. Suppose that (D1 , r1), (D2 , r2) ∈ Ln
r such that there exist endpoints e1, e2 of

D1, D2 respectively that have the following properties:
(a) _e closure of each component of D1 − [r1 , e1] and D2 − [r2 , e2] has levels of at

most n − 1.
(b) _ere exist labellings f1 , f2 such that

([r1 , e1], RD1([r1 , e1]) , f1) ≦(LTn
r )

I ([r2 , e2], RD2([r2 , e2]) , f2) .

_en there exists amonotonemap m∶ [r2 , e2]→ [r1 , e1] such that
(a) m(r2) = r1,
(b) m(e2) = e1,
(c) RD1([r1 , e1]) ⊂ m(RD2([r2 , e2]))
(d) for each q ∈ RD1([r1 , e1]) there exists xq ∈ RD2([r2 , e2]) such that m(xq) = q and

f1(q) ⪯r f2(xq) (note 0 ⪯r Sr′ for every Sr′ ∈Dr).
Notice that (d) implies that there exists amonotone onto map

mq ∶C∗(xq , [r2 , e2],D2) Ð→ C∗(q, [r1 , e1],D1) .
Now deûne M∶D2 → D1 by

M(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m(x) if x ∈ [r2 , e2],
mq(x) if x ∈ C∗(xq , [r2 , e2],D2),
m(y) if x ∈ C∗(y, [r2 , e2],D2)

where y ∈ RD2([r2 , e2]) − {xq}q∈RD1 ([r1 ,e1])
.

_en M is clearly monotone and onto. Hence, (D1 , r1) ⪯r (D2 , r2). Since (LTn−1
r )I

is bqo by Corollary 3.5, it follows that Ln
r is bqo by Proposition 3.1.

5.3 Monotone Maps of R∞ Combs

Now suppose that [x , y] ⊂ D and ∣R([x , y])∣ =∞. Let

R1([x , y]) = {q ∈ R([x , y]) ∣ there exists C ∈ C(q, [x , y],D) and
p ∈ C such that ∣R([q, p])∣ =∞} .
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Continuing inductively, suppose that Rn([x , y]) has been deûned. _en deûne

Rn+1([x , y]) = {q ∈ Rn([x , y]) ∣ there exists C ∈ C(q, [x , y],D) and
p ∈ C such that ∣Rn([q, p])∣ =∞} .

Let R∞([x , y]) = ⋂∞n=1 Rn([x , y]). Deûne Rn((x , y]) and R∞((x , y]) similarly. Sup-
pose that B ⊂ D. _en we can deûne

R∞(B) = {q ∈ R(B) ∣ there exists an endpoint

e ∈ C∗(q, B,D) such that ∣R∞([q, e])∣ =∞} .

If q ∈ R∞(B), then deûne

C∞(q, B,D) = {A ∣ A ∈ Com(D − B) such that q ∈ A
and there exists an endpoint e ∈ A such that ∣R∞([q, e])∣ =∞}.

Note that if q ∈ R∞([x , y]), then C∞(q, [x , y],D) /= ∅. Being consistent with the
*-notation, we deûne C∗∞(q, B,D) = ⋃C∈C∞(q ,B ,D) C.

We say that a comb has the R∞ property (or is a R∞ comb) if for every arcwith the
property that if ∣R([x , y])∣ = ∞ it is the case that ∣R∞([x , y])∣ = ∞ and there exists
x1 , y1 ∈ D such that ∣R([x1 , y1])∣ =∞.

Proposition 5.3 If there exists distinct x , y ∈ D such that R1([x , y]) /= R∞([x , y])
then D is not a R∞ comb.

Proof If q ∈ R1([x , y]) − R∞([x , y]), then there exists an m such that q ∈
Rm([x , y]) − Rm+1([x , y]). _us there exists an endpoint e of C∗(q, [q, e],D) such
that ∣R([q, e])∣ =∞. However, since q /∈ Rm+1([x , y]), it follows that ∣R∞([q, e])∣ ≤
∣Rm([q, e])∣ <∞. Hence, D is not a R∞ comb.

So if D is a R∞ comb, then let RF([x , y]) = R([x , y]) − R∞([x , y]). It follows
from Proposition 5.3 that if q ∈ RF([x , y]), then (C∗(q, [x , y],D), q) ∈ Tr .

Let T+r = {0} ∪ Tr ∪ {r∞}, where r∞ will be the image of a ramiûcation point in
R∞([x , y]) under the following labeling, and extend the ordering ⪯r on Tr to be such
that 0 ⪯+r T for every T ∈ Tr ∪ {r∞}. _en T+r is bqo by _eorems 3.2 and 4.1.

Let D be a countable comb and [x , y] ⊂ D. _en let fx ,y ∶R([x , y]) → T+r be a
labeling of R([x , y]) deûned in the following way

fx ,y(q) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if q ∈ R([x , y]) − R([x , y]),
C∗(q, [x , y],D) if q ∈ RF([x , y]),
r∞ if q ∈ R∞([x , y]).

Hence, it follows that ([x , y], RD([x , y]), fx ,y) ∈ (T+r )I, which is ordered by ≦(T+r )I
(see Section 3).

Let D1 be a dendrite with root r1 and let D2 be a dendrite with root r2 such that
∣R∞([r2 , x])∣ = ∞ for some x ∈ D2. We say that D2 overshadows D1 if for every
endpoint e1 of D1 and endpoint e2 of D2 such that ∣R∞([r2 , e2])∣ = ∞, and if r′ ∈
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R∞([r2 , e2]) and Tr′ ∈ C∞(r′ , [r2 , e2],D2), then there exists an endpoint er′ of Tr′

and labels fr1 ,e1 , fr′ ,er′ such that

([r1 , e1], RD1([r1 , e1]) , fr1 ,e1) ≦(T+r )I ([r1 , e1], RD2([r′ , er′]) , fr′ ,er′ ) .

_eorem 5.4 If D1 is a dendrite with root r1 and D2 is a dendrite with root r2 such
that D2 overshadows D1, then there exists a monotone map m∶D2 → D1 such that
m(r2) = r1.

Proof Let D1
0 = D2

0 = D̂1
0 = D̂2

0 = ∅. Let e1 be any endpoint of D1; then there exists
an endpoint e2 of D2 such that

([r1 , e1]RD1([r1 , e1]) , fr1 ,e1) ≦(T+r )I ([r1 , e1]RD2([r2 , e2]) , fr2 ,e2) .

Let m1∶ [r2 , e2] → [r1 , e1] be an associated lpm map (see Section 3). _en for each
q ∈ RFD1

([r1 , e1]) there exists q̂ ∈ RFD2
([r2 , e2]) such that m1(q̂) = q and fr1 ,e1(q) ⪯+r

fr2 ,e2(q̂). It follows that there exists amonotone onto map m1
q ∶C∗(q̂, [r2 , e2],D2) →

C∗(q, [r1 , e1],D1) such that m1
q(q̂) = q. Let

D1
1 = [r1 , e1], D2

1 = [r2 , e2],
D̂1

1 = D1
1 ∪ ⋃

q∈RF
D1

([r1 ,e1])
C∗(q, [r1 , e1],D1) and

D̂2
1 = D2

1 ∪ ⋃
p∈RF

D2
([r2 ,e2])

C∗(p, [r2 , e2],D2).

Now let m̂1∶ D̂2
1 → D̂1

1 be deûned by

m̂1(x) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

m1(x) if x ∈ D2
1 ,

m1
q(x) if x ∈ C∗(q̂, [r2 , e2],D2), where m1(q̂) = q and q ∈ RFD1([r1 , e1]),

m1(p) if x ∈ C∗(p, [r2 , e2],D2) and p ∈ RFD2([r2 , e2]) − {q̂}q∈RF
D1

([r1 ,e1]) .

Continuing inductively, suppose that dendrites D̂1
n−1, D1

n , D̂2
n−1 andD2

n andmono-
tone onto map mn ∶D2

n → D1
n have been found such that:

(a) D̂1
n−1 ⊂ D1

n ⊂ D1;
(b) D̂2

n−1 ⊂ D2
n ⊂ D2;

(c) each of the components of D1 − D1
n−1 has diameter less than 1/n;

(d) the closure of the components of D1
n − D̂1

n−1 and D2
n − D̂2

n−1 are arcs;
(e) if (t, e] is a component of D1

n − D̂1
n−1, then there exists a component (t̂, ê] of

D2
n − D̂2

n−1 such that mn ∣[̂t , ê] is a lpm map onto [t, e].
_us, for each q ∈ RFD1

([t, e]) there exists q̂ ∈ RFD2
([̂t, ê]) such that mn(q̂) = q and

ft ,e(q) ⪯+r f t̂ , ê(q̂). It follows that there exists amonotone onto map

mn
q ,[t ,e]∶C∗(q̂, [̂t, ê],D2)→ C∗(q, [t, e],D2)

such that mn
q ,[t ,e](q̂) = q. Let

D̂1
n = D1

n ∪ ⋃
(t ,e]∈Com(D1

n−D̂1
n−1)

⋃
q∈RF

D1
((t ,e])

C∗(q, [t, e] ∪ D1
n ,D1)
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and with the assignment z → ẑ made previously, let

D̂2
n = D2

n ∪ ⋃
(t ,e]∈Com(D2

n−D̂2
n−1)

⋃
p∈RF

D1
((t ,e])

C∗( p, [t, e] ∪ D2
n ,D2) .

Now let m̂n ∶ D̂2
n → D̂1

n be deûned by

m̂n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mn(x) if x ∈ D2
n ,

m1
q ,(t ,e](x) if x ∈ C∗(q̂, [̂t, ê],D2),

where q̂ = mn(q) and q ∈ RFD1
([t, e]),

mn(p) if x ∈ C∗(p, [̂t, ê],D2)
and p ∈ RFD2

([̂t, ê]) − {q̂}q∈RF
D1

([t ,e]),

where (t, e] is a component of D1
n − D̂1

n−1. Notice that m̂n is a monotone onto map.
Continuing with (t, e] and (t̂, ê] as deûned in (e), let q ∈ R∞D1

((t, e]). For each C ∈
C(q,D1

n ,D1) pick an endpoint e = e(C) of C. _ere exists q̂ ∈ R∞D2
((t̂, ê]) such that

m̂n(q̂) = q. Pick any Ĉ ∈ C∞(q̂,D2
n ,D2). _en there exists an endpoint ě = ě(Ĉ))

of Ĉ such that ∣R∞D2
([q̂, ě])∣ = ∞. Let r = r(Ĉ) ∈ R∞D2

((q̂, ě)). Pick any C̃ = C̃(r) ∈
C∞(r, [q̂, ě],D2). _en there exists an endpoint ẽ = ẽ(C) of C̃ such that

([q, e], RD1([q, e]) , fq ,e) ≦(T+r )I ([r, ẽ], RD2([r, ẽ]) , fr , ẽ) .

Note that since e depends on C, ẽ depends on the same C to obtain the above relation.
Let

m(q,C)∶ [r, ẽ(C)]→ [q, e(C)]
be the associated lpm map. Let

D1
n+1 = D̂1

n ∪ ⋃
q∈R∞(D1

n−D1
n−1)

⋃
C∈C(q ,D1

n ,D1)

[q, e(C)],

D2
n+1 = D̂2

n ∪ ( ⋃
q∈R∞(D1

n−D1
n−1)

[q̂, ě(q̂)]) ∪ ( ⋃
q∈R∞(D1

n−D1
n−1)

⋃
C∈C(q ,D1

n ,D1)

[r, ẽ(C)]) ,

where R∞(D1
n − D1

n−1) = ⋃(t ,e]∈Com(D1
n−D1

n−1)
R∞((t, e]). Note that we may assume

that the diameter of each component of D1 − D1
n+1 is less than 1/(n + 1). Deûne

mn+1∶D2
n+1 → D1

n+1 by

mn+1(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mn(x) if x ∈ D2
n ,

q̂ if x ∈ [q̂, ě(q̂)]
m(q,C)(x) if x ∈ [r, ẽ(C)].

Notice that mn+1 is monotone and mn+1∣D2
n
= mn . Notice that D1 = ⋃∞n=1 D1

n and let
D̂2 = ⋃∞n=1 D2

n . _en let m̂∶ D̂2 → D1 be deûned by m̂(x) = mn(x) if x ∈ D2
n for

some n. If x ∈ D̂2 −⋃∞n=1 D2
n , then there exists xn ∈ D2

n for each n such that xn → x.
Next, deûne m̂(x) = limn→∞ mn(xn). It follows that m̂ is monotone. Finally, since
D̂2 ⊂ D2, there exists amonotone onto map m∶D2 → D1 such that m∣D̂2

= m̂.
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5.4 R∞ Monotone Fractals

Let D be a R∞ comb with root r1; then D is R∞ self-similar with respect to monotone
maps (R∞m self-similar) if for every endpoint e ofD and q ∈ R∞([r1 , e]), there exists
amonotone onto map m∶C∗(q, [r1 , e])→ D such that m(q) = r1.

_eorem 5.5 If D is a R∞ comb, then D contains a free R∞m self-similar subcomb.

Proof We will use the result from _eorem 5.4 that if D /⪯r D′, then D′ does not
overshadow D. Suppose that D0 is an R∞ comb with root r0 that contain no free
R∞m self-similar subcomb. _en there exists an endpoint ê0 and r̂1 ∈ R∞D0

([r0 , ê0])
such that D̂1 = C∗(̂r1 , [r0 , ê0],D0) does not overshadow D0. _erefore, there exists
an endpoint e0 of D0, an endpoint ẽ1 of D̂1, and r1 ∈ R∞D̂1

([̂r1 , ẽ1]) such that

([r0 , e0], R∞D0
([r0 , e0]) , fr0 ,e0) /≦(T+r )I ([r1 , e], R∞D1

([r1 , e]) , fr1 ,e)

for any endpoint e of D1 = C∗(r1 , [̂r1 , ẽ1], D̂1) ⊂ D̂1.
Continuing inductively, suppose that {[r i , e i]}n−1

i=0 and {D i}n
i=0 have been found

such that
(a) D i is a R∞ comb with root r i ,
(b) D i ⊂ D i−1,
(c) [r i , e i] ⊂ D i ,
(d) ([r i−1 , e i−1], R∞D i−1

([r i−1 , e i−1]), fr i−1 ,e i−1) /≦(T+r )I ([r i , e], R∞D i
([r i , e]), fr i ,e) for

every endpoint e ∈ D i .
It follows that Dn contains no free R∞m self-similar subcomb. _en there exists an
endpoint ên and r̂n+1 ∈ R∞Dn

([rn , ên]) such that D̂n+1 = C∗(̂rn+1 , [rn , ên],Dn) does
not overshadow Dn . _erefore, there exists an endpoint en of Dn , an endpoint ẽn+1
of D̂n+1, and rn+1 ∈ R∞D̂n+1

([̂rn+1 , ẽn+1]) such that

([rn , en], R∞Dn
([rn , en]) , frn ,en) /≦(T+r )I ([rn+1 , e], R∞Dn+1

([rn+1 , e]) , frn+1 ,e)

for any endpoint e of R∞ comb

Dn+1 = C∗( rn+1 , [̂rn+1 , ẽn+1], D̂n+1) ⊂ D̂n+1 .

Notice that if i < j, then e j ∈ D j ⊂ D i+1. _us, [r j , e j] ⊂ [r i+1 , e j]. Since

([r i+1 , e j], R∞D i+1
([r i+1 , e j]) , fr i+1 ,e j) /≧(T+r )I ([r i , e i], R∞D i

([r i , e i]) , fr i ,e i)

by (d), it follows that

([r j , e j], R∞D j
([r j , e j]) , fr j ,e j) /≧(T+r )I ([r i , e i], R∞D i

([r i , e i]) , fr i ,e i) .

_us, {([r i , e i], R∞D i
([r i , e i]), fr i ,e i )}∞i=1 must contain either an inûnite antichain or

a strictly decreasing inûnite sequence. Eitherway, this contradicts the fact that (T+r )I
is bqo and hence wqo. Hence, D0 must have a free R∞m self similar subcomb.
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5.5 Countable Combs are not Monotone Isolated

_e following proposition simply follows from the fact that countable sets are not
perfect.

Proposition 5.6 Suppose that [x , y] is an arc in a dendrite D such that R([x , y]) is
countable. _en there exists a subarc [x′ , y′] of [x , y] such that ∣R([x′ , y′])∣ =∞ and
the the set of limit points of R([x′ , y′]) is {x′}.

_eorem 5.7 Countable combs are not monotonically isolated.

Proof _ere are two important cases:

Case 1 Suppose that D is not an R∞ comb.

_en there exists an arc [x , y] such that ∣R([x , y])∣ = ∞ but ∣R∞([x , y])∣ < ∞.
Hence, there exists a subarc [x′ , y′] such that ∣R([x′ , y′])∣ =∞ but R∞((x′ , y′)) = ∅.

Claim _ere exists an arc [q, p] and an integer n such that
(a) ∣R([p, q])∣ =∞
(b) C∗(r, [q, p],D) ∈ LTn

r for each r ∈ R((p, q)).

If R1((x′ , y′)) = ∅, then C∗(r, [x′ , y′],D) ∈ Tr ⊂ LT
1
r for each r ∈ R((x′ , y′)). So

let q = x′ and p = y′. On the other hand, suppose that there exist q ∈ R1((x′ , y′)).
_en since q /∈ R∞((x′ , y′)), there exists an n such that

q ∈ Rn((x′ , y′)) − Rn+1((x′ , y′)) .

_en there exists p ∈ C∗(q, [x′ , y′],D) such that ∣R([q, p])∣ = ∞. It follows that
C∗(r, [q, p],D) ∈ LTn

r for each r ∈ R((p, q)), and the claim is shown.
Next, by Proposition 5.6 there exists a subarc [q′ , p′] such that ∣R([q′ , p′])∣ = ∞,

the the set of limit points of R([q′ , p′]) is {q′} (or similarly {p′}) and R∞((q′ , p′]) =
∅. Order R((q′ , p′]) by {q i}∞i=1 where q′ < q i+1 < q i ≤ p′ in the natural ordering
of [q′ , p′]. Since LTn

r is bqo, there exists an N such that {C∗(q i , [q′ , p′]),D}∞i=N is
weakly monotonically ordered. Hence the subdendrite strung by [q′ , qN] is a free,
weakly monotonically ordered harmonic comb. Hence, D is not monotonically iso-
lated, by _eorem 5.1, and Case 1 is completed.

Case 2 Suppose that D is a R∞ comb.

_en by_eorem 5.5, D contains a free R∞m self similar subcomb D′ with root r′.
_en there exists an endpoint e of D′ such that ∣R∞([r′ , e]∣ =∞. Again by Proposi-
tion 5.6 there exists a subarc [q′ , p′] such that ∣R([q′ , p′])∣ = ∞, the the set of limit
points of R([q′ , p′]) is {q′} (or similarly {p′}) and R∞((q′ , p′]) = ∅. Notice if
q, p ∈ R∞((q′ , p′]), then there exist monotonemaps

mp ∶C∗(p, [q′ , p′],D′)→ D′ and mq ∶C∗(q, [q′ , p′],D′)→ D′ .
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But since C∗(p, [q′ , p′],D′),C∗(q, [q′ , p′],D′) ⊂ D′,we have that C∗(p, [q′ , p′],D′)
and C∗(q, [q′ , p′],D′) aremonotonically equivalent. Hence,

{C∗(q, [q′ , p′],D′)} q∈R∞((q′ ,p′])

is bqo. Also, if q ∈ R((q′ , p′]) − R∞((q′ , p′]) = RF((q′ , p′]), then, by Proposition
5.3, C∗(q, [q′ , p′],D′) ∈ Tr .

Order R((q′ , p′]) by {q i}∞i=1 , where q′ < q i+1 < q i ≤ p′ in the natural ordering of
[q′ , p′]. Since Tr ∪ {D′} is bqo, there exists an N such that {C∗(q i , [q′ , p′],D′)}∞i=N
is weaklymonotonically ordered. Hence, the subdendrite strung by [q′ , qN] is a free,
monotonically ordered harmonic comb. Hence, D is not monotonically isolated, by
_eorem 5.1.

Corollary 5.8 If X is a dendrite with a free countable comb, then X is not monoton-
ically isolated.

Proof Notice that in the proof of _eorem 5.7, we concluded that every countable
comb has a free, weakly monotonically ordered harmonic comb. Hence, D is not
monotonically isolated by _eorem 5.1.

6 Wild Combs

Let X be a wild comb with wild spine A. For each p ∈ R(A), deûne Tp = C∗(p,A, X)
and TX

A = {Tp ∣ p ∈ R(A)}. If p ∈ A − R(A), then deûne Tp = {p}. Suppose that
X and Y are wild combs with respective spines AX and AY . _en deûne TY

AY
◁ TX

AX

if for every Ty ∈ TY
AY
and subarc B ⊂ AX such that R(B) is uncountable, there exists

Tx ∈ TX
AX

such that Ty ⪯r Tx .
In this section we show that wild combs are not monotonically isolated by ûrst

showing that if TY
AY
◁TX

AX
, then there exists an onto monotonemap m∶X → Y . _en

the following cases are shown:
(a) If X is a wild comb with a perfect spine that contains a free harmonic comb, then

X is not monotonically isolated by _eorem 5.1.
(b) If X is a wild comb with a perfect spine such that no perfect spine contains a free

arc, then X is not monotonically isolated.
(c) If X is awild combwith a perfect spine such that contains a free arc, then X is not

monotonically isolated.
(d) It will be shown in the next section that if X is a wild comb that contains no

perfect spine, then X is monotonically equivalent to D3.

Proposition 6.1 If TY
AY
◁ TX

AX
and [p, q] ⊂ AX such that R([p, q]) is uncountable,

then TY
AY
◁ TX

[p,q].

Proof _is follows directly from the deûnition of◁.

Lemma 6.2 Let X be a wild comb. _en there exists a wild comb Y with a wild spine
AY such that R(AY) = AY and amonotonemap m∶X → Y .
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Proof Let AX = [a, b] be a wild spine of X and let

A = {[x , y] ⊂ AX ∣ R(AX) ∩ (x , y) = ∅ and if [w , r] ⊂ AX such that

[x , y]is a proper subset of [w , r], then R(AX) ∩ (w , r) /= ∅} .

Let Y = X/A be the dendrite such that each [x , y] ∈ A is identiûed with a point and
let m∶X → Y be the natural quotient map. Need to show that AY = AX/A is an arc.
LetE be the collection of endpoints of the elements ofA. SinceA is countable, Emust
be countable. _us, R(AX) ∩ A− E is uncountable. So A−⋃B∈A is uncountable and
therefore AY is an arc. Since every open interval of AY must contain a ramiûcation
point of Y , R(AY) = AY .

Proposition 6.3 Let IX and IY be arcs, {x i}∞i=1 ⊂ IX and {y i}∞i=1 ⊂ IY such that
x i < x j < xk if and only if y i < y j < yk . Suppose that {x i j}∞j=1 is a subsequence such
that
(i) x = lim j→∞ x i j ,
(ii) either x i j < x for all j or x i j > x for all j.
_en lim j→∞ y i j exists.

Proof Without loss of generality, assume x i j < x. Let y = sup{y i j}∞j=1. Suppose that
t is a limit point of {y i j}∞j=1 less that y. Let є = (1/3)(y − t). _en there exists j′ and
an increasing sequence { j(n)}∞n=1 such that
(a) y i j′ ∈ (y − є, y],
(b) y i j(n) ∈ (t − є, t + є) for all n.
Hence, y i j(n) < y i j′ for all n. It follows that x i j(n) < x i j′ < x. Hence, {x i j(n)}∞n=1 is a
subsequence of {x i j}∞j=1 that does not converge to x. _is is a contradiction. Hence,
y = lim j→∞ y i j .

Lemma 6.4 Let IX and IY be arcs, {x i}∞i=1 ⊂ IX and {y i}∞i=1 ⊂ IY such that
(i) x1 = min{x i}∞i=1 and y1 = min{y i}∞i=1,
(ii) x2 = max {x i}∞i=1 and y2 = max {y i}∞i=1,
(iii) x j is an isolated point of {x i}∞i=1 for each j,
(iv) if s < t are limit points of {y i}∞i=1, then [s, t] ∩ {y i}∞i=1 /= ∅,
(v) x i < x j < xk if and only if y i < y j < yk .
_en there exists amonotone onto map m∶ [x1 , x2]→ [y1 , y2] such that m(x i) = y i for
each i.

Proof First wemust prove the following claim.

Claim If lim j→∞ x i j exists, then lim j→∞ y i j exists.

Let x = lim j→∞ x i j and note by (iii) that x /∈ {x i}∞i=1. By Proposition 6.3 we
may assume that there exists increasing sequences of natural numbers {σ(n)}∞n=1 and
{τ(n)}∞n=1 such that
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(a) {σ(n)}∞n=1 ∪ {τ(n)}∞n=1 = {i j}∞j=1
(b) xσ(n) < x < xτ(n) for all n.
By Proposition 6.3 there exists s ≤ t such that s = limn→∞ yσ(n) and t = limn→∞ yτ(n).
Suppose that there exists j′ such that y i j′ ∈ [s, t]. _en yσ(n) ≤ y i j′ ≤ yτ(n) for all n. It
follows from (v) that xσ(n) ≤ x i j′ ≤ xτ(n). Hence, x i j′ = x, which is impossible. _us,
it follows from (iv) that s = t = lim j→∞ y i j .

Let

Φ = {y j ∣ (y j − є, y j) ∩ {y i}∞i=1 /= ∅},
Λ = {y j ∣ (y j , y j + є) ∩ {y i}∞i=1 /= ∅}

be the elements of {y i}∞i=1 that are also respectively right-hand and le�-hand limit
points of {y i}∞i=1. Notice that it follows from (iv) that each component of [y1 , y2] −
{y i}∞i=1 must be of the form (sk , yk), (y i , t i) or (y i , yk) for some i , k where sk and t i
are limit points of {y i}∞i=1. Hence, it follows that each component of [x1 , x2]−{x i}∞i=1
must be one of the following forms:

(a) (x i , xk) if (y i , yk) is a component of [y1 , y2] − {y i}∞i=1 for the same i , k. Here
m(x) will map [x i , xk] linearly onto [y i , yk] such that m(x i) = y i and m(xk) =
yk .

(b) (s′k , xk), where s′k is a limit point of {x i}∞i=1 corresponding to the component
(sk , yk) of [y1 , y2] − {y i}∞i=1. Here m(x) will map [s′k , xk] linearly onto [sk , yk]
such that m(s′k) = sk and m(xk) = yk .

(c) (x i , t′i), where t′i is a limit point of {x i}∞i=1 corresponding to the component
(t i , y i) of [y1 , y2] − {y i}∞i=1. Here m(x) will map [x i , t′i] linearly onto [y i , t i]
such that m(x i) = y i and m(t′i) = t i .

(d) (α j , x j), where α j is a limit point of {x i}∞i=1 and y j ∈ Φ. Here m([α j , x j]) = y j .
(e) (x j , β j), where β j is a limit point of {x i}∞i=1 and y j ∈ Λ. Here m([x j , β j]) = y j .

_en it is easy to check that m∶ [x1 , x2]→ [y1 , y2] is monotone.

Lemma 6.5 Let X and Y be wild combs with respective spines AX and AY such that
TY
AY
◁ TX

AX
. _en there exists amonotone onto map m∶X → Y .

Proof Let AX = [a, b] and AY = [c, d]. Also deûne

L = { s ∈ AY ∣ (s, t) ∈ Com(AY − R(AY))} ,
R = { t ∈ AY ∣ (s, t) ∈ Com(AY − R(AY))} .

Notice that L ∪R is countable. So let

{y i}∞i=1 = R(AY) ∪L ∪R ∪ (R(AY) ∩ {c, d}) = QY

such that y1 = minQY and y2 = maxQY . Note that if y i /∈ R(AY), then TY
y i = {y i} ⪯r

TX
x for all x ∈ R(AX).
Since TY

AY
◁ TX

AX
, there exists x1 , x2 ∈ R((a, b)) and є1 , є2 > 0 such that

(a) a < x1 < x1 + є1 < x2 − є2 < x2 < b,
(b) TY

y1
⪯r TX

x1
and TY

y2 ⪯r TX
x2 ,

(c) R((x1 + є1 , x2 − є2)) is uncountable.
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Continuing inductively, suppose that for each i ∈ {1, . . . ,N}, x i ∈ R([x1 , x2)]) and
є i > 0 have been chosen such that
(a) (x i − є i , x i + є i) ∩ (xk − єk , xk + єk) = ∅ when i /= k,
(b) if x i + є i < xk − єk then R([x i + є i , xk − єk]) is uncountable,
(c) y i < y j < yk if and only if x i < x j < xk ,
(d) TY

y i ⪯r TX
x i
.

Let yp = max1≤i≤N{y i ∣ y i < yN+1} and yq = min1≤i≤N{y i ∣ y i > yN+1}. _en there
exists xN+1 ∈ R((xp + єp , xq − єq)) and єN+1 > 0 such that
(a) TY

yN+1
⪯r TX

xN+1
,

(b) xp + єp < xN+1 − єN+1 < xN+1 + єN+1 < xq − єq ,
(c) R((xp + єp , xN+1 − єN+1)), and R((xN+1 + єN+1 , xq − єq)) are uncountable.

Notice that for every j, x j is an isolated point of {x i}∞i=1 and that if p < q are
limit points of QY , then [p, q] ∩ QY /= ∅. Otherwise, (p, q) would be a compo-
nent of R(AY) such that p /∈ L and q /∈ R, which are both impossible. _ere-
fore, by Lemma 6.4, there exists a monotone onto map m∶ [x1 , x2] → [y1 , y2] such
that m(x i) = y i . Furthermore, m can be easily extended to a monotone onto map
m̂∶ [a, b]→ [c, d] such that m̂(x) = m(x) whenever x ∈ [x1 , x2].
For each i let m i ∶TX

x i
→ TY

y i be an onto monotone map such that m i(x i) = y i .
Deûne f ∶X → Y by

f (z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m i(z) if z ∈ TX
x i
,

m̂(x) if z ∈ TX
x where x ∈ R([AX]) − {x i}∞i=1 ,

m̂(z) if z ∈ AX = [a, b].

Since m̂ and each m i aremonotone, f must bemonotone.

Let X be a wild comb with wild spine A. A is perfect if for every y ∈ R(A) and arc
B ⊂ A such that R(B) is uncountable, there exists x ∈ R(B) such that Ty ⪯r Tx .

Lemma 6.6 Let X be a wild comb with spine A such that TX
A is bqo. _en X has a

perfect spine.

Proof Suppose that X has no perfect spine. _en there exists a x1 ∈ X and an arc
A1 ⊂ X such that R(A1) is uncountable and Tx1 /⪯r Ta for all a ∈ A1. Since A1 is not
perfect there exists x2 ∈ A1 and an arc A2 ⊂ A1 such that R(A2) is uncountable and
Tx i /⪯r Ta for all i ∈ {1, 2} and a ∈ A2.
Continuing inductively, suppose that x1 , . . . , xn−1 and An have be found such that

Tx i /⪯r Ta for all i ∈ {1, . . . , n − 1} and a ∈ An , where R(An) is uncountable. Since
An is not perfect, there exists xn ∈ An and an arc An+1 ⊂ An such that R(An+1)
is uncountable and Tx i /⪯r Ta for all i ∈ {1, . . . , n} and a ∈ An+1. _us, {Tx i}∞i=1
either contains an inûnite anti-chain or an inûnite strictly decreasing sequence. Either
contradicts the fact that TX

A is bqo and hence not wqo.

Lemma 6.7 Suppose that X is a wild comb that
(i) contains no harmonic comb,
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(ii) has a perfect spine AX that contains a free arc [a, b].
_en X is not monotonically isolated.

Proof Let H be a simple harmonic combwith spine AH and Y = X∪H,where AH =
[a, b] and AY is the corresponding spine for Y . Since Y contains a free harmonic
comb and X does not, then they cannot be homeomorphic. Since X ⊂ Y , there exists
a monotone map from m∶Y → X. Also, if I is an arc and T is any dendrite, we have
that I ⪯ T . So it follows that TY

AY
◁TX

AX
. _us, by Lemma 6.5, there exists amonotone

map m′∶X → Y . Hence X and Y aremonotonically equivalent.

Lemma 6.8 Suppose that X is awild combwith a perfect spine such that every perfect
spine contains no free arc. _en X is not monotonically isolated.

Proof Let [a, b] be a perfect spine in X and note that if [p, q] ⊂ [a, b], then TX
[a ,b]◁

TX
[p,q] by Proposition 6.1. Let [c, d] ⊂ (a, b). Deûne Y ⊂ X such that for each

r ∈ R([c, d]) identify Tr with r. Clearly, this deûnes a monotone map m∶X → Y .
Conversely, since TX

[a ,b]◁TX
[d ,b] = TY

[d ,b], it follows from Lemma 6.5 there is amono-
tone map m′∶Y → X. So X and Y are monotonically equivalent. Since Y contains a
perfect spine with a free arc and X does not, they cannot be homeomorphic.

Let

RW([x , y]) = {q ∈ R([x , y]) ∣ C∗(q, [x , y]) is a wild comb with root q} .

_eorem 6.9 If D is a wild comb with a perfect spine, then D is not monotonically
isolated.

Proof If D has a free harmonic comb, then D is not monotonically isolated by _e-
orem 5.1. If D contains a free arc but no harmonic comb, then D is not monotonically
isolated by Lemma 6.7. If D contains no free arc, then it is not monotonically isolated
by Lemma 6.8.

7 Dendrites that are Monotonically Equivalent to Dω.

Lemma 7.1 Suppose that D is a wild comb that contains no perfect spine and no free
countable comb. _en if [x , y] is an arc such that R([x , y]) is uncountable, it follows
that RW([x , y]) is uncountable.

Proof For the purpose of a contradiction, suppose that R([x , y]) is uncountable and
RW([x , y]) is countable. _en there there exist a subarc [x′ , y′] such that R([x′ , y′])
is uncountable and RW([x′ , y′]) is empty. Since C∗(q, [x′ , y′]) cannot be either a
countable comb or awild comb for any q ∈ R([x′ , y′]), it follows thatC∗(q, [x′ , y′]) ∈
Tr for each q ∈ R([x′ , y′]). Since Tr is bqo, [x′ , y′] contains a perfect spine, which is
a contradiction.

Recall that a wild spine [x , y] is archimedian if [x , y] is amaximal arc in D and if
for every p, q ∈ R([x , y]) such that p < q (in the natural ordering on [x , y]), there
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exists r ∈ R([x , y]) such that p < r < q. A comb is archimedian if it contains an
archimedian wild spine.

_eorem 7.2 Suppose that D is awild combwith the property that if R([x , y]) is un-
countable, then RW([x , y]) is uncountable. _en D is monotonically equivalent to D3.

Proof First we need to show the following claim:

Claim If [x , y] is an arc in D such that R([x , y]) is uncountable, then there exists
an archimedian comb A ⊂ D with spine [x , y] such that if (p, q] is a component of
A− [x , y] then RD((p, q]) is uncountable.

Since RW([x , y]) is uncountable, there exists a(x , y) ⊂ RW([x , y])with the prop-
erty that if v ,w ∈ a(x , y) such that v < w (in the natural ordering on [x , y]), then
there exists r ∈ a(x , y) such that v < r < w. Since C∗(t, [x , y]) is a wild comb, for
each t ∈ a(x , y) there exists an endpoint et of C∗(t, [x , y]) such that R((t, et]) is
uncountable. Let A = [x , y] ∪⋃t∈a(x ,y)[t, et], and the claim follows.

Now suppose that in fact R([x , y]) is uncountable and let A1 ⊂ D be an archi-
median comb with spine [x , y] = A0 and such that RD((p, q]) uncountable for each
component (p, q] of A1 − [x , y]. Continuing inductively, suppose that An−1 and An
have been found with the properties
(a) An−1 ⊂ An ,
(b) each component of An − An−1 is an arc,
(c) if (p, q] is a component of An − An−1, then R∣D((p, q]) is uncountable.

It follows that if (p, q] is a component of An − An−1, then there exists an archi-
median comb Ap,q ⊂ D with spine [p, q] and such that if (s, t] is a component of
Ap,q − [p, q], then RD((s, t]) is uncountable. Let A = ⋃∞n=1 An . If we shrink each free
arc of A to a point, we have a monotone map onto D3. Since A ⊂ D, it follows that
there is amonotonemap from D onto D3 and hence D ⪯ D3.

8 Main Theorem

In this section we combine our results to prove themain theorem.

_eorem 8.1 If D is a dendrite with an inûnite number of ramiûcation points, then
D is not monotonically isolated.

Proof If D has an inûnite number of ramiûcation points, then D falls into one of the
following categories:
(a) D contains no arc with an inûnite number of ramiûcation points.

_en D is an inûnite tree and is not monotonically isolated by _eorem 4.8.
(b) D contains some arc with an inûnite number of ramiûcation points.

(b.1) D contains a free countable comb.
_en D is not monotonically isolated by Corollary 5.8.

(b.2) D does not contain a free countable comb.

https://doi.org/10.4153/CJM-2015-027-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-027-1


Monotone Classes of Dendrites 697

_en D is a wild comb.
(b.2.1) D contains a perfect spine.

_en D is not monotonically isolated by _eorem 6.9.
(b.2.2) D contains no perfect spine.

_en D is a wild comb with the property that if R([x , y]) is un-
countable, then RW([x , y]) is uncountable by Lemma 7.1. It follows
from_eorems 7.2 and 2.2 that D is notmonotonically isolated.

_eorem 1.1 now follows from _eorems 1.2 and 8.1.
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