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Monotone Classes of Dendrites

Veronica Martinez-de-la-Vega and Christopher Mouron

Abstract. Continua X and Y are monotone equivalent if there exist monotone onto maps f: X — Y
and g: Y — X. A continuum X is isolated with respect to monotone maps if every continuum that is
monotone equivalent to X must also be homeomorphic to X. In this paper we show that a dendrite
X is isolated with respect to monotone maps if and only if the set of ramification points of X is finite.
In this way we fully characterize the classes of dendrites that are monotone isolated.

1 Introduction

A dendrite is a locally connected continuum without simple closed curves. A map
f:X — Y is said to be monotone if f7'(y) is connected for all y € f(X). Let M
be the class of monotone mappings. Two continua X and Y are said to be equivalent
with respect to M (or just monotone equivalent) if there are mappings in M from X
onto Y and from Y onto X. The class M is said to be neat, since all homeomorphisms
are in M and the composition of any two mappings in M is also in M. Therefore, a
family of continua is decomposed into disjoint equivalence classes in the sense that
two continua belong to the same class provided that they are equivalent with respect to
M. A continuum is said to be isolated with respect to M provided the above-mentioned
class to which X belongs consists only of X.

In [2], Theorems 6.7 and 6.14 show that universal dendrites are not isolated with
respect to M. The problem we solve was posed in 1991 in [2][Problem 6.1] and was
also considered in [5, Problem 16 (717?), Conjecture 3.7 (718?)] The purpose of this
paper is to prove the following theorem.

Theorem 1.1 A dendrite X is isolated with respect to monotone maps if and only if
the set of ramification points of X is finite.

In [1], Camerlo, Darji, and Marcone present similar results on quasi-homeomor-
phisms. Two dendrites, X and Y are quasi-homeomorphic if for every € > 0 there exist
e-onto maps fe: X - Yand g.: Y - X. It follows from [1, Theorem 3.2] in their paper
that if two dendrites are monotone equivalent, then they are quasi-homeomorphic.
However, the converse is not true. For example, if X is the simple harmonic comb
and Y is two simple harmonic combs identified at one end-point of their respective
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spines, then it can be easily shown that X and Y are quasi-homeomorphic but not
monotone equivalent. Hence, monotone equivalence is a finer equivalence relation.

In this paper, we will only show sufficiency of the main theorem, since necessity
follows directly from [1, Theorems 3.2 and 3.5].

Theorem 1.2 If D is a dendrite with a finite number of ramification points, then D is
monotonically isolated.

2 Preliminaries
2.1 Definitions, Notation, and Results on Dendrites

We will let D be the set of all dendrites. If D is a dendrite, let R(D) denote the set of
ramification points of D. If A c D, let Rp(A) = AnR(D) or just R(A) when there is
no confusion. If r € R(D), then let ord(r) denote the order of r. Next let Com(K) be
the set of components of K. Suppose that B c D and g € R(B). Then define

€(q,B,D) = {A| Ae Com(D - B) such that g € A}.

When there is no confusion, we write C(g, B) for C(g, B, D) and €(q) for (g, {q}).
Let B c D be some class of dendrites. Then let Cg be the subset of C whose elements
belong to B. For example, we let T be the class of dendrites that contain a triod, i.e.,
dendrites that are not homeomorphic to an arc. Then

C1(q,B,D)={A€C(q,B,D)|AeT}.

Also, if A isa set, then for ease of notation, welet A* = Ugeq Aand o (A) = {{A;)ien |
A;e Aand N c N},
Notice that C*(g, B, D) is a dendrite whose intersection with B is {q}. Similarly,

we will let superscripts of R be subsets of R with certain properties. For example, we
define

R"(D) ={reR(D) ||C(r,D)|=oo}.

Often, it will be useful to fix a point rp € D and call that point a root. Then we say
that (D, rp) is a rooted dendrite and D, = {(D,rp) | D € D and rp is a root of D}.
If D is a dendrite such that |Rp([x, y])| < oo for every arc [x, y] ¢ D, then D is a
tree. Note that the set of ramification points of a tree still may be infinite, although
countable. Then define T, to be the collection of rooted trees.

Suppose that there exists an arc A c D such that R(A) is infinite. Then D is called
a comb and A is called a spine of D. Suppose that there exists an arc A c X such that
R(A) is homeomorphicto {1/n},_;. Then D is called a harmonic comb. Furthermore,
if the closure of each component of D — A is an arc, then D is called a simple harmonic
comb. A comb D is a countable comb if R(A) is countable for every arc A ¢ D. On the
other hand, if there exists a spine A such that R(A) is uncountable, then A is called a
wild spine and D is called a wild comb. A wild spine [x, y] is archimedian if [x, y] is
a maximal arc in D and if for every p,q € R([x, y]) such that p < g (in the natural
ordering on [x, y]), there exists r € R([x, y]) such that p < r < q. If B is a spine of D,
then C*(q, B, D) is a tooth of B and q is a root of C*(gq, B, D).
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A subdendrite D’ ¢ D is free if for every component C of D — D', C n D' is an
endpoint of D’. Notice that this implies that D’ = intp(D’). Let [a, b] be an arc in
dendrite D and let

D' =[a,b]uU{Y | Y isa component of D — [a, b] such that Y n (a,b) # @} .

Then we say that D’ is a subdendrite of D strung by [a, b]. Note that in this case, D’
is a free subdendrite.
The following well-known theorem will be very useful.

Theorem 2.1 If Dy, D, are dendrites such that there exist a one-to-one map
h: Dy — D, then there exists a monotone map m: D, — D, such that m|h-1(D1) =hl

We let D,, be the standard universal dendrite of order m € {3,4,...} U {w} (see
Wazewski [9], Menger [6], Charatonik [2]). Note that if D is a dendrite whose rami-
fication points have order not greater than m, then D can be embedded in D,,. Fur-
thermore, every dendrite can be embedded in D,,. The following is [2, Corollary 6.4].

Theorem 2.2 ([2]) Foreachm,n € {3,4,...}u{w}, there exists a monotone mapping
of D,, onto D,,.

To prove the main theorem, we break down the dendrites with an infinite number
of ramification points into 4 classes:
(i) trees
(i) countable combs
(iii) wild combs with perfect spines
(iv) dendrites that are monotone equivalent to D,,.

3 Quasi-Orderings, Well-Quasi-Orderings, and
Better-Quasi-Orderings

A relation is quasi-ordered if it is reflexive and transitive. Since monotone onto maps
are preserved under composition, the existence of a monotone map between two con-
tinua induces a natural partial order. If D is the set of dendrites, then < will be used
to define a quasi-order on D in the following way:

D; < D, if and only if there exists a monotone onto map m: D, — D;.

The following variations of < will be used:

e If (Dy,11), (D3, 12) € D,, then we define the quasi-order, <,, on D, by (Dy,11) <,
(D3, r,) if and only if there exists a monotone onto map m: D, — D such that
m(ry) = r1. Note that (Dy, 1) <, (D,,r,) implies D; < D,, but the converse is not

true.
e We define (D, 1) =¢ (Dy,1y) if there exists a 1-1 map e:D; — D, such that
e(r) =n.

» Wedefine T} = {0}uT,U{r } andlet <} bea quasi-order on T} that is an extension
of <, such that 0 <} ro, and 0 <} (T, ry) for every (T,rr) € T,
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* Suppose N,M c N. If ((Ai, ai))ien, ((Bis bi))iemr € 0(D,), then we define
((Ai,ai))ien =6, ((Bi>b;))iem if and only if there exists a strictly increasing onto
function f: N — M such that (A;, a;) <, (By(iy, by(;y) for each i € N.

We say that a collection of rooted dendrites {(D;, r;) } {2, is weakly monotonically
ordered if for every i there exists j; > i such that (Dj,r;) <, (Dj,,rj,). We say that
{(Dj, ri)}32, is monotonically ordered if (D, r;) <, (Djs1, ri+1) for each i. Note that
every weakly monotonically ordered sequence contains a monotonically ordered sub-
sequence.

The symbol £ will be used to define a quasi-ordering on generic sets. Often, we will
need to vary these symbols to extend these quasi-orderings or to avoid confusion:

» Wewilllet £ 4 be the quasi-order defined on the set A when necessary to avoid con-
fusion. The definition of the partial order will, of course, depend on the definition
of the set.

o If<isaquasi-order defined on a set Q, then <; will be defined on the power set of Q
and £, will be defined inductively on successive power sets. The precise definitions
will be given later in this section.

d Suppose N,M c N. If <Ai)iEN) <Bi>i€M € U(.A), then we define (Ai>ieN éo(ﬂ.)
(B;)iem if and only if there exists a strictly increasing onto function f: N - M such
that A; S4 By(;) foreach i € N.

We will always use < to denote the usual order on R. This includes the order on arcs.
A quasi-ordered set Q is well-quasi-ordered (wqo) if every strictly descending se-
quence is finite and every antichain (collection of pairwise incomparable elements) is
finite. Let Q be quasi-ordered under £ and define the following quasi-ordering, <,
on the power set P(Q) by X £, Y if and only if there exists a function f: X — Y such
that x £ f(x) for each x € X, where X,Y € P(Q). Rado [8] constructed a quasi-
ordered set Q such that Q was wqo but P(Q) was not. So a stronger notion of well-
quasi-ordering called better-quasi-ordered (bqo) was constructed by Nash-Williams
that preserved the property under the power set. In general, only the notion of wqo is
required in this paper. However, in order for the all required relations to be wqo, they
must pass through intermediate steps as bqo using previous results in the literature.
The definition of bqo we give is due to Laver [4] and is equivalent, to but less tech-
nical than Nash-Williams [7]: Q is bqo if P“*(Q) is wqo. Here, P“'(Q) is defined
inductively by:
(@ P°(Q)=Q
(b) if a is a successor ordinal, then P**1(Q) = P(P*(Q));
(c) if B is a limit ordinal, then define P# = Ua<p P*(Q).

Also, P“1(Q) is quasi-ordered by <,,,, which is a natural extension of both £ and &;,
and is defined inductively on «, < w; in the following way: Suppose that X € P*(Q),
Y € PP(Q). Then X <, Y if and only if the following hold:

() fa=0,8=0,then X <Y,since X,Y € Q.

(b) If a = 0, B > 0, then there exists Y’ € Y such that X £, Y.

(c) Ifa >0, > 0, then then for every X’ € X there exists Y € Y such that X’ £, Y.

Then the following homomorphism property should be clear.
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Proposition 3.1 If Q is bgo, Q" ¢ Q and there is an onto order preserving function
f:Q" = R, then R is bqo.

The following theorem is a compilation of the work in Nash-Williams.

Theorem 3.2 ([7])
(1) IfQisbqo, then Q is wqo.

(ii) If Q and Qy are bqo, then Q; U Q, and Q; x Q, are bqo.
(iii) If Q is bqo, then P(Q) and o(Q) are both bqo.

Suppose that A and B are linearly ordered sets. An order embedding of A into B is
a one-to-one order preserving function from A into B. An ordered set S is scattered if
an ordered set isomorphic to the rationals cannot be order embedded in S. Let M be
the collection of all linearly ordered sets that can be expressed as the countable union
of linearly ordered sets {L;}?°; each of which is scattered. Let Q be a quasi-ordered
set ordered by <. Next define

Q" ={(L f) | f:L — Qsuch that L e M}

to be the set of all labelings of the elements of M by Q. Here, each f is called a labeling.
Then there is a quasi-ordering, <, of Q™ induced by the orderings on Q and M
defined in the following way: (L1, fi) Soa (La, f2) if and only if there exists an order
embedding e: L; — L, such that fi(x) <q f2(e(x)) forall x € L;.

Finally, in Laver’s dissertation the following important theorem was proved.

Theorem 3.3 ([3,4]) (i) M is better quasi-ordered under order embeddings.
(ii) If Q is better quasi-ordered, then QM is better quasi-ordered.

The notation [x, y] will denote an arc with endpoints x and y. Let
J={([x,y],A) | Ac [x,y] and A is countable }
and quasi-order J by <y in the following way: ([x1, y1], A1) <5 ([x2, ¥2], A,) if and
only there exists a monotone map m: [x2, y2] = [x1, ¥1] such that
(@) m(xz) =x1,

(b) m(y2) = y1,
(C) A1 C m(Az)

In a similar way, define set of all labelings on J by elements of Q:

Q’ = {([X,)/],A,f) | ([x,y],A) €Jand f: A — Q}.

We can quasi-order Q” in a similar way: ([x1, 1], A1, fi) Sqv ([x2, 2], Az, fo) if
and only if ([x1, 1], A1) <5 ([%2, 2], A2) and for each y € A; there exists x € A,
such that m(x) = y and fi(y) <q f2(x), where m is the monotone map described
previously. Such a map is called a label preserving monotone or lpm map.

Proposition 3.4  Let Ay C [x1, y1] and A, C [x2, y2] such that

(i) Ay and A, are both closed;
(ii) there exists an order embedding e: A, - A,.
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Then there exists a monotone map m: [x,, y2| = [x1, 1] such that

(a) m(xz) = X1,
(b) m(y2) =y,
(c) Aicm(Ay).

Proof Notice that e might not be continuous in the induced topology. However,
e(A;) c A, . If x ¢ e(A;), then define

a(x) = max{r ee(A)u{x}|r< x} and b(x) = min{ ree(A))u{y}|r> x}.
Now define m:[xz, y2] = [x1, y1] in the following way

(@) m(xz2) = xi;
(b) m(y2) = yi;
(c) ifx € e(Ay), then let m(x) = e7!(x)

(d) if x € e(A;) — e(A}), then there exists {x, }no; C e(A;) that limits to x. Let
m(x) =lim, e e (x,).
(e) Ifx ¢ e(A;), then define

(b)) - m(a(x)
) = ("D =D (- ) mao)

Then clearly m is monotone with the prescribed properties. ]

Note that the proposition is false if A, is not closed. Now we have the following
corollary to Laver’s theorem.

Corollary 3.5

(i)  Jis better-quasi-ordered.
(i) IfQ is better quasi-ordered, then Q’ is better-quasi-ordered.

4 Results on Trees

Recall that T, is the collection of rooted trees. Let <} define a quasi-order on D, by
(D1, 1) %5 (Dy,12) if and only if there exists a one-to-one map e: D; — D, such that
e(r1) = r,. The following theorem is due to Nash-Williams.

Theorem 4.1 ([7]) T, is better-quasi-ordered under <.
Then the following corollaries follow from Proposition 3.1 and Theorem 4.1.
Corollary 4.2 T, is better-quasi-ordered under <,.

Corollary 4.3 If {(Ti,r;i)}32, is a sequence in T, then there exists an N such that
{(Ti, 1) }32is weakly monotonically ordered.

Let Q, c T, and define F(Q,) to be the collection of fans on Q, by (D, ) € F(Q,)
if and only if the closure of each component of D — {r} is an element of Q,, that is,

8(7’1) c Qr.
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Proposition 4.4  If Q, is bgo under <,, then F(Q,) is bqo under <,.

Proof Let (Dy,r1),(D2,r2) € F(Q,) and let (A} )icp, and (B} )icp, be enumera-
tions of the elements of C(r1, D;) and C(r,, D;), respectively, where p;, p, ¢ N. Then
(A% Yieps» (BL Yiep, € 0(Q;). Suppose that (A% )iep, <o (BL )icp,. Then there ex-
ists a strictly increasing function f:p; — p, such that for each i € p; there exists a
monotone map mi:B{Z(i) - Ail such that m;(r,) = r;. Now define m: D, — D, by
m(x) = m;(x)if x € By(;y and m(x) = r; otherwise. Then clearly m is monotone and
hence (Dy, 1) <, (D3, 12). Since Q, is bqo, it follows that ¢(Q,) is bqo by Theorem
3.2 and that F(Q,) is bqo by Proposition 3.1. [ |

Proposition 4.5 If D is a tree, then R(D) is closed.

Proof Letx € D — R(D). Let A be a maximal arc in D such that x € A. Since D is
locally connected and R(A) is finite, there exists an open set U ¢ A such that x € U
and U N R(A) = @. Hence D — R(D) is open. [ |

If r € B c D and T is the class of dendrites that contain a triod, then let
€r(¢:B,D)={A€€(q,B,D)|AeT}.

That is, C1 (7, B, D) is the collection of elements of C(r, B, D) that are not arcs.

Proposition 4.6 If D is a tree with an infinite number of ramification points, then
there exists r € D such that C+(r, D) is infinite.

Proof First note that if D’ is a subdendrite of D and r € D', then |C(r,B,D")| <
|C+(r, B, D)|. Suppose, on the contrary, that C;(r, D) is finite for each r. Pick any
r1 € R(D). Then since Cr(ry, D) is finite, there exists C; € C;(ry, D) such that R(C;)
is infinite. Suppose that distinct ramification points ry,...,r, and Cy, ..., C, have
been found such that the following hold:
@ [r,--->rualcr,-.-tul
(b) Cp € Cr(rn,[r1,7n]> Cno1) such that R(C,) is infinite.
Then pick 7,41 € R(C,)—{r,}. Then [r1, v, N [rn, tne1] = {ru}>s0 [r1, 0] € [11, Tna1]-
Also, since Cr (741, [115 Tn+1], Cu) is finite, there exists Cp41 € Cr (741, [71, Tn41]> Cr)
such that R(C,,;) is infinite.

Let [r1, p] = U52,[r1, 74 ]- Then [y, p] is a subarc of D that contains an infinite
number of ramification points. However, this contradicts the fact that D is a tree. W

Recall that R"(D) = {r € R(D) | |C+(r, D)| = o0}.
Lemma 4.7 If D is a tree, then R7 (D) is closed.

Proof Notice that RT(D) c R(D). Suppose, on the contrary, that there exists x €
RT(D) - RT(D). Then C(x, D) is finite and

R'(D)= |J R'(C).

CeCr(x,D)
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So it follows that there exists a C’ € C;(x, D) such that x is a limit point of R"(C")
and hence a limit point of R(C"). However, since C’ is a tree and x is an endpoint of
C’, this contradicts Proposition 4.5. ]

Theorem 4.8 Let D be a tree with an infinite number of ramification points. Then D
is not monotonically isolated.

Proof Let RT(D) = V. By Proposition 4.6 and Lemma 4.7, V; is nonempty and
closed. If Vj is finite, let V = RT(D). Otherwise, let V; be the set of limit points
of V. Continuing inductively, suppose that V,, has been found. If V, is finite, let
V = V,. Otherwise, let V,; be the set of limit points points of V,. Suppose that for
some limit ordinal 3, V, is infinite for all « < §; then let Vg = MN,<p V,. Then since
{ Vi }a<p is a decreasing sequence of nonempty compact sets, Vs is nonempty. Since
R(D) is countable, Vp is at most countable, and therefore there exists &’ such that V-
is nonempty but finite. So let V = V,» ¢ RT(D).

Pick some v € V. If C(v, D) — C+(v, D) is finite, then let D = D U [v, w] where
[v,w] is an arc such that D n [v,w] = {v}. Since C;(v, D) is an infinite collection
of trees with root v and T, is bqo, there exists a monotonically ordered sequence
{T;}52, € C+(v, D) by Corollary 4.3. Hence, for each i there exists a monotone onto
map m;: T; - T;_; such that m;(v) = vand Ty = [v,w]. Since D c D, D < D. Let
m: D — D be defined by

m(x) = {m,-(x) %fx eUs, T;,
x ifx ¢ U, T
Since m is easily checked to be monotone and onto, D and D are monotone equivalent.
On the other hand, if €(v, D) — €1 (v, D) is infinite, then let D = €*(v, D) and

€(v,D) - C(v, D) = {[v,wi]} 2.

Notice that here D < D. Again, there exists a monotonically ordered sequence
{Ti}%2, c C+(v, D). Hence for each i there exist monotone onto maps m;: Ty; - Ti_;
and p;: Tp;-1 — [v,w;] such that m;(v) = v and p;(v) = v for each i. Let p:ﬁ - D
be defined by
mi(x) ifxeUr T
p(x)=1pi(x) ifxeU Tai
x ifx ¢ U5, T

Then p is clearly monotone, and thus D and D are monotone equivalent.
Notice that in both cases, |€(v, D) — C+(v, D)| # |@(v, D) - C(v, D)|. Further-
more, if there exist a homeomorphism h: D — D, then

{le(v.D) - C:(v. D)}, = {[€(h(v). D) - E+(h(v). D)} ., -

However, this impossible, since V is finite. Thus, D is not monotonically isolated. W
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5 Countable Combs

In this section we show that countable combs are not monotonically isolated. The
main technique to do this is Theorem 5.1 in Subsection 5.1. In Subsection 5.2 we
show that every sequence of countable combs that have bounded “levels” is weakly
monotonically ordered. In Sections 5.3 and 5.4 we extend this to more complicated
dendrites that have infinite levels (R* dendrites) and even still richer dendrites called
R*- monotone fractals. Then in Section 5.5, we apply Theorem 5.1 to the previously
described continua and show that no countable comb is monotonically isolated.

5.1 Harmonic Combs

If D is a dendrite and [p, g] c D, then [p, q] is a harmonic spine of D if R([p, q])

is homeomorphic to 1/n,_, and p,q € R([p,q]). Without loss of generality we can
assume that p is the unique limit point of R([p, g]) and then g € R((p, q]). The
subdendrite strung by a harmonic spine, [ p, q], is called a strung harmonic comb and
is denoted by S([p, q]). Note that neither p nor q are ramification points of S([p, q])
itself. Since there are at most a countable number of harmonic spines in a dendrite,
there are at most a countable number of strung harmonic combs of a dendrite. Let
R([(p,q)) = {ri}:2,, where p,riy; < r; < g for each i in the ordering of [p, q] and
(S([p>q]), {ri}:2;) will be used to denote the strung harmonic comb along with the
ramification points of the harmonic spine. Then (S([p,q]), {ri}5;) is said to be a
(weakly) monotonically ordered strung harmonic comb if {C* (;, [p, q], S([p»q])) }
is (weakly) monotonically ordered.

Theorem 5.1 Suppose that X is a dendrite with a weakly monotonically ordered strung
harmonic comb. Then there exists a dendrite Y that is monotonically equivalent to X
but not homeomorphic to X.

Proof Let (S([p,q]),{ri}i;) be a weakly monotonically ordered strung harmonic
comb in dendrite X and let T; = C*(r;, (p,q),X). Every dendrite has at most a
countable number of strung harmonic combs. So let {(S([pj,q;])s {r{}‘l’jl)};’zl be
an ordering of these combs. (Note: if a dendrite has a harmonic comb, then it has an
infinite number of strung harmonic combs.) Let {x; }{°, be a sequence in [p, q] such
that ;41 < x; < r;. Let {A;}32, be a sequence of arcs such that diam(A;) <1/i and let
Al' = [ai, b,]

Let X' = X U A, and continuing inductively, let X'*! = X’ U A;,, be defined in the

following way:

(@) X' NAin = {xin}.

(b) If ordx(r;;) = 3, then x; is not an endpoint of A;. That is, ordyi (x;) = 4.
(c) Ifordx(rs;) # 3, then x; = b;. That s, ordx: (x;) = 3.

Let Y = U3, X¥ and (S([p, q]), {yi}5°,) be the strung harmonic comb of Y that
corresponds to S([p,q]) = S([p»q]) U U, A;, where y5;_1 = r; and y,; = x;. Let
T; = C* (i, (p»q), Y) be the teeth of S([p, q]). Notice that if ordy(y,;) = 3, then
Tz,’ = [yzl', a,-]. Ifordy(yz,-) = 4, then Tz,’ = [)/21') a,-] ] [)’21') b,]
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Claim 5.1.1 S([p,q]) is not homeomorphic to S([p;, g;]) for all i.

Let i € N. Then the claim follows from the fact that y,; = x; is the 2i-th root of

S( [p>q]) and ordg([P,q])(x,-) # Ords([p,-,q,-])(’;i)-
Thus, it may be concluded that Y is not homeomorphic to X.

Claim 5.1.2 There exists a monotone map g:S([p, q]) = S([p. q])-

Let n(1) = 1, and for each i let n(i + 1) > n(i) + 4 such that there is a monotone
map g;: Tyy(iy = Ti with gi(r,,(7)) = r;. We know that such a n(i +1) exists, since D is
monotonically ordered. Let M;: T; — T, bea homeomorphism such that M;(r1) = y;
and for i > 1let M;: Ty, (;y — T»:_1 be a monotone map such that M;(7,(;y) = y2i-1.

Let S; be the subdendrite of S([p, g]) strung by [7,,(;), rn(i+1)] and S; be the sub-
dendrite of S([p, q]) strung by [ y2i_1, y2i+1]. Then let f;:S; — S; be a map such that
the following hold:

(@) [7n(iy> Tn(i)+1] is mapped homeomorphically onto [y; 1, y2i];

(b) [Fn(i+1)-1>Tn(i+1)] is mapped homeomorphically onto [y2;, y2i+1];

(¢) Tu(iy+1 is mapped monotonically onto [y;, a;] such that f;(7,iy41) = y2is

(d) if ord(ys;) = 4, then T,(;),, is mapped monotonically onto [y;, b;] such that
fi(rn(i)+2) = Y2is

(e) if ord(ys;i) = 3, then T, (;), is mapped to y;;

() [n(i)+1> Tn(i+1)-1] is mapped to ya;;

(g) Tjismappedto y,; forall je{n(i)+3,...,n(i+1)-1}.

Then f; is monotone. Next define g: S([p, g]) — S([p q]) by

Mi(x) ifxe Tn(,-),
g(x)=1fi(x) ifxeS;,
p x = p.

Then it can be checked that g is monotone.
Claim 513 X and Y are monotonically equivalent.

Let G:X — Y be defined by G(x) = x if x ¢ S([p,q]) and G(x) = g(x) if x €
S([p>q])- Then G is clearly monotone. Since X c Y, it follows from Theorem 2.1 that
there exists a monotone map from Y onto X. ]

5.2 Countable Combs with Bounded Levels are bqo

An arc is said to be a level 0 dendrite. A dendrite D with root r is said to be a level 1
dendrite if it is not an arc and there exists an endpoint e such that the closure of the
components of D — [, e] are arcs. A dendrite D with root r is a level n dendrite if it is
not a level k dendrite for any k in {0, ..., n — 1}, and there exists an endpoint e such
that the closure of each component of D — [r, e] has level less than n. Note that the
root of each component of D = [r, e] is where that component meets [r, e].
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Let £ be the collection of rooted n-level countable combs. For a dendrite (D, 1) €
L1, let e; be some endpoint of D such that the closure of each component of D—[ry, e; ]
haslevel of at most n—1. Let F be the collection of fans as described in Section 4 and for
ease of notation let £LT7 = F(T, ulU", L) u {0}. So define f:Rp([r, e;]) - LT

by f(q) = C*(q,[r,e1], D) if q € Rp([r1,e1]) and f(q) = 0if g € Rp([r, e1]) -
Rp([r1,e1]). Recall that I = {([x,y],A) | A c [x,y] and A is countable}. Then

([r, e1], Ro([r1, e1]), f) € (£T7)7.
Theorem 5.2 L7 is bqo under <,.

Proof Proof is by induction on n. Since £ c T,, £? is bqo. Suppose that
£9,..., L  are all bqo. Then £T”" is bqo by Theorems 3.2 and 4.1 and Proposi-
tion 4.4. Suppose that (D, 1), (D2, ;) € L such that there exist endpoints ej, e, of
Dy, D, respectively that have the following properties:

(a) The closure of each component of Dy — [r1, e;] and D, — [r3, e, ] has levels of at
most n — 1.

(b) There exist labellings f;, f> such that
( [rl) el]a RD]( [T], el]) ,fl) é(L‘:T:’)j ( [72, 62], RDZ( [7'2, 62]) )fZ) .

Then there exists a monotone map m: [r,, e;] = [11, e1] such that

(@) m(ra)=r,

(b) m(ez) = e1,

(c) Rp,([r1,e1]) € m(Rp, ([r2, €2]))

(d) foreachq e Rp,([r1,e1]) there exists x4 € Rp, ([2, e2]) such that m(x,) = g and
fi(q) =+ f2(x4) (note 0 <, S,- for every S,» € D,).

Notice that (d) implies that there exists a monotone onto map
mg:C*(xg, [r2, 2], D) — €*(q,[r1,e1), D1).
Now define M: D, — D; by

m(x) ifxe[r,e],
mq(x) ifx € C* (x4, [r2,€2], D2),
m(y) ifxe@*(y,[rLz],Dz)
where y € Rp,([r2, 2]) — {xq}qem.

M(x) =

Then M is clearly monotone and onto. Hence, (Dy,7;) <, (Dy,7,). Since (£T"™)?
is bqo by Corollary 3.5, it follows that £ is bqo by Proposition 3.1. ]

5.3 Monotone Maps of R*° Combs
Now suppose that [x, y] ¢ D and |R([x, y])| = oo. Let

R'([x,y]) = {q € R([x,y]) | thereexists C € C(g,[x, y], D) and
p € Csuchthat|R([q, p])| = oo}.
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Continuing inductively, suppose that R” ([, y]) has been defined. Then define

R"™([x,9]) = {q € R"([x,y]) | thereexists C € C(g,[x, y], D) and
p € Csuch that [R"([g, p])| = oo}.

Let R*([x, y]) = N2y R"([x, y]). Define R”((x, y]) and R* ((x, y]) similarly. Sup-
pose that B ¢ D. Then we can define

R*(B) = {q € R(B) | there exists an endpoint
e € C*(q, B, D) such that |[R*([g, e])| = o0 }.
If g € R*(B), then define

Coo(q,B,D) = {A|Ae Com(D - B) such that g ¢ A
and there exists an endpoint e € A such that |[R*([g, e])| = oo }.

Note that if g € R*([x, y]), then Co (g, [x, ¥], D) # @. Being consistent with the
*-notation, we define €% (q, B, D) = Ucee.. (q,8,0) C-

We say that a comb has the R* property (or is a R* comb) if for every arc with the
property that if [R([x, y])| = oo it is the case that |[R*°([x, y])| = co and there exists
x1, 1 € D such that |[R([x1, y1])| = .

Proposition 5.3  If there exists distinct x, y € D such that R*([x, y]) # R=([x, y])
then D is not a R comb.

Proof If g € R'([x,y]) — R*®([x,y]), then there exists an m such that q
R™([x,y]) = R™([x, y]). Thus there exists an endpoint e of C*(g, [g, e], D) such
that |[R([q, e])| = co. However, since g ¢ R™*!([x, y]), it follows that |[R>([g, e])| <
|[R™([g,e])| < oo. Hence, D is not a R* comb. [ |

So if D is a R* comb, then let R ([x, y]) = R([x, y]) = R®([x, y]). It follows
from Proposition 5.3 that if ¢ € RF ([, y]), then (C*(q, [x, y], D), q) € T;.

Let T} = {0} U T, U {ro}, where ro, will be the image of a ramification point in
R*([x, y]) under the following labeling, and extend the ordering <, on 7, to be such
that 0 <} T for every T € T, U {reo }. Then T is bqo by Theorems 3.2 and 4.1.

Let D be a countable comb and [x, y] ¢ D. Then let f; ,:R([x,y]) - T; bea

labeling of R([x, y]) defined in the following way

0 if g € R([x, y]) = R([x, y]),
fy(q) =1€*(q,[x,y], D) ifqeR"([x,y]),
Too if g € R*([x, y]).

Hence, it follows that ([x, y], Rp([x, ¥]), fx,,) € (T7)”, which is ordered by S(gry?
(see Section 3).

Let D; be a dendrite with root r; and let D, be a dendrite with root r, such that
|[R([r2,x])| = oo for some x € D,. We say that D, overshadows D if for every
endpoint e; of D; and endpoint e, of D, such that [R®([r, e2])| = o0, and if ¥’ €
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R*([r2,e2]) and T, € Coo (7', [r2, 2], D2), then there exists an endpoint e, of T}
and labels f;, ¢,, fi,e,, such that

([rl,el],RDI( [7’1,61]),fr1,e1) S(7y? ([rl,el],RDZ( [r’,e,/]),f,/,er,).

Theorem 5.4  If Dy is a dendrite with root ry and D, is a dendrite with root r, such
that D, overshadows Ds, then there exists a monotone map m:D, — Dy such that
m(ry) = 1.

Proof Let D} = D2 = D} = D2 = &. Let ¢, be any endpoint of D; then there exists
an endpoint e, of D, such that

( [r1, e1]Rp, ([r1, e1]) >fr1,el) Sy ( [r1, e1]Rp, ([r2. €2]) :frz,EZ) .
Let my:[r2, e2] — [r1, e1] be an associated lpm map (see Section 3). Then for each
q € R}, ([r1, e1]) there exists 7 € R}, ([r2, e2]) such that m1(q) = qand f;, ,(q) <}
frae2 (@) Tt follows that there exists a monotone onto map my: C*(q, [r2, e2], D2) —
€*(g, [, e1], D1) such that m}(q) = q. Let

Di = [fl, 91], Df = [7‘2, 62],
D! =Dlu U C*(g,[r1,e1], D1) and
qeRy, ([r,e1])

’D\IZZD%U U e*(P) [72,32],D2)-
peRp, ([r2,e2])

Now let 771;: D? - D} be defined by
mi(x) ifx e D3,
iy (x) = {my(x) ifx € (G [r2, e2], D2), where m(q) = g and q € Rp, ([r1, e1]),
mi(p) ifx € C*(p,[r2, e2],D2) and p € Rp, ([r2, e2]) - {ﬁ}qexgl([n,el])-

Continuing inductively, suppose that dendrites D!, _;, D}, D?_, and D2 and mono-

tone onto map m,: D> — D!, have been found such that:

(@) D}, € Dy ¢ Dy

(b) D?_, c D? c Dy;

(c) each of the components of D; — D!,_, has diameter less than 1/n;

(d) the closure of the components of D!, - D! _; and D? — D?_, are arcs;

(e) if (¢, el is a component of D!, — D!, then there exists a component (7, €] of
D}, - D;_, such that m,,|7z is a Ipm map onto [#, e].

Thus, for each g € R}, ([t, e]) there exists 7 € R}, ([7,¢]) such that m,(q) = q and

fr.e(q) =7 fz+(q). It follows that there exists a monotone onto map

my 11.67:C" (@ [£,€], D2) > €7(q, [t €], D2)
such that mZ,[t,e](?j) =q. Let

B-plu U U €@lneuphby
(t,e]eCom(DL-D!_)) qERf)l ((t,e])
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and with the assignment z - Z made previously, let

D}, =Dyu U U ¢ (plt.e]uD.Dy).
(t,e]eCom(D2-D?2_,) peRy, ((t.e])

Now let 1i,: D2 — D}, be defined by

my(x) if x € D2,
my 1, (%)  ifx € C*(q,[£2], Dy),
mn(x) = where 7= m,(q) and q € R}, ([t,¢]),

mi(p)  ifxe€ (p[5E) D)
andp € Rgz([?’?]) - {’q\}qERlFJl([t,e])’

where (¢, e] is a component of D!, — D!, _,. Notice that 7, is a monotone onto map.
Continuing with (t, e] and (7,¢] as defined in (e), let g € R} (¢, e]). For each C €
(g, D}, Dy) pick an endpoint e = e(C) of C. There exists 7 € R}y, (% €]) such that
#,(q) = q. Pick any C € Co (g, D2, D). Then there exists an endpoint ¢ = ¢(C))
of C such that IR%, ([q,€])| = oo. Let r = r(C) e R7 ((q,¢€)). Pick any C=C(r) e
Coo (7, [G, €], D). Then there exists an endpoint & = €(C) of C such that

(L9l Ro,([9: 1) foe) Saeye (11 R0, ([12]) fre)

Note that since e depends on C, ¢ depends on the same C to obtain the above relation.
Let

m(q, C):[r,e(C)] — [g,e(C)]
be the associated Ipm map. Let

D, =D, U U  [g.eO)]

qeR>=(D}-D} _,) CeC(q,D;,D1)

Dia=Dyu( U  @e@)u( U U [ne©0)),
q€R (D} -D; ;) q€Re (D}, -D;, ;) CeC(q,D;.D1)
where R* (D!, - D! _)) = Ut,elecom(py,-p1_) R*((%, e]). Note that we may assume
that the diameter of each component of D; — D!, is less than 1/(n + 1). Define

) 1 n+l
Myi1: Dn+1 - Dn+1 bY
my,(x) if x € D2,

M1 (x) =47 if x €[4, é(q)]
m(q,C)(x) ifxe[r,e(C)].

Notice that m,,,; is monotone and m1,,41]| p2 = my. Notice that D; = U;2, D}, and let
D, = U, D2. Then let #i: D, - Dy be defined by #i(x) = m,(x) if x € D? for
some n. If x € D, — U2, D?, then there exists x,, € D2 for each n such that x,, - x.
Next, define #i(x) = limy, o M, (x,). It follows that 7 is monotone. Finally, since
D, c D,, there exists a monotone onto map m: D, — D such that m| B, = m. [ |
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5.4 R* Monotone Fractals

Let D be a R* comb with root ry; then D is R* self-similar with respect to monotone
maps (R* m self-similar) if for every endpoint e of D and g € R* ([, e]), there exists
a monotone onto map m: C*(q, [r1, e]) = D such that m(q) = r;.

Theorem 5.5 If D isa R® comb, then D contains a free R™m self-similar subcomb.

Proof We will use the result from Theorem 5.4 that if D #, D’, then D’ does not
overshadow D. Suppose that Dy is an R*® comb with root r that contain no free
R*m self-similar subcomb. Then there exists an endpoint 2y and 7; € R}y ([ro,0])

such that D; = C*(7, [r0.€0], Do) does not overshadow Dy. Therefore, there exists
an endpoint ey of Dy, an endpoint €; of Dy, and r; € Ry ([71,€1]) such that
1

([To,eo]aRE(Uo,eo]) fro, eo) J{_(‘I*)J ([71, ]>R ([ﬁ» ]) fne)

for any endpoint e of Dy = C*(ry, [71, é1], D;) c Dy.
Continuing inductively, suppose that {[r;, e;]}"-) and {D;}"_, have been found
such that

(a) Dj;isa R* comb with root r;,

(b) Dic Dy,

(¢) [risei] c Dy,

(d) ([ri-veima], Ry, ([ri-1,€ia1])s frioeis) £7rys ([risels Ry ([ris €]), fre) for

every endpoint e € D;.

It follows that D,, contains no free R®m self-similar subcomb. Then there exists an
endpoint €, and 7,11 € RY ([rn,€,]) such that Dps1 = C*(Fusts [Fn> €0, D) does
not overshadow D,,. Therefore, there exists an endpoint e, of D,, an endpoint ¢,
of D,yp,and 1y € R;m([?nﬂ, €441]) such that

( [7n>enls RBO,,( (72> en]) ’frn,e,.) i(fr:)ﬂ ( [ras1, €], REOW( (741> e]) ’frm,e)

for any endpoint e of R*® comb
Dn+1 = e*( Tn+1> [?n+la En+1]a 5n+1) c ﬁn+1-
Notice that if i < j, then ej € Dj c Dj,y. Thus, [r}, ej] c [ri41, €;]. Since
([T’i+1,ej],Rj'§M([T’i+1,€j]) Sria e,) E(7yr ([h, i],Rj';i([f’i,ei]),fr,-,e,-)
by (d), it follows that
(["1’61] Rpy ([r]’e]]) Ir;, e,) zv]E;(T*)J ([r,, i]’RBOi( [ri’ei])>fri,ef)'

Thus, {([ri, ei], R ([ri>€i]), frie;) } i<y must contain either an infinite antichain or
a strictly decreasing infinite sequence. Either way, this contradicts the fact that (T;)’
is bqo and hence wqo. Hence, Dy must have a free R>m self similar subcomb. ]
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5.5 Countable Combs are not Monotone Isolated

The following proposition simply follows from the fact that countable sets are not
perfect.

Proposition 5.6  Suppose that [x, y] is an arc in a dendrite D such that R([x, y]) is
countable. Then there exists a subarc [x', y'] of [x, y] such that [R([x', y'])| = oo and
the the set of limit points of R([x', y']) is {x'}.

Theorem 5.7  Countable combs are not monotonically isolated.

Proof There are two important cases:
Case 1  Suppose that D is not an R*® comb.

Then there exists an arc [x, y] such that |R([x, y])| = oo but |[R*([x, ¥])| < .
Hence, there exists a subarc [x’, '] such that [R([x', y'])| = co but R* ((x', y")) = @.

Claim  There exists an arc [g, p] and an integer n such that

@ [R([p,q])| =0
(b) €*(r,[q,p). D) € LT, foreachr e R((p,q)).

IfR'((x', ")) = @, then C*(r, [x, y'], D) € T, c LT for each r € R((x', y")). So
let ¢ = x" and p = y’. On the other hand, suppose that there exist g € R*((x’, y)).
Then since g ¢ R=((x’, y')), there exists an n such that

q € Rn( (x/,y/)) _Rn+1( (x/,y/))'

Then there exists p € €*(g,[x’, y'], D) such that |R([q, p])| = oo. It follows that
C*(r,[g,p], D) € LT} for each r € R((p, q)), and the claim is shown.

Next, by Proposition 5.6 there exists a subarc [g', p’] such that |R([g’, p'])| = o,
the the set of limit points of R([q’, p']) is {q’} (or similarly {p’}) and R~ ((q’, p']) =
@. Order R((q',p']) by {q:}32, where ¢’ < gix1 < q; < p’ in the natural ordering
of [q', p']. Since LT} is bqo, there exists an N such that {C*(q;,[q’,p']), D}y is
weakly monotonically ordered. Hence the subdendrite strung by [q', qn] is a free,
weakly monotonically ordered harmonic comb. Hence, D is not monotonically iso-
lated, by Theorem 5.1, and Case 1 is completed.

Case 2 Suppose that D is a R> comb.

Then by Theorem 5.5, D contains a free R® m self similar subcomb D’ with root .
Then there exists an endpoint e of D’ such that |[R*([#', e]| = o0. Again by Proposi-
tion 5.6 there exists a subarc [¢’, p'] such that |R([g', p’])| = oo, the the set of limit
points of R([q’,p']) is {q'} (or similarly {p'}) and R=((q’,p']) = @. Notice if
g, p € R((q’, p']), then there exist monotone maps

my:C*(p.[qp']. D) > D' and  mg:€*(q.[q,p'). D) > D.
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But since C*(p, ', p']. D), C*(q,[q, p’], D") c D’, we have that C*(p, [¢q', p’']. D)
and C*(q,[q’, p'], D") are monotonically equivalent. Hence,

* ! / !
{€(ald"P1D) } reicap

is bqo. Also, if ¢ € R((¢’,p']) = R=((q’,p']) = R¥((q’, p']), then, by Proposition
53,C*(q,[q,p'], D) € T,.

Order R((q', p']) by {qi}2,, where g’ < gi+1 < g; < p’ in the natural ordering of
[q',p']- Since T, U {D’} is bqo, there exists an N such that {C*(q;,[q’, p']. D')} 2n
is weakly monotonically ordered. Hence, the subdendrite strung by [¢q', qn] is a free,
monotonically ordered harmonic comb. Hence, D is not monotonically isolated, by
Theorem 5.1. ]

Corollary 5.8 If X is a dendrite with a free countable comb, then X is not monoton-
ically isolated.

Proof Notice that in the proof of Theorem 5.7, we concluded that every countable
comb has a free, weakly monotonically ordered harmonic comb. Hence, D is not
monotonically isolated by Theorem 5.1. ]

6 Wild Combs

Let X be a wild comb with wild spine A. For each p € R(A), define T, = C*(p, A, X)
and T} = {T, | p € R(A)}. If p € A— R(A), then define T, = {p}. Suppose that
X and Y are wild combs with respective spines Ax and Ay. Then define T < TX
if for every T, € ‘J'XY and subarc B ¢ Ay such that R(B) is uncountable, there exists
T, € ‘.Tffx such that T), <, T.

In this section we show that wild combs are not monotonically isolated by first
showing that if T} < T} , then there exists an onto monotone map m: X — Y. Then
the following cases are shown:

(a) If X is a wild comb with a perfect spine that contains a free harmonic comb, then
X is not monotonically isolated by Theorem 5.1.

(b) If X is a wild comb with a perfect spine such that no perfect spine contains a free
arc, then X is not monotonically isolated.

(c) If X is a wild comb with a perfect spine such that contains a free arc, then X is not
monotonically isolated.

(d) It will be shown in the next section that if X is a wild comb that contains no
perfect spine, then X is monotonically equivalent to Ds.

Proposition 6.1 IfT) < T} and[p,q] c Ax such that R([p,q]) is uncountable,

then T < ‘J’f;’q].

Proof This follows directly from the definition of <. ]

Lemma 6.2 Let X be a wild comb. Then there exists a wild comb Y with a wild spine
Ay such that R(Ay) = Ay and a monotone map m:X - Y .
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Proof Let Ax =[a,b] be awild spine of X and let

A={[x,y] < Ax | R(Ax) n (x,y) = @and if [w, 7] c Ax such that

[x, ylis a proper subset of [w, ], then R(Ax) n (w,r) # @}.

Let Y = X/A be the dendrite such that each [x, y] € A is identified with a point and
let m: X — Y be the natural quotient map. Need to show that Ay = Ax/A is an arc.
Let € be the collection of endpoints of the elements of A. Since A is countable, & must
be countable. Thus, R(Ax) N A — & is uncountable. So A — Upc4 is uncountable and
therefore Ay is an arc. Since every open interval of Ay must contain a ramification
pointof Y, R(Ay) = Ay. [ |

Proposition 6.3  Let Ix and Iy be arcs, {x;}{2, ¢ Ix and {y;}2, c Iy such that
xi < xj < xi ifand only if y; < y; < yk. Suppose that {x;;}7°, is a subsequence such
that

(i) x=limj,ex;,

(ii) either x;, < x forall j or x;, > x for all j.

Thenlimj_, o i, exists.

Proof Without loss of generality, assume x;; < x. Let y = sup {y;, }72;. Suppose that
t is a limit point of {y; } 72, less that y. Lete = (1/3)(y — t). Then there exists j and
an increasing sequence {j(n)}22; such that

(a) yij/ € (}’ - €>)’])

(®) yiy € (t-e,t+e) forall n.

Hence, i, < yi, for all n. It follows that x; ,, < xi, < x. Hence, {x,-j(n)},"f’:1 isa
subsequence of {x;;}7; that does not converge to x. This is a contradiction. Hence,
y= limj_,oo Vij- ]

Lemma 6.4 Let Ix and Iy be arcs, {x;}52, € Ix and {y;}:2; ¢ Iy such that

(i)  x =min{x;}3 and y; = min {y;}2,,

(i) xp =max {x;}%, and y, = max {y;} 2,

(iii) x; is an isolated point of {x;} 32, for each j,

(iv) if s < t are limit points of {y; } o), then [s, t] n{y:}32, # @,

(v) xi<xj<xgifandonlyify; <y; < yi.

Then there exists a monotone onto map m: [x1,x2 | = [y1, y2| such that m(x;) = y; for
each i.

Proof First we must prove the following claim.
Claim  Iflim;. e x;; exists, then lim;_, y;; exists.
Let x = lim;j o x;; and note by (iii) that x ¢ {x;}2,. By Proposition 6.3 we

may assume that there exists increasing sequences of natural numbers {o(n)}:>; and
{7(n)}:2, such that
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@ {o(m)} v {r(n)}i = {i;} 7%
(b) Xg(n) <X < Xy(p) forall n.
By Proposition 6.3 there exists s < t such thats = lim, oo Yo(n) and ¢ = lim, o0 Y(n)-
Suppose that there exists j' such that y;, € [s, t]. Then y,(n) < yi,, < yo(n) forall n. It
follows from (v) that x,(, < Xi, < Xr(n). Hence, x;, = x, which is impossible. Thus,
it follows from (iv) that s = £ = lim_, o i,

Let

O={y;j|(yj-ey)n{yitii # 2}
A={yjl(ypyi+e)n{yi}it ¥ 2}

be the elements of {y;}$2; that are also respectively right-hand and left-hand limit
points of {y;}72,. Notice that it follows from (iv) that each component of [y, 2] —

{yi}$2, must be of the form (s, ¥« ), (yi»ti) or (yi, yi) for some i, k where s; and t;
are limit points of { y; }{°,. Hence, it follows that each component of [x;, x2] — {x; }$2,
must be one of the following forms:

(@) (xi,xx) if (i, yx) is a component of [yy, 2] — {yi} 2, for the same i, k. Here
m(x) will map [x;, xx ] linearly onto [ y;, yx] such that m(x;) = y; and m(x;) =
k-

(b) (sy»>xk), where s} is a limit point of {x;};2, corresponding to the component
(s> yi) of [y1, y2] = {yi}$2,. Here m(x) will map [s}, xi] linearly onto s, yx]
such that m(s}) = s, and m(x) = yx.

(c) (xi,t}), where t! is a limit point of {x;}{2, corresponding to the component
(ti»yi) of [y, y2] = {yi}2,. Here m(x) will map [x;, t;] linearly onto [y;, t;]
such that m(x;) = y; and m(t}) = t;.

(d) (aj,x;j), where «; is a limit point of {x;}72; and y; € ®. Here m([a}, x;]) = y;.

(e) (xj,B;), where f; is a limit point of {x;}7°, and y; € A. Here m([x;, $;]) = y;.

Then it is easy to check that m: [x1, x2] = [y1, y2] is monotone. [ |

Lemma 6.5 Let X and Y be wild combs with respective spines Ax and Ay such that
T, < TX . Then there exists a monotone onto map m: X —' Y.

Proof LetAx =[a,b]and Ay = [c,d]. Also define
L={seAy|(s,t) eCom(Ay - R(Ay))},
R={teAy|(st) eCom(Ay—m)}.
Notice that £ u R is countable. So let
{yi}ii=R(Ay)uLuRuU (Wn {c,d}) = Qy
such that y; = min Qy and y, = max Qy. Note that if y; ¢ R(Ay), then T = {y;} <,

TX forall x € R(Ax).
Since T <1 T} , there exists x1,x; € R((a,b)) and €1, €, > 0 such that

(@A) a<xi<x1+€<xy—€<x,<b,

(b) T}}Z <, T,ff and T}}; < Té,

(c) R((x1+e€1,x2 —€)) is uncountable.
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Continuing inductively, suppose that for each i € {1,..., N}, x; € R([x1,x;)]) and
€; > 0 have been chosen such that

(@) (x;—€i,x;i+€)N (xk— €k, Xk +€x) =D wheni #k,

(b) if x; + €; < xx — €k then R([x; + €;, xx — €¢]) is uncountable,

(c) yi<yj<yrifandonlyifx; < x; < xg,

(d 1) < TS

Let y, = maxicien{yi | yi < yn1f and yg = mincien{yi | yi > yn+1}. Then there
exists xn11 € R((xp +€p, x4 — €4)) and ex1 > 0 such that

(@) TY TX

<
YN+1 T TXN41?
(b) Xp +€p <XN+1 —EN+1 < XN+1HENH < Xg — €

(c) R((xp +€psXN41—€n+1))> and R((xn41 + €n41, X4 — €¢)) are uncountable.

Notice that for every j, x; is an isolated point of {x;}?°, and that if p < g are
limit points of Qy, then [p,q] N Qy # @. Otherwise, (p,q) would be a compo-
nent of R(Ay) such that p ¢ £ and g ¢ R, which are both impossible. There-
fore, by Lemma 6.4, there exists a monotone onto map m:[x;,x2] = [y1, y2] such
that m(x;) = y;. Furthermore, m can be easily extended to a monotone onto map
m:[a, b] - [c,d] such that #i(x) = m(x) whenever x € [x;, x5 ].

For each i let m;: Tj — T)Z be an onto monotone map such that m;(x;) = y;.
Define f: X - Y by

mi(z) ifzeT),
f(z) ={m(x) ifzeTX wherexeR([Ax]) - {xi}53),
m(z) ifzeAx=][a,b].
Since 7 and each m; are monotone, f must be monotone. ]

Let X be a wild comb with wild spine A. A is perfect if for every y € R(A) and arc
B c A such that R(B) is uncountable, there exists x € R(B) such that T, <, T,.

Lemma 6.6 Let X be a wild comb with spine A such that T is bqo. Then X has a
perfect spine.

Proof Suppose that X has no perfect spine. Then there exists a x; € X and an arc
A; c X such that R(A,) is uncountable and Ty, #, T, for all a € A,;. Since A; is not
perfect there exists x, € A; and an arc A, c A; such that R(A,) is uncountable and
Ty, 4, T, foralli e {1,2} and a € A,.

Continuing inductively, suppose that x;, . .., x,-1 and A, have be found such that
Ty, #, Toforalli € {1,...,n—1} and a € A, where R(A,) is uncountable. Since
A, is not perfect, there exists x, € A, and an arc A,;; ¢ A, such that R(A,;1)
is uncountable and Ty, #, T, foralli € {1,...,n} and a € A,,. Thus, {T},}7,
either contains an infinite anti-chain or an infinite strictly decreasing sequence. Either
contradicts the fact that T} is bqo and hence not wqo. ]

Lemma 6.7  Suppose that X is a wild comb that

(i)  contains no harmonic comb,
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(ii) has a perfect spine Ay that contains a free arc [a, b].

Then X is not monotonically isolated.

Proof Let H be a simple harmonic comb with spine Ay and Y = XUH, where Ay =
[a,b] and Ay is the corresponding spine for Y. Since Y contains a free harmonic
comb and X does not, then they cannot be homeomorphic. Since X c Y, there exists
a monotone map from m:Y — X. Also, if I is an arc and T is any dendrite, we have
that I < T So it follows that ‘J'XY < ‘J'jfx. Thus, by Lemma 6.5, there exists a monotone
map m’: X — Y. Hence X and Y are monotonically equivalent. ]

Lemma 6.8  Suppose that X is a wild comb with a perfect spine such that every perfect
spine contains no free arc. Then X is not monotonically isolated.

Proof Let[a, b]bea perfect spine in X and note that if [ p, q] ¢ [a, b], then ‘J'f(u’b] N
‘If;’q] by Proposition 6.1. Let [¢,d] c (a,b). Define Y c X such that for each
r € R([c,d]) identify T, with r. Clearly, this defines a monotone map m: X — Y.
Conversely, since ‘Ifz’ b1 < {-Tfiz, b = ‘J'[{i) p)> it follows from Lemma 6.5 there is a mono-

tone map m’:Y — X. So X and Y are monotonically equivalent. Since Y contains a
perfect spine with a free arc and X does not, they cannot be homeomorphic. ]

Let
RY([x,y]) ={qeR([x,»]) | €*(g[x,»]) isa wild comb with root g} .

Theorem 6.9 If D is a wild comb with a perfect spine, then D is not monotonically
isolated.

Proof If D has a free harmonic comb, then D is not monotonically isolated by The-
orem 5.1. If D contains a free arc but no harmonic comb, then D is not monotonically
isolated by Lemma 6.7. If D contains no free arc, then it is not monotonically isolated
by Lemma 6.8. ]

7 Dendrites that are Monotonically Equivalent to D,,.

Lemma 7.1 Suppose that D is a wild comb that contains no perfect spine and no free
countable comb. Then if [x, y] is an arc such that R([x, y]) is uncountable, it follows
that RY ([ x, y]) is uncountable.

Proof For the purpose of a contradiction, suppose that R([x, y]) is uncountable and
RY([x, y]) is countable. Then there there exist a subarc [x’, y’] such that R([x’, y'])
is uncountable and R ([x’, y']) is empty. Since C*(q,[x’, ¥']) cannot be either a
countable comb or a wild comb for any g € R([x', y']), it follows that C* (g, [x', ¥']) €
T, for each g € R([x', y']). Since T, is bqo, [x’, ¥'] contains a perfect spine, which is
a contradiction. ]

Recall that a wild spine [x, y] is archimedian if [x, y] is a maximal arc in D and if
for every p,q € R([x, y]) such that p < g (in the natural ordering on [x, y]), there
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exists r € R([x, y]) such that p < r < g. A comb is archimedian if it contains an
archimedian wild spine.

Theorem 7.2 Suppose that D is a wild comb with the property that if R([x, y]) is un-
countable, then RW ([x, y]) is uncountable. Then D is monotonically equivalent to Dj.

Proof First we need to show the following claim:

Claim  If [x, y] is an arc in D such that R([x, y]) is uncountable, then there exists
an archimedian comb A c D with spine [x, y] such that if (p, q] is a component of

A - [x, y] then Rp((p, q]) is uncountable.

Since R% ([, y]) is uncountable, there exists a(x, y) ¢ R" ([x, y]) with the prop-
erty that if v, w € a(x, y) such that v < w (in the natural ordering on [x, y]), then
there exists r € a(x, y) such that v < r < w. Since C*(¢, [, y]) is a wild comb, for
each t € a(x, y) there exists an endpoint e; of C*(t, [x, y]) such that R((¢, e;]) is
uncountable. Let A = [x, y] UUrea(x,y) [t €:], and the claim follows.

Now suppose that in fact R([x, y]) is uncountable and let A; ¢ D be an archi-
median comb with spine [x, y] = Ag and such that Rp((p, g]) uncountable for each
component (p, q] of A; — [x, y]. Continuing inductively, suppose that A,_; and A,
have been found with the properties
(a) An—l c An’

(b) each component of A, — A,_; is an arc,
(c) if (p,q] isacomponent of A, — A,_1, then R|p((p, q]) is uncountable.

It follows that if (p, g] is a component of A, — A,_;, then there exists an archi-
median comb A, ; c D with spine [p, q] and such that if (s, t] is a component of
A, q - [p>q], then Rp((s, t]) is uncountable. Let A = U;2, A,. If we shrink each free
arc of A to a point, we have a monotone map onto Dj. Since A c D, it follows that
there is a monotone map from D onto D; and hence D < Ds. [ |

8 Main Theorem

In this section we combine our results to prove the main theorem.

Theorem 8.1 If D is a dendrite with an infinite number of ramification points, then
D is not monotonically isolated.

Proof If D hasan infinite number of ramification points, then D falls into one of the
following categories:
(a) D contains no arc with an infinite number of ramification points.

Then D is an infinite tree and is not monotonically isolated by Theorem 4.8.
(b) D contains some arc with an infinite number of ramification points.

(b.1) D contains a free countable comb.
Then D is not monotonically isolated by Corollary 5.8.
(b.2) D does not contain a free countable comb.
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Then D is a wild comb.

(b.2.1) D contains a perfect spine.
Then D is not monotonically isolated by Theorem 6.9.

(b.2.2) D contains no perfect spine.
Then D is a wild comb with the property that if R([x, y]) is un-
countable, then RW ([x, y]) is uncountable by Lemma 71. It follows
from Theorems 7.2 and 2.2 that D is not monotonically isolated. M

Theorem 1.1 now follows from Theorems 1.2 and 8.1.
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